1
|
Trang KB, Pahl MC, Pippin JA, Su C, Littleton SH, Sharma P, Kulkarni NN, Ghanem LR, Terry NA, O'Brien JM, Wagley Y, Hankenson KD, Jermusyk A, Hoskins J, Amundadottir LT, Xu M, Brown K, Anderson S, Yang W, Titchenell P, Seale P, Kaestner KH, Cook L, Levings M, Zemel BS, Chesi A, Wells AD, Grant SFA. 3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity. eLife 2025; 13:RP95411. [PMID: 39813287 PMCID: PMC11735026 DOI: 10.7554/elife.95411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18, and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.
Collapse
Affiliation(s)
- Khanh B Trang
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - James A Pippin
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chun Su
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Sheridan H Littleton
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Prabhat Sharma
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Nikhil N Kulkarni
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Louis R Ghanem
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Natalie A Terry
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Joan M O'Brien
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Medicine Center for Ophthalmic Genetics in Complex DiseasePhiladelphiaUnited States
| | - Yadav Wagley
- Department of Orthopedic Surgery University of Michigan Medical School Ann ArborAnn ArborUnited States
| | - Kurt D Hankenson
- Department of Orthopedic Surgery University of Michigan Medical School Ann ArborAnn ArborUnited States
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer InstituteBethesdaUnited States
| | - Jason Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer InstituteBethesdaUnited States
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer InstituteBethesdaUnited States
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer InstituteBethesdaUnited States
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer InstituteBethesdaUnited States
| | - Stewart Anderson
- Department of Child and Adolescent Psychiatry, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Psychiatry, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wenli Yang
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Paul Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Laura Cook
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Critical Care, Melbourne Medical School, University of MelbourneMelbourneAustralia
- Division of Infectious Diseases, Department of Medicine, University of British ColumbiaVancouverCanada
| | - Megan Levings
- Department of Surgery, University of British ColumbiaVancouverCanada
- BC Children's Hospital Research InstituteVancouverCanada
- School of Biomedical Engineering, University of British ColumbiaVancouverCanada
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Immunology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Struan FA Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division Endocrinology and Diabetes, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Contreras-Jurado SC. Thyroid Hormones and Co-workers: An Overview. Methods Mol Biol 2025; 2876:3-16. [PMID: 39579305 DOI: 10.1007/978-1-0716-4252-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The hypothalamus secretes the thyroid-releasing hormone (TRH) that induces the pituitary gland to release the thyroid-stimulating hormone (TSH) which stimulates thyroid follicular cells to release the thyroid hormones (THs), thyroxine (T4), and triiodothyronine (T3). The process of synthesizing T3 and T4 hormones involves various enzymatic steps, starting with the iodination of L-tyrosine residues present in the protein thyroglobulin. Thyroid hormones are released into the bloodstream, where they bind to thyroid hormone distributor proteins (THDPs) which transport them in the circulation. The conversion of T4 to T3 (the more biologically active hormone) in target tissues is facilitated by selenoprotein enzymes known as deiodinases. THs can bind to different molecules located on the plasma membrane, such as integrin αvβ3, through which they exercise regulatory non-genomic control. Nevertheless, most of thyroid hormone's actions are mediated intracellularly by binding to thyroid hormone receptors (TRs). Thyroid hormone receptors act as ligand-dependent transcription factors, Thyroid hormone receptors activate thyroid hormone response elements on gene promoters through canonical signaling. Thyroid hormones mediate several critical physiological processes including organ development, cell differentiation, metabolism, and cell growth and maintenance.
Collapse
Affiliation(s)
- Silvia Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain.
| |
Collapse
|
3
|
Andlib N, Prabha S, Thakur SC. Unraveling the molecular pathogenesis of Type 2 Diabetes and its impact on female infertility: A bioinformatics and systems biology approach. Comput Biol Med 2024; 180:108987. [PMID: 39116715 DOI: 10.1016/j.compbiomed.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Type 2 diabetes mellitus (T2D) has been linked with female infertility (FI). Nevertheless, our understanding of the molecular hallmarks and underlying mechanisms remains elusive. This research article aimed to find the hub genes, pathways, transcription factors, and miRNA involved. For this study, softwares like cytoscape, string, Enrichr, FFL loop, etc., were utilized. This research article employed differentially expressed genes (DEGs) to identify multiple biological targets to understand the association between T2D and female infertility (FI). Between T2D and FI, we found 3869 differentially expressed genes. We have also analyzed different pathways like thyroid hormone signaling pathways, AGE-RAGE signaling pathways in diabetic complications and ubiquitin-mediated proteolysis through pathway analysis. Moreover, hub genes MED17, PRKCG, THRA, FOXO1, NCOA2, PLCG2, COL1A1, CXCL8, PRPF19, ANAPC5, UBE2I, XIAP and KEAP1 have been identified. Additionally, these hub genes were subjected to identify the miRNA-mRNA regulation network specific to T2D-associated female infertility. In the FFL study (Feed Forward Loop), transcription factor (SP1, NFKB1, RELA and FOX01), miRNA (has-mir-7-5p, has-let-7a-5p, hsa-mir-16-5p, hsa-mir-155-5p, has-mir-122-5p, has-let-7b-5p, has-mir-124-3p, has-mir-34a-5p, has-mir-130a-3p, has-let-7i-5p, and hsa-mir-27a-3p) and six genes (XIAP, THRA, NCOA2, MED17, FOXO1, and COL1A1) among the thirteen key genes were recognized as regulator and inhibitor. Our analysis reveals that these genes can serve as a significant biomarker for female infertility linked with Type 2 Diabetes, through the prioritization of candidate genes. This study gives us insight into the molecular and cellular mechanism of T2D-associated FI. This finding helps in developing novel therapeutic approaches and will improve efficacy and reduce side effects of the treatment. This research requires further experimental investigation of the principal targets.
Collapse
Affiliation(s)
- Nida Andlib
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Trang KB, Pahl MC, Pippin JA, Su C, Littleton SH, Sharma P, Kulkarni NN, Ghanem LR, Terry NA, O’Brien JM, Wagley Y, Hankenson KD, Jermusyk A, Hoskins JW, Amundadottir LT, Xu M, Brown KM, Anderson SA, Yang W, Titchenell PM, Seale P, Cook L, Levings MK, Zemel BS, Chesi A, Wells AD, Grant SF. 3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.30.23294092. [PMID: 37693606 PMCID: PMC10491377 DOI: 10.1101/2023.08.30.23294092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.
Collapse
Affiliation(s)
- Khanh B. Trang
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sheridan H. Littleton
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prabhat Sharma
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nikhil N. Kulkarni
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Louis R. Ghanem
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
| | - Natalie A. Terry
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
| | - Joan M. O’Brien
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Disease
| | - Yadav Wagley
- Department of Orthopedic Surgery University of Michigan Medical School Ann Arbor, MI, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery University of Michigan Medical School Ann Arbor, MI, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenli Yang
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cook
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K. Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Babette S. Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Segovia D, Tepes PS. p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 2024; 27:210. [PMID: 38572059 PMCID: PMC10988192 DOI: 10.3892/ol.2024.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion-driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA-fusion-driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA-gene fusion-driven cancers, and explores potential strategies that could be effective in targeting these fusions.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Polona Safaric Tepes
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
6
|
Wagh K, Stavreva DA, Jensen RAM, Paakinaho V, Fettweis G, Schiltz RL, Wüstner D, Mandrup S, Presman DM, Upadhyaya A, Hager GL. Dynamic switching of transcriptional regulators between two distinct low-mobility chromatin states. SCIENCE ADVANCES 2023; 9:eade1122. [PMID: 37315128 PMCID: PMC10954219 DOI: 10.1126/sciadv.ade1122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
How chromatin dynamics relate to transcriptional activity remains poorly understood. Using single-molecule tracking, coupled with machine learning, we show that histone H2B and multiple chromatin-bound transcriptional regulators display two distinct low-mobility states. Ligand activation results in a marked increase in the propensity of steroid receptors to bind in the lowest-mobility state. Mutational analysis revealed that interactions with chromatin in the lowest-mobility state require an intact DNA binding domain and oligomerization domains. These states are not spatially separated as previously believed, but individual H2B and bound-TF molecules can dynamically switch between them on time scales of seconds. Single bound-TF molecules with different mobilities exhibit different dwell time distributions, suggesting that the mobility of TFs is intimately coupled with their binding dynamics. Together, our results identify two unique and distinct low-mobility states that appear to represent common pathways for transcription activation in mammalian cells.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Diana A. Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rikke A. M. Jensen
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Biomedicine, University of Eastern Finland, Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - R. Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Diego M. Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Nuclear receptor coactivator 3 transactivates proinflammatory cytokines in collagen-induced arthritis. Cytokine 2023; 161:156074. [PMID: 36323191 DOI: 10.1016/j.cyto.2022.156074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder in which the immune system mistakenly attacks joints. The molecular mechanisms underlying RA pathology are still under investigation. In this study, we discovered overexpression of nuclear receptor coactivator 3 (NCOA3) in the joint tissues of type II collagen-induced arthritis (CIA) mice, an important autoimmune model of human RA. Administration of two NCOA3 inhibitors, gossypol (GSP) and SI-2 hydrochloride (SHC), significantly alleviated inflammation and improved the outcomes of CIA mice. In vivo and in vitro experiments revealed that NCOA3 assembled a transcriptional complex with a histone acetyltransferase p300 and two subunits of nuclear factor kappa B (NF-κB). This complex specifically controlled the expression of proinflammatory cytokine genes by binding to their promoters. Knockdown of NCOA3 or in vitro treatments with GSP and SHC impaired the assembly of NCOA3-p300-NF-κB complex and decreased the expression of proinflammatory cytokine genes. Taken together, our results demonstrated that NCOA3 acts as a mediator of proinflammatory cytokine genes in CIA mice and that inhibition of the NCOA3-p300-NF-κB complex may represent a new avenue for improving RA outcomes.
Collapse
|
8
|
SOX2 Modulates the Nuclear Organization and Transcriptional Activity of the Glucocorticoid Receptor. J Mol Biol 2022; 434:167869. [PMID: 36309135 DOI: 10.1016/j.jmb.2022.167869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Steroid receptors (SRs) are ligand-dependent transcription factors (TFs) relevant to key cellular processes in both physiology and pathology, including some types of cancer. SOX2 is a master TF of pluripotency and self-renewal of embryonic stem cells, and its dysregulation is also associated with various types of human cancers. A potential crosstalk between these TFs could be relevant in malignant cells yet, to the best of our knowledge, no formal study has been performed thus far. Here we show, by quantitative live-cell imaging microscopy, that ectopic expression of SOX2 disrupts the formation of hormone-dependent intranuclear condensates of many steroid receptors (SRs), including those formed by the glucocorticoid receptor (GR). SOX2 also reduces GR's binding to specific DNA targets and modulates its transcriptional activity. SOX2-driven effects on GR condensates do not require the intrinsically disordered N-terminal domain of the receptor and, surprisingly, neither relies on GR/SOX2 interactions. SOX2 also alters the intranuclear dynamics and compartmentalization of the SR coactivator NCoA-2 and impairs GR/NCoA-2 interactions. These results suggest an indirect mechanism underlying SOX2-driven effects on SRs involving this coactivator. Together, these results highlight that the transcriptional program elicited by GR relies on its nuclear organization and is intimately linked to the distribution of other GR partners, such as the NCoA-2 coactivator. Abnormal expression of SOX2, commonly observed in many tumors, may alter the biological action of GR and, probably, other SRs as well. Understanding this crosstalk may help to improve steroid hormone-based therapies in cancers with elevated SOX2 expression.
Collapse
|
9
|
Li Z, Hadlich F, Wimmers K, Murani E. Glucocorticoid receptor hypersensitivity enhances inflammatory signaling and inhibits cell cycle progression in porcine PBMCs. Front Immunol 2022; 13:976454. [PMID: 36505401 PMCID: PMC9730246 DOI: 10.3389/fimmu.2022.976454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The consequences of glucocorticoid receptor (GR) hypersensitivity during infection have so far received little attention. We previously discovered that a natural gain-of-function Ala610Val substitution in the porcine GR aggravates response of pigs to lipopolysaccharide (LPS)-induced endotoxemia, which can be alleviated by dexamethasone (DEX) pretreatment. In this work, we investigated the relevant molecular basis of these phenotypes by transcriptomic profiling of porcine peripheral blood mononuclear cells (PBMCs) carrying different GR genotypes, in unstimulated conditions or in response to DEX and/or LPS in vitro. The Val allele differentially regulated abunda+nt genes in an additive-genetic manner. A subset of more than 200 genes was consistently affected by the substitution across treatments. This was associated with upregulation of genes related i.a. to endo-lysosomal system, lipid and protein catabolism, and immune terms including platelet activation, and antigen presentation, while downregulated genes were mainly involved in cell cycle regulation. Most importantly, the set of genes constitutively upregulated by Val includes members of the TLR4/LPS signaling pathway, such as LY96. Consequently, when exposing PBMCs to LPS treatment, the Val variant upregulated a panel of additional genes related to TLR4 and several other pattern recognition receptors, as well as cell death and lymphocyte signaling, ultimately amplifying the inflammatory responses. In contrast, when stimulated by DEX treatment, the Val allele orchestrated several genes involved in anti-inflammatory responses during infection. This study provides novel insights into the impact of GR hypersensitivity on the fate and function of immune cells, which may be useful for endotoxemia therapy.
Collapse
Affiliation(s)
- Zhiwei Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Eduard Murani,
| |
Collapse
|
10
|
Zhang W, Cao X, Zhong X, Wu H, Feng M, Gwack Y, Noah I, Sun Z. Steroid nuclear receptor coactivator 2 controls immune tolerance by promoting induced T reg differentiation via up-regulating Nr4a2. SCIENCE ADVANCES 2022; 8:eabn7662. [PMID: 35704583 PMCID: PMC9200286 DOI: 10.1126/sciadv.abn7662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Steroid nuclear receptor coactivator 2 (SRC2) is a member of a family of transcription coactivators. While SRC1 inhibits the differentiation of regulatory T cells (Tregs) critical for establishing immune tolerance, we show here that SRC2 stimulates Treg differentiation. SRC2 is dispensable for the development of thymic Tregs, whereas naive CD4+ T cells from mice deficient of SRC2 specific in Tregs (SRC2fl/fl/Foxp3YFP-Cre) display defective Treg differentiation. Furthermore, the aged SRC2fl/fl/Foxp3YFP-Cre mice spontaneously develop autoimmune phenotypes including enlarged spleen and lung inflammation infiltrated with IFNγ-producing CD4+ T cells. SRC2fl/fl/Foxp3YFP-Cre mice also develop severer experimental autoimmune encephalomyelitis (EAE) due to reduced Tregs. Mechanically, SRC2 recruited by NFAT1 binds to the promoter and activates the expression of Nr4a2, which then stimulates Foxp3 expression to promote Treg differentiation. Members of SRC family coactivators thus play distinct roles in Treg differentiation and are potential drug targets for controlling immune tolerance.
Collapse
Affiliation(s)
- Wencan Zhang
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiancai Zhong
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hongmin Wu
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Isakov Noah
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of Negev, Bear Sheva, Israel
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Massignani E, Giambruno R, Maniaci M, Nicosia L, Yadav A, Cuomo A, Raimondi F, Bonaldi T. ProMetheusDB: An In-Depth Analysis of the High-Quality Human Methyl-proteome. Mol Cell Proteomics 2022; 21:100243. [PMID: 35577067 PMCID: PMC9207298 DOI: 10.1016/j.mcpro.2022.100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine (R) methylation is a post-translational modification involved in various biological processes, such as RNA splicing, DNA repair, immune response, signal transduction, and tumor development. Although several advancements were made in the study of this modification by mass spectrometry, researchers still face the problem of a high false discovery rate. We present a dataset of high-quality methylations obtained from several different heavy methyl stable isotope labeling with amino acids in cell culture experiments analyzed with a machine learning–based tool and show that this model allows for improved high-confidence identification of real methyl-peptides. Overall, our results are consistent with the notion that protein R methylation modulates protein–RNA interactions and suggest a role in rewiring protein–protein interactions, for which we provide experimental evidence for a representative case (i.e., NONO [non-POU domain–containing octamer-binding protein]–paraspeckle component 1 [PSPC1]). Upon intersecting our R-methyl-sites dataset with the PhosphoSitePlus phosphorylation dataset, we observed that R methylation correlates differently with S/T-Y phosphorylation in response to various stimuli. Finally, we explored the application of heavy methyl stable isotope labeling with amino acids in cell culture to identify unconventional methylated residues and successfully identified novel histone methylation marks on serine 28 and threonine 32 of H3. The database generated, named ProMetheusDB, is freely accessible at https://bioserver.ieo.it/shiny/app/prometheusdb. hmSEEKER 2.0 identifies methyl-peptides from hmSILAC data through machine learning. Arginine methylation plays a role in modulating protein–protein interactions. Arginine methylations occur more frequently in proximity of phosphorylation sites. hmSEEKER 2.0 was used to identify methylations occurring on nonstandard amino acids.
Collapse
Affiliation(s)
- Enrico Massignani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Roberto Giambruno
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Center for Genomic Science of Istituto Italiano di Tecnologia at European School of Molecular Medicine, Istituto Italiano di Tecnologia, Milan, Italy; Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Raimondi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
13
|
Ochocka N, Kaminska B. Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. Int J Mol Sci 2021; 22:3027. [PMID: 33809675 PMCID: PMC8002227 DOI: 10.3390/ijms22063027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) that have distinct ontogeny from other tissue macrophages and play a pivotal role in health and disease. Microglia rapidly react to the changes in their microenvironment. This plasticity is attributed to the ability of microglia to adapt a context-specific phenotype. Numerous gene expression profiling studies of immunosorted CNS immune cells did not permit a clear dissection of their phenotypes, particularly in diseases when peripheral cells of the immune system come to play. Only recent advances in single-cell technologies allowed studying microglia at high resolution and revealed a spectrum of discrete states both under homeostatic and pathological conditions. Single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (Cytometry by Time-Of-Flight, CyTOF) enabled determining entire transcriptomes or the simultaneous quantification of >30 cellular parameters of thousands of individual cells. Single-cell omics studies demonstrated the unforeseen heterogeneity of microglia and immune infiltrates in brain pathologies: neurodegenerative disorders, stroke, depression, and brain tumors. We summarize the findings from those studies and the current state of knowledge of functional diversity of microglia under physiological and pathological conditions. A precise definition of microglia functions and phenotypes may be essential to design future immune-modulating therapies.
Collapse
Affiliation(s)
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| |
Collapse
|
14
|
Virtual Screening of Cablin Patchouli Herb as a Treatment for Heat Stress: A Study Based on Network Pharmacology, Molecular Docking, and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8057587. [PMID: 33777163 PMCID: PMC7969090 DOI: 10.1155/2021/8057587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022]
Abstract
Heat-related diseases have long been known to damage the structure and function of essential macromolecules such as proteins, lipids, and nucleic acids, thereby compromising the integrity of cells and tissues and the physiological functions of the entire organism. Heat stress is the physical discomfort caused by overheating the body and is also the initial manifestation of heat-related diseases. Cablin patchouli herb (CPB) has been used in China for two thousand years and has been used to treat heat stress, but to date, no related mechanistic research is available. In this study, KEGG and PPI networks and the TCMSP and GEO databases were used to explore the components of CPB in relation to heat stress: quercetin, genkwanin, irisolidone, 3,23-dihydroxy-12-oleanen-28-oic acid, and quercetin 7-O-β-D-glucoside. The targets identified were EGFR, NCOA1, FOS, HIF1A, NFKBIA, and NCOA2; these proteins were verified by molecular docking and experimental verification. In short, our research represents the first report on the use of the traditional Chinese medicine CPB to treat heat stress and thus has pioneering significance.
Collapse
|
15
|
Mullany LK, Lonard DM, O’Malley BW. Wound Healing-related Functions of the p160 Steroid Receptor Coactivator Family. Endocrinology 2021; 162:6042238. [PMID: 33340403 PMCID: PMC7814297 DOI: 10.1210/endocr/bqaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Multicellular organisms have evolved sophisticated mechanisms to recover and maintain original tissue functions following injury. Injury responses require a robust transcriptomic response associated with cellular reprogramming involving complex gene expression programs critical for effective tissue repair following injury. Steroid receptor coactivators (SRCs) are master transcriptional regulators of cell-cell signaling that is integral for embryogenesis, reproduction, normal physiological function, and tissue repair following injury. Effective therapeutic approaches for facilitating improved tissue regeneration and repair will likely involve temporal and combinatorial manipulation of cell-intrinsic and cell-extrinsic factors. Pleiotropic actions of SRCs that are critical for wound healing range from immune regulation and angiogenesis to maintenance of metabolic regulation in diverse organ systems. Recent evidence derived from studies of model organisms during different developmental stages indicates the importance of the interplay of immune cells and stromal cells to wound healing. With SRCs being the master regulators of cell-cell signaling integral to physiologic changes necessary for wound repair, it is becoming clear that therapeutic targeting of SRCs provides a unique opportunity for drug development in wound healing. This review will provide an overview of wound healing-related functions of SRCs with a special focus on cellular and molecular interactions important for limiting tissue damage after injury. Finally, we review recent findings showing stimulation of SRCs following cardiac injury with the SRC small molecule stimulator MCB-613 can promote cardiac protection and inhibit pathologic remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Lisa K Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Correspondence: Bert W. O’Malley, MD, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA.
| |
Collapse
|
16
|
Zhou W, Chen Z, Lu A, Liu Z. Systems Pharmacology-Based Strategy to Explore the Pharmacological Mechanisms of Citrus Peel (Chenpi) for Treating Complicated Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:391-411. [PMID: 33622210 DOI: 10.1142/s0192415x2150018x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. However, the potential pharmacological mechanisms of CRP to predict and treat various diseases have not yet been fully elucidated. A systems pharmacology-based approach is developed by integrating absorption, distribution, metabolism, and excretion screening, multiple target fishing, network pharmacology, as well as pathway analysis to comprehensively dissect the potential mechanism of CRP for therapy of various diseases. The results showed that 39 bioactive components and 121 potential protein targets were identified from CRP. The 121 targets are closely related to various diseases of the cardiovascular system, respiratory system, gastrointestinal system, etc. These targets are further mapped to compound-target, target-disease, and target-pathway networks to clarify the therapeutic mechanism of CRP at the system level. The current study sheds light on a promising way for promoting the discovery of new botanical drugs.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, P. R. China.,State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, P. R. China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, P. R. China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, P. R. China
| | - Zhigang Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, P. R. China.,State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, P. R. China
| |
Collapse
|
17
|
Ochocka N, Segit P, Walentynowicz KA, Wojnicki K, Cyranowski S, Swatler J, Mieczkowski J, Kaminska B. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat Commun 2021; 12:1151. [PMID: 33608526 PMCID: PMC7895824 DOI: 10.1038/s41467-021-21407-w] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Microglia are resident myeloid cells in the central nervous system (CNS) that control homeostasis and protect CNS from damage and infections. Microglia and peripheral myeloid cells accumulate and adapt tumor supporting roles in human glioblastomas that show prevalence in men. Cell heterogeneity and functional phenotypes of myeloid subpopulations in gliomas remain elusive. Here we show single-cell RNA sequencing (scRNA-seq) of CD11b+ myeloid cells in naïve and GL261 glioma-bearing mice that reveal distinct profiles of microglia, infiltrating monocytes/macrophages and CNS border-associated macrophages. We demonstrate an unforeseen molecular heterogeneity among myeloid cells in naïve and glioma-bearing brains, validate selected marker proteins and show distinct spatial distribution of identified subsets in experimental gliomas. We find higher expression of MHCII encoding genes in glioma-activated male microglia, which was corroborated in bulk and scRNA-seq data from human diffuse gliomas. Our data suggest that sex-specific gene expression in glioma-activated microglia may be relevant to the incidence and outcomes of glioma patients.
Collapse
Affiliation(s)
- Natalia Ochocka
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Segit
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Adam Walentynowicz
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Wojnicki
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Salwador Cyranowski
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland ,grid.13339.3b0000000113287408Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Julian Swatler
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. Int J Mol Sci 2021; 22:ijms22020757. [PMID: 33451129 PMCID: PMC7828596 DOI: 10.3390/ijms22020757] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.
Collapse
|
19
|
Chatterjee S, Ouidir M, Tekola-Ayele F. Pleiotropic genetic influence on birth weight and childhood obesity. Sci Rep 2021; 11:48. [PMID: 33420178 PMCID: PMC7794220 DOI: 10.1038/s41598-020-80084-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
Childhood obesity is a global public health problem. Understanding the molecular mechanisms that underlie early origins of childhood obesity can facilitate interventions. Consistent phenotypic and genetic correlations have been found between childhood obesity traits and birth weight (a proxy for in-utero growth), suggesting shared genetic influences (pleiotropy). We aimed to (1) investigate whether there is significant shared genetic influence between birth weight and childhood obesity traits, and (2) to identify genetic loci with shared effects. Using a statistical approach that integrates summary statistics and functional annotations for paired traits, we found strong evidence of pleiotropy (P < 3.53 × 10–127) and enrichment of functional annotations (P < 1.62 × 10–39) between birth weight and childhood body mass index (BMI)/obesity. The pleiotropic loci were enriched for regulatory features in skeletal muscle, adipose and brain tissues and in cell lines derived from blood lymphocytes. At 5% false discovery rate, 6 loci were associated with birth weight and childhood BMI and 13 loci were associated with birth weight and childhood obesity. Out of these 19 loci, one locus (EBF1) was novel to childhood obesity and one locus (LMBR1L) was novel to both birth weight and childhood BMI/obesity. These findings give evidence of substantial shared genetic effects in the regulation of both fetal growth and childhood obesity.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, 20892-7004, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, 20892-7004, USA.
| |
Collapse
|
20
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020. [DOI: 10.1007/s12038-019-9987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
A steroid receptor coactivator stimulator (MCB-613) attenuates adverse remodeling after myocardial infarction. Proc Natl Acad Sci U S A 2020; 117:31353-31364. [PMID: 33229578 PMCID: PMC7733826 DOI: 10.1073/pnas.2011614117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We are at an exciting era of identification of the cell and molecular processes necessary for tissue remodeling and repair. Unlike current systemic therapeutics, our studies reveal pharmacologic stimulation of SRCs modulates macrophage and fibrotic reparative cell responses to promote more effective repair and lasting beneficial remodeling after myocardial infarction. Progressive remodeling of the heart, resulting in cardiomyocyte (CM) loss and increased inflammation, fibrosis, and a progressive decrease in cardiac function, are hallmarks of myocardial infarction (MI)-induced heart failure. We show that MCB-613, a potent small molecule stimulator of steroid receptor coactivators (SRCs) attenuates pathological remodeling post-MI. MCB-613 decreases infarct size, apoptosis, hypertrophy, and fibrosis while maintaining significant cardiac function. MCB-613, when given within hours post MI, induces lasting protection from adverse remodeling concomitant with: 1) inhibition of macrophage inflammatory signaling and interleukin 1 (IL-1) signaling, which attenuates the acute inflammatory response, 2) attenuation of fibroblast differentiation, and 3) promotion of Tsc22d3-expressing macrophages—all of which may limit inflammatory damage. SRC stimulation with MCB-613 (and derivatives) is a potential therapeutic approach for inhibiting cardiac dysfunction after MI.
Collapse
|
22
|
Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, Oh M, Sable GA, Ahn GO, Lee JS, Song HK, Lim HS. Targeted Degradation of Transcription Coactivator SRC-1 through the N-Degron Pathway. Angew Chem Int Ed Engl 2020; 59:17548-17555. [PMID: 33026161 DOI: 10.1002/anie.202005004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/01/2020] [Indexed: 01/12/2023]
Abstract
Aberrantly elevated steroid receptor coactivator-1 (SRC-1) expression and activity are strongly correlated with cancer progression and metastasis. Here we report, for the first time, the development of a proteolysis targeting chimera (PROTAC) that is composed of a selective SRC-1 binder linked to a specific ligand for UBR box, a unique class of E3 ligases recognizing N-degrons. We showed that the bifunctional molecule efficiently and selectively induced the degradation of SRC-1 in cells through the N-degron pathway. Importantly, given the ubiquitous expression of the UBR protein in most cells, PROTACs targeting the UBR box could degrade a protein of interest regardless of cell types. We also showed that the SRC-1 degrader significantly suppressed cancer cell invasion and migration in vitro and in vivo. Together, these results demonstrate that the SRC-1 degrader can be an invaluable chemical tool in the studies of SRC-1 functions. Moreover, our findings suggest PROTACs based on the N-degron pathway as a widely useful strategy to degrade disease-relevant proteins.
Collapse
Affiliation(s)
- Yeongju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Jiwon Heo
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hoibin Jeong
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyung Tae Hong
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5. Hwarang-ro, 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Do Hoon Kwon
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Misook Oh
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Ganesh A Sable
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - G-One Ahn
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5. Hwarang-ro, 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| |
Collapse
|
23
|
Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, Oh M, Sable GA, Ahn G, Lee J, Song HK, Lim H. Targeted Degradation of Transcription Coactivator SRC‐1 through the N‐Degron Pathway. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yeongju Lee
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - Jiwon Heo
- School of Life Sciences and Biotechnology Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 South Korea
| | - Hoibin Jeong
- Research Institute for Veterinary Science and College of Veterinary Medicine Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| | - Kyung Tae Hong
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) 5. Hwarang-ro, 14-gil, Seongbuk-gu Seoul 02792 South Korea
| | - Do Hoon Kwon
- School of Life Sciences and Biotechnology Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - Misook Oh
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - Ganesh A. Sable
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - G‐One Ahn
- Research Institute for Veterinary Science and College of Veterinary Medicine Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| | - Jun‐Seok Lee
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) 5. Hwarang-ro, 14-gil, Seongbuk-gu Seoul 02792 South Korea
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 South Korea
| | - Hyun‐Suk Lim
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| |
Collapse
|
24
|
Characterization and molecular evolution of claudin genes in the Pungitius sinensis. J Comp Physiol B 2020; 190:749-759. [PMID: 32778926 DOI: 10.1007/s00360-020-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Claudins are a family of integrated membrane-bound proteins involving in paracellular tightness, barrier forming, ion permeability, and substrate selection at tight junctions of chordate epithelial and endothelial cells. Here, 39 putative claudin genes were identified in the Pungitius sinensis based on the high throughput RNA-seq. Conservative motif distribution in each group suggested functional relevance. Divergence of duplicated genes implied the species' adaptation to the environment. In addition, selective pressure analyses identified one site, which may accelerate functional divergence in this protein family. Pesticides cause environmental pollution and have a serious impact on aquatic organisms when entering the water. The expression pattern of most claudin genes was affected by organophosphorus pesticide, indicating that they may be involved in the immune regulation of organisms and the detoxification of xenobiotics. Protein-protein network analyses also exhibited 439 interactions, which implied the functional diversity. It will provide some references for the functional study on claudin genes.
Collapse
|
25
|
Sun Z, Xu Y. Nuclear Receptor Coactivators (NCOAs) and Corepressors (NCORs) in the Brain. Endocrinology 2020; 161:5843759. [PMID: 32449767 PMCID: PMC7351129 DOI: 10.1210/endocr/bqaa083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023]
Abstract
Nuclear receptor coactivators (NCOAs) and corepressors (NCORs) bind to nuclear hormone receptors in a ligand-dependent manner and mediate the transcriptional activation or repression of the downstream target genes in response to hormones, metabolites, xenobiotics, and drugs. NCOAs and NCORs are widely expressed in the mammalian brain. Studies using genetic animal models started to reveal pivotal roles of NCOAs/NCORs in the brain in regulating hormonal signaling, sexual behaviors, consummatory behaviors, exploratory and locomotor behaviors, moods, learning, and memory. Genetic variants of NCOAs or NCORs have begun to emerge from human patients with obesity, hormonal disruption, intellectual disability, or autism spectrum disorders. Here we review recent studies that shed light on the function of NCOAs and NCORs in the central nervous system.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Molecular and Cellular Biology; Baylor College of Medicine, Houston, Texas
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism; Baylor College of Medicine, Houston, Texas
- Correspondence: Zheng Sun, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail: ; or Yong Xu, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail:
| | - Yong Xu
- Department of Molecular and Cellular Biology; Baylor College of Medicine, Houston, Texas
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics; Baylor College of Medicine, Houston, Texas
- Correspondence: Zheng Sun, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail: ; or Yong Xu, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail:
| |
Collapse
|
26
|
Chu PH, Chen G, Kuo D, Braisted J, Huang R, Wang Y, Simeonov A, Boehm M, Gerhold DL. Stem Cell-Derived Endothelial Cell Model that Responds to Tobacco Smoke Like Primary Endothelial Cells. Chem Res Toxicol 2020; 33:751-763. [PMID: 32119531 DOI: 10.1021/acs.chemrestox.9b00363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To clarify how smoking leads to heart attack and stroke, we developed an endothelial cell model (iECs) generated from human induced Pluripotent Stem Cells (iPSC) and evaluated its responses to tobacco smoke. These iECs exhibited a uniform endothelial morphology, and expressed markers PECAM1/CD31, VWF/ von Willebrand Factor, and CDH5/VE-Cadherin. The iECs also exhibited tube formation and acetyl-LDL uptake comparable to primary endothelial cells (EC). RNA sequencing (RNA-Seq) revealed a robust correlation coefficient between iECs and EC (R = 0.76), whereas gene responses to smoke were qualitatively nearly identical between iECs and primary ECs (R = 0.86). Further analysis of transcriptional responses implicated 18 transcription factors in regulating responses to smoke treatment, and identified gene sets regulated by each transcription factor, including pathways for oxidative stress, DNA damage/repair, ER stress, apoptosis, and cell cycle arrest. Assays for 42 cytokines in HUVEC cells and iECs identified 23 cytokines that responded dynamically to cigarette smoke. These cytokines and cellular stress response pathways describe endothelial responses for lymphocyte attachment, activation of coagulation and complement, lymphocyte growth factors, and inflammation and fibrosis; EC-initiated events that collectively lead to atherosclerosis. Thus, these studies validate the iEC model and identify transcriptional response networks by which ECs respond to tobacco smoke. Our results systematically trace how ECs use these response networks to regulate genes and pathways, and finally cytokine signals to other cells, to initiate the diverse processes that lead to atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guibin Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David Kuo
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John Braisted
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Wang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David L Gerhold
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
27
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020; 45:7. [PMID: 31965985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic complexity and thus their ability to respond to diverse cues are largely driven by varying expression of gene products, qualitatively and quantitatively. Protein adducts in the form of post-translational modifications, most of which are derived from metabolic intermediates, allow fine tuning of gene expression at multiple levels. With the advent of high-throughput and high-resolution mapping technologies there has been an explosion in terms of the kind of modifications on chromatin and other factors that govern gene expression. Moreover, even the classical notion of acetylation and methylation dependent regulation of transcription is now known to be intrinsically coupled to biochemical pathways, which were otherwise regarded as 'mundane'. Here we have not only reviewed some of the recent literature but also have highlighted the dependence of gene regulatory mechanisms on metabolic inputs, both direct and indirect. We have also tried to bring forth some of the open questions, and how our understanding of gene expression has changed dramatically over the last few years, which has largely become metabolism centric. Finally, metabolic regulation of epigenome and gene expression has gained much traction due to the increased incidence of lifestyle and age-related diseases.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
28
|
Heck AL, Thompson MK, Uht RM, Handa RJ. Sex-Dependent Mechanisms of Glucocorticoid Regulation of the Mouse Hypothalamic Corticotropin-Releasing Hormone Gene. Endocrinology 2020; 161:bqz012. [PMID: 31754709 PMCID: PMC7188085 DOI: 10.1210/endocr/bqz012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
To limit excessive glucocorticoid secretion following hypothalamic-pituitary-adrenal (HPA) axis stimulation, circulating glucocorticoids inhibit corticotropin-releasing hormone (CRH) expression in paraventricular nucleus (PVN) neurons. As HPA function differs between sexes and depends on circulating estradiol (E2) levels in females, we investigated sex/estrous stage-dependent glucocorticoid regulation of PVN Crh. Using NanoString nCounter technology, we first demonstrated that adrenalectomized (ADX'd) diestrous female (low E2), but not male or proestrous female (high E2), mice exhibited a robust decrease in PVN CRH mRNA following 2-day treatment with the glucocorticoid receptor (GR) agonist RU28362. Immunohistochemical analysis of PVN CRH neurons in Crh-IRES-Cre;Ai14 mice, where TdTomato fluorescence permanently tags CRH-expressing neurons, showed similarly abundant co-expression of GR-immunoreactivity in males, diestrous females, and proestrous females. However, we identified sex/estrous stage-related glucocorticoid regulation or expression of GR transcriptional coregulators. Out of 17 coregulator genes examined using nCounter multiplex analysis, mRNAs that were decreased by RU28362 in ADX'd mice in a sex/estrous stage-dependent fashion included: GR (males = diestrous females > proestrous females), signal transducer and activator of transcription 3 (STAT3) (males < diestrous = proestrous), and HDAC1 (males < diestrous > proestrous). Steroid receptor coactivator 3 (SRC-3), nuclear corepressor 1 (NCoR1), heterogeneous nuclear ribonucleoprotein U (hnrnpu), CREB binding protein (CBP) and CREB-regulated transcription coactivator 2 (CRTC2) mRNAs were lower in ADX'd diestrous and proestrous females versus males. Additionally, most PVN CRH neurons co-expressed methylated CpG binding protein 2 (MeCP2)-immunoreactivity in diestrous female and male Crh-IRES-Cre;Ai14 mice. Our findings collectively suggest that GR's sex-dependent regulation of PVN Crh may depend upon differences in the GR transcriptional machinery and an underlying influence of E2 levels in females.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, University of Arizona, Phoenix, Arizona
| | - Rosalie M Uht
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
29
|
Hu Y, Cheng L, Zhong W, Chen M, Zhang Q. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock. Med Sci Monit 2019; 25:9563-9571. [PMID: 31838482 PMCID: PMC6929537 DOI: 10.12659/msm.918491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Septic shock occurs when sepsis is associated with critically low blood pressure, and has a high mortality rate. This study aimed to undertake a bioinformatics analysis of gene expression profiles for risk prediction in septic shock. Material/Methods Two good quality datasets associated with septic shock were downloaded from the Gene Expression Omnibus (GEO) database, GSE64457 and GSE57065. Patients with septic shock had both sepsis and hypotension, and a normal control group was included. The differentially expressed genes (DEGs) were identified using OmicShare tools based on R. Functional enrichment of DEGs was analyzed using DAVID. The protein-protein interaction (PPI) network was established using STRING. Survival curves of key genes were constructed using GraphPad Prism version 7.0. Each putative central gene was analyzed by receiver operating characteristic (ROC) curves using MedCalc statistical software. Results GSE64457 and GSE57065 included 130 RNA samples derived from whole blood from 97 patients with septic shock and 33 healthy volunteers to obtain 975 DEGs, 455 of which were significantly down-regulated and 520 were significantly upregulated (P<0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified significantly enriched DEGs in four signaling pathways, MAPK, TNF, HIF-1, and insulin. Six genes, WDR82, ASH1L, NCOA1, TPR, SF1, and CREBBP in the center of the PPI network were associated with septic shock, according to survival curve and ROC analysis. Conclusions Bioinformatics analysis of gene expression profiles identified four signaling pathways and six genes, potentially representing molecular mechanisms for the occurrence, progression, and risk prediction in septic shock.
Collapse
Affiliation(s)
- Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Lingxia Cheng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
30
|
Mohsen G AM, Abu-Taweel GM, Rajagopal R, Sun-Ju K, Kim HJ, Kim YO, Mothana RA, Kadaikunnan S, Khaled JM, Siddiqui NA, Al-Rehaily AJ. Betulinic acid lowers lipid accumulation in adipocytes through enhanced NCoA1-PPARγ interaction. J Infect Public Health 2019; 12:726-732. [PMID: 31133421 DOI: 10.1016/j.jiph.2019.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Investigation for a naturally occurring anti-obesity drug has become the need of society all over the world. Betulinic acid (BA) is a lupane-type pentacyclic triterpene and is sourced from various organisms. This high potential biologically active molecule is reported to have anti-obesity effect. In this study, we report the molecular mechanism of action of BA that underlies anti-obesity activity and also an improved method of its isolation common teak tree. METHODS Mouse pre-adipocyte cells were used to develop hyperlipidemic conditions in vitro. Change in expression of genes associated to adipogenesis was checked using quantitative real-time PCR (qPCR). Co-factor specificity of PPAR gamma was analyzed through immune precipitation and immunoblot. RESULTS Betulinic acid was found to be effective in reducing the lipid content in 3T3L1 cells. Level of PPAR gamma and LXR alpha was reduced in connection to reduced adipogenesis. Change in steroid responsive co-activators (SRCs) during BA treatment proved that the compound can impart profound change in co-factor selectivity, which is crucial in determining the activity profile of PPAR gamma. BA treatment enhanced the SRC-1 interaction with PPAR gamma while reducing the levels of SRC-3. CONCLUSION Present study has proved that betulinic acid, a promising candidate in anti-obesity drug development, has potential in regulating the activity of PPAR gamma through co-factor modulation.
Collapse
Affiliation(s)
- Al-Mutary Mohsen G
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 31451, Saudi Arabia
| | - Gasem Mohammad Abu-Taweel
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 31451, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kim Sun-Ju
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, 99 Daehak-Ro,Yuseung-Gu, Daejeon 34134, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| | - Young Ock Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, 99 Daehak-Ro,Yuseung-Gu, Daejeon 34134, Republic of Korea
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nasir A Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
31
|
Daya M, Barnes KC. African American ancestry contribution to asthma and atopic dermatitis. Ann Allergy Asthma Immunol 2019; 122:456-462. [PMID: 30772392 PMCID: PMC6500742 DOI: 10.1016/j.anai.2019.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Asthma and atopic dermatitis (AD) are complex diseases with striking disparities across racial and ethnic groups, which may be partly attributable to genetic factors. Here we summarize current knowledge from asthma and AD genome-wide association studies (GWAS) and pharmacogenetic studies in African ancestry populations. DATA SOURCES GWAS catalog; PUBMed. STUDY SELECTIONS GWAS catalog studies with trait annotations "asthma" and "atopic eczema" and African ancestry individuals in the discovery dataset; the recent CAAPA asthma GWAS; reports on pharmacogenetic studies in asthma and AD. RESULTS Although GWASs have revolutionized gene discovery for multiple complex traits, African Americans continue to be severely underrepresented in sufficiently powered genetics studies. Indeed, of the 16 asthma and 21 AD loci that reached genomewide significance in Europeans, very few have replicated in African ancestry populations. Challenges in comparing results from European vs African ancestry cohorts include modest sample size, differences in risk allele frequency, effect size, correlation between genetic variants, and environmental exposure in evolutionary history. African Americans also constitute a small percentage of dermatological and respiratory-focused clinical trials. Pharmacogenetic studies have similarly been focused largely on non-Hispanic whites, despite compelling evidence that genetic variation from different ancestral backgrounds may alter therapeutic efficacy of asthma and AD drugs. CONCLUSION Large-scale genetic studies of asthma and AD in African Americans are essential to reduce research and health disparities and empower scientific discoveries.
Collapse
Affiliation(s)
- Michelle Daya
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
32
|
Rollins DA, Rogatsky I. Dual Cross-Linking Chromatin Immunoprecipitation Protocol for Next-Generation Sequencing (ChIPseq) in Macrophages. Methods Mol Biol 2019; 1951:87-98. [PMID: 30825146 DOI: 10.1007/978-1-4939-9130-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages arise from distinct progenitor cell populations throughout development and are one of the most diverse cell types, capable of performing discrete functions, undergoing distinct modes of activation, and infiltrating or residing in numerous niches in the body. In adapting to their environments, macrophages display high levels of plasticity which is associated with profound epigenomic and transcriptional changes. Understanding these changes has been greatly facilitated by the next-generation sequencing (NGS)-based approaches such as RNAseq and chromatin immunoprecipitation (ChIP)seq. Despite the recent advances, obtaining quality ChIPseq data in macrophages for endogenous factors and especially coregulators recruited to DNA indirectly has proved to be extremely challenging. Here, we describe a dual crosslinking protocol for ChIPseq in macrophages that we developed for difficult-to-ChIP transcription factors, coregulators, and their posttranslational modifications. Further, we provide guidance on crucial optimization steps throughout this protocol. Although our experience has been predominantly in murine and human macrophages, we believe our protocols can be modified and optimized to study signal-induced epigenomic changes in any cell type of choice.
Collapse
Affiliation(s)
- David A Rollins
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- The David Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY, USA
- Mayo Clinic School of Medicine M.D. Program, Rochester, MN, USA
| | - Inez Rogatsky
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- The David Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY, USA.
| |
Collapse
|
33
|
Time-dependent alterations in mRNA, protein and microRNA during in vitro adipogenesis. Mol Cell Biochem 2018; 448:1-8. [DOI: 10.1007/s11010-018-3307-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022]
|
34
|
Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nat Commun 2017; 8:1739. [PMID: 29170386 PMCID: PMC5700924 DOI: 10.1038/s41467-017-01569-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid (GC) receptor (GR) suppresses inflammation by activating anti-inflammatory and repressing pro-inflammatory genes. GR-interacting protein-1 (GRIP1) is a GR corepressor in macrophages, however, whether GRIP1 mediates GR-activated transcription, and what dictates its coactivator versus corepressor properties is unknown. Here we report that GRIP1 loss in macrophages attenuates glucocorticoid induction of several anti-inflammatory targets, and that GC treatment of quiescent macrophages globally directs GRIP1 toward GR binding sites dominated by palindromic GC response elements (GRE), suggesting a non-redundant GRIP1 function as a GR coactivator. Interestingly, GRIP1 is phosphorylated at an N-terminal serine cluster by cyclin-dependent kinase-9 (CDK9), which is recruited into GC-induced GR:GRIP1:CDK9 hetero-complexes, producing distinct GRE-specific GRIP1 phospho-isoforms. Phosphorylation potentiates GRIP1 coactivator but, remarkably, not its corepressor properties. Consistently, phospho-GRIP1 and CDK9 are not detected at GR transrepression sites near pro-inflammatory genes. Thus, GR restricts actions of its own coregulator via CDK9-mediated phosphorylation to a subset of anti-inflammatory genes. Glucocorticoid reduces inflammation by both inducing anti-inflammatory genes and suppressing pro-inflammatory genes, but how these two functions are dictated is unclear. Here the authors show that phosphorylated glucocorticoid receptor-interacting protein 1 (GRIP1) serves as a coactivator for this response in macrophage.
Collapse
|
35
|
Sasaki S, Matsushita A, Kuroda G, Nakamura HM, Oki Y, Suda T. The Mechanism of Negative Transcriptional Regulation by Thyroid Hormone: Lessons From the Thyrotropin β Subunit Gene. VITAMINS AND HORMONES 2017; 106:97-127. [PMID: 29407449 DOI: 10.1016/bs.vh.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyroid hormone (T3) activates (positive regulation) or represses (negative regulation) target genes at the transcriptional level. The molecular mechanism of the former has been elucidated in detail; however, the mechanism for negative regulation has not been established. The best example of the gene that is negatively regulated by T3 is the thyrotropin (thyroid-stimulating hormone) β subunit (TSHβ) gene. Analogous to the T3-responsive element (TRE) in positive regulation, a negative TRE (nTRE) has been postulated in the TSHβ gene. However, TSHβ promoter analysis, performed in the presence of transcription factors Pit1 and GATA2, which are determinants of thyrotroph differentiation in the pituitary, revealed that the nTRE is dispensable for inhibition by T3. We propose a tethering model in which the T3 receptor is tethered to GATA2 via protein-protein interaction and inhibits GATA2-dependent transactivation of the TSHβ gene in a T3-dependent manner.
Collapse
Affiliation(s)
| | | | - Go Kuroda
- Hamamatsu University School of Medicine, Shizuoka, Japan
| | | | - Yutaka Oki
- Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takafumi Suda
- Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
36
|
Abstract
A growing epidemic of nonalcoholic fatty liver disease (NAFLD) is paralleling the increase in the incidence of obesity and diabetes mellitus in countries that consume a Western diet. As NAFLD can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma, an understanding of the factors that trigger its development and pathological progression is needed. Although by definition this disease is not associated with alcohol consumption, exposure to environmental agents that have been linked to other diseases might have a role in the development of NAFLD. Here, we focus on one class of these agents, endocrine-disrupting chemicals (EDCs), and their potential to influence the initiation and progression of a cascade of pathological conditions associated with hepatic steatosis (fatty liver). Experimental studies have revealed several potential mechanisms by which EDC exposure might contribute to disease pathogenesis, including the modulation of nuclear hormone receptor function and the alteration of the epigenome. However, many questions remain to be addressed about the causal link between acute and chronic EDC exposure and the development of NAFLD in humans. Future studies that address these questions hold promise not only for understanding the linkage between EDC exposure and liver disease but also for elucidating the molecular mechanisms that underpin NAFLD, which in turn could facilitate the development of new prevention and treatment opportunities.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Lindsey S Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Cheryl L Walker
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Nautiyal J. Transcriptional coregulator RIP140: an essential regulator of physiology. J Mol Endocrinol 2017; 58:R147-R158. [PMID: 28073818 DOI: 10.1530/jme-16-0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
Transcriptional coregulators drive gene regulatory decisions in the transcriptional space. Although transcription factors including all nuclear receptors provide a docking platform for coregulators to bind, these proteins bring enzymatic capabilities to the gene regulatory sites. RIP140 is a transcriptional coregulator essential for several physiological processes, and aberrations in its function may lead to diseased states. Unlike several other coregulators that are known either for their coactivating or corepressing roles, in gene regulation, RIP140 is capable of acting both as a coactivator and a corepressor. The role of RIP140 in female reproductive axis and recent findings of its role in carcinogenesis and adipose biology have been summarised.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental BiologyFaculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
38
|
Abstract
Glucocorticoid hormones (GC) regulate essential physiological functions including energy homeostasis, embryonic and postembryonic development, and the stress response. From the biomedical perspective, GC have garnered a tremendous amount of attention as highly potent anti-inflammatory and immunosuppressive medications indispensable in the clinic. GC signal through the GC receptor (GR), a ligand-dependent transcription factor whose structure, DNA binding, and the molecular partners that it employs to regulate transcription have been under intense investigation for decades. In particular, next-generation sequencing-based approaches have revolutionized the field by introducing a unified platform for a simultaneous genome-wide analysis of cellular activities at the level of RNA production, binding of transcription factors to DNA and RNA, and chromatin landscape and topology. Here we describe fundamental concepts of GC/GR function as established through traditional molecular and in vivo approaches and focus on the novel insights of GC biology that have emerged over the last 10 years from the rapidly expanding arsenal of system-wide genomic methodologies.
Collapse
Affiliation(s)
- Maria A Sacta
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| | - Yurii Chinenov
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021;
| | - Inez Rogatsky
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| |
Collapse
|
39
|
Greulich F, Hemmer MC, Rollins DA, Rogatsky I, Uhlenhaut NH. There goes the neighborhood: Assembly of transcriptional complexes during the regulation of metabolism and inflammation by the glucocorticoid receptor. Steroids 2016; 114:7-15. [PMID: 27192428 PMCID: PMC5052104 DOI: 10.1016/j.steroids.2016.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 01/04/2023]
Abstract
Glucocorticoids (GCs), as ligands for the glucocorticoid receptor (GR), represent one of the most effective and frequently used classes of drugs for anti-inflammatory and immunosuppressive therapy. In addition, its role in physiological and pathophysiological processes makes the GR an important research target. The past decades have yielded a wealth of insight into the physiological and pharmacological effects of GCs. Today's era of next generation sequencing techniques is now beginning to elucidate the molecular and genomic circuits underlying GR's cell type-specific actions. This review focuses on the concepts and insights gained from recent studies in two of the most important tissues for GC action: the liver (mediating GR's metabolic effects) and macrophages (as the main target of anti-inflammatory GC therapy). We summarize results obtained from transgenic mouse models, molecular and genome-wide studies to illustrate GR's complex interactions with DNA, chromatin, co-regulators and other transcription factors. Characterizing the cell type-specific transcriptional complexes assembled around GR will pave the road for the development of new anti-inflammatory and metabolic therapies in the future.
Collapse
Affiliation(s)
- Franziska Greulich
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - M Charlotte Hemmer
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - David A Rollins
- Hospital for Special Surgery, The David Rosensweig Genomics Center, 535 East 70th Street, New York, NY 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021, USA
| | - Inez Rogatsky
- Hospital for Special Surgery, The David Rosensweig Genomics Center, 535 East 70th Street, New York, NY 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021, USA
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany.
| |
Collapse
|
40
|
Dougherty EJ, Elinoff JM, Ferreyra GA, Hou A, Cai R, Sun J, Blaine KP, Wang S, Danner RL. Mineralocorticoid Receptor (MR) trans-Activation of Inflammatory AP-1 Signaling: DEPENDENCE ON DNA SEQUENCE, MR CONFORMATION, AND AP-1 FAMILY MEMBER EXPRESSION. J Biol Chem 2016; 291:23628-23644. [PMID: 27650495 DOI: 10.1074/jbc.m116.732248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoids are commonly used to treat inflammatory disorders. The glucocorticoid receptor (GR) can tether to inflammatory transcription factor complexes, such as NFκB and AP-1, and trans-repress the transcription of cytokines, chemokines, and adhesion molecules. In contrast, aldosterone and the mineralocorticoid receptor (MR) primarily promote cardiovascular inflammation by incompletely understood mechanisms. Although MR has been shown to weakly repress NFκB, its role in modulating AP-1 has not been established. Here, the effects of GR and MR on NFκB and AP-1 signaling were directly compared using a variety of ligands, two different AP-1 consensus sequences, GR and MR DNA-binding domain mutants, and siRNA knockdown or overexpression of core AP-1 family members. Both GR and MR repressed an NFκB reporter without influencing p65 or p50 binding to DNA. Likewise, neither GR nor MR affected AP-1 binding, but repression or activation of AP-1 reporters occurred in a ligand-, AP-1 consensus sequence-, and AP-1 family member-specific manner. Notably, aldosterone interactions with both GR and MR demonstrated a potential to activate AP-1. DNA-binding domain mutations that eliminated the ability of GR and MR to cis-activate a hormone response element-driven reporter variably affected the strength and polarity of these responses. Importantly, MR modulation of NFκB and AP-1 signaling was consistent with a trans-mechanism, and AP-1 effects were confirmed for specific gene targets in primary human cells. Steroid nuclear receptor trans-effects on inflammatory signaling are context-dependent and influenced by nuclear receptor conformation, DNA sequence, and the expression of heterologous binding partners. Aldosterone activation of AP-1 may contribute to its proinflammatory effects in the vasculature.
Collapse
Affiliation(s)
- Edward J Dougherty
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Jason M Elinoff
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Gabriela A Ferreyra
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Angela Hou
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Rongman Cai
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Junfeng Sun
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Kevin P Blaine
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Shuibang Wang
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert L Danner
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Chachi L, Gavrila A, Tliba O, Amrani Y. Abnormal corticosteroid signalling in airway smooth muscle: mechanisms and perspectives for the treatment of severe asthma. Clin Exp Allergy 2016; 45:1637-46. [PMID: 26017278 DOI: 10.1111/cea.12577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing in vivo evidence supports the concept that airway smooth muscle produces various immunomodulatory factors that could contribute to asthma pathogenesis via the regulation of airway inflammation, airway narrowing and remodelling. Targeting ASM using bronchial thermoplasty has provided undeniable clinical benefits for patients with uncontrolled severe asthma who are refractory to glucocorticoid therapy. The present review will explain why the failure of glucocorticoids to adequately manage patients with severe asthma could derive from their inability to affect the immunomodulatory potential of ASM. We will support the view that ASM sensitivity to glucocorticoid therapy can be blunted in severe asthma and will describe some of the factors and mechanisms that could be responsible for glucocorticoid insensitivity.
Collapse
Affiliation(s)
- L Chachi
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - A Gavrila
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - O Tliba
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA, USA
| | - Y Amrani
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
Obeid JP, Zafar N, El Hokayem J. Steroid Hormone Receptor Coregulators in Endocrine Cancers. IUBMB Life 2016; 68:504-15. [PMID: 27240871 DOI: 10.1002/iub.1517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023]
Abstract
Coregulators span a broad and extensive domain in modulating cellular transcriptional activity. Studies have established a dynamic role for such coregulators in various endocrine cancers. Steroid hormone receptors (SHRs) play a pivotal role in such endocrine cancers, and interact abundantly with transcriptional coregulators in altering gene expression. Several families of coregulators have implications in propagating the development, progression and invasion of breast, prostate, and other hormone-responsive cancers. This mini-review aims to discuss different classes of coregulators involved in endocrine cancers and highlight unique information regarding each family with relevance to mechanism, intervention, and novel directions being investigated. © 2016 IUBMB Life, 68(7):504-515, 2016.
Collapse
Affiliation(s)
- Jean-Pierre Obeid
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| | - Nawal Zafar
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| | - Jimmy El Hokayem
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| |
Collapse
|
43
|
LXRα represses LPS-induced inflammatory responses by competing with IRF3 for GRIP1 in Kupffer cells. Int Immunopharmacol 2016; 35:272-279. [PMID: 27085678 DOI: 10.1016/j.intimp.2016.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 04/03/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
Liver X receptors (LXRs) in the nucleus play important roles in lipid metabolism and inflammation. The mechanism of LXR regulation of the LPS-induced Toll-like receptor 4 (TLR4) inflammatory signaling pathway remains to be elucidated. C57/BL6 mice were randomly divided into four groups: control, T0901317 (a LXRs agonist), LPS and T0901317+LPS. Additionally, Kupffer cells isolated from male C57/BL6 mice were divided into the same four groups. A decreased amount of inflammatory cells infiltrated the portal areas and the hepatic sinusoids in the livers of mice in the T0901317+LPS group than in those of mice in the LPS group. In the T0901317+LPS group, the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and tumor necrosis factor alpha (TNF-α) were lower, while the serum level of interleukin-10 (IL-10) was higher. In vitro, Kupffer cells pretreated with T0901317 for 24h presented reduced TNF-α, interferon-beta (IFN-β) and interleukin-1 beta (IL-1β) levels, while the IL-10 level increased; however, the mRNA and protein expression levels of interferon regulatory factor 3 (IRF3) and glucocorticoid receptor-interacting protein 1 (GRIP1) were not significantly reduced. The co-IP data illustrated that LXRα bound to GRIP1 specifically in the T0901317+LPS group, while less IRF3 was bound to GRIP1 in the T0901317+LPS group than in the LPS group. Furthermore, the DNA-binding activity of NF-κB was decreased by pretreating Kupffer cells with T0901317 for 24h. These results suggest that activated LXRα competes with IRF3 for GRIP1 binding, thus repressing IRF3 and NF-κB transcriptional activity and inhibiting the inflammatory response initiated by LPS in Kupffer cells.
Collapse
|
44
|
Silva MP, Barros-Silva JD, Vieira J, Lisboa S, Torres L, Correia C, Vieira-Coimbra M, Martins AT, Jerónimo C, Henrique R, Paulo P, Teixeira MR. NCOA2 is a candidate target gene of 8q gain associated with clinically aggressive prostate cancer. Genes Chromosomes Cancer 2016; 55:365-74. [PMID: 26799514 DOI: 10.1002/gcc.22340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022] Open
Abstract
Prostate carcinomas harboring 8q gains are associated with poor clinical outcome, but the target genes of this genomic alteration remain to be unveiled. In this study, we aimed to identify potential 8q target genes associated with clinically aggressive prostate cancer (PCa) using fluorescence in situ hybridization (FISH), genome-wide mRNA expression, and protein expression analyses. Using FISH, we first characterized the relative copy number of 8q (assessed with MYC flanking probes) of a series of 50 radical prostatectomy specimens, with available global gene expression data and typed for E26 transformation specific (ETS) rearrangements, and then compared the gene expression profile of PCa subsets with and without 8q24 gain using Significance Analysis of Microarrays. In the subset of tumors with ERG fusion genes (ERG+), five genes were identified as significantly overexpressed (false discovery rate [FDR], ≤ 5%) in tumors with relative 8q24 gain, namely VN1R1, ZNF417, CDON, IKZF2, and NCOA2. Of these, only NCOA2 is located in 8q (8q13.3), showing a statistically higher mRNA expression in the subgroup with relative 8q gain, both in the ERG+ subgroup and in the whole series (P = 0.000152 and P = 0.008, respectively). Combining all the cases with NCOA2 overexpression, either at the mRNA or at the protein level, we identified a group of tumors with NCOA2 copy-number increase, independently of ETS status and relative 8q24 gain. Furthermore, for the first time, we detected a structural rearrangement involving NCOA2 in PCa. These findings warrant further studies with larger series to evaluate if NCOA2 relative copy-number gain presents prognostic value independently of the well-established poor prognosis associated with MYC relative copy-number gain.
Collapse
Affiliation(s)
- Maria P Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - João D Barros-Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Joana Vieira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Susana Lisboa
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Lurdes Torres
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Cecília Correia
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Márcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Ana T Martins
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Paula Paulo
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
45
|
Eedunuri VK, Rajapakshe K, Fiskus W, Geng C, Chew SA, Foley C, Shah SS, Shou J, Mohamed JS, Coarfa C, O'Malley BW, Mitsiades N. miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol 2015; 29:1170-83. [PMID: 26066330 DOI: 10.1210/me.2015-1080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The p160 family of steroid receptor coactivators (SRCs) are pleiotropic transcription factor coactivators and "master regulators" of gene expression that promote cancer cell proliferation, survival, metabolism, migration, invasion, and metastasis. Cancers with high p160 SRC expression exhibit poor clinical outcomes and resistance to therapy, highlighting the SRCs as critical oncogenic drivers and, thus, therapeutic targets. microRNAs are important epigenetic regulators of protein expression. To examine the regulation of p160 SRCs by microRNAs, we used and combined 4 prediction algorithms to identify microRNAs that could target SRC1, SRC2, and SRC3 expression. For validation of these predictions, we assessed p160 SRC protein expression and cell viability after transfection of corresponding microRNA mimetics in breast cancer, uveal melanoma, and prostate cancer (PC) cell lines. Transfection of selected microRNA mimetics into breast cancer, uveal melanoma, and PC cells depleted SRC protein expression levels and exerted potent antiproliferative activity in these cell types. In particular, microRNA-137 (miR-137) depleted expression of SRC1, SRC2, and very potently, SRC3. The latter effect can be attributed to the presence of 3 miR-137 recognition sequences within the SRC3 3'-untranslated region. Using reverse phase protein array analysis, we identified a network of proteins, in addition to SRC3, that were modulated by miR-137 in PC cells. We also found that miR-137 and its host gene are epigenetically silenced in human cancer specimens and cell lines. These results support the development and testing of microRNA-based therapies (in particular based on restoring miR-137 levels) for targeting the oncogenic family of p160 SRCs in cancer.
Collapse
Affiliation(s)
- Vijay Kumar Eedunuri
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Kimal Rajapakshe
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Warren Fiskus
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Chuandong Geng
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Sue Anne Chew
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Christopher Foley
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Shrijal S Shah
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - John Shou
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Junaith S Mohamed
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Cristian Coarfa
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O'Malley
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Nicholas Mitsiades
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|