1
|
Racca JD, Chen YS, Brabender AR, Battistin U, Weiss MA, Georgiadis MM. Role of nucleobase-specific interactions in the binding and bending of DNA by human male sex determination factor SRY. J Biol Chem 2024; 300:107683. [PMID: 39168182 PMCID: PMC11458547 DOI: 10.1016/j.jbc.2024.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Y-chromosome-encoded master transcription factor SRY functions in the embryogenesis of therian mammals to initiate male development. Through interactions of its conserved high-mobility group box within a widened DNA minor groove, SRY and related Sox factors induce sharp bends at specific DNA target sites. Here, we present the crystal structure of the SRY high-mobility group domain bound to a DNA site containing consensus element 5'-ATTGTT. The structure contains three complexes in the asymmetric unit; in each complex, SRY forms 10 hydrogen bonds with minor-groove base atoms in 5'-CATTGT/ACAATG-3', shifting the recognition sequence by one base pair (italics). These nucleobase interactions involve conserved residues Arg7, Asn10, and Tyr74 on one side of intercalated Ile13 (the cantilever) and Arg20, Asn32, and Ser36 on the other. Unlike the less-bent NMR structure, DNA bend angles (69-84°) of the distinct box-DNA complexes are similar to those observed in homologous Sox domain-DNA structures. Electrophoretic studies indicate that respective substitutions of Asn32, Ser36, or Tyr74 by Ala exhibit slightly attenuated specific DNA-binding affinity and bend angles (70-73°) relative to WT (79°). By contrast, respective substitutions of Arg7, Asn10, or Arg20 by Ala markedly impaired DNA-binding affinity in association with much smaller DNA bend angles (53-65°). In a rodent cell-based model of the embryonic gonadal ridge, full-length SRY variants bearing these respective Ala substitutions exhibited significantly decreased transcriptional activation of SRY's principal target gene (Sox9). Together, our findings suggest that nucleobase-specific hydrogen bonds by SRY are critical for specific DNA binding, bending, and transcriptional activation.
Collapse
Affiliation(s)
- Joseph D Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Adam R Brabender
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Umberto Battistin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
2
|
Ghafoori SM, Sethi A, Petersen GF, Tanipour MH, Gooley PR, Forwood JK. RNA Binding Properties of SOX Family Members. Cells 2024; 13:1202. [PMID: 39056784 PMCID: PMC11274882 DOI: 10.3390/cells13141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
SOX proteins are a family of transcription factors (TFs) that play critical functions in sex determination, neurogenesis, and chondrocyte differentiation, as well as cardiac, vascular, and lymphatic development. There are 20 SOX family members in humans, each sharing a 79-residue L-shaped high mobility group (HMG)-box domain that is responsible for DNA binding. SOX2 was recently shown to interact with long non-coding RNA and large-intergenic non-coding RNA to regulate embryonic stem cell and neuronal differentiation. The RNA binding region was shown to reside within the HMG-box domain; however, the structural details of this binding remain unclear. Here, we show that all SOX family members, except group H, interact with RNA. Our mutational experiments demonstrate that the disordered C-terminal region of the HMG-box domain plays an important role in RNA binding. Further, by determining a high-resolution structure of the HMG-box domain of the group H family member SOX30, we show that despite differences in RNA binding ability, SOX30 shares a very similar secondary structure with other SOX protein HMG-box domains. Together, our study provides insight into the interaction of SOX TFs with RNA.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168, Australia
| | - Gayle F. Petersen
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Mohammad Hossein Tanipour
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
| | - Paul R. Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| |
Collapse
|
3
|
Singleton KS, Silva-Rodriguez P, Cunningham DD, Silva EM. Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis. Genes (Basel) 2024; 15:243. [PMID: 38397232 PMCID: PMC10887758 DOI: 10.3390/genes15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Sox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick, and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions. However, the partner proteins and Sox11-interaction domains underlying these diverse functions are not well defined. Here, we identify partner proteins and the domains of Xenopus laevis Sox11 required for protein interaction and function during neurogenesis. Our data show that Sox11 co-localizes and interacts with Pou3f2 and Neurog2 in the anterior neural plate and in early neurons, respectively. We also demonstrate that Sox11 does not interact with Neurog1, a high-affinity partner of Sox11 in the mouse cortex, suggesting that Sox11 has species-specific partner proteins. Additionally, we determined that the N-terminus including the HMG domain of Sox11 is necessary for interaction with Pou3f2 and Neurog2, and we established a novel role for the N-terminal 46 amino acids in the specification of placodal progenitors. This is the first identification of partner proteins for Sox11 and of domains required for partner-protein interactions and distinct roles in neurogenesis.
Collapse
Affiliation(s)
- Kaela S. Singleton
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 200057, USA
| | - Pablo Silva-Rodriguez
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (P.S.-R.); (D.D.C.)
| | - Doreen D. Cunningham
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (P.S.-R.); (D.D.C.)
| | - Elena M. Silva
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 200057, USA
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (P.S.-R.); (D.D.C.)
| |
Collapse
|
4
|
Hamilton DJ, Hein AE, Wuttke DS, Batey RT. The DNA binding high mobility group box protein family functionally binds RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1778. [PMID: 36646476 PMCID: PMC10349909 DOI: 10.1002/wrna.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
|
5
|
Fan J, Li Q, Liang J, Chen Z, Chen L, Lai J, Chen Q. Regulation of IFNβ expression: focusing on the role of its promoter and transcription regulators. Front Microbiol 2023; 14:1158777. [PMID: 37396372 PMCID: PMC10309559 DOI: 10.3389/fmicb.2023.1158777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
IFNβ is a single-copy gene without an intron. Under normal circumstances, it shows low or no expression in cells. It is upregulated only when the body needs it or is stimulated. Stimuli bind to the pattern recognition receptors (PRRs) and pass via various signaling pathways to several basic transcriptional regulators, such as IRFs, NF-кB, and AP-1. Subsequently, the transcriptional regulators enter the nucleus and bind to regulatory elements of the IFNβ promoter. After various modifications, the position of the nucleosome is altered and the complex is assembled to activate the IFNβ expression. However, IFNβ regulation involves a complex network. For the study of immunity and diseases, it is important to understand how transcription factors bind to regulatory elements through specific forms, which elements in cells are involved in regulation, what regulation occurs during the assembly of enhancers and transcription complexes, and the possible regulatory mechanisms after transcription. Thus, this review focuses on the various regulatory mechanisms and elements involved in the activation of IFNβ expression. In addition, we discuss the impact of this regulation in biology.
Collapse
Affiliation(s)
- Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Junzhong Lai
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Evaluation of the Impact of Pregnancy-Associated Factors on the Quality of Wharton's Jelly-Derived Stem Cells Using SOX2 Gene Expression as a Marker. Int J Mol Sci 2022; 23:ijms23147630. [PMID: 35886978 PMCID: PMC9317592 DOI: 10.3390/ijms23147630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
SOX2 is a recognized pluripotent transcription factor involved in stem cell homeostasis, self-renewal and reprogramming. It belongs to, one of the SRY-related HMG-box (SOX) family of transcription factors, taking part in the regulation of embryonic development and determination of cell fate. Among other functions, SOX2 promotes proliferation, survival, invasion, metastasis, cancer stemness, and drug resistance. SOX2 interacts with other transcription factors in multiple signaling pathways to control growth and survival. The aim of the study was to determine the effect of a parturient’s age, umbilical cord blood pH and length of pregnancy on the quality of stem cells derived from Wharton’s jelly (WJSC) by looking at birth weight and using SOX2 gene expression as a marker. Using qPCR the authors, evaluated the expression of SOX2 in WJSC acquired from the umbilical cords of 30 women right after the delivery. The results showed a significant correlation between the birth weight and the expression of SOX2 in WJSC in relation to maternal age, umbilical cord blood pH, and the length of pregnancy. The authors observed that the younger the woman and the lower the umbilical cord blood pH, the earlier the delivery occurs, the lower the birth weight and the higher SOX2 gene expression in WJSC. In research studies and clinical applications of regenerative medicine utilizing mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord, assessment of maternal and embryonic factors influencing the quality of cells is critical.
Collapse
|
8
|
Hamilton DJ, Hein AE, Holmes ZE, Wuttke DS, Batey RT. The DNA-Binding High-Mobility Group Box Domain of Sox Family Proteins Directly Interacts with RNA In Vitro. Biochemistry 2022; 61:10.1021/acs.biochem.2c00218. [PMID: 35511045 PMCID: PMC9636074 DOI: 10.1021/acs.biochem.2c00218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a growing body of evidence that a substantial number of protein domains identified as DNA-binding also interact with RNA to regulate biological processes. Several recent studies have revealed that the Sox2 transcription factor binds RNA through its high-mobility group box (HMGB) domain in vitro and in vivo. A high degree of conservation of this domain among members of the Sox family of transcription factors suggests that RNA-binding activity may be a general feature of these proteins. To address this hypothesis, we examined a subset of HMGB domains from human Sox family of proteins for their ability to bind both DNA and RNA in vitro. We observed selective, high-affinity interactions between Sox family HMGB domains and various model RNA elements, including a four-way junction RNA, a hairpin RNA with an internal bulge, G-quadruplex RNA, and a fragment of long noncoding RNA ES2, which is known to directly interact with Sox2. Importantly, the HMGB domains bind these RNA ligands significantly tighter than nonconsensus dsDNA and in some cases with affinities rivaling those of their consensus dsDNA sequences. These data suggest that RNA binding is a conserved feature of the Sox family of transcription factors with the potential to modulate unappreciated biological functions.
Collapse
Affiliation(s)
- Desmond J Hamilton
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0596, United States
| | - Abigail E Hein
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0596, United States
| | - Zachariah E Holmes
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0596, United States
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0596, United States
| | - Robert T Batey
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
9
|
Racca JD, Chatterjee D, Chen YS, Rai RK, Yang Y, Georgiadis MM, Haas E, Weiss MA. Tenuous transcriptional threshold of human sex determination. II. SRY exploits water-mediated clamp at the edge of ambiguity. Front Endocrinol (Lausanne) 2022; 13:1029177. [PMID: 36568077 PMCID: PMC9771472 DOI: 10.3389/fendo.2022.1029177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Y-encoded transcription factor SRY initiates male differentiation in therian mammals. This factor contains a high-mobility-group (HMG) box, which mediates sequence-specific DNA binding with sharp DNA bending. A companion article in this issue described sex-reversal mutations at box position 72 (residue 127 in human SRY), invariant as Tyr among mammalian orthologs. Although not contacting DNA, the aromatic ring seals the domain's minor wing at a solvent-exposed junction with a basic tail. A seeming paradox was posed by the native-like biochemical properties of inherited Swyer variant Y72F: its near-native gene-regulatory activity is consistent with the father's male development, but at odds with the daughter's XY female somatic phenotype. Surprisingly, aromatic rings (Y72, F72 or W72) confer higher transcriptional activity than do basic or polar side chains generally observed at solvated DNA interfaces (Arg, Lys, His or Gln). Whereas biophysical studies (time-resolved fluorescence resonance energy transfer and heteronuclear NMR spectroscopy) uncovered only subtle perturbations, dissociation of the Y72F complex was markedly accelerated relative to wild-type. Studies of protein-DNA solvation by molecular-dynamics (MD) simulations of an homologous high-resolution crystal structure (SOX18) suggest that Y72 para-OH anchors a network of water molecules at the tail-DNA interface, perturbed in the variant in association with nonlocal conformational fluctuations. Loss of the Y72 anchor among SRY variants presumably "unclamps" its basic tail, leading to (a) rapid DNA dissociation despite native affinity and (b) attenuated transcriptional activity at the edge of sexual ambiguity. Conservation of Y72 suggests that this water-mediated clamp operates generally among SRY and metazoan SOX domains.
Collapse
Affiliation(s)
- Joseph D. Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ratan K. Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Elisha Haas
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| |
Collapse
|
10
|
Design and Characterization of a Cell-Penetrating Peptide Derived from the SOX2 Transcription Factor. Int J Mol Sci 2021; 22:ijms22179354. [PMID: 34502261 PMCID: PMC8431565 DOI: 10.3390/ijms22179354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
SOX2 is an oncogenic transcription factor overexpressed in nearly half of the basal-like triple-negative breast cancers associated with very poor outcomes. Targeting and inhibiting SOX2 is clinically relevant as high SOX2 mRNA levels are positively correlated with decreased overall survival and progression-free survival in patients affected with breast cancer. Given its key role as a master regulator of cell proliferation, SOX2 represents an important scaffold for the engineering of dominant-negative synthetic DNA-binding domains (DBDs) that act by blocking or interfering with the oncogenic activity of the endogenous transcription factor in cancer cells. We have synthesized an interference peptide (iPep) encompassing a truncated 24 amino acid long C-terminus of SOX2 containing a potential SOX-specific nuclear localization sequence, and the determinants of the binding of SOX2 to the DNA and to its transcription factor binding partners. We found that the resulting peptide (SOX2-iPep) possessed intrinsic cell penetration and promising nuclear localization into breast cancer cells, and decreased cellular proliferation of SOX2 overexpressing cell lines. The novel SOX2-iPep was found to exhibit a random coil conformation predominantly in solution. Molecular dynamics simulations were used to characterize the interactions of both the SOX2 transcription factor and the SOX2-iPep with FGF4-enhancer DNA in the presence of the POU domain of the partner transcription factor OCT4. Predictions of the free energy of binding revealed that the iPep largely retained the binding affinity for DNA of parental SOX2. This work will enable the future engineering of novel dominant interference peptides to transport different therapeutic cargo molecules such as anti-cancer drugs into cells.
Collapse
|
11
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
12
|
Panda M, Tripathi SK, Biswal BK. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim Biophys Acta Rev Cancer 2021; 1875:188517. [PMID: 33524528 DOI: 10.1016/j.bbcan.2021.188517] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of transcription factors is one of the common problems in the pathogenesis of human cancer. Among them, SOX9 is one of the critical transcription factors involved in various diseases, including cancer. The expression of SOX9 is regulated by microRNAs (miRNAs), methylation, phosphorylation, and acetylation. Interestingly, SOX9 acts as a proto-oncogene or tumor suppressor gene, relying upon kinds of cancer. Recent studies have reported the critical role of SOX9 in the regulation of the tumor microenvironment (TME). Additionally, activation of SOX9 signaling or SOX9 regulated signaling pathways play a crucial role in cancer development and progression. Accumulating evidence also suggests that SOX9 acquires stem cell features to induce epithelial-mesenchymal transition (EMT). Moreover, SOX9 has been broadly studied in the field of cancer stem cell (CSC) and EMT in the last decades. However, the link between SOX9 and cancer drug resistance has only recently been discovered. Furthermore, its differential expression could be a potential biomarker for tumor prognosis and progression. This review outlined the various biological implications of SOX9 in cancer progression and cancer drug resistance and elucidated its signaling network, which could be a potential target for designing novel anticancer drugs.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
13
|
Tan DS, Holzner M, Weng M, Srivastava Y, Jauch R. SOX17 in cellular reprogramming and cancer. Semin Cancer Biol 2020; 67:65-73. [DOI: 10.1016/j.semcancer.2019.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/19/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
|
14
|
Geng H, Hao L, Cheng Y, Wang C, Wei W, Yang R, Li H, Zhang Y, Liu S. miR-140 inhibits porcine fetal fibroblasts proliferation by directly targeting type 1 insulin-like growth factor receptor and indirectly inhibiting type 1 insulin-like growth factor receptor expression via SRY-box 4. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1674-1682. [PMID: 32054205 PMCID: PMC7463078 DOI: 10.5713/ajas.19.0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 10/28/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study aimed to elucidate the effect of miR-140 on the proliferation of porcine fetal fibroblasts (PFFs) and identify the target genes of miR-140 in PFFs. METHODS In this study, bioinformatics software was used to predict and verify target genes of miR-140. Quantitative polymerase chain reaction and western blot were used to detect the relationship between miR-140 and its target genes in PFFs. Dual luciferase reporter gene assays were performed to assess the interactions among miR-140, type 1 insulinlike growth factor receptor (IGF1R), and SRY-box 4 (SOX4). The effect of miR-140 on the proliferation of PFFs was measured by CCK-8 when PFFs were transfected with a miR-140 mimic or inhibitor. The transcription factor SOX4 binding to promoter of IGF1R was detected by chromatin immunoprecipitation assay (ChIP). RESULTS miR-140 directly targeted IGF1R and inhibited proliferation of PFFs. Meanwhile, miR-140 targeted transcription factor SOX4 that binds to promoter of porcine IGF1R to indirectly inhibit the expression of IGF1R. In addition, miR-140 inhibitor promoted PFFs proliferation, which is abrogated by SOX4 or IGF1R knockdown. CONCLUSION miR-140 inhibited PFFs proliferation by directly targeting IGF1R and indirectly inhibiting IGF1R expression via SOX4, which play an important role in the development of porcine fetal.
Collapse
Affiliation(s)
- Hongwei Geng
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Wenzhen Wei
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Haoyang Li
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Ying Zhang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
- Five-Star Animal Health Pharmaceutical Factory of Jilin Province, Changchun, Jilin 130062, China
| |
Collapse
|
15
|
Characterization of gonad differentially expressed SoxB2 genes in mud crab Scylla paramamosain. Gene 2020; 740:144507. [DOI: 10.1016/j.gene.2020.144507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/26/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022]
|
16
|
Holmes ZE, Hamilton DJ, Hwang T, Parsonnet NV, Rinn JL, Wuttke DS, Batey RT. The Sox2 transcription factor binds RNA. Nat Commun 2020; 11:1805. [PMID: 32286318 PMCID: PMC7156710 DOI: 10.1038/s41467-020-15571-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
Certain transcription factors are proposed to form functional interactions with RNA to facilitate proper regulation of gene expression. Sox2, a transcription factor critical for maintenance of pluripotency and neurogenesis, has been found associated with several lncRNAs, although it is unknown whether these interactions are direct or via other proteins. Here we demonstrate that human Sox2 interacts directly with one of these lncRNAs with high affinity through its HMG DNA-binding domain in vitro. These interactions are primarily with double-stranded RNA in a non-sequence specific fashion, mediated by a similar but not identical interaction surface. We further determined that Sox2 directly binds RNA in mouse embryonic stem cells by UV-cross-linked immunoprecipitation of Sox2 and more than a thousand Sox2-RNA interactions in vivo were identified using fRIP-seq. Together, these data reveal that Sox2 employs a high-affinity/low-specificity paradigm for RNA binding in vitro and in vivo. Some transcription factors have been proposed to functionally interact with RNA to facilitate proper regulation of gene expression. Here the authors demonstrate that human Sox2 interact directly and with high affinity to RNAs through its HMG DNA-binding domain.
Collapse
Affiliation(s)
- Zachariah E Holmes
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA
| | - Desmond J Hamilton
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA
| | - Taeyoung Hwang
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA
| | - Nicholas V Parsonnet
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA.,BioFrontiers Institute, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA.
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO, 80309, USA.
| |
Collapse
|
17
|
Yang Z, Jiang S, Lu C, Ji T, Yang W, Li T, Lv J, Hu W, Yang Y, Jin Z. SOX11: friend or foe in tumor prevention and carcinogenesis? Ther Adv Med Oncol 2019; 11:1758835919853449. [PMID: 31210798 PMCID: PMC6547177 DOI: 10.1177/1758835919853449] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Sex-determining region Y-related high-mobility-group box transcription factor 11 (SOX11) is an essential member of the SOX transcription factors and has been highlighted as an important regulator in embryogenesis. SOX11 studies have only recently shifted focus from its role in embryogenesis and development to its function in disease. In particular, the role of SOX11 in carcinogenesis has become of major interest in the field. SOX11 expression is elevated in a wide variety of tumors. In many cancers, dysfunctional expression of SOX11 has been correlated with increased cancer cell survival, inhibited cell differentiation, and tumor progression through the induction of metastasis and angiogenesis. Nevertheless, in a limited number of malignancies, SOX11 has also been identified to function as a tumor suppressor. Herein, we review the correlation between the expression of SOX11 and tumor behaviors. We also summarize the mechanisms underlying the regulation of SOX11 expression and activity in pathological conditions. In particular, we focus on the pathological processes of cancer targeted by SOX11 and discuss whether SOX11 is protective or detrimental during tumor progression. Moreover, SOX11 is highlighted as a clinical biomarker for the diagnosis and prognosis of various human cancer. The information reviewed here should assist in future experimental designs and emphasize the potential of SOX11 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Wei Hu
- Department of Immunology, The Fourth Military
Medical University, Xi’an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, 127 Changle West Road,
Xi’an 710032, China
| |
Collapse
|
18
|
Potential Effect of SOX2 on the Cell Cycle of Wharton's Jelly Stem Cells (WJSCs). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5084689. [PMID: 31281582 PMCID: PMC6589191 DOI: 10.1155/2019/5084689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022]
Abstract
The connective tissue of the umbilical cord contains stem cells called Wharton's jelly cells. These cells express core transcription factors (NANOG, OCT4, and SOX2). The protein product of the SOX2 gene controls the cell cycle by interacting with cyclin D (directly and indirectly) and cycle inhibitors—p21 and p27, as well as two E2f3 protein isoforms. The aim of the study was to analyze the effect of SOX2 on the cell cycle of stem cells of Wharton's jelly. The material for the study was the stem cells of Wharton's jelly isolated from 20 umbilical cords collected during childbirth. The stem cells collected were subjected to cytometric analysis, cell culture, and RNA isolation. cDNA was the starting material for the analysis of gene expression: SOX2, CCND1, CDK4, and CDKN1B. The studies indicate a high proliferative potential of the Wharton's jelly stem cells and the inhibitory effect of SOX2 on the expression of the CCND1 and CDK4 gene.
Collapse
|
19
|
Disordered domains in chromatin-binding proteins. Essays Biochem 2019; 63:147-156. [PMID: 30940742 DOI: 10.1042/ebc20180068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
Chromatin comprises proteins, DNA and RNA, and its function is to condense and package the genome in a way that allows the necessary transactions such as transcription, replication and repair to occur in a highly organised and regulated manner. The packaging of chromatin is often thought of in a hierarchical fashion starting from the most basic unit of DNA packaging, the nucleosome, to the condensation of nucleosomal 'beads on a string' by linker histones to form the 30-nm fibre and eventually large chromatin domains. However, a picture of a more heterogeneous, dynamic and liquid-like assembly is emerging, in which intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) play a central role. Disorder features at all levels of chromatin organisation, from the histone tails, which are sites of extensive post-translational modification (PTM) that change the fate of the underlying genomic information, right through to transcription hubs, and the recently elucidated roles of IDPs and IDRs in the condensation of large regions of the genome through liquid-liquid phase separation.
Collapse
|
20
|
Direct Single-Molecule Observation of Sequential DNA Bending Transitions by the Sox2 HMG Box. Int J Mol Sci 2018; 19:ijms19123865. [PMID: 30518054 PMCID: PMC6321608 DOI: 10.3390/ijms19123865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Sox2 is a pioneer transcription factor that initiates cell fate reprogramming through locus-specific differential regulation. Mechanistically, it was assumed that Sox2 achieves its regulatory diversity via heterodimerization with partner transcription factors. Here, utilizing single-molecule fluorescence spectroscopy, we show that Sox2 alone can modulate DNA structural landscape in a dosage-dependent manner. We propose that such stoichiometric tuning of regulatory DNAs is crucial to the diverse biological functions of Sox2, and represents a generic mechanism of conferring functional plasticity and multiplicity to transcription factors.
Collapse
|
21
|
Prévostel C, Blache P. The dose-dependent effect of SOX9 and its incidence in colorectal cancer. Eur J Cancer 2017; 86:150-157. [DOI: 10.1016/j.ejca.2017.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
|
22
|
Hausrath AC, Kingston RL. Conditionally disordered proteins: bringing the environment back into the fold. Cell Mol Life Sci 2017; 74:3149-3162. [PMID: 28597298 PMCID: PMC11107710 DOI: 10.1007/s00018-017-2558-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
For many proteins, biological function requires the folding of the polypeptide chain into a unique and persistent tertiary structure. This review concerns proteins that adopt a specific tertiary structure to function, but are otherwise partially or completely disordered. The biological cue for protein folding is environmental perturbation or minor post-translational modification. Hence, we term these proteins conditionally disordered. Many of these proteins recognize and bind other molecules, and conditional disorder has been hypothesized to allow for more nuanced control and regulation of binding processes. However, this remains largely unproven. The sequences of conditionally disordered proteins suggest their propensity to fold; yet, under the standard laboratory conditions, they do not do so, which may appear surprising. We argue that the surprise results from the failure to consider the role of the environment in protein structure formation and that conditional disorder arises as a natural consequence of the marginal stability of the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
23
|
Lourenço AR, Coffer PJ. SOX4: Joining the Master Regulators of Epithelial-to-Mesenchymal Transition? Trends Cancer 2017; 3:571-582. [PMID: 28780934 DOI: 10.1016/j.trecan.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/03/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important developmental program exploited by cancer cells to gain mesenchymal features. Transcription factors globally regulating processes during EMT are often referred as 'master regulators' of EMT, and include members of the Snail and ZEB transcription factor families. The SRY-related HMG box (SOX) 4 transcription factor can promote tumorigenesis by endowing cells with migratory and invasive properties, stemness, and resistance to apoptosis, thereby regulating key aspects of the EMT program. We propose here that SOX4 should also be considered as a master regulator of EMT, and we review the molecular mechanisms underlying its function.
Collapse
Affiliation(s)
- Ana Rita Lourenço
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Molecular basis for the genome engagement by Sox proteins. Semin Cell Dev Biol 2017; 63:2-12. [DOI: 10.1016/j.semcdb.2016.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 01/11/2023]
|
25
|
Pibiri V, Ravarino A, Gerosa C, Pintus MC, Fanos V, Faa G. Stem/progenitor cells in the developing human cerebellum: an immunohistochemical study. Eur J Histochem 2016; 60:2686. [PMID: 27734996 PMCID: PMC5062635 DOI: 10.4081/ejh.2016.2686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to analyze, by immunohistochemistry, the occurrence of stem/progenitor cells localized in the different niches of the developing human cerebellum. To this end, cerebellar samples were obtained from 3 fetuses and 3 newborns ranging, respectively, from 11 to 24 and from 30 to 38 weeks of gestation. Specimens were 10% formalin-fixed, routinely processed and paraffin-embedded; 3 μm-tick sections were immunostained with anti-SOX2 and PAX6 antibodies. Our study evidenced SOX2 and PAX6 immunoreactivity in precursors cells in all six developing human cerebella. SOX2 was expressed in precursors of different neural cell types, including Purkinje neurons, stellate cells, basket cells and Golgi cells. In the cerebellar cortex, SOX2 expression changed during gestation, being highly expressed from the 20th up to the 24th week, whereas at the 30th and at the 34th week SOX2 immunoreactivity was restricted to the Purkinje cell layer and the inner zone. Cerebellar human cortex was negative at the 38th week of gestation. PAX6 immunoreactivity was restricted to granule cell precursors in the external granule layer (EGL), being detected at all gestational ages. Our study indicates SOX2 and PAX6 as two useful markers of stem/progenitor cells that highlight the different germinative zones in the developing human cerebellum.
Collapse
|
26
|
Uversky VN. Unreported intrinsic disorder in proteins: Disorder emergency room. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1010999. [PMID: 28232885 DOI: 10.1080/21690707.2015.1010999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/01/2014] [Accepted: 11/24/2014] [Indexed: 10/23/2022]
Abstract
This article continues an "Unreported Intrinsic Disorder in Proteins" series, the goal of which is to expose some interesting cases of missed (or overlooked, or ignored) disorder in proteins. The need for this series is justified by the observation that despite the fact that protein intrinsic disorder is widely accepted by the scientific community, there are still numerous instances when appreciation of this phenomenon is absent. This results in the avalanche of research papers which are talking about intrinsically disordered proteins (or hybrid proteins with ordered and disordered regions) not recognizing that they are talking about such proteins. Articles in the "Unreported Intrinsic Disorder in Proteins" series provide a fast fix for some of the recent noticeable disorder overlooks.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Laboratory of Structural Dynamics; Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
27
|
Thapar R. Structure-specific nucleic acid recognition by L-motifs and their diverse roles in expression and regulation of the genome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:677-87. [PMID: 25748361 DOI: 10.1016/j.bbagrm.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 01/08/2023]
Abstract
The high-mobility group (HMG) domain containing proteins regulate transcription, DNA replication and recombination. They adopt L-shaped folds and are structure-specific DNA binding motifs. Here, I define the L-motif super-family that consists of DNA-binding HMG-box proteins and the L-motif of the histone mRNA binding domain of stem-loop binding protein (SLBP). The SLBP L-motif and HMG-box domains adopt similar L-shaped folds with three α-helices and two or three small hydrophobic cores that stabilize the overall fold, but have very different and distinct modes of nucleic acid recognition. A comparison of the structure, dynamics, protein-protein and nucleic acid interactions, and regulation by PTMs of the SLBP and the HMG-box L-motifs reveals the versatile and diverse modes by which L-motifs utilize their surfaces for structure-specific recognition of nucleic acids to regulate gene expression.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences at Rice-Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA.
| |
Collapse
|
28
|
Racca JD, Chen YS, Maloy JD, Wickramasinghe N, Phillips NB, Weiss MA. Structure-function relationships in human testis-determining factor SRY: an aromatic buttress underlies the specific DNA-bending surface of a high mobility group (HMG) box. J Biol Chem 2014; 289:32410-29. [PMID: 25258310 DOI: 10.1074/jbc.m114.597526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human testis determination is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in SRY cause 46 XY gonadal dysgenesis with female somatic phenotype (Swyer syndrome) and confer a high risk of malignancy (gonadoblastoma). Such mutations cluster in the SRY high mobility group (HMG) box, a conserved motif of specific DNA binding and bending. To explore structure-function relationships, we constructed all possible substitutions at a site of clinical mutation (W70L). Our studies thus focused on a core aromatic residue (position 15 of the consensus HMG box) that is invariant among SRY-related HMG box transcription factors (the SOX family) and conserved as aromatic (Phe or Tyr) among other sequence-specific boxes. In a yeast one-hybrid system sensitive to specific SRY-DNA binding, the variant domains exhibited reduced (Phe and Tyr) or absent activity (the remaining 17 substitutions). Representative nonpolar variants with partial or absent activity (Tyr, Phe, Leu, and Ala in order of decreasing side-chain volume) were chosen for study in vitro and in mammalian cell culture. The clinical mutation (Leu) was found to markedly impair multiple biochemical and cellular activities as respectively probed through the following: (i) in vitro assays of specific DNA binding and protein stability, and (ii) cell culture-based assays of proteosomal degradation, nuclear import, enhancer DNA occupancy, and SRY-dependent transcriptional activation. Surprisingly, however, DNA bending is robust to this or the related Ala substitution that profoundly impairs box stability. Together, our findings demonstrate that the folding, trafficking, and gene-regulatory function of SRY requires an invariant aromatic "buttress" beneath its specific DNA-bending surface.
Collapse
Affiliation(s)
- Joseph D Racca
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yen-Shan Chen
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - James D Maloy
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nalinda Wickramasinghe
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nelson B Phillips
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
29
|
Kipanyula MJ, Kimaro WH, Yepnjio FN, Aldebasi YH, Farahna M, Nwabo Kamdje AH, Abdel-Magied EM, Seke Etet PF. Signaling pathways bridging fate determination of neural crest cells to glial lineages in the developing peripheral nervous system. Cell Signal 2014; 26:673-682. [PMID: 24378534 DOI: 10.1016/j.cellsig.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 11/29/2022]
Abstract
Fate determination of neural crest cells is an essential step for the development of different crest cell derivatives. Peripheral glia development is marked by the choice of the neural crest cells to differentiate along glial lineages. The molecular mechanism underlying fate acquisition is poorly understood. However, recent advances have identified different transcription factors and genes required for the complex instructive signaling process that comprise both local environmental and cell intrinsic cues. Among others, at least the roles of Sox10, Notch, and neuregulin 1 have been documented in both in vivo and in vitro models. Cooperative interactions of such factors appear to be necessary for the switch from multipotent neural crest cells to glial lineage precursors in the peripheral nervous system. This review summarizes recent advances in the understanding of fate determination of neural crest cells into different glia subtypes, together with the potential implications in regenerative medicine.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania.
| | - Wahabu Hamisi Kimaro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | - Faustin N Yepnjio
- Neurology Department, Yaoundé Central Hospital, Department of Internal Medicine and Specialties, University of Yaoundé I, P.O. Box 1937, Yaoundé, Cameroon
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Mohammed Farahna
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | | | - Eltuhami M Abdel-Magied
- Department of Anatomy and Histology, College of Medicine, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia.
| |
Collapse
|
30
|
Sawada T, Hisada H, Fujita M. Mutual induced fit in a synthetic host-guest system. J Am Chem Soc 2014; 136:4449-51. [PMID: 24611612 DOI: 10.1021/ja500376x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutual induced fit is an important phenomenon in biological molecular recognition, but it is still rare in artificial systems. Here we report an artificial host-guest system in which a flexible calix[4]arene is enclathrated in a dynamic self-assembled host and both molecules mutually adopt specific three-dimensional structures. NMR data revealed the conformational changes, and crystallographic studies clearly established the precise structures at each stage.
Collapse
Affiliation(s)
- Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
31
|
Nagaraja V, Eslick GD. Forthcoming prognostic markers for esophageal cancer: a systematic review and meta-analysis. J Gastrointest Oncol 2014; 5:67-76. [PMID: 24490044 PMCID: PMC3904028 DOI: 10.3978/j.issn.2078-6891.2013.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The incidence of esophageal cancer is rising, and survival rates remain poor. This meta-analysis summarizes five molecular mechanisms of disease progression, which are related to prognosis. PATIENTS AND METHODS A systematic search was conducted using MEDLINE, PubMed, EMBASE, Current Contents Connect, Cochrane library, Google Scholar, Science Direct, and Web of Science. Original data was abstracted from each study and used to calculate a pooled event rate and 95% confidence interval (95% CI). RESULTS Our analysis included five octamer-binding transcription factor 4 (OCT4) studies (564 patients), six sex determining region Y-box 2 (SOX2) studies (336 patients), five oestrogen receptor (ER) studies (367 patients), seven MET or MNNG HOS Transforming gene (c-Met) studies (1,015 patients) and six insulin like growth factor receptor studies (764 patients). Incidence of OCT4 in SCC was 53.60% (95% CI: 0.182-0.857) and the overall hazard ratio for poor clinic outcome was 2.9 (95% CI: 1.843-4.565). The incidence of SOX2 in SCC was 69.2% (95% CI: 0.361-0.899) however, was associated with significant heterogeneity of 90.94%. The prevalence of Oestrogen receptor α and β in SCC were 37.90% (95% CI: 0.317-0.444) and 67.20% (95% CI: 0.314-0.901) respectively. The prevalence of MET in EAC was 33.20% (95% CI: 0.031-0.884) and the incidence of insulin-like growth factor-1 receptor (IGF-1R) in EAC was 67.70% (95% CI: 0.333-0.898). CONCLUSIONS Our results show that the status of ER, OCT4 and SOX2 expression correlates with the unfavourable prognosis in patients with esophageal squamous cell carcinoma (ESCC). This study also highlights the potential impact of the IGF-1R on the biology of EAC and the expression of Met was recognised as a significant prognostic factor. Our data supports the concept of IGF axis, ER, Met, OCT4 and SOX2 inhibition as (neo-) adjuvant treatment.
Collapse
Affiliation(s)
- Vinayak Nagaraja
- The Whiteley-Martin Research Centre, Discipline of Surgery, The Sydney Medical School Nepean, Penrith, New South Wales, Australia
| | - Guy D Eslick
- The Whiteley-Martin Research Centre, Discipline of Surgery, The Sydney Medical School Nepean, Penrith, New South Wales, Australia
| |
Collapse
|
32
|
Wang X, Yang S, Zhao X, Guo H, Ling X, Wang L, Fan C, Yu J, Zhou S. OCT3 and SOX2 promote the transformation of Barrett's esophagus to adenocarcinoma by regulating the formation of tumor stem cells. Oncol Rep 2014; 31:1745-53. [PMID: 24481676 DOI: 10.3892/or.2014.3003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/20/2013] [Indexed: 11/06/2022] Open
Abstract
Barrett's esophagus (BE) is a type of precancerosis and a key risk factor for esophagus adenocarcinoma (EAC). Tumor stem cells may be the source for BE transforming to EAC. Octamer transcription factor-3/4 (OCT3/4) and SOX2 are the main transcriptional controlling factors and markers of tumor stem cells. In the present study, we observed that the expressions of OCT3/4, SOX2, TCL1 and AKT1 in BE were elevated compared to normal esophagus but were decreased compared to EAC. Moreover, we isolated a few stem-like cells in OE33 cells which showed similar biological behavior to tumor stem cells. Notably, we found that downregulation of OCT3/4 expression by siRNA inhibited the ability of clone formation and invasion of OE33 cells, and decreased the formation of side population cells and slow cycle cells. Therefore, we concluded that OCT3/4 and SOX2 play a critical role in the transformation of BE to EAC by regulating the formation of tumor stem cells and the TCL1/AKT1 pathway.
Collapse
Affiliation(s)
- Xingwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shiming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xiaoyan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Hong Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xianlong Ling
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Lei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Chaoqiang Fan
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jing Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shiwen Zhou
- National Base for Drug Clinical Trial, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
33
|
Abstract
Cancer of the esophagus is an aggressive disease with early lymphatic and hematogenous dissemination and at present often considered as one clinical entity because of their comparable increasing incidence, prognosis and optimal treatment options. However, it is still a matter of debate whether these malignancies have the same pathogenesis and genotype. Despite recent advances, treatment of upper gastrointestinal malignancies remains a significant challenge. Molecular pathology has revealed many molecular mechanisms of disease progression, which are related to prognosis. Better knowledge of molecular bases may lead to new paradigms, improved prognostication, early diagnosis and individually tailored therapeutic options. This review summarizes the rationale, preclinical evidence, retrospective clinical analyses and the interim clinical data pertaining HER2 therapy and many other molecular pathways.
Collapse
Affiliation(s)
- Vinayak Nagaraja
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Nepean Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
34
|
The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene 2012; 32:3397-409. [PMID: 23246969 DOI: 10.1038/onc.2012.506] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/29/2022]
Abstract
Development and progression of cancer are mediated by alterations in transcriptional networks, resulting in a disturbed balance between the activity of oncogenes and tumor suppressor genes. Transcription factors have the capacity to regulate global transcriptional profiles, and are consequently often found to be deregulated in their expression and function during tumorigenesis. Sex-determining region Y-related high-mobility-group box transcription factor 4 (SOX4) is a member of the group C subfamily of the SOX transcription factors and has a critical role during embryogenesis, where its expression is widespread and controls the development of numerous tissues. SOX4 expression is elevated in a wide variety of tumors, including leukemia, colorectal cancer, lung cancer and breast cancer, suggesting a fundamental role in the development of these malignancies. In many cancers, deregulated expression of this developmental factor has been correlated with increased cancer cell proliferation, cell survival, inhibition of apoptosis and tumor progression through the induction of an epithelial-to-mesenchymal transition and metastasis. However, in a limited subset of tumors, SOX4 has also been reported to act as a tumor suppressor. These opposing roles suggest that the outcome of SOX4 activation depends on the cellular context and the tumor origin. Indeed, SOX4 expression, transcriptional activity and target gene specificity can be controlled by signaling pathways, including the transforming growth factor-β and the WNT pathway, as well as at the post-translational level through regulation of protein stability and interaction with specific cofactors, such as TCF, syntenin-1 and p53. Here, we provide an overview of our current knowledge concerning the role of SOX4 in tumor development and progression.
Collapse
|
35
|
Li X, Wang J, Xu Z, Ahmad A, Li E, Wang Y, Qin S, Wang Q. Expression of Sox2 and Oct4 and their clinical significance in human non-small-cell lung cancer. Int J Mol Sci 2012; 13:7663-7675. [PMID: 22837720 PMCID: PMC3397552 DOI: 10.3390/ijms13067663] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 01/15/2023] Open
Abstract
Sox2 and Oct4 are transcription factors with the characteristics of regulating self-renewal and differentiation of embryonic stem cell. The aim of this study was to detect the expression of Sox2 and Oct4 and analyze their clinical significance in human non-small-cell lung cancer (NSCLC). Expression of Sox2 and Oct4 were assayed in cancer tissues and their corresponding paracancerous tissues from 44 patients with NSCLC and 21 patients with benign tumors using immunohistochemistry, Western blot, reverse transcription polymerase chain reaction (RT-PCR). The correlation between the expression of Sox2 and Oct4 and tumor type, grade and prognosis and the utility of the two genes in discriminating between benign and malignant tumors were analyzed as well. The results showed that Sox2 and Oct4 positive staining was only seen in the nuclei of cancer cells but not in either the precancerous tissues or benign tumor tissues by immunohistochemistry (p < 0.01). Furthermore, in the lung cancer tissue, the positive rate for Sox2 and Oct4 was 70.5% and 54.5%, respectively. Meanwhile, clinicopathological correlations showed that the Oct4 expression level was significantly associated with poorer differentiation and higher TNM stage of the cancer (p < 0.05). Western blot and RT-PCR analysis showed similar results to immunohistochemistry. Follow-up analysis revealed that expression of Oct4 was significantly associated with poor prognosis of lung cancer. The conclusion is that Sox2 and Oct4 may act as the promising unit markers in directing NSCLC diagnosis and therapy. Also, Oct4 can be regarded as a novel predictor of poor prognosis for NSCLC patients undergoing resection.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, China; E-Mails: (X.L.); (Z.X.); (A.A.); (E.L.); (Y.W.)
| | - Jinguang Wang
- Department of Thoracic Surgery, The First Hospital Affiliated to Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China; E-Mail:
| | - Zhiyun Xu
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, China; E-Mails: (X.L.); (Z.X.); (A.A.); (E.L.); (Y.W.)
| | - Aftab Ahmad
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, China; E-Mails: (X.L.); (Z.X.); (A.A.); (E.L.); (Y.W.)
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, China; E-Mails: (X.L.); (Z.X.); (A.A.); (E.L.); (Y.W.)
| | - Yuan Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, China; E-Mails: (X.L.); (Z.X.); (A.A.); (E.L.); (Y.W.)
| | - Suli Qin
- People’s Military Medical Press, Beijing Fuxing Road 22 A3, Beijing 100842, China; E-Mail:
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, China; E-Mails: (X.L.); (Z.X.); (A.A.); (E.L.); (Y.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-411-86110151; Fax: +86-411-86110151
| |
Collapse
|
36
|
Dyson HJ. Roles of intrinsic disorder in protein-nucleic acid interactions. MOLECULAR BIOSYSTEMS 2011; 8:97-104. [PMID: 21874205 DOI: 10.1039/c1mb05258f] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interactions between proteins and nucleic acids typify the role of disordered segments, linkers, tails and other entities in the function of complexes that must form with high affinity and specificity but which must be capable of dissociating when no longer needed. While much of the emphasis in the literature has been on the interactions of disordered proteins with other proteins, disorder is also frequently observed in nucleic acids (particularly RNA) and in the proteins that interact with them. The interactions of disordered proteins with DNA most often manifest as molding of the protein onto the B-form DNA structure, although some well-known instances involve remodeling of the DNA structure that seems to require that the interacting proteins be disordered to various extents in the free state. By contrast, induced fit in RNA-protein interactions has been recognized for many years-the existence and prevalence of this phenomenon provides the clearest possible evidence that RNA and its interactions with proteins must be considered as highly dynamic, and the dynamic nature of RNA and its multiplicity of folded and unfolded states is an integral part of its nature and function.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, USA.
| |
Collapse
|
37
|
Phillips NB, Racca J, Chen YS, Singh R, Jancso-Radek A, Radek JT, Wickramasinghe NP, Haas E, Weiss MA. Mammalian testis-determining factor SRY and the enigma of inherited human sex reversal: frustrated induced fit in a bent protein-DNA complex. J Biol Chem 2011; 286:36787-807. [PMID: 21849498 DOI: 10.1074/jbc.m111.260091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian testis-determining factor SRY contains a high mobility group box, a conserved eukaryotic motif of DNA bending. Mutations in SRY cause XY gonadal dysgenesis and somatic sex reversal. Although such mutations usually arise de novo in spermatogenesis, some are inherited and so specify male development in one genetic background (the father) but not another (the daughter). Here, we describe the biophysical properties of a representative inherited mutation, V60L, within the minor wing of the L-shaped domain (box position 5). Although the stability and DNA binding properties of the mutant domain are similar to those of wild type, studies of SRY-induced DNA bending by subnanosecond time-resolved fluorescence resonance energy transfer (FRET) revealed enhanced conformational fluctuations leading to long range variation in bend angle. (1)H NMR studies of the variant protein-DNA complex demonstrated only local perturbations near the mutation site. Because the minor wing of SRY folds on DNA binding, the inherited mutation presumably hinders induced fit. Stopped-flow FRET studies indicated that such frustrated packing leads to accelerated dissociation of the bent complex. Studies of SRY-directed transcriptional regulation in an embryonic gonadal cell line demonstrated partial activation of downstream target Sox9. Our results have demonstrated a nonlocal coupling between DNA-directed protein folding and protein-directed DNA bending. Perturbation of this coupling is associated with a genetic switch poised at the threshold of activity.
Collapse
Affiliation(s)
- Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Narasimhan K, Pillay S, Bin Ahmad NR, Bikadi Z, Hazai E, Yan L, Kolatkar PR, Pervushin K, Jauch R. Identification of a polyoxometalate inhibitor of the DNA binding activity of Sox2. ACS Chem Biol 2011; 6:573-81. [PMID: 21344919 DOI: 10.1021/cb100432x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant expression of transcription factors is a frequent cause of disease, yet drugs that modulate transcription factor protein-DNA interactions are presently unavailable. To this end, the chemical tractability of the DNA binding domain of the stem cell inducer and oncogene Sox2 was explored in a high-throughput fluorescence anisotropy screen. The screening revealed a Dawson polyoxometalate (K(6)[P(2)Mo(18)O(62)]) as a direct and nanomolar inhibitor of the DNA binding activity of Sox2. The Dawson polyoxometalate (Dawson-POM) was found to be selective for Sox2 and related Sox-HMG family members when compared to unrelated paired and zinc finger DNA binding domains. [(15)N,(1)H]-Transverse relaxation optimized spectroscopy (TROSY) experiments coupled with docking studies suggest an interaction site of the POM on the Sox2 surface that enabled the rationalization of its inhibitory activity. The unconventional molecular scaffold of the Dawson-POM and its inhibitory mode provides strategies for the development of drugs that modulate transcription factors.
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Shubhadra Pillay
- School of Biological sciences, Nanyang Technological University, Singapore 637551
| | | | - Zsolt Bikadi
- Virtua Drug Research and Development Ltd., Budapest 1015, Hungary
| | - Eszter Hazai
- Virtua Drug Research and Development Ltd., Budapest 1015, Hungary
| | - Li Yan
- School of Biological sciences, Nanyang Technological University, Singapore 637551
| | - Prasanna R. Kolatkar
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Konstantin Pervushin
- School of Biological sciences, Nanyang Technological University, Singapore 637551
| | - Ralf Jauch
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672
| |
Collapse
|
39
|
Hagiwara N. Sox6, jack of all trades: a versatile regulatory protein in vertebrate development. Dev Dyn 2011; 240:1311-21. [PMID: 21495113 DOI: 10.1002/dvdy.22639] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2011] [Indexed: 12/27/2022] Open
Abstract
Approximately 20,000 genes are encoded in our genome, one tenth of which are thought to be transcription factors. Considering the complexity and variety of cell types generated during development, many transcription factors likely play multiple roles. Uncovering the versatile roles of Sox6 in vertebrate development sheds some light on how an organism efficiently utilizes the limited resources of transcription factors. The structure of the Sox6 gene itself may dictate its functional versatility. First, Sox6 contains no known regulatory domains; instead, it utilizes various cofactors. Second, Sox6 has a long 3'-UTR that contains multiple microRNA targets, thus its protein level is duly adjusted by cell type-specific microRNAs. Just combining these two characteristics alone makes Sox6 extremely versatile. To date, Sox6 has been reported to regulate differentiation of tissues of mesoderm, ectoderm, and endoderm origins, making Sox6 a truly multifaceted transcription factor.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California 95616, USA.
| |
Collapse
|
40
|
Ngun TC, Ghahramani N, Sánchez FJ, Bocklandt S, Vilain E. The genetics of sex differences in brain and behavior. Front Neuroendocrinol 2011; 32:227-46. [PMID: 20951723 PMCID: PMC3030621 DOI: 10.1016/j.yfrne.2010.10.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
Abstract
Biological differences between men and women contribute to many sex-specific illnesses and disorders. Historically, it was argued that such differences were largely, if not exclusively, due to gonadal hormone secretions. However, emerging research has shown that some differences are mediated by mechanisms other than the action of these hormone secretions and in particular by products of genes located on the X and Y chromosomes, which we refer to as direct genetic effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex differences. We highlight the 'four core genotypes' model and sex differences in the midbrain dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research being done on unique populations including people attracted to the same sex and people with a cross-gender identity. As science continues to advance our understanding of biological sex differences, a new field is emerging that is aimed at better addressing the needs of both sexes: gender-based biology and medicine. Ultimately, the study of the biological basis for sex differences will improve healthcare for both men and women.
Collapse
Affiliation(s)
- Tuck C Ngun
- David Geffen School of Medicine at UCLA, Gonda Center, Room 5506, 695 Charles Young Drive South, Los Angeles, CA 90095-7088, United States
| | | | | | | | | |
Collapse
|
41
|
Gracz AD, Magness ST. Sry-box (Sox) transcription factors in gastrointestinal physiology and disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G503-15. [PMID: 21292996 PMCID: PMC3302185 DOI: 10.1152/ajpgi.00489.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genetic mechanisms underlying tissue maintenance of the gastrointestinal tract are critical for the proper function of the digestive system under normal physiological stress. The identification of transcription factors and related signal transduction pathways that regulate stem cell maintenance and lineage allocation is attractive from a clinical standpoint in that it may provide targets for novel cell- or drug-based therapies. Sox [sex-determining region Y (Sry) box-containing] factors are a family of transcription factors that are emerging as potent regulators of stem cell maintenance and cell fate decisions in multiple organ systems and might provide valuable insight toward the understanding of these processes in endodermally derived tissues of the gastrointestinal tract. In this review, we focus on the known genetic functions of Sox factors and their roles in epithelial tissues of the esophagus, stomach, intestine, colon, pancreas, and liver. Additionally, we discuss pathological conditions in the gastrointestinal tract that are associated with a dysregulation of Sox factors. Further study of Sox factors and their role in gastrointestinal physiology and pathophysiology may lead to advances that facilitate control of tissue maintenance and development of advanced clinical therapies.
Collapse
Affiliation(s)
- A. D. Gracz
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and ,2Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - S. T. Magness
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and
| |
Collapse
|
42
|
Abstract
Over 10 years have passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma.
Collapse
Affiliation(s)
- Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Specific interactions between proteins and DNA are fundamental to many biological processes. In this review, we provide a revised view of protein-DNA interactions that emphasizes the importance of the three-dimensional structures of both macromolecules. We divide protein-DNA interactions into two categories: those when the protein recognizes the unique chemical signatures of the DNA bases (base readout) and those when the protein recognizes a sequence-dependent DNA shape (shape readout). We further divide base readout into those interactions that occur in the major groove from those that occur in the minor groove. Analogously, the readout of the DNA shape is subdivided into global shape recognition (for example, when the DNA helix exhibits an overall bend) and local shape recognition (for example, when a base pair step is kinked or a region of the minor groove is narrow). Based on the >1500 structures of protein-DNA complexes now available in the Protein Data Bank, we argue that individual DNA-binding proteins combine multiple readout mechanisms to achieve DNA-binding specificity. Specificity that distinguishes between families frequently involves base readout in the major groove, whereas shape readout is often exploited for higher resolution specificity, to distinguish between members within the same DNA-binding protein family.
Collapse
Affiliation(s)
- Remo Rohs
- Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
A fundamental goal in biology is to understand the molecular basis of cell identity. Pluripotent embryonic stem (ES) cell identity is governed by a set of transcription factors centred on the triumvirate of Oct4, Sox2 and Nanog. These proteins often bind to closely localised genomic sites. Recent studies have identified additional transcriptional modulators that bind to chromatin near sites occupied by Oct4, Sox2 and Nanog. This suggests that the combinatorial control of gene transcription might be fundamental to the ES cell state. Here we discuss how these observations advance our understanding of the transcription factor network that controls pluripotent identity and highlight unresolved issues that arise from these studies.
Collapse
Affiliation(s)
- Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JQ, UK.
| | | |
Collapse
|
45
|
Lange AW, Keiser AR, Wells JM, Zorn AM, Whitsett JA. Sox17 promotes cell cycle progression and inhibits TGF-beta/Smad3 signaling to initiate progenitor cell behavior in the respiratory epithelium. PLoS One 2009; 4:e5711. [PMID: 19479035 PMCID: PMC2682659 DOI: 10.1371/journal.pone.0005711] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 05/04/2009] [Indexed: 12/26/2022] Open
Abstract
The Sry-related high mobility group box transcription factor Sox17 is required for diverse developmental processes including endoderm formation, vascular development, and fetal hematopoietic stem cell maintenance. Expression of Sox17 in mature respiratory epithelial cells causes proliferation and lineage respecification, suggesting that Sox17 can alter adult lung progenitor cell fate. In this paper, we identify mechanisms by which Sox17 influences lung epithelial progenitor cell behavior and reprograms cell fate in the mature respiratory epithelium. Conditional expression of Sox17 in epithelial cells of the adult mouse lung demonstrated that cell cluster formation and respecification of alveolar progenitor cells toward proximal airway lineages were rapidly reversible processes. Prolonged expression of Sox17 caused the ectopic formation of bronchiolar-like structures with diverse respiratory epithelial cell characteristics in alveolar regions of lung. During initiation of progenitor cell behavior, Sox17 induced proliferation and increased the expression of the progenitor cell marker Sca-1 and genes involved in cell cycle progression. Notably, Sox17 enhanced cyclin D1 expression in vivo and activated cyclin D1 promoter activity in vitro. Sox17 decreased the expression of transforming growth factor-beta (TGF-beta)-responsive cell cycle inhibitors in the adult mouse lung, including p15, p21, and p57, and inhibited TGF-beta1-mediated transcriptional responses in vitro. Further, Sox17 interacted with Smad3 and blocked Smad3 DNA binding and transcriptional activity. Together, these data show that a subset of mature respiratory epithelial cells retains remarkable phenotypic plasticity and that Sox17, a gene required for early endoderm formation, activates the cell cycle and reinitiates multipotent progenitor cell behavior in mature lung cells.
Collapse
Affiliation(s)
- Alexander W. Lange
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Angela R. Keiser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
46
|
Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST. Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1108-18. [PMID: 19228882 PMCID: PMC2696217 DOI: 10.1152/ajpgi.00004.2009] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SOX transcription factors have the capacity to modulate stem/progenitor cell proliferation and differentiation in a dose-dependent manner. SOX9 is expressed in the small intestine epithelial stem cell zone. Therefore, we hypothesized that differential levels of SOX9 may exist, influencing proliferation and/or differentiation of the small intestine epithelium. Sox9 expression levels in the small intestine were investigated using a Sox9 enhanced green fluorescent protein (Sox9(EGFP)) transgenic mouse. Sox9(EGFP) levels correlate with endogenous SOX9 levels, which are expressed at two steady-state levels, termed Sox9(EGFPLO) and Sox9(EGFPHI). Crypt-based columnar cells are Sox9(EGFPLO) and demonstrate enriched expression of the stem cell marker, Lgr5. Sox9(EGFPHI) cells express chromogranin A and substance P but do not express Ki67 and neurogenin3, indicating that Sox9(EGFPHI) cells are postmitotic enteroendocrine cells. Overexpression of SOX9 in a crypt cell line stopped proliferation and induced morphological changes. These data support a bimodal role for SOX9 in the intestinal epithelium, where low SOX9 expression supports proliferative capacity, and high SOX9 expression suppresses proliferation.
Collapse
Affiliation(s)
- Eric J. Formeister
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill
| | - Ayn L. Sionas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill
| | - David K. Lorance
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill
| | - Carey L. Barkley
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill
| | - Ginny H. Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill
| | - Scott T. Magness
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill
| |
Collapse
|
47
|
Ma Y, Qi X, Du J, Song S, Feng D, Qi J, Zhu Z, Zhang X, Xiao H, Han Z, Hao X. Identification of candidate genes for human pituitary development by EST analysis. BMC Genomics 2009; 10:109. [PMID: 19284880 PMCID: PMC2664823 DOI: 10.1186/1471-2164-10-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 03/15/2009] [Indexed: 11/29/2022] Open
Abstract
Background The pituitary is a critical neuroendocrine gland that is comprised of five hormone-secreting cell types, which develops in tandem during the embryonic stage. Some essential genes have been identified in the early stage of adenohypophysial development, such as PITX1, FGF8, BMP4 and SF-1. However, it is likely that a large number of signaling molecules and transcription factors essential for determination and terminal differentiation of specific cell types remain unidentified. High-throughput methods such as microarray analysis may facilitate the measurement of gene transcriptional levels, while Expressed sequence tag (EST) sequencing, an efficient method for gene discovery and expression level analysis, may no-redundantly help to understand gene expression patterns during development. Results A total of 9,271 ESTs were generated from both fetal and adult pituitaries, and assigned into 961 gene/EST clusters in fetal and 2,747 in adult pituitary by homology analysis. The transcription maps derived from these data indicated that developmentally relevant genes, such as Sox4, ST13 and ZNF185, were dominant in the cDNA library of fetal pituitary, while hormones and hormone-associated genes, such as GH1, GH2, POMC, LHβ, CHGA and CHGB, were dominant in adult pituitary. Furthermore, by using RT-PCR and in situ hybridization, Sox4 was found to be one of the main transcription factors expressed in fetal pituitary for the first time. It was expressed at least at E12.5, but decreased after E17.5. In addition, 40 novel ESTs were identified specifically in this tissue. Conclusion The significant changes in gene expression in both tissues suggest a distinct and dynamic switch between embryonic and adult pituitaries. All these data along with Sox4 should be confirmed to further understand the community of multiple signaling pathways that act as a cooperative network that regulates maturation of the pituitary. It was also suggested that EST sequencing is an efficient means of gene discovery.
Collapse
Affiliation(s)
- Yueyun Ma
- Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Narayana N, Weiss MA. Crystallographic analysis of a sex-specific enhancer element: sequence-dependent DNA structure, hydration, and dynamics. J Mol Biol 2009; 385:469-90. [PMID: 18992257 PMCID: PMC2774934 DOI: 10.1016/j.jmb.2008.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 11/29/2022]
Abstract
The crystal structure of a sex-specific enhancer element is described at a resolution of 1.6 A. This 16-bp site, designated Dsx(A), functions in the regulation of a genetic switch between male and female patterns of gene expression in Drosophila melanogaster. Related sites are broadly conserved in metazoans, including in the human genome. This enhancer element is unusually rich in general regulatory sequences related to DNA recognition by multiple classes of eukaryotic transcription factors, including the DM motifs, homeodomain, and high mobility group box. Whereas free DNA is often crystallized as an A-form double helix, Dsx(A) was crystallized as B-DNA and thus provides a model for the prebound conformation of diverse regulatory DNA complexes. Sequence-dependent conformational properties that extend features of shorter B-DNA fragments with respect to double helical parameters, groove widths, hydration, and binding of divalent metal ions are observed. The structure also exhibits a sequence-dependent pattern of isotropic thermal B-factors, suggesting possible variation in the local flexibility of the DNA backbone. Such fluctuations are in accord with structural variability observed in prior B-DNA structures. We speculate that sites of intrinsic flexibility within a DNA control element provide hinges for its protein-directed reorganization in a transcriptional preinitiation complex.
Collapse
Affiliation(s)
- Narendra Narayana
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
49
|
Frumerie C, Sylwan L, Helleday T, Yu A, Haggård-Ljungquist E. Bacteriophage P2 integrase: another possible tool for site-specific recombination in eukaryotic cells. J Appl Microbiol 2008; 105:290-9. [PMID: 18284484 DOI: 10.1111/j.1365-2672.2008.03748.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS To investigate if the site-specific tyrosine integrase (Int) from phage P2 has features that would make it interesting for use of gene transfer into eukaryotic cells. These include the possibility of promoting recombination with a nonphage sequence, abolishing the requirement for the bacterial DNA-binding and -bending protein integration host factor (IHF), and localization to the nucleus of eukaryotic cells. METHODS AND RESULTS We show that the Int protein catalyzes site-specific recombination using a human sequence in Escherichia coli and in vitro although not as efficiently as with the wild-type bacterial sequence, and that insertion of high mobility group recognition boxes in the phage attachment site substrate abolish the requirement of IHF and allows efficient recombination in vitro in a eukaryotic cell extract. Furthermore, we show by fluorescence that the Int protein contains a functional intrinsic nuclear localization signal, localizing it to the nucleus in both HeLa and 293 cells. CONCLUSIONS We conclude that P2 Int may be a potential tool for site-specific integration of genes into the human chromosome. SIGNIFICANCE AND IMPACT OF THE STUDY The study implies the possibility of using multiple prokaryotic Int proteins with different specific integration sites in human cells for future gene therapy programmes.
Collapse
Affiliation(s)
- C Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
50
|
Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SCJ, Jonatan D, Zorn AM, Wells JM. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 2007; 27:7802-15. [PMID: 17875931 PMCID: PMC2169141 DOI: 10.1128/mcb.02179-06] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/22/2006] [Accepted: 09/06/2007] [Indexed: 01/20/2023] Open
Abstract
The canonical Wnt pathway is necessary for gut epithelial cell proliferation, and aberrant activation of this pathway causes intestinal neoplasia. We report a novel mechanism by which the Sox family of transcription factors regulate the canonical Wnt signaling pathway. We found that some Sox proteins antagonize while others enhance beta-catenin/T-cell factor (TCF) activity. Sox17, which is expressed in the normal gut epithelium but exhibits reduced expression in intestinal neoplasia, is antagonistic to Wnt signaling. When overexpressed in SW480 colon carcinoma cells, Sox17 represses beta-catenin/TCF activity in a dose-dependent manner and inhibits proliferation. Sox17 and Sox4 are expressed in mutually exclusive domains in normal and neoplastic gut tissues, and gain- and loss-of-function studies demonstrate that Sox4 enhances beta-catenin/TCF activity and the proliferation of SW480 cells. In addition to binding beta-catenin, both Sox17 and Sox4 physically interact with TCF/lymphoid enhancer factor (LEF) family members via their respective high-mobility-group box domains. Results from gain- and loss-of-function experiments suggest that the interaction of Sox proteins with beta-catenin and TCF/LEF proteins regulates the stability of beta-catenin and TCF/LEF. In particular, Sox17 promotes the degradation of both beta-catenin and TCF proteins via a noncanonical, glycogen synthase kinase 3beta-independent mechanism that can be blocked by proteasome inhibitors. In contrast, Sox4 may function to stabilize beta-catenin protein. These findings indicate that Sox proteins can act as both antagonists and agonists of beta-catenin/TCF activity, and this mechanism may regulate Wnt signaling responses in many developmental and disease contexts.
Collapse
Affiliation(s)
- Débora Sinner
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|