1
|
Pitsava G, Stratakis CA, Faucz FR. PRKAR1A and Thyroid Tumors. Cancers (Basel) 2021; 13:cancers13153834. [PMID: 34359735 PMCID: PMC8345073 DOI: 10.3390/cancers13153834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In 2021 it is estimated that there will be 44,280 new cases of thyroid cancer in the United States and the incidence rate is higher in women than in men by almost 3 times. Well-differentiated thyroid cancer is the most common subtype of thyroid cancer and includes follicular (FTC) and papillary (PTC) carcinomas. Over the last decade, researchers have been able to better understand the molecular mechanisms involved in thyroid carcinogenesis, identifying genes including but not limited to RAS, BRAF, PAX8/PPARγ chromosomal rearrangements and others, as well as several tumor genes involved in major signaling pathways regulating cell cycle, differentiation, growth, or proliferation. Patients with Carney complex (CNC) have increased incidence of thyroid tumors, including cancer, yet little is known about this association. CNC is a familial multiple neoplasia and lentiginosis syndrome cause by inactivating mutations in the PRKAR1A gene which encodes the regulatory subunit type 1α of protein kinase A. This work summarizes what we know today about PRKAR1A defects in humans and mice and their role in thyroid tumor development, as the first such review on this issue. Abstract Thyroid cancer is the most common type of endocrine malignancy and the incidence is rapidly increasing. Follicular (FTC) and papillary thyroid (PTC) carcinomas comprise the well-differentiated subtype and they are the two most common thyroid carcinomas. Multiple molecular genetic and epigenetic alterations have been identified in various types of thyroid tumors over the years. Point mutations in BRAF, RAS as well as RET/PTC and PAX8/PPARγ chromosomal rearrangements are common. Thyroid cancer, including both FTC and PTC, has been observed in patients with Carney Complex (CNC), a syndrome that is inherited in an autosomal dominant manner and predisposes to various tumors. CNC is caused by inactivating mutations in the tumor-suppressor gene encoding the cyclic AMP (cAMP)-dependent protein kinase A (PKA) type 1α regulatory subunit (PRKAR1A) mapped in chromosome 17 (17q22–24). Growth of the thyroid is driven by the TSH/cAMP/PKA signaling pathway and it has been shown in mouse models that PKA activation through genetic ablation of the regulatory subunit Prkar1a can cause FTC. In this review, we provide an overview of the molecular mechanisms contributing to thyroid tumorigenesis associated with inactivation of the RRKAR1A gene.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence: ; Tel.: +1-301-451-7177
| |
Collapse
|
2
|
Carneiro TNR, Bim LV, Buzatto VC, Galdeno V, Asprino PF, Lee EA, Galante PAF, Cerutti JM. Evidence of Cooperation between Hippo Pathway and RAS Mutation in Thyroid Carcinomas. Cancers (Basel) 2021; 13:2306. [PMID: 34065786 PMCID: PMC8151534 DOI: 10.3390/cancers13102306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Thyroid cancer incidences have been steadily increasing worldwide and are projected to become the fourth leading cancer diagnosis by 2030. Improved diagnosis and prognosis predictions for this type of cancer depend on understanding its genetic bases and disease biology. RAS mutations have been found in a wide range of thyroid tumors, from benign to aggressive thyroid carcinomas. Based on that and in vivo studies, it has been suggested that RAS cooperates with other driver mutations to induce tumorigenesis. This study aims to identify genetic alterations or pathways that cooperate with the RAS mutation in the pathogenesis of thyroid cancer. From a cohort of 120 thyroid carcinomas, 11 RAS-mutated samples were identified. The samples were subjected to RNA-Sequencing analyses. The mutation analysis in our eleven RAS-positive cases uncovered that four genes that belong to the Hippo pathway were mutated. The gene expression analysis revealed that this pathway was dysregulated in the RAS-positive samples. We additionally explored the mutational status and expression profiling of 60 RAS-positive papillary thyroid carcinomas (PTC) from The Cancer Genome Atlas (TCGA) cohort. Altogether, the mutational landscape and pathway enrichment analysis (gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genome (KEGG)) detected the Hippo pathway as dysregulated in RAS-positive thyroid carcinomas. Finally, we suggest a crosstalk between the Hippo and other signaling pathways, such as Wnt and BMP.
Collapse
Affiliation(s)
- Thaise Nayane Ribeiro Carneiro
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Larissa Valdemarin Bim
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Vanessa Candiotti Buzatto
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Vanessa Galdeno
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Paula Fontes Asprino
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Circle, CLS (Center for Life Science) Building 15th Floor, Office 15020 | Lab 15072, Boston, MA 02115, USA;
| | - Pedro Alexandre Favoretto Galante
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| |
Collapse
|
3
|
Hammad MO, Elabbasy LM, Abd Elghaffar MA, Zaki MMA, Bazeed FB, Zahran MA. Significance of CEP78 and WDR62 gene expressions in differentiated thyroid carcinoma: Possible predictors of lateral lymph node metastasis. Asia Pac J Clin Oncol 2019; 15:e154-e161. [PMID: 30884127 DOI: 10.1111/ajco.13143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study aimed at investigating the clinical significance of CEP78 and WDR62 in differentiated thyroid carcinoma (DTC). This study also aimed at finding predictors that help in detecting patients with DTC who have high risk for lateral lymph node metastasis (LNM). METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to examine CEP78, and WDR62 mRNA expressions in 40 tissue specimens of DTC, and 40 goiter tissue specimens. Additionally, we reviewed clinical, ultrasound, laboratory, pathological data of patients to analyze the associations between these characteristics and lateral LNM. RESULTS Our results demonstrated that relative CEP78 mRNA levels were significantly decreased in thyroid cancer tissues than goiter tissues (P = 0.002). ROC curve analysis confirmed the diagnostic value of CEP78 mRNA expression, providing an AUC equals to 0.698 (95% confidence intervals (CI), 0.583-0.813; P = 0.002). The relative WDR62 mRNA expression was not statistically different in DTC tissues and goiter tissues (P = 0.686). Furthermore, the DTC patients had been included to examine risk factors for lateral LNM. In multivariate analysis, the significant factors for predicting lateral LNM were low CEP78 mRNA expression (cut off value ≤0.54; P = 0.03; OR = 19.62; 95% CI, 1.3-296.23), central LNM (P = 0.011; OR = 33.6; 95% CI, 2.24-503.6) and calcifications (P = 0.023; OR = 27.187; 95% CI, 1.57-469.5). CONCLUSIONS CEP78 can be used as a promising molecular biomarker for differentiation between DTC and goiter tissues, in addition it might serve as a predictor of lateral LNM in DTC along with central LNM and calcifications. Unlike CEP78, WDR62 mRNA expression was not statistically different in DTC and goiter.
Collapse
Affiliation(s)
- Maha O Hammad
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lamiaa M Elabbasy
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Marwa M A Zaki
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fagr B Bazeed
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed A Zahran
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Ferrari SM, Fallahi P, Ruffilli I, Elia G, Ragusa F, Paparo SR, Ulisse S, Baldini E, Giannini R, Miccoli P, Antonelli A, Basolo F. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg 2018; 7:S19-S29. [PMID: 30175060 DOI: 10.21037/gs.2017.11.07] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Different genetic mutations and other molecular alterations in papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) can be detected in fine-needle aspiration (FNA) of thyroid nodules, and can be used successfully to ameliorate cancer diagnosis and management of patients with thyroid nodules. The greatest experience has been obtained with the diagnostic use of BRAF mutation that is strongly specific for malignancy when detected using well-validated techniques. The strongest diagnostic result can be obtained testing FNA samples for a panel of mutations that typically involve TERT, BRAF, PAX8/PPARγ, RAS, and RET/PTC. Finding any of these mutations in a thyroid nodule provides strong indication for malignancy and helps to refine clinical management for a significant proportion of patients with indeterminate cytology. The use of molecular markers, as TERT, BRAF, PAX8/PPARγ, RAS, and RET/PTC, may be considered for patients with indeterminate FNA cytology (FNAC) to help guide management. In patients with indeterminate TIR3 FNA, the combination of precise molecular marker expression analysis with molecular mutations evaluations could ameliorate significantly the accuracy of cancer diagnosis. However other prospective studies are needed to identify more accurate molecular markers. Finally, the knowledge of these molecular pathways has permitted the development of new targeted therapies for aggressive TC.
Collapse
Affiliation(s)
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Salvatore Ulisse
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Seo JW, Han K, Lee J, Kim EK, Moon HJ, Yoon JH, Park VY, Baek HM, Kwak JY. Application of metabolomics in prediction of lymph node metastasis in papillary thyroid carcinoma. PLoS One 2018; 13:e0193883. [PMID: 29509799 PMCID: PMC5839571 DOI: 10.1371/journal.pone.0193883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of this study was to find useful metabolites to predict lymph node (LN) metastasis in patients with papillary thyroid cancer (PTC) through a metabolomics approach and investigate the potential role of metabolites as a novel prognostic marker. MATERIALS AND METHODS Fifty-two consecutive patients (median age: 41.5 years, range 15-74 years) were enrolled who underwent total thyroidectomy and central LN dissection with or without lateral LN dissection in Severance Hospital between October 2013 and July 2015. The study specimens were provided by the Severance Hospital Gene Bank, and consisted of PTC from each patient. The specimens were prepared for proton nuclear magnetic resonance (1H-NMR) spectroscopy. Spectral data by 1H-NMR spectroscopy were acquired, processed, and analyzed. Patients were grouped in three ways, according to the presence of LN metastasis, central LN metastasis and lateral LN metastasis. Chi-square test and the student t-test were used to analyze categorical variables and continuous variables, respectively. The Mann-Whitney U test was used for univariate analysis of metabolites. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) was used for multivariate analysis to discriminate metabolic differences between the two groups. RESULTS Among 52 patients, 32 had central LN metastasis and 19 had lateral LN metastasis. No clinical or histopathological characteristic was significantly different for all comparisons. On univariate analysis, no metabolite showed significant difference for all comparisons. On multivariate analysis, OPLS-DA did not discriminate the presence and absence of LN metastasis. Lactate was found to be the most promising metabolite. CONCLUSIONS No metabolite could discriminate the presence of LN metastasis. However, lactate was found to be the most promising metabolite for discrimination. Further studies with larger sample sizes are needed to elucidate significant metabolites which can indicate the presence of LN metastasis in patients with PTC.
Collapse
Affiliation(s)
- Ji Won Seo
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyunghwa Han
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jandee Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun-Kyung Kim
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Jung Moon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hyun Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Vivian Youngjean Park
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Man Baek
- Gachon University, Department of Biomedical Engineering, Incheon, Republic of Korea
| | - Jin Young Kwak
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Naoum GE, Morkos M, Kim B, Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer 2018; 17:51. [PMID: 29455653 PMCID: PMC5817719 DOI: 10.1186/s12943-018-0786-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Thyroid cancer is a frequently encountered endocrine malignancy. Despite the favorable prognosis of this disease, 15–20% of differentiated thyroid cancer (DTC) cases and most anaplastic types, remain resistant to standard treatment options, including radioactive iodine (RAI). In addition, around 30% of medullary thyroid cancer (MTC) cases show resistance after surgery. The evolving understanding of disease-specific molecular therapeutic targets has led to the approval of two targeted therapies (Sorafenib and Lenvatinib) for RAI refractory DTC and another two drugs (Vandetanib and Cabozantinib) for MTC. These advanced therapies exert their effects by blocking the MAPK pathway, which has been widely correlated to different types of thyroid cancers. While these drugs remain reserved for thyroid cancer patients who failed all treatment options, their ability to improve patients’ overall survival remain hindered by their low efficacy and other molecular factors. Among these factors is the tumor’s ability to activate parallel proliferative signaling pathways other than the cascades blocked by these drugs, along with overexpression of some tyrosine kinase receptors (TKR). These facts urge the search for novel different treatment strategies for advanced thyroid cases beyond these drugs. Furthermore, the growing knowledge of the dynamic immune system interaction with tumor microenvironment has revolutionized the cancer immune therapy field. In this review, we aim to discuss the molecular escape mechanisms of thyroid tumors from these drugs. We also highlight novel therapeutic options targeting other pathways than MAPK, including PI3K pathway, ALK translocations and HER2/3 receptors and their clinical impact. We also aim to discuss the usage of targeted therapy in restoring thyroid tumor sensitivity to RAI, and finally turn to extensively discuss the role of immunotherapy as a potential alternative treatment option for advanced thyroid diseases.
Collapse
Affiliation(s)
- George E Naoum
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,Alexandria Comprehensive Cancer center, Alexandria, Egypt
| | - Michael Morkos
- Department of Endocrinology, Rush University, 1900 W Polk St, Room 801, Chicago, IL, USA
| | - Brian Kim
- Department of Endocrinology, Thyroid Cancer Program, Rush University, Jelke Building, Room 604, 1735 W Harrison St, Chicago, IL, 60612, UK
| | - Waleed Arafat
- Alexandria Comprehensive Cancer center, Alexandria, Egypt. .,University Of Alexandria, Clinical oncology department, Alexandria, Egypt. .,Department of Radiation Oncology, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, UK.
| |
Collapse
|
7
|
Bai Q, Liu L, Xia Y, Wang J, Xi W, Qu Y, Xiong Y, Long Q, Xu J, Guo J. IRF5 is associated with adverse postoperative prognosis of patients with non-metastatic clear cell renal cell carcinoma. Oncotarget 2017; 8:44186-44194. [PMID: 28562332 PMCID: PMC5546472 DOI: 10.18632/oncotarget.17777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/25/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND IRF5 is one member of IRFs family, and is critical for host immunity and cell response. In the present study, we sought to search the clinical and prognostic value of IFR5 in patients with non-metastatic ccRCC. RESULTS IRF5 proved to be an adverse independent prognostic factor for overall survival (p < 0.001) and recurrence free survival (p = 0.002). The newly built nomograms could give better prediction for overall survival and recurrence free survival in ccRCC patients. MATERIALS AND METHODS We included 264 individuals who were diagnosed with non-metastatic clear cell renal cell carcinoma in the present study. Immunohistochemistry staining was performed on tissue microarrays to evaluate the IRF5 expression. χ2 test, Fisher's exact test, t test, Kaplan-Meier method and Cox proportional hazard model were applied to evaluate the prognostic value of IRF5. Two nomograms were constructed to predict clinical outcomes for ccRCC patients after surgery. CONCLUSIONS IRF5 was an adverse independent prognostic factor for both overall survival and recurrence free survival in patients with non-metastatic ccRCC.
Collapse
Affiliation(s)
- Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Baldini E, Tuccilli C, Prinzi N, Sorrenti S, Falvo L, De Vito C, Catania A, Tartaglia F, Mocini R, Coccaro C, Alessandrini S, Barollo S, Mian C, Antonelli A, De Antoni E, D’Armiento M, Ulisse S. Deregulated expression of Aurora kinases is not a prognostic biomarker in papillary thyroid cancer patients. PLoS One 2015; 10:e0121514. [PMID: 25807528 PMCID: PMC4373730 DOI: 10.1371/journal.pone.0121514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/02/2015] [Indexed: 01/08/2023] Open
Abstract
A number of reports indicated that Aurora-A or Aurora-B overexpression represented a negative prognostic factor in several human malignancies. In thyroid cancer tissues a deregulated expression of Aurora kinases has been also demonstrated, but no information regarding its possible prognostic role in differentiated thyroid cancer is available. Here, we evaluated Aurora-A and Aurora-B mRNA expression and its prognostic relevance in a series of 87 papillary thyroid cancers (PTC), with a median follow-up of 63 months. The analysis of Aurora-A and Aurora-B mRNA levels in PTC tissues, compared to normal matched tissues, revealed that their expression was either up- or down-regulated in the majority of cancer tissues. In particular, Aurora-A and Aurora-B mRNA levels were altered, respectively, in 55 (63.2%) and 79 (90.8%) out of the 87 PTC analyzed.A significant positive correlation between Aurora-A and Aurora-B mRNAs was observed (p=0.001). The expression of both Aurora genes was not affected by the BRAFV600E mutation. Univariate, multivariate and Kaplan-Mayer analyses documented the lack of association between Aurora-A or Aurora-B expression and clinicopathological parameters such as gender, age, tumor size, histology, TNM stage, lymph node metastasis and BRAF status as well as disease recurrences or disease-free interval. Only Aurora-B mRNA was significantly higher in T(3-4) tissues, with respect to T(1-2) PTC tissues. The data reported here demonstrate that the expression of Aurora kinases is deregulated in the majority of PTC tissues, likely contributing to PTC progression. However, differently from other human solid cancers, detection of Aurora-A or Aurora-B mRNAs is not a prognostic biomarker in PTC patients.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Chiara Tuccilli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Natalie Prinzi
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Laura Falvo
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - Antonio Catania
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | | | - Renzo Mocini
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Carmela Coccaro
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - Susi Barollo
- Department of Medicine, University of Padua, Padua, Italy
| | - Caterina Mian
- Department of Medicine, University of Padua, Padua, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico De Antoni
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | | | - Salvatore Ulisse
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
9
|
Abstract
Thyroid nodules are common, and the accurate diagnosis of cancer or benign disease is important for the effective clinical management of patients. Molecular markers are a helpful diagnostic tool, particularly for cytologically indeterminate thyroid nodules. In the past few years, significant progress has been made in developing molecular markers for clinical use in fine-needle aspiration specimens, including gene mutation panels and gene expression classifiers. With the availability of next generation sequencing technology, gene mutation panels can be expanded to interrogate multiple genes simultaneously and to provide yet more accurate diagnostic information. In addition, recently several new molecular markers of thyroid cancer have been identified that offer diagnostic, prognostic, and therapeutic information that might be of value in guiding individualized management of patients with thyroid nodules.
Collapse
Affiliation(s)
- Susan J Hsiao
- Division of Molecular and Genomic PathologyDepartment of Pathology, University of Pittsburgh School of Medicine, 3477 Euler Way, Room 8031, Pittsburgh, Pennsylvania 15213, USA
| | - Yuri E Nikiforov
- Division of Molecular and Genomic PathologyDepartment of Pathology, University of Pittsburgh School of Medicine, 3477 Euler Way, Room 8031, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
10
|
Fallahi P, Giannini R, Miccoli P, Antonelli A, Basolo F. Molecular diagnostics of fine needle aspiration for the presurgical screening of thyroid nodules. Curr Genomics 2014; 15:171-7. [PMID: 24955024 PMCID: PMC4064556 DOI: 10.2174/1389202915999140404100347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
"The incidence of thyroid cancer, the most common endocrine malignancy, is rising. The two most common types of thyroid cancer are papillary and follicular" thyroid carcinomas. "Fine-needle aspiration (FNA) of thyroid nodules" can permit to detect many genetic mutations and other molecular alterations, including RAS and BRAF point mutations, PAX8/peroxisome proliferator-activated receptor (PPAR)γ and "RET/PTC rearrangements, occurring in thyroid papillary and follicular carcinomas" (more than 70% of cases), which can be used successfully to improve the diagnosis "and the management of patients with thyroid nodules". The most extensive experience has been accumulated with "the diagnostic use of BRAF mutation", which is highly specific for malignancy. "Testing FNA samples for a panel of mutations" that typically includes RAS, BRAF, PAX8/PPARγ and RET/PTC could permit to achieve the biggest diagnostic impact. "The accuracy of cancer diagnosis in thyroid nodules could be improved significantly using these and other emerging molecular markers".
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Gupta N, Dasyam AK, Carty SE, Nikiforova MN, Ohori NP, Armstrong M, Yip L, LeBeau SO, McCoy KL, Coyne C, Stang MT, Johnson J, Ferris RL, Seethala R, Nikiforov YE, Hodak SP. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab 2013; 98:E914-22. [PMID: 23539734 PMCID: PMC5393462 DOI: 10.1210/jc.2012-3396] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/20/2013] [Indexed: 01/21/2023]
Abstract
INTRODUCTION RAS mutations are common in thyroid tumors and confer a high risk of cancer when detected in fine-needle aspiration (FNA) specimens. Specific characteristics of RAS-positive thyroid cancers are not well described. METHODS From April 2007 to April 2009, 921 consecutive patients undergoing FNA were evaluated prospectively with a panel of molecular markers. Ultrasonographic, cytological, histological, and surgical outcomes were retrospectively assessed. RESULTS Sixty-eight aspirates from 66 patients were positive for RAS mutations including 63 cytologically indeterminate (93%), 3 malignant (4%), and 2 benign (3%) specimens. Cancer was histologically confirmed in 52 of 63 aspirates (83%) including the following: 46 papillary thyroid cancers, 4 follicular thyroid cancers, 1 medullary cancer, and 1 anaplastic cancer. All 46 RAS-positive papillary thyroid cancers, including 1 metastatic cancer, had follicular variant histology papillary thyroid cancer; only 11 tumors demonstrated vascular/capsular invasion and 4 had infiltrative growth. Of 48 patients with differentiated thyroid cancer, lymph node metastasis was uncommon and bilateral cancer was present in 48%. Only 33% of malignant nodules were suspicious by preoperative ultrasonography. At a mean follow-up of 22 months, 31 of 35 differentiated thyroid cancer patients (89%) have no evidence of recurrence, 4 patients (9%) have detectable thyroglobulin, 1 patient has bone metastases, and both patients with medullary and anaplastic cancer have died. CONCLUSION Most RAS-positive thyroid cancers have indeterminate cytology, lack suspicious ultrasound features, and are histologically low-grade follicular variant histology papillary thyroid cancer. Lymph node and distant metastases are uncommon but bilateral disease is frequent. Total thyroidectomy should be considered for initial surgical management of most patients with RAS-positive FNA results. The role of prophylactic lymphadenectomy remains unclear.
Collapse
Affiliation(s)
- Nikhil Gupta
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li LC, Jayarama S, Pilli T, Qian L, Pacini F, Prabhakar BS. Down-modulation of expression, or dephosphorylation, of IG20/MADD in tumor necrosis factor-related apoptosis-inducing ligand-resistant thyroid cancer cells makes them susceptible to treatment with this ligand. Thyroid 2013; 23:70-78. [PMID: 22998497 PMCID: PMC3539253 DOI: 10.1089/thy.2012.0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The IG20/MADD gene is overexpressed in thyroid cancer tissues and cell lines, and can contribute to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance. The ability of the MADD protein to resist TRAIL-induced apoptosis is dependent upon its phosphorylation by Akt. Interestingly, while TRAIL induces a significant reduction in the levels of phospho-Akt (pAkt) and phospho-MADD (pMADD) in TRAIL-sensitive cells, it fails to do so in TRAIL-resistant cells. In this study, we investigated if MADD phosphorylation by Akt was contributing to TRAIL resistance in thyroid cancer cells. METHODS We determined the susceptibility of different thyroid cancer cell lines to TRAIL-induced apoptosis by fluorescence-activated cell sorting (FACS) analysis. We tested for various TRAIL resistance factors by FACS analyses or for IG20/MADD expression by quantitative reverse transcription-polymerase chain reaction. We determined the levels of pAkt and pMADD upon TRAIL treatment in thyroid cancer cells by Western blotting. We tested if down-modulation of IG20/MADD gene expression using shRNA or phosphorylation using a dominant negative Akt (DN-Akt) or pretreatment with LY294002, a PI3 kinase inhibitor, could help overcome TRAIL resistance. RESULT BCPAP and TPC1 cells were susceptible, while KTC1 and FTC133 cells were resistant, to TRAIL-induced apoptosis. The differential susceptibility to TRAIL was not related to the levels of expression of death receptors, decoy receptors, or TRAIL. KTC1 and FTC133 cells showed higher levels of IG20/MADD expression relative to BCPAP and TPC1, and were rendered susceptible to TRAIL treatment upon IG20/MADD knockdown. Interestingly, upon TRAIL treatment, the pAkt and pMADD levels were reduced in TRAIL-sensitive BCPAP and TPC1 cells, while they remained unchanged in the resistant KTC1 and FTC133 cells. While expression of a constitutively active Akt in BCPAP and TPC1 cells rendered them resistant to TRAIL, pretreating KTC1 and FTC133 cells with LY294002 rendered them TRAIL-sensitive. Moreover, expression of a DN-Akt in KTC1 and FTC133 cells reduced the levels of pAkt and pMADD and sensitized them to TRAIL-induced apoptosis. CONCLUSION Our results show that pMADD is an important TRAIL resistance factor in certain thyroid cancer cells and suggest that down-modulation of either IG20/MADD expression or phosphorylation can render TRAIL-resistant thyroid cancer cells sensitive to TRAIL.
Collapse
Affiliation(s)
- Liang-Cheng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shankara Jayarama
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tania Pilli
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Section of Endocrinology & Metabolism, Department of Internal Medicine, Endocrinology & Metabolism and Biochemistry, University of Siena, Siena, Italy
| | - Lixia Qian
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Furio Pacini
- Section of Endocrinology & Metabolism, Department of Internal Medicine, Endocrinology & Metabolism and Biochemistry, University of Siena, Siena, Italy
| | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
IRF5 promotes the proliferation of human thyroid cancer cells. Mol Cancer 2012; 11:21. [PMID: 22507190 PMCID: PMC3444366 DOI: 10.1186/1476-4598-11-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/16/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interferon Regulatory Factor 5 is a transcription factor that regulates the expression of genes involved in the response to viral infection and in the stimulation of the immune system. Moreover, multiple studies have demonstrated that it negatively regulates cell growth and oncogenesis, favoring cell differentiation and apoptosis.Thyroid carcinoma represents 98% of all thyroid malignancies and has shown a steady increase in incidence in both the USA and western European countries. FINDINGS We investigated the expression, localization and function of IRF5 in thyroid cancer cells and found that it is highly expressed in both primary and immortalized thyroid carcinomas but not in normal thyrocytes. IRF5 levels were variably modulated by Interferon alpha but IRF5 only localized in the cytoplasmic compartment, thus failing to induce p21 expression as previously reported in different cell models. Furthermore, ectopic IRF5 increased both the proliferation rate and the clonogenic potential of malignant thyroid cells, protecting them from the cytotoxic effects of DNA-damaging agents. These results were directly attributable to IRF5, as demonstrated by the reduction in colony-forming ability of thyroid cancer cells after IRF5 silencing. An IRF5-dependent induction of endogenous B-Raf observed in all thyroid cancer cells might contribute to these unexpected effects. CONCLUSIONS These findings suggest that, in thyroid malignancies, IRF5 displays tumor-promoting rather than tumor-suppressor activities.
Collapse
|
14
|
Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, Coyne C, Johnson JT, Stewart AF, Nikiforova MN. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 2011; 96:3390-7. [PMID: 21880806 PMCID: PMC3205883 DOI: 10.1210/jc.2011-1469] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/03/2011] [Indexed: 12/12/2022]
Abstract
CONTEXT Thyroid nodules are common in adults, but only a small fraction of them is malignant. Fine-needle aspiration (FNA) cytology provides a definitive diagnosis of benign or malignant disease in many cases, whereas about 25% of nodules are indeterminate, hindering most appropriate management. OBJECTIVE The objective of the investigation was to study the clinical utility of molecular testing of thyroid FNA samples with indeterminate cytology. DESIGN Residual material from 1056 consecutive thyroid FNA samples with indeterminate cytology was used for prospective molecular analysis that included the assessment of cell adequacy by a newly developed PCR assay and testing for a panel of mutations consisted of BRAF V600E, NRAS codon 61, HRAS codon 61, and KRAS codons 12/13 point mutations and RET/PTC1, RET/PTC3, and PAX8/PPARγ rearrangements. RESULTS The collected material was adequate for molecular analysis in 967 samples (92%), which yielded 87 mutations including 19 BRAF, 62 RAS, 1 RET/PTC, and five PAX8/PPARγ. Four hundred seventy-nine patients who contributed 513 samples underwent surgery. In specific categories of indeterminate cytology, i.e. atypia of undetermined significance/follicular lesion of undetermined significance, follicular neoplasm/suspicious for a follicular neoplasm, and suspicious for malignant cells, the detection of any mutation conferred the risk of histologic malignancy of 88, 87, and 95%, respectively. The risk of cancer in mutation-negative nodules was 6, 14, and 28%, respectively. Of 6% of cancers in mutation-negative nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology, only 2.3% were invasive and 0.5% had extrathyroidal extension. CONCLUSION Molecular analysis for a panel of mutations has significant diagnostic value for all categories of indeterminate cytology and can be helpful for more effective clinical management of these patients.
Collapse
Affiliation(s)
- Yuri E Nikiforov
- Department of Pathology and Laboratory Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Thyroid cancer is a common type of endocrine malignancy, and its incidence has been steadily increasing in many regions of the world. Initiation and progression of thyroid cancer involves multiple genetic and epigenetic alterations, of which mutations leading to the activation of the MAPK and PI3K-AKT signaling pathways are crucial. Common mutations found in thyroid cancer are point mutation of the BRAF and RAS genes as well as RET/PTC and PAX8/PPARγ chromosomal rearrangements. The mutational mechanisms seem to be linked to specific etiologic factors. Chromosomal rearrangements have a strong association with exposure to ionizing radiation and possibly with DNA fragility, whereas point mutations probably arise as a result of chemical mutagenesis. A potential role of dietary iodine excess in the generation of BRAF point mutations has also been proposed. Somatic mutations and other molecular alterations have been recognized as helpful diagnostic and prognostic markers for thyroid cancer and are beginning to be introduced into clinical practice, to offer a valuable tool for the management of patients with thyroid nodules.
Collapse
Affiliation(s)
- Yuri E Nikiforov
- Department of Pathology and Laboratory Medicine, University of Pittsburgh School of Medicine, PUH C-606, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
16
|
Russo MA, Arciuch VGA, Di Cristofano A. Mouse models of follicular and papillary thyroid cancer progression. Front Endocrinol (Lausanne) 2011; 2:119. [PMID: 22654848 PMCID: PMC3356054 DOI: 10.3389/fendo.2011.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/30/2011] [Indexed: 12/15/2022] Open
Abstract
A significant number of well-differentiated thyroid cancers progress or recur, becoming resistant to current therapeutic options. Mouse models recapitulating the genetic and histological features of advanced thyroid cancer have been an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, poorly differentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the lessons learned from models of epithelial cell-derived thyroid cancer showing progression from hyperplastic lesions to locally invasive and metastatic carcinomas.
Collapse
Affiliation(s)
- Marika A. Russo
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
| | - Valeria G. Antico Arciuch
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
- *Correspondence: Antonio Di Cristofano, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Price Center for Genetic and Translational Medicine, 1301 Morris Park Avenue, Room 302, Bronx, NY 10461, USA. e-mail:
| |
Collapse
|
17
|
Abstract
Thyroid nodular disease is highly frequent and affects 20-23% of the adult population in Germany. Differential diagnosis of thyroid nodules is directed at exclusion of thyroid autonomy and thyroid cancer. In addition, large nodules/nodular goiters may cause oesophageal and/or tracheal compression. Besides the patient's history and clinical examination, laboratory investigations (TSH-level, calcitonin screening), functional (scintiscan) and morphological imaging (ultrasound, in rare cases also CT without contrast media and MRI), as well as fine needle aspiration biopsy are useful tools in the differential diagnosis. In the past years, major advances have been made in the understanding of the molecular pathogenesis of thyroid tumors. This has led to the possibility of a molecular classification of thyroid tumors and may have prognostic as well as therapeutic impact.
Collapse
Affiliation(s)
- D Führer
- Klinik für Endokrinologie und Nephrologie,Department für Innere Medizin, Neurologie und Dermatologie, Universitätsklinikum Leipzig, Liebigstrasse 18, 04103, Leipzig, Deutschland.
| | | |
Collapse
|
18
|
Zhu XG, Zhao L, Willingham MC, Cheng SY. Thyroid hormone receptors are tumor suppressors in a mouse model of metastatic follicular thyroid carcinoma. Oncogene 2010; 29:1909-19. [PMID: 20062085 PMCID: PMC3443884 DOI: 10.1038/onc.2009.476] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 11/09/2022]
Abstract
Aberrant expression and mutations of thyroid hormone receptor genes (TRs) are closely associated with several types of human cancers. To test the hypothesis that TRs could function as tumor suppressors, we took advantage of mice with deletion of all functional TRs (TRalpha1(-/-)TRbeta(-/-) mice). As these mice aged, they spontaneously developed follicular thyroid carcinoma with pathological progression from hyperplasia to capsular invasion, vascular invasion, anaplasia and metastasis to the lung, similar to human thyroid cancer. Detailed molecular analysis revealed that known tumor promoters such as pituitary tumor-transforming gene were activated and tumor suppressors such as peroxisome proliferator-activated receptor gamma and p53 were suppressed during carcinogenesis. In addition, consistent with the human cancer, AKT-mTOR-p70(S6K) signaling and vascular growth factor and its receptor were activated to facilitate tumor progression. This report presents in vivo evidence that functional loss of both TRalpha1 and TRbeta genes promotes tumor development and metastasis. Thus, TRs could function as tumor suppressors in a mouse model of metastatic follicular thyroid cancer.
Collapse
Affiliation(s)
- X-G Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - L Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - MC Willingham
- Department of Pathology, Wake Forest University, Winston-Salem, NC, USA
| | - S-Y Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
19
|
Thyroid cancer: current molecular perspectives. JOURNAL OF ONCOLOGY 2010; 2010:351679. [PMID: 20369062 PMCID: PMC2847382 DOI: 10.1155/2010/351679] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
The thyroid cancer is a rare oncological entity, representing no more than 1% of all human malignant neoplasms. Recently, it has been demonstrated a sharp increase in incidence of differentiated thyroid carcinoma, equally occurring in both sexes. So far, multiple genetic alterations have been identified in differentiated thyroid carcinoma, leading to investigate the clinical utility of genetic studies. In particular, molecular genetic approaches searching for gene mutations in the material collected by fine needle ago-biopsy may have a particular utility in small nodules and in those specimens with an indeterminate cytology. The expansion of knowledge about genetic mutations occurring in different thyroid tumors has characterized recent years, allowing the identification of a correlation between specific mutations and phenotypic characteristics of thyroid cancers, essential for their prognosis. This review will briefly report on the histological features and the new entity represented by thyroid microcarcinoma and will focus on both environmental and genetic aspects associated with the occurrence of thyroid cancer.
Collapse
|
20
|
Jin L, Burniat A, Dumont JE, Miot F, Corvilain B, Franc B. Human thyroid tumours, the puzzling lessons from E7 and RET/PTC3 transgenic mice. Br J Cancer 2008; 99:1874-83. [PMID: 18985036 PMCID: PMC2600679 DOI: 10.1038/sj.bjc.6604740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human rearranged RET/PTC3 (papillary thyroid carcinoma) proto-oncogene and high-risk human papillomavirus (HPV) type 16 E7 oncogene induces in the mouse a neoplastic transformation of thyroid follicular cells. We present a detailed immuno-histological study (170 mouse thyroids: RET/PTC3, E7, wild type, 2- to 10-month-old) with cell cycle proliferation and signalling pathway indicators. The characteristics of both models are different. There is an 'oncogene dependent' cellular signature, maintained at all studied ages in the E7 model, less in the RET/PTC3 model. During tumour development a large heterogeneity occurred in the Tg-RET/PTC3 model within a same tumour or within a same thyroid lobe. The Tg-E7 model was less heterogeneous, with a dominant goitrous pattern. The solid tumour already described in the RET/PTC3 models associated with cribriform patterns, suggested 'PTC spindle cell changes' as in humans PTC rather than the equivalent of the solid human PTC. Proliferation and apoptosis in the two thyroid models are related to the causal oncogene rather than reflect a general tumorigenic process. The thyroids of RET/PTC3 mice appeared as a partial and transient model of human PTCs, whereas the Tg-E7 mice do not belong to the usual PTC type.
Collapse
Affiliation(s)
- L Jin
- Institut de Recherche Interdisciplinaire (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles (ULB), Campus Erasme, Route de Lennik 808, B 1070 Bruxelles, Belgique.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system. The most frequent type of thyroid malignancy is papillary carcinoma. These tumors frequently have genetic alterations leading to the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Most common mutations in papillary carcinomas are point mutations of the BRAF and RAS genes and RET/PTC rearrangement. These genetic alterations are found in >70% of papillary carcinomas and they rarely overlap in the same tumor. Most frequent alterations in follicular carcinomas, the second most common type of thyroid malignancy, include RAS mutations and PAX8-PPARgamma rearrangement. RET point mutations are crucial for the development of medullary thyroid carcinomas. Many of these mutations, particularly those leading to the activation of the MAPK pathway, are being actively explored as therapeutic targets for thyroid cancer. A number of compounds have been studied and showed antitumor effects in preclinical studies and are being tested in ongoing clinical trials.
Collapse
Affiliation(s)
- Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, Saji M, Ringel MD. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A 2007; 104:2803-8. [PMID: 17296934 PMCID: PMC1815262 DOI: 10.1073/pnas.0610733104] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Papillary thyroid carcinomas (PTCs) that invade into local structures are associated with a poor prognosis, but the mechanisms for PTC invasion are incompletely defined, limiting the development of new therapies. To characterize biological processes involved in PTC invasion, we analyzed the gene expression profiles of microscopically dissected intratumoral samples from central and invasive regions of seven widely invasive PTCs and normal thyroid tissue by oligonucleotide microarray and performed confirmatory expression and functional studies. In comparison with the central regions of primary PTCs, the invasive fronts overexpressed TGF beta, NFkappaB and integrin pathway members, and regulators of small G proteins and CDC42. Moreover, reduced levels of mRNAs encoding proteins involved in cell-cell adhesion and communication were identified, consistent with epithelial-to-mesenchymal transition (EMT). To confirm that aggressive PTCs were characterized by EMT, 34 additional PTCs were examined for expression of vimentin, a hallmark of EMT. Overexpression of vimentin was associated with PTC invasion and nodal metastasis. Functional, in vitro studies demonstrated that vimentin was required both for the development and maintenance of a mesenchymal morphology and invasiveness in thyroid cancer cells. We conclude that EMT is common in PTC invasion and that vimentin regulates thyroid cancer EMT in vitro.
Collapse
Affiliation(s)
- Vasily Vasko
- Departments of *Medicine and
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Allan V. Espinosa
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - William Scouten
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Huiling He
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Herbert Auer
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- Columbus Children's Research Institute, Columbus Children's Hospital, Columbus, OH 43205
| | - Sandya Liyanarachchi
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | | | | | - Gary L. Francis
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
- Pediatric Endocrinology and Metabolism, Medical College of Virginia, Richmond, VA 23298-0565
| | - Albert de la Chapelle
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- **To whom correspondence may be addressed at:
Division of Endocrinology, 445D McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210. E-mail: or
| | - Motoyasu Saji
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Matthew D. Ringel
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- **To whom correspondence may be addressed at:
Division of Endocrinology, 445D McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210. E-mail: or
| |
Collapse
|
23
|
Abulaiti A, Fikaris AJ, Tsygankova OM, Meinkoth JL. Ras Induces Chromosome Instability and Abrogation of the DNA Damage Response. Cancer Res 2006; 66:10505-12. [PMID: 17079472 DOI: 10.1158/0008-5472.can-06-2351] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ras mutations are frequent in thyroid tumors, the most common endocrine malignancy. The ability of Ras to transform thyroid cells is thought to rely on its mitogenic activity. Unexpectedly, acute expression of activated Ras in normal rat thyroid cells induced a DNA damage response, followed by apoptosis. Notably, a subpopulation of cells evaded apoptosis and emerged with features of transformation, including the loss of epithelial morphology, dedifferentiation, and the acquisition of hormone- and anchorage-independent proliferation. Strikingly, the surviving cells showed marked chromosomal instability. Acutely, Ras stimulated replication stress as evidenced by the induction of ataxia telangiectasia mutated and Rad3-related protein kinase (ATR) activity (Chk1 phosphorylation) and of gammaH2A.X, a marker of DNA damage. Despite the activation of a checkpoint, cells continued through mitosis in the face of DNA damage, resulting in an increase in cells harboring micronuclei, an indication of defects in chromosome segregation and other forms of chromosome damage. Cells that survived exposure to Ras continued to exhibit replication stress (ATR activation) but no longer exhibited gammaH2A.X or full activation of p53. When rechallenged with Ras or DNA-damaging agents, the surviving cells were more resistant to apoptosis than parental cells. These data show that acute expression of activated Ras is sufficient to induce chromosomal instability in the absence of other signals, and suggest that Ras-induced chromosomal instability arises as a consequence of defects in the processing of DNA damage. Hence, abrogation of the DNA damage response may constitute a novel mechanism for Ras transformation.
Collapse
Affiliation(s)
- Adili Abulaiti
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA
| | | | | | | |
Collapse
|
24
|
Vitagliano D, Portella G, Troncone G, Francione A, Rossi C, Bruno A, Giorgini A, Coluzzi S, Nappi TC, Rothstein JL, Pasquinelli R, Chiappetta G, Terracciano D, Macchia V, Melillo RM, Fusco A, Santoro M. Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic mice results in follicular tumors that progress to poorly differentiated carcinomas. Oncogene 2006; 25:5467-74. [PMID: 16785999 DOI: 10.1038/sj.onc.1209527] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ras oncogenes are frequently mutated in thyroid carcinomas. To verify the role played by N-ras in thyroid carcinogenesis, we generated transgenic mice in which a human N-ras(Gln61Lys) oncogene (Tg-N-ras) was expressed in the thyroid follicular cells. Tg-N-ras mice developed thyroid follicular neoplasms; 11% developed follicular adenomas and approximately 40% developed invasive follicular carcinomas, in some cases with a mixed papillary/follicular morphology. About 25% of the Tg-N-ras carcinomas displayed large, poorly differentiated areas, featuring vascular invasion and forming lung, bone or liver distant metastases. N-ras(Gln61Lys) expression in cultured PC Cl 3 thyrocytes induced thyroid-stimulating hormone-independent proliferation and genomic instability with micronuclei formation and centrosome amplification. These findings support the notion that mutated ras oncogenes could be able to drive the formation of thyroid tumors that can progress to poorly differentiated, metastatic carcinomas.
Collapse
Affiliation(s)
- D Vitagliano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università di Napoli Federico II, c/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Castro P, Soares P, Gusmão L, Seruca R, Sobrinho-Simões M. H-RAS 81 polymorphism is significantly associated with aneuploidy in follicular tumors of the thyroid. Oncogene 2006; 25:4620-7. [PMID: 16532025 DOI: 10.1038/sj.onc.1209491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Follicular thyroid tumors are often aneuploid. It was advanced that chromosomal instability is closely associated to RAS mutations, but such association remains unproven. H-RAS can be alternatively spliced in two different proteins, p21 and p19, the former being the active protein. In order to investigate the relationship between RAS mutational status and ploidy in thyroid tumors, we analysed RAS genes in a series of 99 follicular lesions (14 nodular goiters, 70 follicular adenomas and 15 follicular carcinomas), eight thyroid carcinoma cell lines and a control group of 102 blood donors, correlating the presence of RAS mutations with the ploidy of the tumors and evaluating the two spliced forms of H-RAS. Overall, 20% of the follicular tumors harbored RAS mutations and 62% of the patients with follicular tumors (and 51% of blood donors) harbored the H-RAS 81T --> C polymorphism. The presence of RAS mutations was not associated with aneuploidy. The H-RAS polymorphism did not seem to confer a higher propensity for neoplastic transformation as it was also found in hyperplastic lesions, but was strongly associated with aneuploidy (P<0.0001). The presence of the H-RAS 81T --> C polymorphism was associated with significantly higher amounts of total H-RAS mRNA expression, higher amounts of p21 isoform and a higher fraction of neoplastic cells in S phase. Our results suggest that the H-RAS 81T --> C polymorphism may induce aneuploidy through overexpression of the active p21 isoform of H-RAS.
Collapse
Affiliation(s)
- P Castro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | |
Collapse
|
26
|
Sobrinho-Simões M, Preto A, Rocha AS, Castro P, Máximo V, Fonseca E, Soares P. Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch 2005; 447:787-93. [PMID: 16189702 DOI: 10.1007/s00428-005-0065-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/15/2005] [Indexed: 01/21/2023]
Abstract
The newly discovered molecular features of well-differentiated thyroid carcinomas derived from follicular cells are reviewed, within the frame of the 2004 WHO classification of thyroid tumours, under the following headings: "Follicular carcinoma", "Papillary carcinoma", "Follicular variant of papillary carcinoma" and "Hürthle cell tumours". A particular emphasis is put on the meaning of PAX8-PPARgamma rearrangements, RAS and BRAF mutations, and deletions and mutations of mitochondrial genes and of nuclear genes encoding for mitochondrial enzymes, for thyroid tumorigenesis.
Collapse
Affiliation(s)
- Manuel Sobrinho-Simões
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), R. Roberto Frias s/n, 4200, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lacroix L, Lazar V, Michiels S, Ripoche H, Dessen P, Talbot M, Caillou B, Levillain JP, Schlumberger M, Bidart JM. Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:223-31. [PMID: 15972966 PMCID: PMC1603430 DOI: 10.1016/s0002-9440(10)62967-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Follicular thyroid carcinomas (FTC) arise through oncogenic pathways distinct from those involved in the papillary histotype. Recently, a t(2;3)(q13;p25) rearrangement, which juxtaposes the thyroid transcription factor PAX8 to the peroxisome proliferator-activated receptor (PPAR) gamma1, was described in FTCs. In this report, we describe gene expression in 11 normal tissues, 4 adenomas, and 8 FTCs, with or without the PAX8-PPARgamma1 translocation, using custom 60-mer oligonucleotide microarrays. Results were confirmed by quantitative real-time polymerase chain reaction of 65 thyroid tissues and by immunohistochemistry. Statistical analysis revealed a pattern of 93 genes discriminating FTCs, with or without the translocation, that were morphologically undistinguishable. Although the expression of thyroid-specific genes was detectable, none appeared to be differentially regulated between tumors with or without the translocation. Differentially expressed genes included genes related to lipid/glucose/amino acid metabolism, tumorigenesis, and angiogenesis. Surprisingly, several PPARgamma target genes were up-regulated in PAX8-PPARgamma-positive FTCs such as angiopoietin-like 4 and aquaporin 7. Moreover many genes involved in PAX8-PPARgamma expression profile presented a putative PPARgamma-promoter site, compatible with a direct activity of the fusion product. These data identify several differentially expressed genes, such as FGD3, that may serve as potential targets of PPARgamma and as members of novel molecular pathways involved in the development of thyroid carcinomas.
Collapse
Affiliation(s)
- Ludovic Lacroix
- Functional Genomic Unit, Institut Gustave-Roussy, Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mandal M, Kim S, Younes MN, Jasser SA, El-Naggar AK, Mills GB, Myers JN. The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br J Cancer 2005; 92:1899-905. [PMID: 15870708 PMCID: PMC2361761 DOI: 10.1038/sj.bjc.6602595] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phosphatidylinositol 3′ kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten/Akt pathway, which is a critical regulator of cell proliferation and survival, is mutated or activated in a wide variety of cancers. Akt appears to be a key central node in this pathway and thus is an attractive target for targeted molecular therapy. We demonstrated that Akt is highly phosphorylated in thyroid cancer cell lines and human thyroid cancer specimens, and hypothesised that KP372-1, an Akt inhibitor, would block signalling through the PI3K pathway and inhibit cell proliferation while inducing apoptosis of thyroid cancer cells. KP372-1 blocked signalling downstream of Akt in thyroid tumour cells, leading to inhibition of cell proliferation and increased apoptosis. As thyroid cancer consistently expresses phosphorylated Akt and KP372-1 effectively blocks Akt signalling, further preclinical evaluation of this compound for treatment of thyroid cancer is warranted.
Collapse
Affiliation(s)
- M Mandal
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Kim
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M N Younes
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S A Jasser
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G B Mills
- Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Head and Neck Surgery, Unit 441, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
29
|
Motti ML, Califano D, Troncone G, De Marco C, Migliaccio I, Palmieri E, Pezzullo L, Palombini L, Fusco A, Viglietto G. Complex regulation of the cyclin-dependent kinase inhibitor p27kip1 in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kip1 expression and localization. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:737-49. [PMID: 15743786 PMCID: PMC1602368 DOI: 10.1016/s0002-9440(10)62295-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2004] [Indexed: 01/03/2023]
Abstract
Functional inactivation of the tumor suppressor p27(kip1) in human cancer occurs either through loss of expression or through phosphorylation-dependent cytoplasmic sequestration. Here we demonstrate that dysregulation of the PI3K/AKT pathway is important in thyroid carcinogenesis and that p27(kip1) is a key target of the growth-regulatory activity exerted by this pathway in thyroid cancer cells. Using specific PI3K inhibitors (LY294002, wortmannin, and PTEN) and a dominant active AKT construct (myrAKT), we demonstrated that the PI3K/AKT pathway controlled thyroid cell proliferation by regulating the expression and subcellular localization of p27. Results obtained with phospho-specific antibodies and with transfection of nonphosphorylable p27(kip1) mutant constructs demonstrated that PI3K/AKT-dependent regulation of p27(kip1) mislocalization in thyroid cancer cells occurred via phosphorylation of p27(kip1) at T157 and T198 (but not at S10 or T187). Finally, we evaluated whether these results were applicable to human tumors. Analysis of 100 thyroid carcinomas indicated that p27(kip1) phosphorylation at T157/T198 and cytoplasmic mislocalization were preferentially associated with activation of the PI3K/AKT pathway. Thus the PI3/AKT pathway and its effector p27(kip1) play major roles in thyroid carcinogenesis.
Collapse
Affiliation(s)
- Maria Letizia Motti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli Federico II, via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vasko V, Saji M, Hardy E, Kruhlak M, Larin A, Savchenko V, Miyakawa M, Isozaki O, Murakami H, Tsushima T, Burman KD, De Micco C, Ringel MD. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 2004; 41:161-70. [PMID: 14985374 PMCID: PMC1735712 DOI: 10.1136/jmg.2003.015339] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Akt activation is involved in the pathogenesis of inherited thyroid cancer in Cowden's syndrome and in sporadic thyroid cancers. In cell culture, Akt regulates thyroid cell growth and survival; but recent data suggest that Akt also regulates cell motility in non-thyroid cell lines. We therefore sought to evaluate the role of Akt in thyroid cancer progression. METHODS We evaluated 46 thyroid cancer, 20 thyroid follicular adenoma, and adjacent normal tissues samples by immunohistochemistry for activated Akt (pAkt), Akt 1, 2, and 3, and p27 expression. Immunoblots were performed in 14 samples. RESULTS Akt activation was identified in 10/10 follicular cancers, 26/26 papillary cancers, and 2/10 follicular variant of papillary cancers, but in only 4/66 normal tissue samples and 2/10 typical benign follicular adenomas. Immunoactive pAkt was greatest in regions of capsular invasion; and was localised to the nucleus in follicular cancers and the cytoplasm in papillary cancers, except for invasive regions of papillary cancers where it localised to both compartments. Immunoactive Akt 1, but not Akt 2 or Akt 3, correlated with pAkt localisation, and nuclear pAkt was associated with cytoplasmic expression of p27. In vitro studies using human thyroid cancer cells demonstrated that nuclear translocation of Akt 1 and pAkt were associated with cytoplasmic p27 and cell invasion and migration. Cell migration and the localisation of Akt 1, pAkt, and p27 were inhibited by PI3 kinase, but not MEK inhibition. DISCUSSION These data suggest an important role for nuclear activation of Akt 1 in thyroid cancer progression.
Collapse
Affiliation(s)
- V Vasko
- Ohio State University School of Medicine and Arthur G. James Cancer Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gregory Powell J, Wang X, Allard BL, Sahin M, Wang XL, Hay ID, Hiddinga HJ, Deshpande SS, Kroll TG, Grebe SKG, Eberhardt NL, McIver B. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene 2004; 23:3634-41. [PMID: 15077183 DOI: 10.1038/sj.onc.1207399] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Follicular thyroid carcinoma (FTC) frequently harbors the PAX8/PPARgamma fusion gene (PPFP); however, its oncogenic role and mechanism(s) of action remain undefined. We investigated PPFP's effects on cell growth, apoptosis, cell-cell, and cell-matrix interactions in immortalized human thyroid cells (Nthy-ori 3-1) and NIH 3T3 cells. PPFP expression increased the growth of transient and stable Nthy-ori transfectants ( approximately threefold by 72 h). There was an 8.4% increase of cells in the S+G2/M phase, a 7.8% decrease in cells in the G0+G1 phase and a 66% decline in apoptosis at 72 h. Stable Nthy-ori PPFP transfectants grew in soft agar, and PPFP-transfected NIH 3T3 cells exhibited efficient focus formation, suggesting loss of anchorage-dependent growth and contact inhibition, respectively. Overexpression of PPARgamma in Nthy-ori cells did not recapitulate PPFP's growth effects. Treatment of Nthy-ori cells with an irreversible PPARgamma inhibitor mimicked the growth-promoting effects of PPFP and co-expression of PPFP and PPARgamma blocked PPARgamma transactivation activity. Our data provide functional evidence that PPFP acts as an oncoprotein, whose transforming properties depend in part on inhibition of PPARgamma. Our data suggest that PPFP contributes to malignant transformation during FTC oncogenesis by acting on several cellular pathways, at least some of which are normally regulated by PPARgamma.
Collapse
Affiliation(s)
- J Gregory Powell
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN 55906, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gupta A, Inaba S, Wong OK, Fang G, Liu J. Breast cancer-specific gene 1 interacts with the mitotic checkpoint kinase BubR1. Oncogene 2003; 22:7593-9. [PMID: 14576821 DOI: 10.1038/sj.onc.1206880] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The abnormal expression of breast cancer-specific gene 1 (BCSG1) in malignant mammary epithelial cells is highly associated with the development and progression of breast cancer. A series of in vitro and in vivo studies performed in our laboratory and others have demonstrated that BCSG1 expression significantly stimulates proliferation, invasion, and metastasis of breast cancer cells. However, currently little is known about how BCSG1 exerts its oncogenic functions. To elucidate the cellular mechanisms underlying the effects of BCSG1 in breast cancer cells, we used a yeast two-hybrid system to screen for proteins that could associate with BCSG1. Through this screening, we identified the mitotic checkpoint protein BubR1 as a novel binding partner of BCSG1. The specific association of BCSG1 with BubR1 in breast cancer cells was demonstrated by immunoprecipitation and GST pull-down assays. Intriguingly, experiments conducted in four different cell lines all showed that exogenous expressions of BCSG1 consistently reduce the cellular levels of the BubR1 protein without affecting BubR1 mRNA expression. The tendency of endogenous BCSG1 expression coinciding with lower BubR1 protein levels was also observed in seven out of eight breast cancer cell lines. We further showed that the reducing effect of BCSG1 on BubR1 protein expression could be prevented by treating BCSG1-transfected cells with MG-132, a selective 26S proteasome inhibitor, implying that the proteasome machinery may be involved in the BCSG1-induced reduction of the BubR1 protein. Accompanied with a reduction of BubR1 protein level, BCSG1 expression resulted in multinucleation of breast cancer cells upon treatment with spindle inhibitor nocodazole, indicating an impaired mitotic checkpoint. Taken together, our novel findings suggest that BCSG1 may accelerate the progression of breast cancer at least in part by compromising the mitotic checkpoint control through inactivation of BubR1.
Collapse
Affiliation(s)
- Anu Gupta
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|