1
|
Greenberg SM, Bax F, van Veluw SJ. Amyloid-related imaging abnormalities: manifestations, metrics and mechanisms. Nat Rev Neurol 2025; 21:193-203. [PMID: 39794509 DOI: 10.1038/s41582-024-01053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
Three monoclonal antibodies directed against specific forms of the amyloid-β (Aβ) peptide have been granted accelerated or traditional approval by the FDA as treatments for Alzheimer disease, representing the first step towards bringing disease-modifying treatments for this disease into clinical practice. Here, we review the detection, underlying pathophysiological mechanisms and clinical implications of amyloid-related imaging abnormalities (ARIA), the most impactful adverse effect of anti-Aβ immunotherapy. ARIA appears as regions of oedema or effusions (ARIA-E) in brain parenchyma or sulci or as haemorrhagic lesions (ARIA-H) in the form of cerebral microbleeds, convexity subarachnoid haemorrhage, cortical superficial siderosis or intracerebral haemorrhage. Analysis of the radiographic appearance of ARIA, its clinical risk factors and underlying neuropathology, and results from animal models point to a central role for cerebral amyloid angiopathy - a condition characterized by cerebrovascular Aβ deposits - as a key component, either as a direct target for antibody-mediated inflammation or as recipient of Aβ mobilized from plaques in the Alzheimer brain parenchyma. The great majority of ARIA occurrences are associated with mild or no clinical symptoms. However, ~5% of all ARIA events are severe enough to result in hospitalization, permanent disability or death and thus raise challenging clinical questions regarding patient selection and use of concomitant agents. Therefore, identifying novel approaches to predicting, modelling, preventing and treating ARIA remains a key step towards allowing safe use of anti-Aβ immunotherapy for the world's rapidly ageing population.
Collapse
Affiliation(s)
- Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Francesco Bax
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical Neurology Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kuriyama M, Wang CF, Nagase T, Sohma Y, Kanai M, Hori Y, Tomita T. Proteolytic therapeutic modalities for amyloidoses: Insights into immunotherapy, PROTAC, and photo-oxygenation. Neurotherapeutics 2025; 22:e00548. [PMID: 39939242 DOI: 10.1016/j.neurot.2025.e00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Amyloidoses, which are characterized by abnormal accumulation of amyloid proteins leading to organ dysfunction, represent a major therapeutic challenge. They include neurodegenerative diseases, such as Alzheimer disease (AD), tauopathies and synucleinopathies. Since amyloids are causative factors in these diseases, the importance of proteolytic methods to remove amyloid, such as immunotherapy and Proteolysis Targeting Chimera (PROTAC) technology, has been recognized. Immunotherapy removes target proteins by antibody-mediated reactions and is the most studied method in practical use for the treatment of AD. PROTAC is a small molecule that uses the ubiquitin-proteasome system to degrade intracellular target proteins and has demonstrated efficacy in clinical trials for other diseases. In addition, a new modality called photo-oxygenation has been developed. Photo-oxygenation is a method of selectively adding oxygen to amyloid using a photocatalyst, which is a small molecule compound that is activated by light. Studies both in vitro and in vivo have shown promising results in inhibiting amyloid aggregation and enhancing the clearance of amyloid proteins. In this review, we introduce and discuss these proteolytic modalities, and provide insights into potential future directions for the clinical application in amyloidoses.
Collapse
Affiliation(s)
- Mai Kuriyama
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chu Fan Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Nagase
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Youhei Sohma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan; Laboratory of Synthetic Organic Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Motomu Kanai
- Laboratory of Synthetic Organic Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Serag I, Abouzid M, Moawad MHED, Jaradat JH, Hendawy M, Hendi NI, Alkhawaldeh IM, Abdullah JA, Elsakka MM, Muneer MA, Elnagar MA, Fakher MA, Elkenani AJ, Abbas A. Vaccines for Alzheimer's disease: a brief scoping review. Neurol Sci 2025:10.1007/s10072-025-08073-2. [PMID: 40111670 DOI: 10.1007/s10072-025-08073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia among older adults. Existing treatments-such as cholinesterase inhibitors, N-methyl-D-aspartate receptor antagonists, and monoclonal antibodies targeting amyloid beta-can improve functional and neuropsychiatric outcomes but fail to prevent disease onset, halt progression, or adequately reduce amyloid-beta burden. Consequently, research efforts have shifted to primary prevention through immunization, although the efficacy of these strategies remains uncertain. This review explores the efficacy, safety, and adverse events of current immunotherapies for AD and discusses future research and clinical implications. METHODS A scoping review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-SR) checklist. A systematic search was carried out using PubMed, Scopus, and Web of Science. RESULTS A total of 145 studies were included. Preclinical research often employed transgenic mouse models to investigate AD pathology and vaccine benefits, while Phase I and II clinical trials centered on safety and preliminary efficacy in humans. Most studies were conducted in the USA, China, and Japan, highlighting these countries' strong clinical trial infrastructure. Vaccination frequently reduced amyloid-beta or tau pathology in preclinical settings, although cognitive outcomes were inconsistent. Clinical trials primarily focused on safety and immune response, with newer vaccines such as ABvac40 demonstrating encouraging results and minimal adverse events. CONCLUSION Although AD vaccines show promise in preclinical settings, longer and more comprehensive clinical trials are necessary to determine their long-term efficacy and safety. Standardized protocols and efforts to reduce regional disparities in research would facilitate better comparability and generalizability of findings, thereby guiding the future development of effective immunotherapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Hossam El Din Moawad
- Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Mohamed Hendawy
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | | | | | | - Aya J Elkenani
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
4
|
van Olst L, Simonton B, Edwards AJ, Forsyth AV, Boles J, Jamshidi P, Watson T, Shepard N, Krainc T, Argue BM, Zhang Z, Kuruvilla J, Camp L, Li M, Xu H, Norman JL, Cahan J, Vassar R, Chen J, Castellani RJ, Nicoll JA, Boche D, Gate D. Microglial mechanisms drive amyloid-β clearance in immunized patients with Alzheimer's disease. Nat Med 2025:10.1038/s41591-025-03574-1. [PMID: 40050704 DOI: 10.1038/s41591-025-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease (AD) therapies utilizing amyloid-β (Aβ) immunization have shown potential in clinical trials. Yet, the mechanisms driving Aβ clearance in the immunized AD brain remain unclear. Here, we use spatial transcriptomics to explore the effects of both active and passive Aβ immunization in the AD brain. We compare actively immunized patients with AD with nonimmunized patients with AD and neurologically healthy controls, identifying distinct microglial states associated with Aβ clearance. Using high-resolution spatial transcriptomics alongside single-cell RNA sequencing, we delve deeper into the transcriptional pathways involved in Aβ removal after lecanemab treatment. We uncover spatially distinct microglial responses that vary by brain region. Our analysis reveals upregulation of the triggering receptor expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) in microglia across immunization approaches, which correlate positively with antibody responses and Aβ removal. Furthermore, we show that complement signaling in brain myeloid cells contributes to Aβ clearance after immunization. These findings provide new insights into the transcriptional mechanisms orchestrating Aβ removal and shed light on the role of microglia in immune-mediated Aβ clearance. Importantly, our work uncovers potential molecular targets that could enhance Aβ-targeted immunotherapies, offering new avenues for developing more effective therapeutic strategies to combat AD.
Collapse
Affiliation(s)
- Lynn van Olst
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brooke Simonton
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alex J Edwards
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anne V Forsyth
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jake Boles
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas Watson
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nate Shepard
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Talia Krainc
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benney Mr Argue
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyang Zhang
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua Kuruvilla
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lily Camp
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mengwei Li
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hang Xu
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jeanette L Norman
- Clinical Neurosciences, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joshua Cahan
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert Vassar
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jinmiao Chen
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Centre for Computational Biology and Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Immunology Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James Ar Nicoll
- Clinical Neurosciences, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Cellular Pathology, University Hospital Southampton National Health Service Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Gate
- Abrams Research Center on Neurogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Jang YJ, Kang SJ, Park HS, Lee DH, Kim JH, Kim JE, Kim DI, Chung CH, Yoon JK, Bhang SH. Drug delivery strategies with lipid-based nanoparticles for Alzheimer's disease treatment. J Nanobiotechnology 2025; 23:99. [PMID: 39930497 PMCID: PMC11809104 DOI: 10.1186/s12951-025-03109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/11/2025] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's disease (AD) is a distinctive form of dementia characterized by age-related cognitive decline and memory impairment. A key hallmark of AD is the irreversible overaccumulation of beta-amyloid (Aβ) in the brain, associated with neuroinflammation and neuronal death. Although Aβ clearance and immunoregulation have been the major therapeutic strategies for AD, highly selective transport across the blood-brain barrier (BBB) negatively affects the delivery efficacy of the drugs without the ability to cross the BBB. In this review, we discuss the potential of lipid-based nanoparticles (LBNs) as promising vehicles for drug delivery in AD treatment. LBNs, composed of phospholipid mono- or bilayer, have attracted attention due to their exceptional cellular penetration capabilities and drug loading capabilities, which also facilitate cargo transcytosis across the BBB. Recent advances in the development and engineering of LBNs overcome the existing limitations of the current clinical approaches for AD treatment by addressing off-target effects and low therapeutic efficacy. Here, we review the transport pathways across the BBB, as well as various types of LBNs for AD therapy, including exosomes, liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), to elucidate their distinctive properties, preparation methodologies, and therapeutic efficacy, thereby offering innovative avenues for novel drug development for clinical translation in AD therapy.
Collapse
Affiliation(s)
- Young-Ju Jang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea
| | - Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Chan-Hwa Chung
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
6
|
Dias D, Socodato R. Beyond Amyloid and Tau: The Critical Role of Microglia in Alzheimer's Disease Therapeutics. Biomedicines 2025; 13:279. [PMID: 40002692 PMCID: PMC11852436 DOI: 10.3390/biomedicines13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is traditionally viewed through the lens of the amyloid cascade hypothesis, implicating amyloid-beta and tau protein aggregates as the main pathological culprits. However, burgeoning research points to the brain's resident immune cells, microglia, as critical players in AD pathogenesis, progression, and potential therapeutic interventions. This review examines the dynamic roles of microglia within the intricate framework of AD. We detail the involvement of these immune cells in neuroinflammation, explaining how their activation and response fluctuations may influence the disease trajectory. We further elucidate the complex relationship between microglia and amyloid-beta pathology. This study highlights the dual nature of these cells, which contribute to both aggregation and clearance of the amyloid-beta protein. Moreover, an in-depth analysis of the interplay between microglia and tau unveils the significant, yet often overlooked, impact of this interaction on neurodegeneration in AD. Shifting from the conventional therapeutic approaches, we assess the current AD treatments primarily targeting amyloid and tau and introduce novel strategies that involve manipulating microglial functions. These innovative methods herald a potential paradigm shift in the management of AD. Finally, we explore the burgeoning field of precision diagnosis and the pursuit of robust AD biomarkers. We underline how a more profound comprehension of microglial biology could enrich these essential areas, potentially paving the way for more accurate diagnostic tools and tailored treatment strategies. In conclusion, this review expands on the conventional perspective of AD pathology and treatment, drawing attention to the multifaceted roles of microglia. As we continue to enhance our understanding of these cells, microglial-focused therapeutic interventions emerge as a promising frontier to bolster our arsenal to fight against AD.
Collapse
Affiliation(s)
- Daniela Dias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-022 Porto, Portugal;
- ESS—Escola Superior de Saúde do Politécnico do Porto, 4200-072 Porto, Portugal
| | - Renato Socodato
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-022 Porto, Portugal;
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Ortiz-Islas E, Montes P, Rodríguez-Pérez CE, Ruiz-Sánchez E, Sánchez-Barbosa T, Pichardo-Rojas D, Zavala-Tecuapetla C, Carvajal-Aguilera K, Campos-Peña V. Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy. Pharmaceutics 2025; 17:128. [PMID: 39861773 PMCID: PMC11768419 DOI: 10.3390/pharmaceutics17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer's disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions.
Collapse
Affiliation(s)
- Emma Ortiz-Islas
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Talía Sánchez-Barbosa
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Diego Pichardo-Rojas
- Programa Prioritario de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Cecilia Zavala-Tecuapetla
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| |
Collapse
|
8
|
Song Y, Dai CL, Shinohara M, Chyn Tung Y, Zhou S, Huang WC, Seffouh A, Luo Y, Willadsen M, Jiao Y, Morishima M, Saito Y, Koh SH, Ortega J, Gong CX, Lovell JF. A pentavalent peptide vaccine elicits Aβ and tau antibodies with prophylactic activity in an Alzheimer's disease mouse model. Brain Behav Immun 2024; 122:185-201. [PMID: 39142420 DOI: 10.1016/j.bbi.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/19/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau protein are targets for Alzheimer's Disease (AD) immunotherapies, which are generally focused on single epitopes within Aβ or tau. However, due to the complexity of both Aβ and tau in AD pathogenesis, a multipronged approach simultaneously targeting multiple epitopes of both proteins could overcome limitations of monotherapies. Herein, we propose an active AD immunotherapy based on a nanoparticle vaccine comprising two Aβ peptides (1-14 and pyroglutamate pE3-14) and three tau peptides (centered on phosphorylated pT181, pT217 and pS396/404). These correspond to both soluble and aggregated targets and are displayed on the surface of immunogenic liposomes in an orientation that maintains reactivity with epitope-specific monoclonal antibodies. Intramuscular immunization of mice with individual epitopes resulted in minimally cross-reactive antibody induction, while simultaneous co-display of 5 antigens ("5-plex") induced antibodies against all epitopes without immune interference. Post-immune sera recognized plaques and neurofibrillary tangles from human AD brain tissue. Vaccine administration to 3xTg-AD mice using a prophylactic dosing schedule inhibited tau and amyloid pathologies and resulted in improved cognitive function. Immunization was well tolerated and did not induce antigen-specific cellular responses or persistent inflammatory responses in the peripheral or central nervous system. Antibody levels could be reversed by halting monthly vaccinations. Altogether, these results indicate that active immune therapies based on nanoparticle formulations of multiple Aβ and tau epitopes warrant further study for treating early-stage AD.
Collapse
Affiliation(s)
- Yiting Song
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Research Institute, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi 474-8511, Japan
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA; POP Biotechnologies, Buffalo, NY 14228, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Yuan Luo
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | - Yang Jiao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Maho Morishima
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
9
|
Wang X, Campbell B, Bodogai M, McDevitt RA, Patrikeev A, Gusev F, Ragonnaud E, Kumaraswami K, Shirenova S, Vardy K, Alameh MG, Weissman D, Ishikawa-Ankerhold H, Okun E, Rogaev E, Biragyn A. CD8 + T cells exacerbate AD-like symptoms in mouse model of amyloidosis. Brain Behav Immun 2024; 122:444-455. [PMID: 39191349 PMCID: PMC11409913 DOI: 10.1016/j.bbi.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Alzheimer's disease (AD) is linked to toxic Aβ plaques in the brain and activation of innate responses. Recent findings however suggest that the disease may also depend on the adaptive immunity, as B cells exacerbate and CD8+ T cells limit AD-like pathology in mouse models of amyloidosis. Here, by artificially blocking or augmenting CD8+ T cells in the brain of 5xFAD mice, we provide evidence that AD-like pathology is promoted by pathogenic, proinflammatory cytokines and exhaustion markers expressing CXCR6+ CD39+CD73+/- CD8+ TRM-like cells. The CD8+ T cells appear to act by targeting disease associated microglia (DAM), as we find them in tight complexes with microglia around Aβ plaques in the brain of mice and humans with AD. We also report that these CD8+ T cells are induced by B cells in the periphery, further underscoring the pathogenic importance of the adaptive immunity in AD. We propose that CD8+ T cells and B cells should be considered as therapeutic targets for control of AD, as their ablation at the onset of AD is sufficient to decrease CD8+ T cells in the brain and block the amyloidosis-linked neurodegeneration.
Collapse
Affiliation(s)
- Xin Wang
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Britney Campbell
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, Baltimore, MD, USA
| | - Anton Patrikeev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fedor Gusev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Konda Kumaraswami
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Karin Vardy
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | | | - Drew Weissman
- Institute of RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Evgeny Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA.
| |
Collapse
|
10
|
Menendez-Gonzalez M. Intrathecal Immunoselective Nanopheresis for Alzheimer's Disease: What and How? Why and When? Int J Mol Sci 2024; 25:10632. [PMID: 39408961 PMCID: PMC11476806 DOI: 10.3390/ijms251910632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Nanotechnology is transforming therapeutics for brain disorders, especially in developing drug delivery systems. Intrathecal immunoselective nanopheresis with soluble monoclonal antibodies represents an innovative approach in the realm of drug delivery systems for Central Nervous System conditions, especially for targeting soluble beta-amyloid in Alzheimer's disease. This review delves into the concept of intrathecal immunoselective nanopheresis. It provides an overall description of devices to perform this technique while discussing the nanotechnology behind its mechanism of action, its potential advantages, and clinical implications. By exploring current research and advancements, we aim to provide a comprehensive understanding of this novel method, addressing the critical questions of what it is, how it works, why it is needed, and when it should be applied. Special attention is given to patient selection and the optimal timing for therapy initiation in Alzheimer's, coinciding with the peak accumulation of amyloid oligomers in the early stages. Potential limitations and alternative targets beyond beta-amyloid and future perspectives for immunoselective nanopheresis are also described.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain;
- Hospital Universitario Central de Asturias, Servicio de Neurología, ES-33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), ES-33011 Oviedo, Spain
| |
Collapse
|
11
|
Zhang Y, Yu W, Zhang L, Li P. Application of engineered antibodies (scFvs and nanobodies) targeting pathological protein aggregates in Alzheimer's disease. Expert Opin Investig Drugs 2024; 33:1047-1062. [PMID: 39177331 DOI: 10.1080/13543784.2024.2396911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The misfolding and aggregation of proteins are associated with various neurodegenerative diseases, such as Alzheimer's disease (AD). The small-molecule engineered antibodies, such as single-chain fragment variable (scFv) antibodies and nanobodies (Nbs), have gained attention in recent years due to their strong conformational specificity, ability to cross the blood-brain barrier (BBB), low immunogenicity, and enhanced proximity to active sites within aggregates. AREAS COVERED We have reviewed recent advances in therapies involving scFvs and Nbs that efficiently and specifically target pathological protein aggregates. Relevant publications were searched for in MEDLINE, GOOGLE SCHOLAR, Elsevier ScienceDirect and Wiley Online Library. EXPERT OPINION We reviewed the recent and specific targeting of pathological protein aggregates by scFvs and Nbs. These engineered antibodies can inhibit the aggregation or promote the disassembly of misfolded proteins by recognizing antigenic epitopes or through conformational specificity. Additionally, we discuss strategies for improving the effective application of engineered antibodies in treating AD. These technological strategies will lay the foundation for the clinical application of small-molecule antibody drugs in developing effective treatments for neurological diseases. Through rational application strategies, small-molecule engineered antibodies are expected to have significant potential in targeted therapy for neurological disorders.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
13
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
14
|
Rohm Z, Goldman MD, Riley C, Zamvil SS, Pawate S. A 73-Year-Old Woman With Confusion, Visual Field Disturbances, and Edematous White Matter Lesions: From the National Multiple Sclerosis Society Case Conference Proceedings. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200300. [PMID: 39141887 PMCID: PMC11379432 DOI: 10.1212/nxi.0000000000200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We describe the case of a 73-year-old woman presenting with headaches, confusion, and vision disturbances. Brain MRI showed a large T2-hyperintense lesion in the right temporo-occipital region with vasogenic edema and leptomeningeal enhancement. A leptomeningeal biopsy was performed, which led to a definitive diagnosis.
Collapse
Affiliation(s)
- Zachery Rohm
- From the Department of Neurology (Z.R., S.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.D.G.), Virginia Commonwealth University, Richmond; Department of Neurology (C.R.), Columbia University; and Department of Neurology (S.S.Z.), University of California San Francisco
| | - Myla D Goldman
- From the Department of Neurology (Z.R., S.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.D.G.), Virginia Commonwealth University, Richmond; Department of Neurology (C.R.), Columbia University; and Department of Neurology (S.S.Z.), University of California San Francisco
| | - Claire Riley
- From the Department of Neurology (Z.R., S.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.D.G.), Virginia Commonwealth University, Richmond; Department of Neurology (C.R.), Columbia University; and Department of Neurology (S.S.Z.), University of California San Francisco
| | - Scott S Zamvil
- From the Department of Neurology (Z.R., S.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.D.G.), Virginia Commonwealth University, Richmond; Department of Neurology (C.R.), Columbia University; and Department of Neurology (S.S.Z.), University of California San Francisco
| | - Siddharama Pawate
- From the Department of Neurology (Z.R., S.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.D.G.), Virginia Commonwealth University, Richmond; Department of Neurology (C.R.), Columbia University; and Department of Neurology (S.S.Z.), University of California San Francisco
| |
Collapse
|
15
|
Menegaz de Almeida A, Leite M, Lopes LM, Gomes Lima P, Siegloch Barros ML, Rocha Pinheiro S, Andrade Í, Viana P, Morbach V, Marinheiro G, de Oliveira R, Pinheiro AC. Gantenerumab for early Alzheimer's disease: a systematic review and meta-analysis. Expert Rev Neurother 2024; 24:929-936. [PMID: 38879828 DOI: 10.1080/14737175.2024.2367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/07/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION Gantenerumab is a monoclonal antibody targeting amyloid β protein (Aβ) in early Alzheimer's disease (AD). The authors sought to evaluate gantenerumab safety and efficacy in early AD patients. METHODS MEDLINE, Embase, and Cochrane databases were systematically searched until 2 December 2023. Data were examined using the Mantel-Haenszel method and 95% confidence intervals (CIs). Meta-regression analysis was conducted to evaluate a possible link between baseline Clinical Dementia Rating Scale - Sum of Boxes (CDR-SB) and amyloid-related imaging abnormalities (ARIA) at follow-up. R, version 4.2.3, was used for statistical analysis. RESULTS A total of 4 RCTs and 2848 patients were included, of whom 1580 (55%) received subcutaneous gantenerumab. Concerning clinical scores, the placebo group achieved better rates of change in the Disease Assessment Scale (ADAS-Cog13) (SMD -0.11; 95% CI -0.19- -0.03; p = 0.008569; I2 = 0%). Gantenerumab was strongly associated with the occurrence of ARIA-E and ARIA-H: (19.67% vs. 2.31%; RR 9.46; 95% CI 5.55-16.11; p = <0.000001; I2 = 10%) and (21.95% vs. 12.38%; RR 1.79; 95% CI 1.50-2.13; p = <0.000001; I2 = 0%), respectively. DISCUSSION In this meta-analysis, consistent results suggest that gantenerumab is not safe and efficient for early AD, showing no improvement in clinical scores for AD and being associated with the occurrence of ARIA-E and ARIA-H.
Collapse
Affiliation(s)
| | - Marianna Leite
- Department of Medicine, Santa Marcelina University, São Paulo, Brazil
| | | | - Pedro Gomes Lima
- Department of Medicine, Federal University of Acre, Rio Branco, Brazil
| | | | | | - Ítalo Andrade
- Department of Medicine, Santo Agostinho Faculty, Vitória da Conquista, Brazil
| | - Patrícia Viana
- Department of Medicine, Extremo Sul University, Criciúma, Brazil
| | - Victória Morbach
- Department of Medicine, Feevale University, Novo Hamburgo, Brazil
| | | | - Ricardo de Oliveira
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
- Department of Neurosciences, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Agostinho C Pinheiro
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Internal Medicine, Elmhurst Hospital Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
17
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
18
|
Barrera-Ocampo A. Monoclonal antibodies and aptamers: The future therapeutics for Alzheimer's disease. Acta Pharm Sin B 2024; 14:2795-2814. [PMID: 39027235 PMCID: PMC11252463 DOI: 10.1016/j.apsb.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
Alzheimer's disease (AD) is considered the most common and prevalent form of dementia of adult-onset with characteristic progressive impairment in cognition and memory. The cure for AD has not been found yet and the treatments available until recently were only symptomatic. Regardless of multidisciplinary approaches and efforts made by pharmaceutical companies, it was only in the past two years that new drugs were approved for the treatment of the disease. Amyloid beta (Aβ) immunotherapy is at the core of this therapy, which is one of the most innovative approaches looking to change the course of AD. This technology is based on synthetic peptides or monoclonal antibodies (mAb) to reduce Aβ levels in the brain and slow down the advance of neurodegeneration. Hence, this article reviews the state of the art about AD neuropathogenesis, the traditional pharmacologic treatment, as well as the modern active and passive immunization describing approved drugs, and drug prototypes currently under investigation in different clinical trials. In addition, future perspectives on immunotherapeutic strategies for AD and the rise of the aptamer technology as a non-immunogenic alternative to curb the disease progression are discussed.
Collapse
Affiliation(s)
- Alvaro Barrera-Ocampo
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Departamento de Ciencias Farmacéuticas y Químicas, Grupo Natura, Universidad Icesi, Cali 760031, Colombia
| |
Collapse
|
19
|
Park KW. Anti-amyloid Antibody Therapies for Alzheimer's Disease. Nucl Med Mol Imaging 2024; 58:227-236. [PMID: 38932758 PMCID: PMC11196435 DOI: 10.1007/s13139-024-00848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which is characterized by a progressive neurodegenerative disorder that is extremely difficult to treat and severely reduces quality of life. Amyloid beta (Aβ) has been the primary target of experimental therapies owing to the neurotoxicity of Aβ and the brain Aβ load detected in humans by amyloid positron emission tomography (PET) imaging. Recently completed phase 2 and 3 trials of third-generation anti-amyloid immunotherapies indicated clinical efficacy in significantly reducing brain Aβ load and inhibiting the progression of cognitive decline. Anti-amyloid immunotherapies are the first effective disease-modifying therapies for AD, and aducanumab and lecanemab were recently approved through the US Food and Drug Administration's accelerated approval pathway. However, these therapies still exhibit insufficient clinical efficacy and are associated with amyloid-related imaging abnormalities. Further advances in the field of AD therapeutics are required to revolutionize clinical AD treatment, dementia care, and preventive cognitive healthcare.
Collapse
Affiliation(s)
- Kyung Won Park
- Department of Neurology, Dong-A University College of Medicine, 26 Daesingongwon-Ro, Seo-Gu, Busan, 49201 Korea
- Department of Translational Biomedical Sciences, Graduate School, Dong-A University, 26 Daesingongwon-Ro, Seo-Gu, Busan, 49201 Korea
| |
Collapse
|
20
|
Tondo G, De Marchi F, Bonardi F, Menegon F, Verrini G, Aprile D, Anselmi M, Mazzini L, Comi C. Novel Therapeutic Strategies in Alzheimer's Disease: Pitfalls and Challenges of Anti-Amyloid Therapies and Beyond. J Clin Med 2024; 13:3098. [PMID: 38892809 PMCID: PMC11172489 DOI: 10.3390/jcm13113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) causes a significant challenge to global healthcare systems, with limited effective treatments available. This review examines the landscape of novel therapeutic strategies for AD, focusing on the shortcomings of traditional therapies against amyloid-beta (Aβ) and exploring emerging alternatives. Despite decades of research emphasizing the role of Aβ accumulation in AD pathogenesis, clinical trials targeting Aβ have obtained disappointing results, highlighting the complexity of AD pathophysiology and the need for investigating other therapeutic approaches. In this manuscript, we first discuss the challenges associated with anti-Aβ therapies, including limited efficacy and potential adverse effects, underscoring the necessity of exploring alternative mechanisms and targets. Thereafter, we review promising non-Aβ-based strategies, such as tau-targeted therapies, neuroinflammation modulation, and gene and stem cell therapy. These approaches offer new avenues for AD treatment by addressing additional pathological hallmarks and downstream effects beyond Aβ deposition.
Collapse
Affiliation(s)
- Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Fabiola De Marchi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Francesca Bonardi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Gaia Verrini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Letizia Mazzini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy;
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
21
|
Foley KE, Wilcock DM. Three major effects of APOE ε4 on Aβ immunotherapy induced ARIA. Front Aging Neurosci 2024; 16:1412006. [PMID: 38756535 PMCID: PMC11096466 DOI: 10.3389/fnagi.2024.1412006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The targeting of amyloid-beta (Aβ) plaques therapeutically as one of the primary causes of Alzheimer's disease (AD) dementia has been an ongoing effort spanning decades. While some antibodies are extremely promising and have been moved out of clinical trials and into the clinic, most of these treatments show similar adverse effects in the form of cerebrovascular damage known as amyloid-related imaging abnormalities (ARIA). The two categories of ARIA are of major concern for patients, families, and prescribing physicians, with ARIA-E presenting as cerebral edema, and ARIA-H as cerebral hemorrhages (micro- and macro-). From preclinical and clinical trials, it has been observed that the greatest genetic risk factor for AD, APOEε4, is also a major risk factor for anti-Aβ immunotherapy-induced ARIA. APOEε4 carriers represent a large population of AD patients, and, therefore, limits the broad adoption of these therapies across the AD population. In this review we detail three hypothesized mechanisms by which APOEε4 influences ARIA risk: (1) reduced cerebrovascular integrity, (2) increased neuroinflammation and immune dysregulation, and (3) elevated levels of CAA. The effects of APOEε4 on ARIA risk is clear, however, the underlying mechanisms require more research.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
22
|
Zhai Z, Kong F, Zhu Z, Dai J, Cai J, Xie D, Shen Y, Xu Y, Sun T. Effect and Potential Mechanism of Immunotherapy on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-Analysis. Am J Geriatr Psychiatry 2024; 32:555-583. [PMID: 38158285 DOI: 10.1016/j.jagp.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Immunotherapy has been reported to ameliorate Alzheimer's disease (AD) in the animal model; however, the immunologic approaches and mechanisms have not been specifically described. Thus, the systematic review and meta-analysis were conducted to explore the effect and potential mechanism of immunotherapy on AD animal experiments based on behavioral indicators. METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and the Cochrane Collaboration guidelines and the inclusion/exclusion criteria of immunotherapy in animal studies, 15 studies were systematically reviewed after extraction from a collected database of 3,742 publications. Finally, the effect and mechanism of immunotherapy on AD models were described by performing multiple subgroup analyses. RESULTS After immunotherapy, the escape latency was reduced by 18.15 seconds and the number of crossings over the platform location was increased by 1.60 times in the Morris Water Maze. Furthermore, compared to the control group, active and passive immunization could markedly ameliorate learning and memory impairment in 3 × Tg AD animal models, and active immunization could ameliorate the learning and memory ability of the APPswe/PS1ΔE9 AD animal model. Meanwhile, it could be speculated that cognitive dysfunction was improved by immunotherapy, perhaps mainly via reducing Aβ40, Aβ42, and Tau levels, as well as increasing IL-4 levels. CONCLUSION Immunotherapy significantly ameliorated the cognitive dysfunction of AD animal models by assessing behavioral indicators.
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fanjing Kong
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhishan Zhu
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingyi Dai
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Cai
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy (DX, YS, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhao Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy (DX, YS, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province (YX), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Tao Sun
- School of Intelligent Medicine (ZZ, FK, ZZ, JD, JC, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy (DX, YS, TS), Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
23
|
Diniz BS. Immunotherapy in Alzheimer's Disease: From the Bench to the Bedside. Am J Geriatr Psychiatry 2024; 32:584-585. [PMID: 38253473 DOI: 10.1016/j.jagp.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Breno S Diniz
- Department of Psychiatry and UConn Center on Aging, University of Connecticut Health Center, Farmington, CT.
| |
Collapse
|
24
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
25
|
Høilund-Carlsen PF, Alavi A, Castellani RJ, Neve RL, Perry G, Revheim ME, Barrio JR. Alzheimer's Amyloid Hypothesis and Antibody Therapy: Melting Glaciers? Int J Mol Sci 2024; 25:3892. [PMID: 38612701 PMCID: PMC11012162 DOI: 10.3390/ijms25073892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The amyloid cascade hypothesis for Alzheimer's disease is still alive, although heavily challenged. Effective anti-amyloid immunotherapy would confirm the hypothesis' claim that the protein amyloid-beta is the cause of the disease. Two antibodies, aducanumab and lecanemab, have been approved by the U.S. Food and Drug Administration, while a third, donanemab, is under review. The main argument for the FDA approvals is a presumed therapy-induced removal of cerebral amyloid deposits. Lecanemab and donanemab are also thought to cause some statistical delay in the determination of cognitive decline. However, clinical efficacy that is less than with conventional treatment, selection of amyloid-positive trial patients with non-specific amyloid-PET imaging, and uncertain therapy-induced removal of cerebral amyloids in clinical trials cast doubt on this anti-Alzheimer's antibody therapy and hence on the amyloid hypothesis, calling for a more thorough investigation of the negative impact of this type of therapy on the brain.
Collapse
Affiliation(s)
- Poul F. Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Rudolph J. Castellani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Rachael L. Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology and Genetics of Neurodegeneration, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, 0372 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Jorge R. Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, LA 90095, USA
| |
Collapse
|
26
|
Giovannuzzi S, Chavarria D, Provensi G, Leri M, Bucciantini M, Carradori S, Bonardi A, Gratteri P, Borges F, Nocentini A, Supuran CT. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. J Med Chem 2024; 67:4170-4193. [PMID: 38436571 DOI: 10.1021/acs.jmedchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Gustavo Provensi
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, via G. Pieraccini 6, 50139 Florence, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti and Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
27
|
Riviere M, Langbaum JB, Turner RS, Rinne JO, Sui Y, Cazorla P, Ricart J, Meneses K, Caputo A, Tariot PN, Reiman EM, Graf A. Effects of the active amyloid beta immunotherapy CAD106 on PET measurements of amyloid plaque deposition in cognitively unimpaired APOE ε4 homozygotes. Alzheimers Dement 2024; 20:1839-1850. [PMID: 38145469 PMCID: PMC10984441 DOI: 10.1002/alz.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Alzheimer's Prevention Initiative Generation Study 1 evaluated amyloid beta (Aβ) active immunotherapy (vaccine) CAD106 and BACE-1 inhibitor umibecestat in cognitively unimpaired 60- to 75-year-old participants at genetic risk for Alzheimer's disease (AD). The study was reduced in size and terminated early. Results from the CAD106 cohort are presented. METHODS Sixty-five apolipoprotein E ε4 homozygotes with/without amyloid deposition received intramuscular CAD106 450 μg (n = 42) or placebo (n = 23) at baseline; Weeks 1, 7, 13; and quarterly; 51 of them had follow-up Aβ positron emission tomography (PET) scans at 18 to 24 months. RESULTS CAD106 induced measurable serum Aβ immunoglobulin G titers in 41/42 participants, slower rates of Aβ plaque accumulation (mean [standard deviation] annualized change from baseline in amyloid PET Centiloid: -0.91[5.65] for CAD106 versus 8.36 [6.68] for placebo; P < 0.001), and three amyloid-related imaging abnormality cases (one symptomatic). DISCUSSION Despite early termination, these findings support the potential value of conducting larger prevention trials of Aβ active immunotherapies in individuals at risk for AD. HIGHLIGHTS This was the first amyloid-lowering prevention trial in persons at genetic risk of late-onset Alzheimer's disease (AD). Active immunotherapy targeting amyloid (CAD106) was tested in this prevention trial. CAD106 significantly slowed down amyloid plaque deposition in apolipoprotein E homozygotes. CAD106 was generally safe and well tolerated, with only three amyloid-related imaging abnormality cases (one symptomatic). Such an approach deserves further evaluation in larger AD prevention trials.
Collapse
Affiliation(s)
| | | | - R. Scott Turner
- Department of NeurologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Juha O. Rinne
- Turku PET CentreUniversity of Turku and Turku University HospitalTurkuFinland
- Department of NeurologyCRST – Clinical Research Services TurkuTurkuFinland
| | - Yihan Sui
- Clinical Development, NeuroscienceNovartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Pilar Cazorla
- Clinical Development, NeuroscienceNovartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Javier Ricart
- Clinical Development, NeuroscienceNovartis Farmaceutica SABarcelonaSpain
| | - Kathleen Meneses
- Clinical Development, NeuroscienceNovartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Angelika Caputo
- Clinical Development, NeuroscienceNovartis Pharma AGBaselSwitzerland
| | | | | | - Ana Graf
- Clinical Development, NeuroscienceNovartis Pharma AGBaselSwitzerland
| |
Collapse
|
28
|
Bilodeau PA, Dickson JR, Kozberg MG. The Impact of Anti-Amyloid Immunotherapies on Stroke Care. J Clin Med 2024; 13:1245. [PMID: 38592119 PMCID: PMC10931618 DOI: 10.3390/jcm13051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Anti-amyloid immunotherapies have recently emerged as treatments for Alzheimer's disease. While these therapies have demonstrated efficacy in clearing amyloid-β and slowing cognitive decline, they have also been associated with amyloid-related imaging abnormalities (ARIA) which include both edema (ARIA-E) and hemorrhage (ARIA-H). Given that ARIA have been associated with significant morbidity in cases of antithrombotic or thrombolytic therapy, an understanding of mechanisms of and risk factors for ARIA is of critical importance for stroke care. We discuss the latest data regarding mechanisms of ARIA, including the role of underlying cerebral amyloid angiopathy, and implications for ischemic stroke prevention and management.
Collapse
Affiliation(s)
- Philippe A. Bilodeau
- Division of Neuroimmunology and Neuroinfectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - John R. Dickson
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
29
|
Lian Y, Jia YJ, Wong J, Zhou XF, Song W, Guo J, Masters CL, Wang YJ. Clarity on the blazing trail: clearing the way for amyloid-removing therapies for Alzheimer's disease. Mol Psychiatry 2024; 29:297-305. [PMID: 38001337 DOI: 10.1038/s41380-023-02324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis. Senile plaques composed of the amyloid-β (Aβ) peptide in the brain are the core hallmarks of AD and a promising target for the development of disease-modifying therapies. However, over the past 20 years, the failures of clinical trials directed at Aβ clearance have fueled a debate as to whether Aβ is the principal pathogenic factor in AD and a valid therapeutic target. The success of the recent phase 3 trials of lecanemab (Clarity AD) and donanemab (Trailblazer Alz2), and lessons from previous Aβ clearance trials provide critical evidence to support the role of Aβ in AD pathogenesis and suggest that targeting Aβ clearance is heading in the right direction for AD treatment. Here, we analyze key questions relating to the efficacy of Aβ targeting therapies, and provide perspectives on early intervention, adequate Aβ removal, sufficient treatment period, and combinatory therapeutics, which may be required to achieve the best cognitive benefits in future trials in the real world.
Collapse
Affiliation(s)
- Yan Lian
- Department of Prevention and Health Care, Daping Hospital, Third Military Medical University, Chongqing, China
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Ageing and Brain Disease, Chongqing, China
| | - Yu-Juan Jia
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Joelyn Wong
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Ageing and Brain Disease, Chongqing, China.
| |
Collapse
|
30
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
31
|
Cummings J, Osse AML, Cammann D, Powell J, Chen J. Anti-Amyloid Monoclonal Antibodies for the Treatment of Alzheimer's Disease. BioDrugs 2024; 38:5-22. [PMID: 37955845 PMCID: PMC10789674 DOI: 10.1007/s40259-023-00633-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Two monoclonal antibodies (mAbs), aducanumab and lecanemab, have received accelerated approval from the US FDA for initiation of treatment in early Alzheimer's disease patients who have proven β-amyloid pathology (Aβ). One of these, lecanemab, has subsequently received full approval and other monoclonal antibodies are poised for positive review and approval. Anti-amyloid mAbs share the feature of producing a marked reduction in total brain Aβ revealed by amyloid positron emission tomography. Trials associated with slowing of cognitive decline have achieved a reduction in measurable plaque Aβ in the range of 15-25 centiloids; trials of agents that did not reach this threshold were not associated with cognitive benefit. mAbs have differences in terms of titration schedules, MRI monitoring schedules for amyloid-related imaging abnormalities (ARIA), and continuing versus interrupted therapy. The approximate 30% slowing of decline observed with mAbs is clinically meaningful in terms of extended cognitive integrity and delay of onset of the more severe dementia phases of Alzheimer's disease. Approval of these agents initiates a new era in Alzheimer's disease therapeutics with disease-modifying properties. Further advances are needed, i.e. greater efficacy, improved safety, enhanced convenience, and better understanding of ill-understood observations such as brain volume loss.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
- , 1380 Opal Valley Street, Henderson, NV, 89052, USA.
| | - Amanda M Leisgang Osse
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Davis Cammann
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Jayde Powell
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
32
|
Digma LA, Winer JR, Greicius MD. Substantial Doubt Remains about the Efficacy of Anti-Amyloid Antibodies. J Alzheimers Dis 2024; 97:567-572. [PMID: 38250779 DOI: 10.3233/jad-231198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
With the FDA approval of aducanumab and lecanemab, and with the recent statistically significant phase 3 clinical trial for donanemab, there is growing enthusiasm for anti-amyloid antibodies in the treatment of Alzheimer's disease. Here, we discuss three substantial limitations regarding recent anti-amyloid clinical trials: 1) there is little evidence that amyloid reduction correlates with clinical outcome, 2) the reported efficacy of anti-amyloid therapies may be explained by functional unblinding, and 3) donanemab had no effect on tau burden in its phase 3 trial. Taken together, these observations call into question the efficacy of anti-amyloid therapies.
Collapse
Affiliation(s)
- Leonardino A Digma
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Vashisth K, Sharma S, Ghosh S, Babu MA, Ghosh S, Iqbal D, Kamal M, Almutary AG, Jha SK, Ojha S, Bhaskar R, Jha NK, Sinha JK. Immunotherapy in Alzheimer's Disease: Current Status and Future Directions. J Alzheimers Dis 2024; 101:S23-S39. [PMID: 39422934 DOI: 10.3233/jad-230603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by memory loss, cognitive decline, and behavioral changes. Immunotherapy aims to harness the immune system to target the underlying pathology of AD and has shown promise as a disease-modifying treatment for AD. By focusing on the underlying disease pathogenesis and encouraging the removal of abnormal protein aggregates in the brain, immunotherapy shows promise as a potential treatment for AD. The development of immunotherapy for AD began with early attempts to use antibodies to target beta-amyloid. The amyloid hypothesis which suggests that the accumulation of beta-amyloid in the brain triggers the pathological cascade that leads to AD has been a driving force behind the development of immunotherapy for AD. However, recent clinical trials of monoclonal antibodies targeting amyloid-β have shown mixed results, highlighting the need for further research into alternative immunotherapy approaches. Additionally, the safety and efficacy of immunotherapy for AD remain an area of active investigation. Some immunotherapeutic approaches have shown promise, while others have been associated with significant side effects, including inflammation of the brain. Sleep has a significant impact on various physiological processes, including the immune system, and has been linked to the pathogenesis of AD. Thus, improving sleep quality and duration may benefit the immune system and potentially enhance the effectiveness of immunotherapeutic approaches for AD. In this review, we discussed the promises of immunotherapy as a disease-modifying treatment for AD as well as possible methods to improve the efficacy and safety of immunotherapy to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
| | - Shivani Sharma
- Department of Pharmaceutics, R.K.S.D. College of Pharmacy, Kaithal, Haryana, India
| | - Shampa Ghosh
- GloNeuro, Noida, India
- ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
34
|
Yeapuri P, Machhi J, Lu Y, Abdelmoaty MM, Kadry R, Patel M, Bhattarai S, Lu E, Namminga KL, Olson KE, Foster EG, Mosley RL, Gendelman HE. Amyloid-β specific regulatory T cells attenuate Alzheimer's disease pathobiology in APP/PS1 mice. Mol Neurodegener 2023; 18:97. [PMID: 38111016 PMCID: PMC10729469 DOI: 10.1186/s13024-023-00692-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aβ) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aβ (TCRAβ). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAβ (TCRAβ -Tregs) to reduce Aβ burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS TCRAβ -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aβ reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aβ-tetramer staining. Adoptive transfer of TCRAβ-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS TCRAβ-Tregs expressed an Aβ-specific TCR. Adoptive transfer of TCRAβ-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAβ-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS TCRAβ-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.
Collapse
Affiliation(s)
- Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rana Kadry
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shaurav Bhattarai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eugene Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emma G Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
35
|
Cozza M, Amadori L, Boccardi V. Exploring cerebral amyloid angiopathy: Insights into pathogenesis, diagnosis, and treatment. J Neurol Sci 2023; 454:120866. [PMID: 37931443 DOI: 10.1016/j.jns.2023.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Cerebral Amyloid Angiopathy (CAA) is a neurological disorder characterized by the deposition of amyloid plaques in the walls of cerebral blood vessels. This condition poses significant challenges in terms of understanding its underlying mechanisms, accurate diagnosis, and effective treatment strategies. This article aims to shed light on the complexities of CAA by providing insights into its pathogenesis, diagnosis, and treatment options. The pathogenesis of CAA involves the accumulation of amyloid beta (Aβ) peptides in cerebral vessels, leading to vessel damage, impaired blood flow, and subsequent cognitive decline. Various genetic and environmental factors contribute to the development and progression of CAA, and understanding these factors is crucial for targeted interventions. Accurate diagnosis of CAA often requires advanced imaging techniques, such as magnetic resonance imaging (MRI) or positron emission tomography (PET) scans, to detect characteristic amyloid deposits in the brain. Early and accurate diagnosis enables appropriate management and intervention strategies. Treatment of CAA focuses on preventing further deposition of amyloid plaques, managing associated symptoms, and reducing the risk of complications such as cerebral hemorrhage. Currently, there are no disease-modifying therapies specifically approved for CAA. However, several experimental treatments targeting Aβ clearance and anti-inflammatory approaches are being investigated in clinical trials, offering hope for future therapeutic advancements.
Collapse
Affiliation(s)
| | - Lucia Amadori
- Department of Integration, Intermediate Care Programme, AUSL Bologna, Italy
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy.
| |
Collapse
|
36
|
Hampel H, Elhage A, Cho M, Apostolova LG, Nicoll JAR, Atri A. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain 2023; 146:4414-4424. [PMID: 37280110 PMCID: PMC10629981 DOI: 10.1093/brain/awad188] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Excess accumulation and aggregation of toxic soluble and insoluble amyloid-β species in the brain are a major hallmark of Alzheimer's disease. Randomized clinical trials show reduced brain amyloid-β deposits using monoclonal antibodies that target amyloid-β and have identified MRI signal abnormalities called amyloid-related imaging abnormalities (ARIA) as possible spontaneous or treatment-related adverse events. This review provides a comprehensive state-of-the-art conceptual review of radiological features, clinical detection and classification challenges, pathophysiology, underlying biological mechanism(s) and risk factors/predictors associated with ARIA. We summarize the existing literature and current lines of evidence with ARIA-oedema/effusion (ARIA-E) and ARIA-haemosiderosis/microhaemorrhages (ARIA-H) seen across anti-amyloid clinical trials and therapeutic development. Both forms of ARIA may occur, often early, during anti-amyloid-β monoclonal antibody treatment. Across randomized controlled trials, most ARIA cases were asymptomatic. Symptomatic ARIA-E cases often occurred at higher doses and resolved within 3-4 months or upon treatment cessation. Apolipoprotein E haplotype and treatment dosage are major risk factors for ARIA-E and ARIA-H. Presence of any microhaemorrhage on baseline MRI increases the risk of ARIA. ARIA shares many clinical, biological and pathophysiological features with Alzheimer's disease and cerebral amyloid angiopathy. There is a great need to conceptually link the evident synergistic interplay associated with such underlying conditions to allow clinicians and researchers to further understand, deliberate and investigate on the combined effects of these multiple pathophysiological processes. Moreover, this review article aims to better assist clinicians in detection (either observed via symptoms or visually on MRI), management based on appropriate use recommendations, and general preparedness and awareness when ARIA are observed as well as researchers in the fundamental understanding of the various antibodies in development and their associated risks of ARIA. To facilitate ARIA detection in clinical trials and clinical practice, we recommend the implementation of standardized MRI protocols and rigorous reporting standards. With the availability of approved amyloid-β therapies in the clinic, standardized and rigorous clinical and radiological monitoring and management protocols are required to effectively detect, monitor, and manage ARIA in real-world clinical settings.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Aya Elhage
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Min Cho
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James A R Nicoll
- Division of Clinical Neurosciences, Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ 85351, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Kim J, Jeon H, Yun Kim H, Kim Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-β Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023; 24:e202300328. [PMID: 37497809 DOI: 10.1002/cbic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-β (Aβ). AD therapeutic research has been focused on targeting different species of Aβ in the amyloidogenic process to control Aβ content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aβ-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aβ-targeting chemical drugs.
Collapse
Affiliation(s)
- JiMin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hanna Jeon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
38
|
Jucker M, Walker LC. Alzheimer's disease: From immunotherapy to immunoprevention. Cell 2023; 186:4260-4270. [PMID: 37729908 PMCID: PMC10578497 DOI: 10.1016/j.cell.2023.08.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Recent Aβ-immunotherapy trials have yielded the first clear evidence that removing aggregated Aβ from the brains of symptomatic patients can slow the progression of Alzheimer's disease. The clinical benefit achieved in these trials has been modest, however, highlighting the need for both a deeper understanding of disease mechanisms and the importance of intervening early in the pathogenic cascade. An immunoprevention strategy for Alzheimer's disease is required that will integrate the findings from clinical trials with mechanistic insights from preclinical disease models to select promising antibodies, optimize the timing of intervention, identify early biomarkers, and mitigate potential side effects.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.
| | - Lary C Walker
- Department of Neurology and Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Liu C, Nikain C, Li YM. γ-Secretase fanning the fire of innate immunity. Biochem Soc Trans 2023; 51:1597-1610. [PMID: 37449907 PMCID: PMC11212119 DOI: 10.1042/bst20221445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Innate immunity is the first line of defense against pathogens, alerting the individual cell and surrounding area to respond to this potential invasion. γ-secretase is a transmembrane protease complex that plays an intricate role in nearly every stage of this innate immune response. Through regulation of pattern recognition receptors (PRR) such as TREM2 and RAGE γ-secretase can modulate pathogen recognition. γ-secretase can act on cytokine receptors such as IFNαR2 and CSF1R to dampen their signaling capacity. While γ-secretase-mediated regulated intramembrane proteolysis (RIP) can further moderate innate immune responses through downstream signaling pathways. Furthermore, γ-secretase has also been shown to be regulated by the innate immune system through cytokine signaling and γ-secretase modulatory proteins such as IFITM3 and Hif-1α. This review article gives an overview of how γ-secretase is implicated in innate immunity and the maintenance of its responses through potentially positive and negative feedback loops.
Collapse
Affiliation(s)
- Chenge Liu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Cyrus Nikain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| |
Collapse
|
40
|
Osborne OM, Naranjo O, Heckmann BL, Dykxhoorn D, Toborek M. Anti-amyloid: An antibody to cure Alzheimer's or an attitude. iScience 2023; 26:107461. [PMID: 37588168 PMCID: PMC10425904 DOI: 10.1016/j.isci.2023.107461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
For more than a century, clinicians have been aware of the devastating neurological condition called Alzheimer's disease (AD). AD is characterized by the presence of abnormal amyloid protein plaques and tau tangles in the brain. The dominant hypothesis, termed the amyloid hypothesis, attributes AD development to excessive cleavage and accumulation of amyloid precursor protein (APP), leading to brain tissue atrophy. The amyloid hypothesis has greatly influenced AD research and therapeutic endeavors. However, despite significant attention, a complete understanding of amyloid and APP's roles in disease pathology, progression, and cognitive impairment remains elusive. Recent controversies and several unsuccessful drug trials have called into question whether amyloid is the only neuropathological factor for treatment. To accomplish disease amelioration, we argue that researchers and clinicians may need to take a compounding approach to target amyloid and other factors in the brain, including traditional pharmaceuticals and holistic therapies.
Collapse
Affiliation(s)
- Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bradlee L. Heckmann
- Department of Immunology, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Byrd Alzheimer’s Center, University of South Florida Health Neuroscience Institute, Tampa, FL 33613, USA
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Asha Therapeutics, Tampa, FL, USA
| | - Derek Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
41
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
42
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
43
|
Yadollahikhales G, Rojas JC. Anti-Amyloid Immunotherapies for Alzheimer's Disease: A 2023 Clinical Update. Neurotherapeutics 2023; 20:914-931. [PMID: 37490245 PMCID: PMC10457266 DOI: 10.1007/s13311-023-01405-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
The amyloid cascade hypothesis is a useful framework for therapeutic development in Alzheimer's disease (AD). Amyloid b1-42 (Aβ) has been the main target of experimental therapies, based on evidence of the neurotoxic effects of Aβ, and of the potential adverse effects of brain Aβ burden detected in humans in vivo by positron emission tomography (PET). Progress on passive anti-amyloid immunotherapy research includes identification of antibodies that facilitate microglial activation, catalytical disaggregation, and increased flow of Aβ from cerebrospinal fluid (CSF) to plasma, thus decreasing the neurotoxic effects of Aβ. Recently completed phase 2 and 3 trials of 3rd generation anti-amyloid immunotherapies are supportive of their clinical efficacy in reducing brain Aβ burden and preventing cognitive decline. Data from recent trials implicate these agents as the first effective disease-modifying therapies against AD and has led to the US Food and Drug Administration (FDA) recent approval of aducanumab and lecanemab, under an accelerated approval pathway. The clinical effects of these agents are modest, however, and associated with amyloid-related imaging abnormalities (ARIA). Testing the effects of anti-Aβ immunotherapies in pre-symptomatic populations and identification of more potent and safer agents is the scope of ongoing and future research. Innovations in clinical trial design will be the key for the efficient and equitable development of novel anti-Aβ immunotherapies. The progress in the field of AD therapeutics will bring new clinical, logistical, and ethical challenges, which pose to revolutionize the practice of neurology, dementia care, and preventive cognitive healthcare.
Collapse
Affiliation(s)
- Golnaz Yadollahikhales
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, 1551 4th Street, 411G, San Francisco, CA, 94158, USA
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, 1551 4th Street, 411G, San Francisco, CA, 94158, USA.
| |
Collapse
|
44
|
Salemme S, Ancidoni A, Locuratolo N, Piscopo P, Lacorte E, Canevelli M, Vanacore N. Advances in amyloid-targeting monoclonal antibodies for Alzheimer's disease: clinical and public health issues. Expert Rev Neurother 2023; 23:1113-1129. [PMID: 37975226 DOI: 10.1080/14737175.2023.2284305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a major global public health challenge. To date, no treatments have been shown to stop the underlying pathological processes. The cerebral accumulation of amyloid-beta (Ab) is still considered as the primum movens of AD and disease-modifying treatments targeting Ab are reaching - or have already reached - clinical practice. AREAS COVERED The authors explore the main advancements from Aβ-targeting monoclonal antibodies (mAbs) for the treatment of AD. From a public health perspective, they address ethically relevant issues such as the benevolence and non-maleficence principles. They report on the potential biological and clinical benefits of these drugs, discussing minimal clinically important differences (MCID) and other relevant outcomes. They examine the short- and long-term effects of amyloid-related imaging abnormalities (ARIA), and explore the differences between eligibility criteria in clinical trials, appropriate use recommendations, and prescribing information content. In doing so, they contextualize the discussion on the disagreements among different regulatory authorities. EXPERT OPINION Although anti-β-amyloid monoclonal antibodies may be effective in selected scenarios, non-negligible knowledge gaps and implementation limits persist. Overcoming these gaps can no longer be postponed if we are to ensure the principles of Quality of Care for patients with cognitive impairment who would be eligible for this class of drugs.
Collapse
Affiliation(s)
- Simone Salemme
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Ancidoni
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Nicoletta Locuratolo
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Eleonora Lacorte
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Marco Canevelli
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Human Neuroscience, "Sapienza" University, Rome, Italy
| | - Nicola Vanacore
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
45
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
46
|
Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer's disease and potential therapeutic targets. Front Aging Neurosci 2023; 15:1199434. [PMID: 37333457 PMCID: PMC10272394 DOI: 10.3389/fnagi.2023.1199434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The most prevalent genetic risk factor for Alzheimer's disease (AD) is Apolipoprotein E (ApoE), a gene located on chromosome 19 that encodes three alleles (e2, e3, and e4) that give rise to the ApoE subtypes E2, E3, and E4, respectively. E2 and E4 have been linked to increased plasma triglyceride concentrations and are known to play a critical role in lipoprotein metabolism. The prominent pathological features of AD mainly include senile plaques formed by amyloid β (Aβ42) aggregation and neuronal fibrous tangles (NFTs), and the deposited plaques are mainly composed of Aβ hyperphosphorylation and truncated head. In the central nervous system, the ApoE protein is primarily derived from astrocytes, but ApoE is also produced when neurons are stressed or affected by certain stress, injury, and aging conditions. ApoE4 in neurons induces Aβ and tau protein pathologies, leading to neuroinflammation and neuronal damage, impairing learning and memory functions. However, how neuronal ApoE4 mediates AD pathology remains unclear. Recent studies have shown that neuronal ApoE4 may lead to greater neurotoxicity, which increases the risk of AD development. This review focuses on the pathophysiology of neuronal ApoE4 and explains how neuronal ApoE4 mediates Aβ deposition, pathological mechanisms of tau protein hyperphosphorylation, and potential therapeutic targets.
Collapse
|
47
|
de Souza A, Tasker K. Inflammatory Cerebral Amyloid Angiopathy: A Broad Clinical Spectrum. J Clin Neurol 2023; 19:230-241. [PMID: 37151140 PMCID: PMC10169922 DOI: 10.3988/jcn.2022.0493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a common central nervous system (CNS) vasculopathy, which in some cases is associated with subacute encephalopathy, seizures, headaches, or strokes due to vascular inflammation directed against vascular amyloid accumulation. The pathological subtypes of inflammatory CAA include CAA-related inflammation (CAAri) with mostly perivascular lymphocytic infiltrates, or amyloid-beta (Aβ)-related angiitis (ABRA) with transmural granulomatous inflammation. CAAri and ABRA probably represent part of the spectrum of CNS vasculopathies, intermediate between CAA and primary CNS vasculitis, and they are closely related to Aβ-related imaging abnormalities and other manifestations of an inflammatory response directed against Aβ in the leptomeninges and cerebral parenchyma. As treatment strategies in Alzheimer's disease shift toward potentially effective antiamyloid immunotherapy, the incidence rate of inflammatory CAA (which is probably an underrecognized condition) is likely to increase. Its clinical features are varied and include subacute encephalopathy, behavioral symptoms, headaches, seizures, and focal neurological deficits, which necessitate a high degree of suspicion for this disorder that often responds to treatment. The recent definition of the typical clinical and radiological syndrome has increased its recognition and may eliminate the need for invasive histological sampling in at least some affected patients. Here we review the pathophysiology, clinical spectrum, and approach to diagnosis, and discuss illustrative cases that highlight the wide range of clinical presentations.
Collapse
Affiliation(s)
- Aaron de Souza
- Department of Medicine, Launceston General Hospital, Launceston, Australia
- Faculty of Medicine, Launceston Clinical School, University of Tasmania, Launceston, Australia.
| | - Kate Tasker
- Department of Medicine, Launceston General Hospital, Launceston, Australia
| |
Collapse
|
48
|
Elangovan A, Babu HWS, Iyer M, Gopalakrishnan AV, Vellingiri B. Untangle the mystery behind DS-associated AD - Is APP the main protagonist? Ageing Res Rev 2023; 87:101930. [PMID: 37031726 DOI: 10.1016/j.arr.2023.101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Amyloid precursor protein profusion in Trisomy 21, also called Down Syndrome (DS), is rooted in the genetic determination of Alzheimer's disease (AD). With the recent development in patient care, the life expectancy of DS patients has gradually increased, leading to the high prospect of AD development, consequently leading to the development of plaques of amyloid proteins and neurofibrillary tangles made of tau by the fourth decade of the patient leading to dementia. The altered gene expression resulted in cellular dysfunction due to impairment of autophagy, mitochondrial and lysosomal dysfunction, and copy number variation controlled by the additional genes in Trisomy 21. The cognitive impairment and mechanistic insights underlying DS-AD conditions have been reviewed in this article. Some recent findings regarding biomarkers and therapeutics of DS-AD conditions were highlighted in this review.
Collapse
Affiliation(s)
- Ajay Elangovan
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore-641021, India
| | | | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
49
|
Lambracht-Washington D, Fu M, Wight-Carter M, Riegel M, Hynan LS, Rosenberg RN. DNA Aβ42 immunization via needle-less Jet injection in mice and rabbits as potential immunotherapy for Alzheimer's disease. J Neurol Sci 2023; 446:120564. [PMID: 36731358 DOI: 10.1016/j.jns.2023.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia found in the elderly and disease progression is associated with accumulation of Amyloid beta 1-42 (Aβ42) in brain. An immune-mediated approach as a preventive intervention to reduce amyloid plaques without causing brain inflammation is highly desirable for future clinical use. Genetic immunization, in which the immunizing agent is DNA encoding Aβ42, has great potential because the immune response to DNA delivered into the skin is generally non-inflammatory, and thus differs quantitatively and qualitatively from immune responses elicited by peptides, which are inflammatory with production of IFNγ and IL-17 cytokines by activated T cells. DNA immunization has historically been proven difficult to apply to larger mammals. A potential barrier to use DNA immunization in large mammals is the method for delivery of the DNA antigen. We tested jet injection in mice and rabbits and found good antibody production and safe immune responses (no inflammatory cytokines). We found significant reduction of amyloid plaques and Aβ peptides in brains of the DNA Aβ42 immunized 3xTg-AD mouse model. This study was designed to optimize DNA delivery for possible testing of the DNA Aβ42 vaccine for AD prevention in a clinical trial.
Collapse
Affiliation(s)
| | - Min Fu
- Department of Neurology, UT Southwestern Medical Center Dallas, TX, USA.
| | - Mary Wight-Carter
- Animal Resource Center, UT Southwestern Medical Center Dallas, TX, USA.
| | - Matthew Riegel
- Animal Resource Center, UT Southwestern Medical Center Dallas, TX, USA; University of Kansas, Lawrence, KS, USA.
| | - Linda S Hynan
- Departments of Population and Data Sciences (Biostatistics) & Psychiatry, UT Southwestern Medical Center Dallas, TX, USA.
| | - Roger N Rosenberg
- Department of Neurology, UT Southwestern Medical Center Dallas, TX, USA.
| |
Collapse
|
50
|
Trouche SG, Boutajangout A, Asuni A, Fontés P, Sigurdsson EM, Verdier JM, Mestre-Francés N. Amyloid-β targeting immunisation in aged non-human primate (Microcebus murinus). Brain Behav Immun 2023; 109:63-77. [PMID: 36592872 PMCID: PMC10023341 DOI: 10.1016/j.bbi.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Non-human primates have an important translational value given their close phylogenetic relationship to humans. Studies in these animals remain essential for evaluating efficacy and safety of new therapeutic approaches, particularly in aging primates that display Alzheimer's disease (AD) -like pathology. With the objective to improve amyloid-β (Aβ) targeting immunotherapy, we investigated the safety and efficacy of an active immunisation with an Aβ derivative, K6Aβ1-30-NH2, in old non-human primates. Thirty-two aged (4-10 year-old) mouse lemurs were enrolled in the study, and received up to four subcutaneous injections of the vaccine in alum adjuvant or adjuvant alone. Even though antibody titres to Aβ were not high, pathological examination of the mouse lemur brains showed a significant reduction in intraneuronal Aβ that was associated with reduced microgliosis, and the vaccination did not lead to microhemorrhages. Moreover, a subtle cognitive improvement was observed in the vaccinated primates, which was probably linked to Aβ clearance. This Aβ derivative vaccine appeared to be safe as a prophylactic measure based on the brain analyses and because it did not appear to have detrimental effects on the general health of these old animals.
Collapse
Affiliation(s)
- Stéphanie G Trouche
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| | - Allal Boutajangout
- Departments of Neurology, and Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States.
| | - Ayodeji Asuni
- Department of Psychiatry, New York University Grossman School of Medicine, New York, United States.
| | | | - Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, United States.
| | - Jean-Michel Verdier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| | - Nadine Mestre-Francés
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| |
Collapse
|