1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Jie XL, Tong ZR, Xu XY, Wu JH, Jiang XL, Tao Y, Feng PS, Yu J, Lan JP, Wang P. Mechanic study based on untargeted metabolomics of Pi-pa-run-fei-tang on pepper combined with ammonia induced chronic cough model mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117905. [PMID: 38364934 DOI: 10.1016/j.jep.2024.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pi-pa-run-fei-tang (PPRFT), a traditional Chinese medicine formula with long-standing history, demonstrated beneficial effect on chronic cough. However, the mechanism underlying efficacy unclear. In current research, we explored the impact and molecular mechanism of chronic cough mouse stimulating with capsaicin combined with ammonia. AIM OF THE STUDY To investigate the metabolic modulating effects, and potential mechanisms underlying the therapeutic effect of PPRFT in chronic cough. MATERIALS AND METHODS Chronic cough mouse models were created by stimulating mice by capsaicin combined with ammonia. Number of coughs and cough latency within 2 min were recorded. With lung tissue and serum samples collected for histopathology, metabolomics, RT-qPCR, immunohistochemistry, and WB analysis. Lymphocytes were isolated and flow cytometric assays were conducted to evaluate the differentiation between Th17 and Treg cell among CD4+ cells. RESULTS Results indicated that PPRFT obviously reduced the number of coughs, prolonged cough latency, reduced inflammatory cell infiltration and lung tissues damage, and decreased the serum level of IL-6, IL-1β, TNF-α, and IL-17 while increasing IL-10 levels. Notably, PPRFT suppressed Th17 cell divergence and promoted Treg cell divergence. Furthermore, serum metabolomic assays showed that 46 metabolites differed significantly between group, with 35 pathways involved. Moreover, mRNA levels of IL-6, NF-κB, IL-17, RORγT, JAK2, STAT3, PI3K and AKT in lung tissues remarkably reduced and mRNA levels of IL-10 and FOXP3 were elevated after PPRFT pretreatment. Additionally, PPRFT treatments decreased the protein levels of IL-6, NF-κB, IL-17, RORγT, p-JAK2, p-STAT3, p-PI3K, and p-AKT and increased the protein levels of IL-10 and FOXP3, but no significantly effects to the levels on JAK2, STAT3, PI3K, and AKT in the lungs. CONCLUSION Conclusively, our result suggested the effect with PPRFT on chronic cough may be mediated through IL-6/JAK2/STAT3 and PI3K/AKT/NF-κB pathway, which regulate the differentiation between Th17 and Treg cell. This beneficial effect of PPRFT in capsaicin and ammonia-stimulated chronic cough mice indicates its potential application in treating chronic cough.
Collapse
Affiliation(s)
- Xiao-Lu Jie
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zhe-Ren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xin-Yue Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jia-Hui Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xing-Liang Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Pei-Shi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jin Yu
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., Hangzhou, China.
| | - Ji-Ping Lan
- School of Integrative Medicine Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Ning R, Chen G, Fang R, Zhang Y, Zhao W, Qian F. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol Res 2021; 54:40. [PMID: 34922636 PMCID: PMC8684101 DOI: 10.1186/s40659-021-00363-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diosmetin is a bioflavonoid compound naturally abundant in citrus fruits. It is found to perform a variety of activities, while its antitumor property in osteosarcoma, a malignant tumor with unmet clinical treatment, remained unknown. METHODS Colony formation assay, cell cycle analysis and apoptosis analysis were conducted respectively to observe the effect of diosmetin on cell proliferation and apoptosis in human osteosarcoma cells. Western blot and immunoprecipitation were used to detect the expression of apoptotic molecules and activation of STAT3/c-Myc pathway in Saos-2 and U2SO cells. RESULTS Diosmetin significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and promoted cell apoptosis in both Saos-2 and U2SO cells. Moreover, Diosmetin downregulated the expression of anti-apoptotic protein Bcl-xL while upregulated the levels of pro-apoptotic proteins including cleaved Caspase-3, cleaved-PARP and Bax. Furthermore, diosmetin dose-dependently inhibited STAT3 phosphorylation, reduced the expression of its downstream protein c-Myc and impeded the interaction between STAT3 molecules. CONCLUSIONS These results suggest that diosmetin exerts anti-osteosarcoma effects by suppressing cell proliferation and inducing apoptosis via inhibiting the activation of STAT3/c-Myc signaling pathway, which provide the possibility for diosmetin to be a chemotherapeutic candidate for osteosarcoma.
Collapse
Affiliation(s)
- Rende Ning
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031, China.
| | - Guang Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031, China
| | - Run Fang
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031, China
| | - Yanhui Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, 85 Wu Jin Road, Shanghai, 200080, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Li F, Zhao X, Sun R, Ou J, Huang J, Yang N, Xu T, Li J, He X, Li C, Yang M, Zhang Q. EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS. J Extracell Vesicles 2020; 10:e12003. [PMID: 33304472 PMCID: PMC7710133 DOI: 10.1002/jev2.12003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer with high metastatic potential that occurs in the epithelial cells of the nasopharynx. Distant metastases are the primary cause for treatment failure and mortality of NPC patients. However, the underlying mechanism responsible for the initiation of tumour cell dissemination and tumour metastasis in NPC is not well understood. Here, we demonstrated that epidermal growth factor receptor (EGFR) was highly expressed in tumour tissues of NPC patients with distant metastases and was associated with a decrease in reactive oxygen species (ROS). We also revealed that extracellular vesicles (EVs) transfer occurred from highly to poorly metastatic NPC cells, mediating cell-cell communication and enhancing the metastatic potential of poorly metastatic NPC cells. Further experiments indicated that EVs derived from highly metastatic NPC cells induced the up-regulation of EGFR and down-regulation of ROS in low metastatic NPC cells. Mechanistically, EGFR-rich EVs-mediated EGFR overexpression down-regulated intracellular ROS levels through the PI3K/AKT pathway, thus promoting the metastatic potential of poorly metastatic NPC cells. Strikingly, treatment with EVs secreted from highly metastatic NPC cells was significantly associated with rapid NPC progression and shorter survival in xenografted mice. These findings not only improve our understanding of EVs-mediated NPC metastatic mechanism but also have important implications for the detection and treatment of NPC patients accompanied by aberrant EGFR-rich EVs transmission.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Xin Zhao
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat-sen University Cancer Center Guangzhou China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China
| | - Jinxin Ou
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Junyu Huang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Nanyan Yang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Ting Xu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Jingyao Li
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Xiner He
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Chaoyi Li
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Mo Yang
- The Seventh Affiliated Hospital Sun Yat-sen University Shenzhen China.,Lianjiang People's Hospital Lianjiang China
| | - Qing Zhang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China.,Institute of Sun Yat-sen University in Shenzhen Shenzhen China
| |
Collapse
|
5
|
Thiebaut C, Konan HP, Guerquin MJ, Chesnel A, Livera G, Le Romancer M, Dumond H. The Role of ERα36 in Development and Tumor Malignancy. Int J Mol Sci 2020; 21:E4116. [PMID: 32526980 PMCID: PMC7312586 DOI: 10.3390/ijms21114116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen nuclear receptors, represented by the canonical forms ERα66 and ERβ1, are the main mediators of the estrogen-dependent pathophysiology in mammals. However, numerous isoforms have been identified, stimulating unconventional estrogen response pathways leading to complex cellular and tissue responses. The estrogen receptor variant, ERα36, was cloned in 2005 and is mainly described in the literature to be involved in the progression of mammary tumors and in the acquired resistance to anti-estrogen drugs, such as tamoxifen. In this review, we will first specify the place that ERα36 currently occupies within the diversity of nuclear and membrane estrogen receptors. We will then report recent data on the impact of ERα36 expression and/or activity in normal breast and testicular cells, but also in different types of tumors including mammary tumors, highlighting why ERα36 can now be considered as a marker of malignancy. Finally, we will explain how studying the regulation of ERα36 expression could provide new clues to counteract resistance to cancer treatments in hormone-sensitive tumors.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Henri-Philippe Konan
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| |
Collapse
|
6
|
Hwang MS, Strainic MG, Pohlmann E, Kim H, Pluskota E, Ramirez-Bergeron DL, Plow EF, Medof ME. VEGFR2 survival and mitotic signaling depends on joint activation of associated C3ar1/C5ar1 and IL-6R-gp130. J Cell Sci 2019; 132:jcs.219352. [PMID: 30765465 DOI: 10.1242/jcs.219352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Purified vascular endothelial cell (EC) growth factor receptor-2 (VEGFR2) auto-phosphorylates upon VEGF-A occupation in vitro, arguing that VEGR2 confers its mitotic and viability signaling in and of itself. Herein, we show that, in ECs, VEGFR2 function requires concurrent C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 co-signaling. C3ar1/C5ar1 or IL-6R blockade totally abolished VEGFR2 auto-phosphorylation, downstream Src, ERK, AKT, mTOR and STAT3 activation, and EC cell cycle entry. VEGF-A augmented production of C3a/C5a/IL-6 and their receptors via a two-step p-Tyk2/p-STAT3 process. Co-immunoprecipitation analyses, confocal microscopy, ligand pulldown and bioluminescence resonance energy transfer assays all indicated that the four receptors are physically interactive. Angiogenesis in murine day 5 retinas and in adult tissues was accelerated when C3ar1/C5ar1 signaling was potentiated, but repressed when it was disabled. Thus, C3ar1/C5ar1 and IL-6R-gp130 joint activation is needed to enable physiological VEGFR2 function.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael G Strainic
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elliot Pohlmann
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Haesuk Kim
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute and University Hospitals, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, Ohio 44106, USA
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - M Edward Medof
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Tang H, Bai Y, Xiong L, Zhang L, Wei Y, Zhu M, Wu X, Long D, Yang J, Yu L, Xu S, Zhao J. Interaction of estrogen receptor β5 and interleukin 6 receptor in the progression of non-small cell lung cancer. J Cell Biochem 2019; 120:2028-2038. [PMID: 30216513 DOI: 10.1002/jcb.27510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
Numerous studies have shown that the estrogen receptor beta (ERβ) and interleukin 6 receptor (IL-6R) had interaction in many tumors, including lung cancer. Previous studies found that ERβ5 exhibits a different biological function compared with the other subtypes of ERβ. Therefore, this study mainly explores the interaction between ERβ5 and IL-6R in the progression of lung cancer. We found that the expression of ERβ5, IL-6 and glycoprotein 130 (GP130) were significantly increased (P < 0.001) and the 5-year survival rate with the co-expression of ERβ5 and GP130 is significantly lower (P = 0.0315) in non-small cell lung cancer (NSCLC) patients. The cell proliferation, invasion, and cell cycle were markedly increased, and the cell apoptotic was markedly inhibited with the concurrent action of ERβ5 and IL-6 in A549 cells (P < 0.05). In addition, the expression of ERβ5, GP130, p-AKT, and p-44/42 MAPK was also significantly increased in A549 cells (P < 0.05). These results indicate that ERβ5 and GP130 can synergistically promote the progression of NSCLC and maybe combined as an independent prognostic factor in patients. In addition, these results also provide a theoretical basis for the combined targeting therapy of ERβ5 and GP130 in NSCLC.
Collapse
Affiliation(s)
- Hexiao Tang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuquan Bai
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lecai Xiong
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanhong Wei
- Department of Nephrology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglin Zhu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoling Wu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Long
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhui Yang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Xu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Wu PL, Zeng C, Zhou YF, Yin L, Yu XL, Xue Q. Farnesoid X Receptor Agonist GW4064 Inhibits Aromatase and ERβ Expression in Human Endometriotic Stromal Cells. Reprod Sci 2018; 26:1111-1120. [PMID: 30428773 DOI: 10.1177/1933719118808912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endometriosis is an estrogen-dependent disease. Farnesoid X receptor (FXR) activation has been shown to inhibit estrogen signaling in breast cancer and testicular tumors. However, the role of FXR in endometriosis is still poorly understood. Here, we aimed to investigate whether FXR activation by its synthetic agonist GW4064 has a therapeutic effect on endometriosis and the underlying molecular mechanisms. We found that the expression of FXR (encoded by the NR1H4 gene) in endometriotic tissues and stromal cells (ESCs) was higher than that in eutopic endometrial tissues and stromal cells. The GW4064 treatment led to a dose-dependent decrease in aromatase and estrogen receptor β (ERβ) expression and induced ERK1/2, p38, AMPK, and Stat3 activation in ESCs. In contrast, ERK1/2 inhibitor reversed the GW4064-induced reduction in aromatase expression. In addition, treatment with p38, AMPK, and Stat3 inhibitors or small interfering RNAs could also reverse the GW4064-induced reduction of ERβ expression in ESCs. The GW4064 treatment markedly increased Stat3 phosphorylation, enhancing the binding of Stat3 to the ESR2 promoter, which resulted in the downregulation of ERβ. Coimmunoprecipitation assay and chromatin immunoprecipitation analysis revealed that FXR was able to compete with cyclic AMP response element-binding (CREB) protein for binding to a common sequence on the aromatase promoter region after GW4064 treatment in ESCs. Moreover, treatment of endometriosis xenografts with GW4064 suppressed aromatase and ERβ expression in nude mice. Our results suggest that FXR may represent a potential therapeutic target for future therapy.
Collapse
Affiliation(s)
- Pei-Li Wu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ying-Fang Zhou
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ling Yin
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xiao-Lan Yu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Huang Q, Zhang Z, Liao Y, Liu C, Fan S, Wei X, Ai B, Xiong J. 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:133. [PMID: 29970138 PMCID: PMC6029357 DOI: 10.1186/s13046-018-0804-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
Abstract
Background In non-small cell lung cancer (NSCLC), estrogen (E2) significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). Discovery and elucidation of the mechanism underlying estrogen-promoted NSCLC progression is critical for effective preventive interventions. IL6 has been demonstrated to be involved in the development, progression and metastasis in several cancers and IL6 overexpression is associated with poor prognosis in NSCLC. However, the exact role played by IL6 in estrogen-promoted NSCLC progress remain unknown. Here, we evaluated the expression and biological effects of IL6 in NSCLC cells when treated with E2 and explored the underlying mechanism of IL6 in E2-promoted NSCLC progression. Methods Expression of ERβ/IL6 in 289 lung cancer samples was assessed by immunohistochemistry. Matched samples of metastatic lymph node and primary tumor tissues were used to quantify the expression of ERβ/IL6 by western blot. Expression levels of IL6 in NSCLC cells were quantified by western blotting, ELISA, and immunofluorescence staining. The effects of IL6 stimulated by E2 on cell malignancy were evaluated using CCK8, colony formation, wound healing and transwell. Furthermore, overexpression and knockdown ERβ constructs were constructed to measure the expression of IL6. The effects of IL6 stimulated by E2 on tumor growth were evaluated using a urethane-induced adenocarcinoma model. In addition, a xenograft mouse model was used to observe differences in ERβ subtype tumor growth with respect to IL6 expression. Results IL6/ERβ expression were significantly increased in lung cancer. Higher IL6/ERβ expression was associated with decreased differentiation or increased metastasis. IL6 was an independent prognostic factor for overall survival (OS), higher IL6 expression was associated with decreased OS. Furthermore, ERβ regulates IL6 expression via MAPK/ERK and PI3K/AKT pathways when stimulated by E2 and promotes cell malignancy in vitro and induced tumor growth in vivo. Finally we confirm that ERβ isolation 1/5 is essential for E2 promotion of IL6 expression, while ERβ2 not. Conclusions Our findings demonstrate that E2 stimulates IL6 expression to promote lung adenocarcinoma progression through the ERβ pathway. We also clarify the difference in each ERβ subtype for E2 promoting IL6 expression, suggesting that ERβ/IL6 might be potential targets for prognostic assessment and therapeutic intervention in lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-018-0804-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Campo Verde Arboccó F, Sasso CV, Actis EA, Carón RW, Hapon MB, Jahn GA. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol 2016; 419:18-28. [PMID: 26472537 DOI: 10.1016/j.mce.2015.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 02/02/2023]
Abstract
Thyroid diseases have deleterious effects on lactation, litter growth and survival, and hinder the suckling-induced hormone release, leading in the case of hyperthyroidism, to premature mammary involution. To determine the effects of hypothyroidism (HypoT) on late lactation, we analyzed the effect of chronic 6-propyl-2-thiouracil (PTU)-induced HypoT on mammary histology and the expression of members of the JAK/STAT/SOCS signaling pathway, milk proteins, prolactin (PRLR), estrogen (ER), progesterone (PR) and thyroid hormone (TR) receptors, markers of involution (such as stat3, lif, bcl2, BAX and PARP) on lactation (L) day 21. HypoT mothers showed increased histological markers of involution compared with control rats, such as adipose/epithelial ratio, inactive alveoli, picnotic nuclei and numerous detached apoptotic cells within the alveolar lumina. We also found decreased PRLR, β-casein and α-lactoalbumin mRNAs, but increased SOCS1, SOCS3, STAT3 and LIF mRNAs, suggesting a decrease in PRL signaling and induction of involution markers. Furthermore, Caspase-3 and 8 and PARP labeled cells and the expression of structural proteins such as β-Actin, α-Tubulin and Lamin B were increased, indicating the activation of apoptotic pathways and tissue remodelation. HypoT also increased PRA (mRNA and protein) and erβ and decreased erα mRNAs, and increased strongly TRα1, TRβ1, PRA and ERα protein levels. These results show that lactating HypoT rats have premature mammary involution, most probably induced by the inhibition of prolactin signaling along with the activation of the LIF-STAT3 pathway.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arboccó
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina.
| | - Corina V Sasso
- Laboratorio de Hormonas y Biología del Cancer, IMBECU, Argentina
| | - Esteban A Actis
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina
| | - Rubén W Carón
- Laboratorio de Hormonas y Biología del Cancer, IMBECU, Argentina
| | - María Belén Hapon
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela A Jahn
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina.
| |
Collapse
|
11
|
Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun 2015; 6:6285. [PMID: 25734337 PMCID: PMC4366489 DOI: 10.1038/ncomms7285] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-κB-induced IL-8 expression by sequestering NF-κB within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3–NF-κB–IL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance. STAT3 is an intracellular transducer of cytokine signals that cooperates with Ras in tumour formation and is often activated in lung cancer. Here the authors show that STAT3 acts as a tumour suppressor in a mouse model of Kras-driven lung adenocarcinoma.
Collapse
|
12
|
Yuan F, Fu X, Shi H, Chen G, Dong P, Zhang W. Induction of murine macrophage M2 polarization by cigarette smoke extract via the JAK2/STAT3 pathway. PLoS One 2014; 9:e107063. [PMID: 25198511 PMCID: PMC4157812 DOI: 10.1371/journal.pone.0107063] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoking is a major pathogenic factor in lung cancer. Macrophages play an important role in host defense and adaptive immunity. These cells display diverse phenotypes for performing different functions. M2 type macrophages usually exhibit immunosuppressive and tumor-promoting characteristics. Although macrophage polarization toward the M2 phenotype has been observed in the lungs of cigarette smokers, the molecular basis of the process remains unclear. In this study, we evaluated the possible mechanisms for the polarization of mouse macrophages that are induced by cigarette smoking (CS) or cigarette smoke extract (CSE). The results showed that exposure to CSE suppressed the production of reactive oxygen species (ROS) and nitric oxide (NO) and down-regulated the phagocytic ability of Ana-1 cells. The CD163 expressions on the surface of macrophages from different sources were significantly increased in in vivo and in vitro studies. The M1 macrophage cytokines TNF-α, IL-12p40 and enzyme iNOS decreased in the culture supernatant, and their mRNA levels decreased depending on the time and concentration of CSE. In contrast, the M2 phenotype macrophage cytokines IL-10, IL-6, TGF-β1 and TGF-β2 were up-regulated. Moreover, phosphorylation of JAK2 and STAT3 was observed after the Ana-1 cells were treated with CSE. In addition, pretreating the Ana-1 cells with the STAT3 phosphorylation inhibitor WP1066 inhibited the CSE-induced CD163 expression, increased the mRNA level of IL-10 and significantly decreased the mRNA level of IL-12. In conclusion, we demonstrated that the M2 polarization of macrophages induced by CS could be mediated through JAK2/STAT3 pathway activation.
Collapse
Affiliation(s)
- Fengjiao Yuan
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiao Fu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Hengfei Shi
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Guopu Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Ping Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Weiyun Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Singireddy AV, Inglis MA, Zuure WA, Kim JS, Anderson GM. Neither signal transducer and activator of transcription 3 (STAT3) or STAT5 signaling pathways are required for leptin's effects on fertility in mice. Endocrinology 2013; 154:2434-45. [PMID: 23696567 DOI: 10.1210/en.2013-1109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hormone leptin is critical for the regulation of energy balance and fertility. The long-form leptin receptor (LepR) regulates multiple intracellular signaling cascades, including the classic Janus kinase-signal transducer and activator of transcription (STAT) pathways. Previous studies have shown that deletion of STAT3 or the closely related STAT5 from the brain results in an obese phenotype, but their roles in fertility regulation are not clear. This study tested whether STAT3 and STAT5 pathways of leptin signaling are required for fertility, and whether absence of one pathway might be compensated for by the other in a redundant manner. A Cre-loxP approach was used to generate 3 models of male and female transgenic mice with LepR-specific deletion of STAT3, STAT5, or both STAT3 and STAT5. Body weight, puberty onset, estrous cyclicity, and fertility were measured in all knockout (KO) mice and their control littermates. Knocking out STAT3 or both STAT3 and 5 from LepR expressing cells, but not STAT5 alone, led to significant increase in body weight. All STAT3 and STAT5 single KO mice exhibited normal puberty onset and subsequent fertility compared to their control littermates. Surprisingly, all STAT3 and STAT5 double KO mice also exhibited normal puberty onset, estrous cyclicity, and fertility, although they had severely disrupted body weight regulation. These results suggest that, although STAT3 signaling is crucial for body weight regulation, neither STAT3 nor STAT5 is required for the regulation of fertility by leptin. It remains to be determined what other signaling molecules mediate this effect of leptin, and whether they interact in a redundant manner.
Collapse
Affiliation(s)
- Amritha V Singireddy
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
14
|
Tiwari P, Tripathi LP, Nishikawa-Matsumura T, Ahmad S, Song SNJ, Isobe T, Mizuguchi K, Yoshizaki K. Prediction and experimental validation of a putative non-consensus binding site for transcription factor STAT3 in serum amyloid A gene promoter. Biochim Biophys Acta Gen Subj 2013; 1830:3650-5. [PMID: 23391827 DOI: 10.1016/j.bbagen.2013.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/04/2013] [Accepted: 01/28/2013] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that though the human SAA1 gene shows no typical STAT3 response element (STAT3-RE) in its promoter region, STAT3 and the nuclear factor (NF-κB) p65 first form a complex following interleukin IL-1 and IL-6 (IL-1+6) stimulation, after which STAT3 interacts with a region downstream of the NF-κB RE in the SAA1 promoter. In this study, we employed a computational approach based on indirect read outs of protein-DNA contacts to identify a set of candidates for non-consensus STAT3 transcription factor binding sites (TFBSs). The binding of STAT3 to one of the predicted non-consensus TFBSs was experimentally confirmed through a dual luciferase assay and DNA affinity chromatography. The present study defines a novel STAT3 non-consensus TFBS at nt -75/-66 downstream of the NF-κB RE in the SAA1 promoter region that is required for NF-κB p65 and STAT3 to activate SAA1 transcription in human HepG2 liver cells. Our analysis builds upon the current understanding of STAT3 function, suggesting a wider array of mechanisms of STAT3 function in inflammatory response, and provides a useful framework for investigating novel TF-target associations with potential therapeutic implications.
Collapse
Affiliation(s)
- Prabha Tiwari
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen W, Shen X, Xia X, Xu G, Ma T, Bai X, Liang T. NSC 74859-mediated inhibition of STAT3 enhances the anti-proliferative activity of cetuximab in hepatocellular carcinoma. Liver Int 2012; 32:70-77. [PMID: 22098470 DOI: 10.1111/j.1478-3231.2011.02631.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 07/30/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Cetuximab [an epidermal growth factor receptor (EGFR) inhibitor], which was shown to be effective in rectal and non-small cell lung cancers (NSCLCs), was only modestly effective in clinical trials of hepatocellular carcinoma (HCC). STAT3, which is thought to be a determinant of HCC sensitivity to antitumour drugs, may be involved. AIMS To evaluate the efficacy of combination therapy using cetuximab and NSC 74859 (a novel STAT3 inhibitor) in EGFR and STAT3 overexpressing hepatoma cells. METHODS Hepatoma cell lines were treated with cetuximab, NSC 74859 or a combination of both drugs. Efficacy of treatment was evaluated by determining cell viability using MTT assays and proliferation by cell counting. Expression and activation of STAT3 were determined using Western blot analysis. We evaluated the role of STAT3 in single and combination therapy using siRNA-mediated knock-down of STAT3 or STAT3 overexpression strategies. RESULTS HepG2 and Huh-7 cells, which had lower levels of pSTAT3 than SK-HEP1 cells, were more sensitive to cetuximab treatment when compared with SK-HEP1 cells. Although none of these cell lines was sensitive to NSC 74859 alone, NSC 74859 potentiated the antiproliferative effect of cetuximab in all three cell lines. siRNA knock-down of STAT3 increased the sensitivity of these cell lines to cetuximab, whereas STAT3 overexpression antagonized these effects. CONCLUSIONS Enhanced growth inhibition in hepatoma cells treated with both NSC 74859 and cetuximab suggests that cetuximab resistance is probably mediated via STAT3. Combination therapy using both inhibitors of EGFR and STAT3 signalling warrants further investigation under in vivo condition.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | | | | | | | | | | | | |
Collapse
|