1
|
Musfee FI, Jun G, Mitchell LE, Chen H, Guo D, Prakash SK, Adkar SS, Grove ML, Choi RB, Klarin D, Boerwinkle E, Milewicz DM. X-linked genetic associations in sporadic thoracic aortic dissection. Am J Med Genet A 2024; 194:e63644. [PMID: 38688863 PMCID: PMC11315632 DOI: 10.1002/ajmg.a.63644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The male predominance in sporadic thoracic aortic aneurysm and dissection (TAD) suggests that the X chromosome contributes to TAD, but this has not been tested. We investigated whether X-linked variation-common (minor allele frequency [MAF] ≥0.01) and rare (MAF <0.01)-was associated with sporadic TAD in three cohorts of European descent (Discovery: 364 cases, 874 controls; Replication: 516 cases, 440,131 controls, and ARIC [Atherosclerosis Risk in Communities study]: 753 cases, 2247 controls). For analysis of common variants, we applied a sex-stratified logistic regression model followed by a meta-analysis of sex-specific odds ratios. Furthermore, we conducted a meta-analysis of overlapping common variants between the Discovery and Replication cohorts. For analysis of rare variants, we used a sex-stratified optimized sequence kernel association test model. Common variants results showed no statistically significant findings in the Discovery cohort. An intergenic common variant near SPANXN1 was statistically significant in the Replication cohort (p = 1.81 × 10-8). The highest signal from the meta-analysis of the Discovery and Replication cohorts was a ZNF182 intronic common variant (p = 3.5 × 10-6). In rare variants results, RTL9 reached statistical significance (p = 5.15 × 10-5). Although most of our results were statistically insignificant, our analysis is the most comprehensive X-chromosome association analysis of sporadic TAD to date.
Collapse
Affiliation(s)
- Fadi I. Musfee
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Laura E. Mitchell
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Siddharth K. Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Shaunak Sanjay Adkar
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ryan Bohyun Choi
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Derek Klarin
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
2
|
Memar Montazerin S, Hassanzadeh S, Najafi H, Shojaei F, Kumanayaka D, Suleiman A. The genetics of spontaneous coronary artery dissection: a scoping review. J Cardiovasc Med (Hagerstown) 2024; 25:569-586. [PMID: 38916232 DOI: 10.2459/jcm.0000000000001634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Spontaneous coronary artery dissection (SCAD) is a multifactorial process that involves predisposing factors and precipitating stressors. Genetic abnormality has been implicated to play a mechanistic role in the development of SCAD. This systematic review aims to summarize the current evidence concerning the link between SCAD and genetic abnormalities. METHODS We reviewed original studies published until May 2023 that reported SCAD patients with a genetic mutation by searching PubMed, Embase Ovid, and Google Scholar. Registries, cohort studies, and case reports were included if a definitive SCAD diagnosis was reported, and the genetic analysis was performed. Exclusion criteria included editorials, reviews, letters or commentaries, animal studies, meeting papers, and studies from which we were unable to extract data. Data were extracted from published reports. RESULTS A total of 595 studies were screened and 55 studies were identified. Among 116 SCAD patients with genetic abnormalities, 20% had mutations in the COL gene, 13.70% TLN1 gene, and 8.42% TSR1 gene. Mutations affecting the genes encoding COL and TLN1 were most frequently reported (20 and 13.7%, respectively). Interestingly, 15 genes of this collection were also reported in patients with thoracic aortic diseases as well. The genetic commonality between fibromuscular dysplasia (FMD) and SCAD was also included. CONCLUSION In this review, the inherited conditions and reported genes of undetermined significance from case reports associated with SCAD are collected. A brief description of the encoded protein and the clinical features associated with pathologic genes is provided. Current data suggested that the diagnostic yield of genetic studies for patients with SCAD would be low and routine genetic screening of such patients with no clinical features indicative of associated disorders remains debatable. This review can be used as a guide for clinicians to recognize inherited syndromic and nonsyndromic disorders associated with SCAD.
Collapse
Affiliation(s)
- Sahar Memar Montazerin
- Beth Israel Deaconess Medical Center, Harvard Medical School
- Department of Cardiology, Saint Michael's Medical Center, Newark, New Jersey
| | - Shakiba Hassanzadeh
- Department of Pathology, East Carolina University, Greenville, North Carolina, USA
| | - Homa Najafi
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Dilesha Kumanayaka
- Department of Cardiology, Saint Michael's Medical Center, Newark, New Jersey
| | - Addi Suleiman
- Department of Cardiology, Saint Michael's Medical Center, Newark, New Jersey
| |
Collapse
|
3
|
Giovannelli P, Di Donato M, Licitra F, Sabbatino E, Tutino V, Castoria G, Migliaccio A. Filamin A in triple negative breast cancer. Steroids 2024; 205:109380. [PMID: 38311094 DOI: 10.1016/j.steroids.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy.
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Fabrizio Licitra
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Emilia Sabbatino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Viviana Tutino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| |
Collapse
|
4
|
Wilson GN, Tonk VS. Clinical-Genomic Analysis of 1261 Patients with Ehlers-Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Curr Issues Mol Biol 2024; 46:2620-2643. [PMID: 38534782 DOI: 10.3390/cimb46030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Systematic evaluation of 80 history and 40 history findings diagnosed 1261 patients with Ehlers-Danlos syndrome (EDS) by direct or online interaction, and 60 key findings were selected for their relation to clinical mechanisms and/or management. Genomic testing results in 566 of these patients supported EDS relevance by their differences from those in 82 developmental disability patients and by their association with general rather than type-specific EDS findings. The 437 nuclear and 79 mitochondrial DNA changes included 71 impacting joint matrix (49 COL5), 39 bone (30 COL1/2/9/11), 22 vessel (12 COL3/8VWF), 43 vessel-heart (17FBN1/11TGFB/BR), 59 muscle (28 COL6/12), 56 neural (16 SCN9A/10A/11A), and 74 autonomic (13 POLG/25porphyria related). These genes were distributed over all chromosomes but the Y, a network analogized to an 'entome' where DNA change disrupts truncal mechanisms (skin constraint, neuromuscular support, joint vessel flexibility) and produces a mirroring cascade of articular and autonomic symptoms. The implied sequences of genes from nodal proteins to hypermobility to branching tissue laxity or dysautonomia symptoms would be ideal for large language/artificial intelligence analyses.
Collapse
Affiliation(s)
- Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- KinderGenome Genetics Private Practice, 5347 W Mockingbird, Dallas, TX 75209, USA
| | - Vijay S Tonk
- Director of Medical Genetics and the Cytogenomic Laboratory, Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
Lazzarino M, Zanetti M, Chen SN, Gao S, Peña B, Lam CK, Wu JC, Taylor MRG, Mestroni L, Sbaizero O. Defective Biomechanics and Pharmacological Rescue of Human Cardiomyocytes with Filamin C Truncations. Int J Mol Sci 2024; 25:2942. [PMID: 38474188 PMCID: PMC10932268 DOI: 10.3390/ijms25052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.
Collapse
Affiliation(s)
- Marco Lazzarino
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Michele Zanetti
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Suet Nee Chen
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Shanshan Gao
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Brisa Peña
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Bioengineering Department, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Matthew R. G. Taylor
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Orfeo Sbaizero
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Engineering and Architecture Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
6
|
Huang W, Zhang S, Lin J, Ding Y, Jiang N, Zhang J, Zhao H, Chen F. Rare loss-of-function variants in FLNB cause non-syndromic orofacial clefts. J Genet Genomics 2024; 51:222-229. [PMID: 37003352 DOI: 10.1016/j.jgg.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb-/- embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Department of Orthodontics, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Shiying Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Nan Jiang
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Feng Chen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
7
|
Wang Y, Panicker IS, Anesi J, Sargisson O, Atchison B, Habenicht AJR. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int J Mol Sci 2024; 25:901. [PMID: 38255976 PMCID: PMC10815651 DOI: 10.3390/ijms25020901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFβ) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Benjamin Atchison
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany;
| |
Collapse
|
8
|
Chen D, Zhou Y, Zhang Y, Zeng H, Wu L, Liu Y. Unraveling shared susceptibility loci and Mendelian genetic associations linking educational attainment with multiple neuropsychiatric disorders. Front Psychiatry 2024; 14:1303430. [PMID: 38250258 PMCID: PMC10797721 DOI: 10.3389/fpsyt.2023.1303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Empirical studies have demonstrated that educational attainment (EA) is associated with neuropsychiatric disorders (NPDs), suggesting a shared etiological basis between them. However, little is known about the shared genetic mechanisms and causality behind such associations. Methods This study explored the shared genetic basis and causal relationships between EA and NPDs using the high-definition likelihood (HDL) method, cross phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) with summary-level data for EA (N = 293,723) and NPDs (N range = 9,725 to 455,258). Results Significant genetic correlations between EA and 12 NPDs (rg range - 0.49 to 0.35; all p < 3.85 × 10-3) were observed. CPASSOC identified 37 independent loci shared between EA and NPDs, one of which was novel (rs71351952, mapped gene: ARFGEF2). Functional analyses and TWAS found shared genes were enriched in brain tissue, especially in the cerebellum and highlighted the regulatory role of neuronal signaling, purine nucleotide metabolic process, and cAMP-mediated signaling pathways. CPASSOC and TWAS supported the role of three regions of 6q16.1, 3p21.31, and 17q21.31 might account for the shared causes between EA and NPDs. MR confirmed higher genetically predicted EA lower the risk of ADHD (ORIVW: 0.50; 95% CI: 0.39 to 0.63) and genetically predicted ADHD decreased the risk of EA (Causal effect: -2.8 months; 95% CI: -3.9 to -1.8). Conclusion These findings provided evidence of shared genetics and causation between EA and NPDs, advanced our understanding of EA, and implicated potential biological pathways that might underlie both EA and NPDs.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| |
Collapse
|
9
|
Yang L, Wu G, Yin H, Pan M, Zhu Y. Periventricular nodular heterotopias is associated with mutation at the FLNA locus-a case history and a literature review. BMC Pediatr 2023; 23:346. [PMID: 37422633 PMCID: PMC10329368 DOI: 10.1186/s12887-023-04161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Periventricular nodular heterotopia (PNH), associated with FLNA mutations, is a rare clinical condition potentially associated with multiple systemic conditions, including cardiac, pulmonary, skeletal, and cutaneous diseases. However, due to a paucity of information in the literature, accurate prognostic advice cannot be provided to patients with the disease. CASE PRESENTATION We report a 2-year-old female whose PNH was associated with a nonsense mutation in the q28 region of the X chromosome, in exon 31 of FLNA (c.5159dupA). The patient is currently seizure-free and has no congenital heart disease, lung disease or skeletal or joint issues, and her development is normal. CONCLUSIONS FLNA-associated PNH is a genetically-heterogeneous disease, and the FLNA mutation, c.5159dupA (p.Tyr1720*) is a newly identified pathogenic variant. FLNA characterization will help the clinical diagnosis and treatment of PNH and provide individualized genetic counseling for patients.
Collapse
Affiliation(s)
- Lin Yang
- Pediatric Department, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Hangzhou, Zhejiang 310000 China
| | - GuangSheng Wu
- Pediatric Department, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Hangzhou, Zhejiang 310000 China
| | - HuiMei Yin
- Pediatric Department, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Hangzhou, Zhejiang 310000 China
| | - MengLan Pan
- Pediatric Department, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Hangzhou, Zhejiang 310000 China
| | - YaFei Zhu
- Pediatric Department, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Hangzhou, Zhejiang 310000 China
| |
Collapse
|
10
|
Loft Nagel J, Jønch AE, Nguyen NTTN, Bygum A. Phenotypic manifestations in FLNA-related periventricular nodular heterotopia: a case report and review of the literature. BMJ Case Rep 2022; 15:e247268. [PMID: 35414575 PMCID: PMC9006829 DOI: 10.1136/bcr-2021-247268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/03/2022] Open
Abstract
Periventricular nodular heterotopia (PVNH) is an X-linked disease caused by loss-of-function variants in the filamin A (FLNA) gene. FLNA-PVNH is a heterogeneous disorder, and the phenotype is associated with neurological and non-neurological features including cardiovascular, gastrointestinal, pulmonary, haematological, cutaneous and skeletal manifestations. No clear definition of the FLNA-PVNH phenotype has been established, but the patients are predominantly females with seizures, cardiovascular manifestations, and normal intelligence or mild intellectual disability. Herein, we describe a PVNH patient diagnosed with a novel heterozygous missense variant in FLNA after an atypical presentation of deep vein thrombosis and thrombocytopenia. Clinical evaluation found hypermobility, cardiovascular and skin manifestations. Moreover, we conducted a literature review of 186 FLNA-PVNH patients to describe the phenotypic spectrum. In conclusion, our patient highlights the importance of thorough clinical evaluation to identify manifestations in this very heterogeneous disorder. The phenotypic review may guide clinicians in the assessment and follow-up of FLNA-PVNH patients.
Collapse
Affiliation(s)
- Julie Loft Nagel
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Aia Elise Jønch
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Nina T T N Nguyen
- Department of Neuroradiology, Odense University Hospital, Odense, Denmark
| | - Anette Bygum
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Cardiovascular, Brain, and Lung Involvement in a Newborn With a Novel FLNA Mutation: A Case Report and Literature Review. Adv Neonatal Care 2022; 22:125-131. [PMID: 33852449 DOI: 10.1097/anc.0000000000000878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Filamin A (FLNA) is an intracellular actin-binding protein, encoded by the FLNA gene, with a wide tissue expression. It is involved in several cellular functions, and extracellular matrix structuring. FLNA gene alterations lead to diseases with a wide phenotypic spectrum, such as brain periventricular nodular heterotopia (PVNH), cardiovascular abnormalities, skeletal dysplasia, and lung involvement. CLINICAL FINDINGS We present the case of a female infant who showed at birth aortic valve stenosis and PVNH, and subsequently developed interstitial lung disease with severe pulmonary hypertension. PRIMARY DIAGNOSIS The association of aortic valve dysplasia, left ventricular outflow obstruction, persistent patent ductus arteriosus, and brain heterotopic gray matter suggested a possible FLNA gene alteration. A novel heterozygous intronic variant in the FLNA gene (NM_001110556.1), c.4304-1G >A, was detected. INTERVENTIONS In consideration of valve morphology and severity of stenosis, the neonate was scheduled for a transcatheter aortic valvuloplasty. At 3 months of life, she developed hypoxemic respiratory failure with evidence of severe pulmonary hypertension. Inhaled nitric oxide (iNO) and milrinone on continuous infusion were started. Because of a partial response to iNO, an intravenous continuous infusion of sildenafil was introduced. OUTCOMES In consideration of severe clinical course and fatal outcome, the new FLNA gene mutation described in our patient seems to be associated with a loss of function of FLNA. PRACTICE RECOMMENDATIONS Lung and brain involvement, in association with left ventricular outflow obstruction and persistent patency of ductus arteriosus, should be considered highly suggestive of FLNA gene alterations, in a female newborn.
Collapse
|
12
|
Tanner LM, Kunishima S, Lehtinen E, Helin T, Volmonen K, Lassila R, Pöyhönen M. Platelet function and filamin A expression in two families with novel FLNA gene mutations associated with periventricular nodular heterotopia and panlobular emphysema. Am J Med Genet A 2022; 188:1716-1722. [PMID: 35156755 PMCID: PMC9303863 DOI: 10.1002/ajmg.a.62690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Pathogenic variants of the X‐linked FLNA gene encoding filamin A protein have been associated with a wide spectrum of symptoms, including the recently described pulmonary phenotype with childhood‐onset panlobular emphysema. We describe three female patients from two families with novel heterozygous FLNA variants c.5837_2del and c.508C > T. Analysis of immunofluorescence of peripheral blood smears and platelet function was performed for all patients. FLNA‐negative platelets were observed, suggesting that these variants result in the loss of a functional protein product. All three patients also had periventricular nodular heterotopia and panlobular emphysema. However, they had considerably milder symptoms and later age of onset than in the previously reported cases. Therefore, patients with pathogenic FLNA variants should be studied actively for lung involvement even in the absence of pronounced respiratory symptoms. Conversely, any patient with unexplained panlobular emphysema should be analyzed for pathogenic FLNA variants. We also suggest that immunofluorescence analysis is a useful tool for investigating the pathogenicity of novel FLNA variants.
Collapse
Affiliation(s)
- Laura M Tanner
- HUSLAB Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Shinji Kunishima
- Department of Medical Technology, Gifu University of Medical Science, Gifu, Japan
| | - Elina Lehtinen
- Coagulation Disorders Unit, Helsinki University Hospital, Research Program Unit in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Tuukka Helin
- HUSLAB Department of Chemistry and Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Volmonen
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, Helsinki University Hospital, Research Program Unit in Systems Oncology, University of Helsinki, Helsinki, Finland.,HUSLAB Department of Chemistry and Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- HUSLAB Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Abstract
Genetic testing plays an increasing diagnostic and prognostic role in the management of patients with heritable thoracic aortic disease (HTAD). The identification of a specific variant can establish or confirm the diagnosis of syndromic HTAD, dictate extensive evaluation of the arterial tree in HTAD with known distal vasculature involvement and justify closer follow-up and earlier surgical intervention in HTAD with high risk of dissection of minimal or normal aortic size. Evolving phenotype–genotype correlations lead us towards more precise and individualized management and treatment of patients with HTAD. In this review, we present the latest evidence regarding the role of genetics in patients with HTAD.
Collapse
|
14
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
15
|
Billon C, Adham S, Hernandez Poblete N, Legrand A, Frank M, Chiche L, Zuily S, Benistan K, Savale L, Zaafrane-Khachnaoui K, Brehin AC, Bal L, Busa T, Fradin M, Quelin C, Chesneau B, Wahl D, Fergelot P, Goizet C, Mirault T, Jeunemaitre X, Albuisson J. Cardiovascular and connective tissue disorder features in FLNA-related PVNH patients: progress towards a refined delineation of this syndrome. Orphanet J Rare Dis 2021; 16:504. [PMID: 34863227 PMCID: PMC8642866 DOI: 10.1186/s13023-021-02128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND FLNA Loss-of-Function (LoF) causes periventricular nodular heterotopia type 1 (PVNH1), an acknowledged cause of seizures of various types. Neurological symptoms are inconstant, and cardiovascular (CV) defects or connective tissue disorders (CTD) have regularly been associated. We aimed at refining the description of CV and CTD features in patients with FLNA LoF and depicting the multisystemic nature of this condition. METHODS We retrospectively evaluated FLNA variants and clinical presentations in FLNA LoF patient with at least one CV or CTD feature, from three cohorts: ten patients from the French Reference Center for Rare Vascular Diseases, 23 patients from the national reference diagnostic lab for filaminopathies-A, and 59 patients from literature review. RESULTS Half of patients did not present neurological symptoms. Most patients presented a syndromic association combining CV and CTD features. CV anomalies, mostly aortic aneurysm and/or dilation were present in 75% of patients. CTD features were present in 75%. Variants analysis demonstrated an enrichment of coding variants in the CH1 domain of FLNA protein. CONCLUSION In FLNA LoF patients, the absence of seizures should not be overlooked. When considering a diagnosis of PVNH1, the assessment for CV and CTD anomalies is of major interest as they represent interlinked features. We recommend systematic study of FLNA within CTD genes panels, regardless of the presence of neurological symptoms.
Collapse
Affiliation(s)
- Clarisse Billon
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France. .,INSERM, U970 PARCC, Université de Paris, Paris, France.
| | - Salma Adham
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,Service de Médecine Vasculaire, Hôpital Saint Eloi, CHU Montpellier, Montpellier, France
| | - Natalia Hernandez Poblete
- Département de génétique médicale, Centre national de référence pour les maladies rares Neurogénétiques, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France.,Laboratoire de maladies rares : Génétique et Metabolisme (MRGM), INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Anne Legrand
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Michael Frank
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Laurent Chiche
- Faculté de médecine, Université de la Sorbonne, Paris, France.,Service de chirurgie vasculaire et endovasculaire, Centre aortique tertiaire, Hôpital universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Stephane Zuily
- Inserm UMRS 1116 DCAC, Université de Lorraine, Nancy, France.,Division de médecine vasculaire et centre de compétence régional pour les maladies vasculaires rares et autoimmunes systémiques, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Karelle Benistan
- Centre de Référence des Syndromes d'Ehlers-Danlos non Vasculaires, Hôpital Raymond Poincaré, Assistance Publique Hôpitaux de Paris, Garches, France.,UMR U1179 INSERM, Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France
| | - Laurent Savale
- Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, INSERM, Groupe hospitalier Marie-Lannelongue -Saint Joseph, Université Paris-Sud, Le Plessis-Robinson, France.,Service de Pneumologie, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | | | - Anne-Claire Brehin
- INSERM U1245 , Normandy center for Genomic and Personalized Medicine, Normandie Univ, CHU Rouen, 76000, Rouen, France
| | - Laurence Bal
- Centre de référence régional Marfan et apparentés, Centre aortique, Hôpital La Timone, AP-HM, Marseille, France
| | - Tiffany Busa
- Département de Génétique Médicale, Hôpital La Timone, CHU de Marseille, Marseille, France
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, CHU Rennes, Hôpital Sud, Rennes, France
| | - Chloé Quelin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, CHU Rennes, Hôpital Sud, Rennes, France
| | - Bertrand Chesneau
- Service de génétique médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France.,Centre de Référence du Syndrome de Marfan et des syndromes apparentés, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Denis Wahl
- Inserm UMRS 1116 DCAC, Université de Lorraine, Nancy, France.,Division de médecine vasculaire et centre de compétence régional pour les maladies vasculaires rares et autoimmunes systémiques, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Patricia Fergelot
- Département de génétique médicale, Centre national de référence pour les maladies rares Neurogénétiques, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France.,Laboratoire de maladies rares : Génétique et Metabolisme (MRGM), INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Département de génétique médicale, Centre national de référence pour les maladies rares Neurogénétiques, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France.,Faculté de médecine, Université de la Sorbonne, Paris, France
| | - Tristan Mirault
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Xavier Jeunemaitre
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France
| | - Juliette Albuisson
- Département de génétique, Centre national de référence pour les maladies vasculaires rares, centre de référence européen VASCERN MSA, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France.,INSERM, U970 PARCC, Université de Paris, Paris, France.,Plateforme de Transfert en Biologie Cancérologique, Centre Georges François Leclerc - UNICANCER- Institut GIMI, Dijon, France
| | | |
Collapse
|
16
|
Chen Y, Wei X, Zhang Z, He Y, Huo B, Guo X, Feng X, Fang ZM, Jiang DS, Zhu XH. Downregulation of Filamin a Expression in the Aorta Is Correlated With Aortic Dissection. Front Cardiovasc Med 2021; 8:690846. [PMID: 34485398 PMCID: PMC8414519 DOI: 10.3389/fcvm.2021.690846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Filamins (FLNs) are actin cross-linking proteins, and as scaffolding proteins, FLNs are closely associated with the stabilization of the cytoskeleton. Nevertheless, the biological importance of FLNs in aortic dissection (AD) has not been well-elucidated. In this study, we first reanalyzed datasets downloaded from the Gene Expression Omnibus (GEO) database, and we found that in addition to the extracellular matrix, the actin cytoskeleton is a key structure associated with AD. Given that FLNs are involved in remodeling the cytoskeleton to affect cellular functions, we measured their expression levels in the aortas of patients with Stanford type A AD (TAAD). Our results showed that the mRNA and protein levels of FLNA were consistently decreased in dissected aortas of both humans and mice, while the FLNB protein level was upregulated despite decreased FLNB mRNA levels, and comparable expression levels of FLNC were observed between groups. Furthermore, the immunohistochemistry results demonstrated that FLNA was highly expressed in smooth muscle cells (SMCs) of aorta in non-AD samples, and downregulated in the medial layer of the dissected aortas of humans and mice. Moreover, we revealed that FOS and JUN, forming a dimeric transcription factor called AP-1 (activating protein-1), were positively correlated with the expression of FLNA in aorta. Either overexpression of FOS or JUN alone, or overexpression of FOS and JUN together, facilitated the expression of FLNA in primary cultured human aortic SMCs. In the present study, we not only detected the expression pattern of FLNs in aortas of humans and mice with or without AD, but we also found that the expression of FLNA in the AD samples was significantly reduced and that AP-1 might regulate the expression of FLNA. Our findings will contribute to the elucidation of the pathological mechanisms of AD and provide potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
17
|
Bandaru S, Ala C, Zhou AX, Akyürek LM. Filamin A Regulates Cardiovascular Remodeling. Int J Mol Sci 2021; 22:ijms22126555. [PMID: 34207234 PMCID: PMC8235345 DOI: 10.3390/ijms22126555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Chandu Ala
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Alex-Xianghua Zhou
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Levent M. Akyürek
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
- Correspondence:
| |
Collapse
|
18
|
Tencer J, Virupakshaiah A, Campbell IM, Zackai EH, Zarnow D, Agarwal S. A Case of Prenatally Diagnosed Periventricular Nodular Heterotopia in a Surviving Male Patient with FLNA Mutation. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1725017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
FLNA is a gene on the X chromosome that encodes Filamin A, a widely expressed protein crucial for forming the cell cytoskeleton and mediating cell signaling. Loss-of-function mutations have been associated with periventricular nodular heterotopia (PVNH) with associated epilepsy and intellectual deficits, as well as cardiovascular disease, connective tissue disorders, pulmonary disease, bleeding diathesis, and gastrointestinal disease. Alternatively, gain-of-function mutations have been described with otopalatodigital spectrum disorders.The loss-of-function variants of FLNA associated with PVNH have historically been considered lethal in males, often prenatally or by the first year of life. However, more surviving males with FLNA variants are being described. Most of the surviving males have missense or distal truncating mutations or a degree of mosaicism. Others are thought to have splice site mutations or in-frame exon skipping leading to production of some degree of functional Filamin A as possible mechanisms of survival.Here, we presented a case of a 20-month-old small but developmentally appropriate and healthy male infant who was prenatally diagnosed with PVNH, and postnatally found to have a nonsense variant of the FLNA gene. This mutation has not been previously clinically described or published to our knowledge.
Collapse
Affiliation(s)
- Jaclyn Tencer
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Akash Virupakshaiah
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Ian M. Campbell
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Elaine H. Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Deborah Zarnow
- Division of Radiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Sonika Agarwal
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| |
Collapse
|
19
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Welter H, Herrmann C, Fröhlich T, Flenkenthaler F, Eubler K, Schorle H, Nettersheim D, Mayerhofer A, Müller-Taubenberger A. Filamin A Orchestrates Cytoskeletal Structure, Cell Migration and Stem Cell Characteristics in Human Seminoma TCam-2 Cells. Cells 2020; 9:E2563. [PMID: 33266100 PMCID: PMC7761120 DOI: 10.3390/cells9122563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Filamins are large dimeric F-actin cross-linking proteins, crucial for the mechanosensitive properties of a number of cell types. Due to their interaction with a variety of different proteins, they exert important regulatory functions. However, in the human testis the role of filamins has been insufficiently explored. Immunohistochemical staining of human testis samples identified filamin A (FLNA) in spermatogonia and peritubular myoid cells. Investigation of different testicular tumor samples indicated that seminoma also express FLNA. Moreover, mass spectrometric analyses identified FLNA as one of the most abundant proteins in human seminoma TCam-2 cells. We therefore focused on FLNA in TCam-2 cells, and identified by co-immunoprecipitation LAD1, RUVBL1 and DAZAP1, in addition to several cytoskeletal proteins, as interactors of FLNA. To study the role of FLNA in TCam-2 cells, we generated FLNA-deficient cells using the CRISPR/Cas9 system. Loss of FLNA causes an irregular arrangement of the actin cytoskeleton and mechanical instability, impaired adhesive properties and disturbed migratory behavior. Furthermore, transcriptional activity of typical stem cell factors is increased in the absence of FLNA. In summary, our data suggest that FLNA is crucially involved in balancing stem cell characteristics and invasive properties in human seminoma cells and possibly human testicular germ cells.
Collapse
Affiliation(s)
- Harald Welter
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Carola Herrmann
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Katja Eubler
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Artur Mayerhofer
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Annette Müller-Taubenberger
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| |
Collapse
|
21
|
Lian G, Chenn A, Ekuta V, Kanaujia S, Sheen V. Formin 2 Regulates Lysosomal Degradation of Wnt-Associated β-Catenin in Neural Progenitors. Cereb Cortex 2020; 29:1938-1952. [PMID: 29659741 DOI: 10.1093/cercor/bhy073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Although neural progenitor proliferation along the ventricular zone is regulated by β-catenin through Wnt signaling, the cytoskeletal mechanisms that regulate expression and localization of these proteins are not well understood. Our prior studies have shown that loss of the actin-binding Filamin A (FlnA) and actin-nucleating protein Formin 2 (Fmn2) impairs endocytosis of low-density-lipoprotein-receptor-related protein 6 (Lrp6), thereby disrupting β-catenin activation, resulting in decreased brain size. Here, we report that activated RhoA-GTPase disengages Fmn2 N- to C-terminal binding to promote Fmn2 activation and redistribution into lysosomal vesicles. Fmn2 colocalizes with β-catenin in lysosomes and promotes its degradation. Further, Fmn2 binds the E3 ligase Smurf2, enhances Smurf2-dependent ubiquitination, and degradation of Dishevelled-2 (Dvl2), thereby initiates β-catenin degradation. Finally, Fmn2 overexpression disrupts neuroepithelial integrity, neuronal migration, and proliferation-phenotypes in E13 mouse embryos, as seen with loss of Fmn2+FlnA function. Conversely, co-expression of Dvl2 with Fmn2 rescues the proliferation defect due to Fmn2 overexpression in mouse embryos. These findings suggest that there is a homeostatic feedback mechanism in the cytoskeletal-dependent regulation of neural proliferation within the cerebral cortex. Upstream, Fmn2 promotes proliferation by stabilizing the Lrp6 receptor, leading to β-catenin activation. Downstream, RhoA-activated Fmn2 promotes lysosomal degradation of Dvl2, leading to β-catenin degradation.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anjen Chenn
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Victor Ekuta
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sneha Kanaujia
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Wade EM, Halliday BJ, Jenkins ZA, O'Neill AC, Robertson SP. The X‐linked filaminopathies: Synergistic insights from clinical and molecular analysis. Hum Mutat 2020; 41:865-883. [DOI: 10.1002/humu.24002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Emma M. Wade
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Benjamin J. Halliday
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Adam C. O'Neill
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
| |
Collapse
|
23
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Pelizzo G, Avanzini MA, Lenta E, Mantelli M, Croce S, Catenacci L, Acquafredda G, Ferraro AL, Giambanco C, D'Amelio L, Giordano S, Re G, Zennaro F, Calcaterra V. Allogeneic mesenchymal stromal cells: Novel therapeutic option for mutated FLNA-associated respiratory failure in the pediatric setting. Pediatr Pulmonol 2020; 55:190-197. [PMID: 31468740 DOI: 10.1002/ppul.24497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC)-mediated therapeutic effects have been observed in the treatment of lung diseases. For the first time, this treatment was used as rescue therapy in a pediatric patient with a life-threatening respiratory syndrome associated with the filamin A (FLNA) gene mutation. METHODS A child with a new pathogenic variant of the FLNA gene c.7391_7403del (p.Val2464AlafsTer5), at the age of 18 months, due to serious and irreversible chronic respiratory failure, was treated with repeated intravenous infusions of allogeneic bone marrow (BM)-MSCs. The child's respiratory condition was monitored. Immunologic studies before each MSC treatment were performed. RESULTS No acute adverse events related to the MSC infusions were observed. After the second infusion, the child's respiratory condition progressively improved, with reduced necessity for mechanical ventilation support. A thorax computed tomography (CT) scan showed bilateral recovery of the basal parenchyma, anatomical-functional alignment and aerial penetration improvement. After the first MSC administration, an increase in Th17 and FoxP3+ T percentages in the peripheral blood was observed. After the second MSC infusion, a significant rise in the Treg/Th17 ratio was noted, as well as an increased percentage of CD20+ /CD19+ B lymphocytes and augmented PHA-induced proliferation. DISCUSSION MSC infusions are a promising therapeutic modality for patients in respiratory failure, as observed in this pediatric patient with an FLNA mutation. MSCs may have an immunomodulatory effect and thus mitigate lung injury; although in this case, MSC antimicrobial effects may have synergistically impacted the clinical improvements. Further investigations are planned to establish the safety and efficacy of this treatment option for interstitial lung diseases in children.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital G. di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Maria A Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Laura Catenacci
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Aurelio L Ferraro
- Specialized Oncology Laboratory, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Caterina Giambanco
- Specialized Oncology Laboratory, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Lucia D'Amelio
- Specialized Oncology Laboratory, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Salvatore Giordano
- Biology Unit, Children's Hospital, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Giuseppe Re
- Pediatric Anesthesiology and Intensive Care Unit, Children's Hospital, Mediterranean Institute for Pediatric Excellence, Palermo, Italy
| | - Floriana Zennaro
- Radiologie Pédiatrique, Hôpitaux Pédiatriques de Nice CHU-Lenval, Nice, France
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
25
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
26
|
Fernández-Marmiesse A, Pérez-Poyato MS, Fontalba A, Marco de Lucas E, Martínez MT, Cabero Pérez MJ, Couce ML. Septo-optic dysplasia caused by a novel FLNA splice site mutation: a case report. BMC MEDICAL GENETICS 2019; 20:112. [PMID: 31234783 PMCID: PMC6591933 DOI: 10.1186/s12881-019-0844-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 06/05/2019] [Indexed: 12/22/2022]
Abstract
Background Septo-optic dysplasia (SOD), also known as de-Morsier syndrome, is a rare disorder characterized by any combination of optic nerve hypoplasia, pituitary gland hypoplasia, and midline abnormalities of the brain including absence of the septum pellucidum and corpus callosum dysgenesis. The variable presentation of SOD includes visual, neurologic, and/or hypothalamic-pituitary endocrine defects. The unclear aetiology of a large proportion of SOD cases underscores the importance of identifying novel SOD-associated genes. Case presentation To identify the disease-causing gene in a male infant with neonatal hypoglycaemia, dysmorphic features, and hypoplasia of the optic nerve and corpus callosum, we designed a targeted next-generation sequencing panel for brain morphogenesis defects. We identified a novel hemizygous deletion, c.6355 + 4_6355 + 5delAG, in intron 38 of the FLNA gene that the patient had inherited from his mother. cDNA studies showed that this variant results in the production of 3 aberrant FLNA transcripts, the most abundant of which results in retention of intron 38 of FLNA. Conclusions We report for the first time a case of early-onset SOD associated with a mutation in the FLNA gene. This finding broadens the spectrum of genetic causes of this rare disorder and expands the phenotypic spectrum of the FLNA gene.
Collapse
Affiliation(s)
- A Fernández-Marmiesse
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Galicia, Spain.
| | - M S Pérez-Poyato
- Pediatric Neurology Unit, Department of Pediatrics, Marqués de Valdecilla University Hospital, Santander, Cantabria, Spain
| | - A Fontalba
- Department of Genetics, Marqués de Valdecilla University Hospital, Santander, Cantabria, Spain
| | - E Marco de Lucas
- Department of Radiology, Marqués de Valdecilla University Hospital, Santander, Cantabria, Spain
| | - M T Martínez
- Department of Genetics, Marqués de Valdecilla University Hospital, Santander, Cantabria, Spain
| | - M J Cabero Pérez
- Pediatric Neurology Unit, Department of Pediatrics, Marqués de Valdecilla University Hospital, Santander, Cantabria, Spain
| | - M L Couce
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
27
|
Cannaerts E, Kempers M, Maugeri A, Marcelis C, Gardeitchik T, Richer J, Micha D, Beauchesne L, Timmermans J, Vermeersch P, Meyten N, Chénier S, van de Beek G, Peeters N, Alaerts M, Schepers D, Van Laer L, Verstraeten A, Loeys B. Novel pathogenic SMAD2 variants in five families with arterial aneurysm and dissection: further delineation of the phenotype. J Med Genet 2019; 56:220-227. [PMID: 29967133 DOI: 10.1136/jmedgenet-2018-105304] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Missense variants in SMAD2, encoding a key transcriptional regulator of transforming growth factor beta signalling, were recently reported to cause arterial aneurysmal disease. OBJECTIVES The aims of the study were to identify the genetic disease cause in families with aortic/arterial aneurysmal disease and to further define SMAD2 genotype-phenotype correlations. METHODS AND RESULTS Using gene panel sequencing, we identified a SMAD2 nonsense variant and four SMAD2 missense variants, all affecting highly conserved amino acids in the MH2 domain. The premature stop codon (c.612dup; p.(Asn205*)) was identified in a marfanoid patient with aortic root dilatation and in his affected father. A p.(Asn318Lys) missense variant was found in a Marfan syndrome (MFS)-like case who presented with aortic root aneurysm and in her affected daughter with marfanoid features and mild aortic dilatation. In a man clinically diagnosed with Loeys-Dietz syndrome (LDS) that presents with aortic root dilatation and marked tortuosity of the neck vessels, another missense variant, p.(Ser397Tyr), was identified. This variant was also found in his affected daughter with hypertelorism and arterial tortuosity, as well as his affected mother. The third missense variant, p.(Asn361Thr), was discovered in a man presenting with coronary artery dissection. Variant genotyping in three unaffected family members confirmed its absence. The last missense variant, p.(Ser467Leu), was identified in a man with significant cardiovascular and connective tissue involvement. CONCLUSION Taken together, our data suggest that heterozygous loss-of-function SMAD2 variants can cause a wide spectrum of autosomal dominant aortic and arterial aneurysmal disease, combined with connective tissue findings reminiscent of MFS and LDS.
Collapse
Affiliation(s)
- Elyssa Cannaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Carlo Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Luc Beauchesne
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sébastien Chénier
- CIUSSS de l'Estrie, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gerarda van de Beek
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Nils Peeters
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Dorien Schepers
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Pelizzo G, Collura M, Puglisi A, Pappalardo MP, Agolini E, Novelli A, Piccione M, Cacace C, Bussani R, Corsello G, Calcaterra V. Congenital emphysematous lung disease associated with a novel Filamin A mutation. Case report and literature review. BMC Pediatr 2019; 19:86. [PMID: 30922288 PMCID: PMC6440113 DOI: 10.1186/s12887-019-1460-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Progressive lung involvement in Filamin A (FLNA)-related cerebral periventricular nodular heterotopia (PVNH) has been reported in a limited number of cases. CASE PRESENTATION We report a new pathogenic FLNA gene variant (c.7391_7403del; p.Val2464Alafs*5) in a male infant who developed progressive lung disease with emphysematous lesions and interstitial involvement. Following lobar resection, chronic respiratory failure ensued necessitating continuous mechanical ventilation and tracheostomy. Cerebral periventricular nodular heterotopia was also present. CONCLUSIONS We report a novel variant of the FLNA gene, associated with a severe lung disorder and PNVH. The lung disorder led to respiratory failure during infancy and these pulmonary complications may be the first sign of this disorder. Early recognition with thoracic imaging is important to guide genetic testing, neuroimaging and to define optimal timing of potential therapies, such as lung transplant in progressive lung disease.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital "G. di Cristina", ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini, 1, 90134, Palermo, Italy.
| | - Mirella Collura
- Cystic Fibrosis and Respiratory Pediatric Center, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Aurora Puglisi
- Pediatric Anesthesiology and Intensive Care Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Maria Pia Pappalardo
- Pediatric Radiology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Piccione
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Caterina Cacace
- Neonatal Intensive Care Unit, Hospital "Barone Romeo" Patti, ASP Messina, Messina, Italy
| | - Rossana Bussani
- Institute of Pathological Anatomy, Trieste University Hospital, Trieste, Italy
| | - Giovanni Corsello
- Pediatrics and Neonatal Intensive Therapy Unit, Mother and Child Department, University of Palermo, Palermo, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
29
|
Chen MH, Choudhury S, Hirata M, Khalsa S, Chang B, Walsh CA. Thoracic aortic aneurysm in patients with loss of function Filamin A mutations: Clinical characterization, genetics, and recommendations. Am J Med Genet A 2019; 176:337-350. [PMID: 29334594 DOI: 10.1002/ajmg.a.38580] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 01/20/2023]
Abstract
The frequency and gender distribution of thoracic aortic aneurysm as a cardiovascular manifestation of loss-of-function (LOF) X-linked FilaminA (FLNA) mutations are not known. Furthermore, there is very limited cardiovascular morbidity or mortality data in children and adults. We analyzed cardiac data on the largest series of 114 patients with LOF FLNA mutations, both children and adults, with periventricular nodular heterotopia (PVNH), including 48 study patients and 66 literature patients, median age of 22.0 years (88 F, 26 M, range: 0-71 years), with 75 FLNA mutations observed in 80 families. Most (64.9%) subjects had a cardiac anomaly or vascular abnormality (80.8% of males and 60.2% of females). Thoracic aortic aneurysms or dilatation (TAA) were found in 18.4% (n = 21), and were associated with other structural cardiac malformations in 57.1% of patients, most commonly patent ductus arteriosus (PDA) and valvular abnormalities. TAA most frequently involved the aortic root and ascending aorta, and sinus of Valsalva aneurysms were present in one third of TAA patients. Six TAA patients (28.5%) required surgery (median age 37 yrs, range 13-41 yrs). TAA with its associated complications was also the only recorded cause of premature, non-accidental mortality in adults (2 M, 2 F). Two adult patients (1 F, 1 M, median 38.5 yrs), died of spontaneous aortic rupture at aortic dimensions smaller than current recommendations for surgery for other aortopathies. Data from this largest series of LOF FLNA mutation patients underscore the importance of serial follow-up to identify and manage these potentially devastating cardiovascular complications.
Collapse
Affiliation(s)
- Ming Hui Chen
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sangita Choudhury
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Mami Hirata
- Tokyo Women's Medical University, Tokyo, Japan
| | - Siri Khalsa
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Bernard Chang
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Mantovani G, Treppiedi D, Giardino E, Catalano R, Mangili F, Vercesi P, Arosio M, Spada A, Peverelli E. Cytoskeleton actin-binding proteins in clinical behavior of pituitary tumors. Endocr Relat Cancer 2019; 26:R95-R108. [PMID: 30589642 DOI: 10.1530/erc-18-0442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Although generally benign, pituitary tumors are frequently locally invasive, with reduced success of neurosurgery and unresponsive to pharmacological treatment with somatostatin or dopamine analogues. The molecular basis of the different biological behavior of pituitary tumors are still poorly identified, but a body of work now suggests that the activity of specific cytoskeleton proteins is a key factor regulating both the invasiveness and drug resistance of these tumors. This review recapitulates the experimental evidence supporting a role for the actin-binding protein filamin A (FLNA) in the regulation of somatostatin and dopamine receptors expression and signaling in pituitary tumors, thus in determining the responsiveness to currently used drugs, somatostatin analogues and dopamine receptor type 2 agonists. Regarding the regulation of invasive behavior of pituitary tumoral cells, we bring evidence to the role of the actin-severing protein cofilin, whose activation status may be modulated by dopaminergic and somatostatinergic drugs, through FLNA involvement. Molecular mechanisms involved in the regulation of FLNA expression and function in pituitary tumors will also be discussed.
Collapse
Affiliation(s)
- G Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - F Mangili
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - P Vercesi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Calcaterra V, Avanzini MA, Mantelli M, Agolini E, Croce S, De Silvestri A, Re G, Collura M, Maltese A, Novelli A, Pelizzo G. A case report on filamin A gene mutation and progressive pulmonary disease in an infant: A lung tissued derived mesenchymal stem cell study. Medicine (Baltimore) 2018; 97:e13033. [PMID: 30557962 PMCID: PMC6319781 DOI: 10.1097/md.0000000000013033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Mesenchymal stem cells (MSC) play a crucial role in both the maintenance of pulmonary integrity and the pathogenesis of lung disease. Lung involvement has been reported in patients with the filamin A (FLNA) gene mutation. Considering FLNA's role in the intrinsic mechanical properties of MSC, we characterized MSCs isolated from FLNA-defective lung tissue, in order to define their pathogenetic role in pulmonary damage. PATIENT CONCERNS A male infant developed significant lung disease resulting in emphysematous lesions and perivascular and interstitial fibrosis. He also exhibited general muscular hypotonia, bilateral inguinal hernia, and deformities of the lower limbs (pes tortus congenitalis and hip dysplasia). Following lobar resection, chronic respiratory failure occurred. DIAGNOSIS Genetic testing was performed during the course of his clinical care and revealed a new pathogenic variant of the FLNA gene c.7391_7403del; (p.Val2464AlafsTer5). Brain magnetic resonance imaging revealed periventricular nodular heterotopia. INTERVENTIONS AND OUTCOMES Surgical thoracoscopic lung biopsy was performed in order to obtain additional data on the pathological pulmonary features. A small portion of the pulmonary tissue was used for MSC expansion. Morphology, immunophenotype, differentiation capacity, and proliferative growth were evaluated. Bone marrow-derived mesenchymal stem cells (BM-MSC) were employed as a control. MSCs presented the typical MSC morphology and phenotype while exhibiting higher proliferative capacity (P <.001) and lower migration potential (P=.02) compared to control BM-MSC. LESSONS The genetic profile and altered features of the MSCs isolated from FLNA-related pediatric lung tissue could be directly related to defects in cell migration during embryonic lung development and pulmonary damage described in FLNA-defective patients.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Annalisa De Silvestri
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Giuseppe Re
- Pediatric Anesthesiology and Intensive Care Unit
| | | | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Antonio Novelli
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| |
Collapse
|
32
|
Cannaerts E, Shukla A, Hasanhodzic M, Alaerts M, Schepers D, Van Laer L, Girisha KM, Hojsak I, Loeys B, Verstraeten A. FLNA mutations in surviving males presenting with connective tissue findings: two new case reports and review of the literature. BMC MEDICAL GENETICS 2018; 19:140. [PMID: 30089473 PMCID: PMC6083619 DOI: 10.1186/s12881-018-0655-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/24/2018] [Indexed: 11/25/2022]
Abstract
Background Mutations in the X-linked gene filamin A (FLNA), encoding the actin-binding protein FLNA, cause a wide spectrum of connective tissue, skeletal, cardiovascular and/or gastrointestinal manifestations. Males are typically more severely affected than females with common pre- or perinatal death. Case presentation We provide a genotype- and phenotype-oriented literature overview of FLNA hemizygous mutations and report on two live-born male FLNA mutation carriers. Firstly, we identified a de novo, missense mutation (c.238C > G, p.(Leu80Val)) in a five-year old Indian boy who presented with periventricular nodular heterotopia, increased skin laxity, joint hypermobility, mitral valve prolapse with regurgitation and marked facial features (e.g. a flat face, orbital fullness, upslanting palpebral fissures and low-set ears). Secondly, we identified two cis-located FLNA mutations (c.7921C > G, p.(Pro2641Ala); c.7923delC, p.(Tyr2642Thrfs*63)) in a Bosnian patient with Ehlers-Danlos syndrome-like features such as skin translucency and joint hypermobility. This patient also presented with brain anomalies, pectus excavatum, mitral valve prolapse, pulmonary hypertension and dilatation of the pulmonary arteries. He died from heart failure in his second year of life. Conclusions These two new cases expand the list of live-born FLNA mutation-positive males with connective tissue disease from eight to ten, contributing to a better knowledge of the genetic and phenotypic spectrum of FLNA-related disease. Electronic supplementary material The online version of this article (10.1186/s12881-018-0655-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elyssa Cannaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College Manipal Academy of Higher Education, Manipal, India
| | - Mensuda Hasanhodzic
- Department of Endocrinology, Metabolic Diseases and Genetics, University Clinical Center Tuzla, Children's hospital, Tuzla, Bosnia and Herzegovina
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Dorien Schepers
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College Manipal Academy of Higher Education, Manipal, India
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children's Hospital Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Aline Verstraeten
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Antwerp, Belgium.
| |
Collapse
|
33
|
Fernández L, Tenorio J, Polo-Vaquero C, Vallespín E, Palomares-Bralo M, García-Miñaúr S, Santos-Simarro F, Arias P, Carnicer H, Giannivelli S, Medina J, Pérez-Piaya R, Solís J, Rodríguez M, Villagrá A, Rodríguez L, Nevado J, Martínez-Glez V, Heath KE, Lapunzina P. Variantes que mantienen el marco de lectura en el dominio Rod 1 proximal del gen FLNA se asocian con un predominio del fenotipo valvular. Rev Esp Cardiol 2018. [DOI: 10.1016/j.recesp.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Ieda D, Hori I, Nakamura Y, Ohshita H, Negishi Y, Shinohara T, Hattori A, Kato T, Inukai S, Kitamura K, Kawai T, Ohara O, Kunishima S, Saitoh S. A novel truncating mutation in FLNA causes periventricular nodular heterotopia, Ehlers-Danlos-like collagenopathy and macrothrombocytopenia. Brain Dev 2018; 40:489-492. [PMID: 29449050 DOI: 10.1016/j.braindev.2018.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Filamin A (FLNA) is located in Xq28, and encodes the actin binding protein, filamin A. A mutation in FLNA is the most common cause of periventricular nodular heterotopia (PVNH), but a clear phenotype-genotype correlation has not been established. Indeed, some patients with a FLNA mutation have recently been shown to additionally have Ehlers-Danlos-like collagenopathy or macrothrombocytopenia. In an attempt to establish a clearer correlation between clinical symptoms and genotype, we have investigated a phenotype that involves thrombocytopenia in a patient with a truncation of the FLNA gene. CASE REPORT We present the case of a 4-year-old girl who, at birth, showed a ventral hernia. At 2 months of age, she was diagnosed with patent ductus arteriosus (PDA) and aortic valve regurgitation. At 11 months, she underwent ligation of the PDA. She was also diagnosed with diaphragmatic eventration by a preoperative test. At 19 months, motor developmental delay was noted, and brain MRI revealed bilateral PVNH with mega cisterna magna. Presently, there is no evidence of epilepsy, intellectual disability or motor developmental delay. She has chronic, mild thrombocytopenia, and a platelet count that transiently decreases after viral infection. Dilation of the ascending aorta is progressing gradually. Genetic testing revealed a de novo nonsense heterozygous mutation in FLNA (NM_001456.3: c.1621G > T; p.Glu541Ter). Immunofluorescence staining of a peripheral blood smear showed a lack of filamin A expression in 21.1% of her platelets. These filamin A-negative platelets were slightly larger than her normal platelets. CONCLUSION Our data suggests immunofluorescence staining of peripheral blood smears is a convenient diagnostic approach to identify patients with a FLNA mutation, which will facilitate further investigation of the correlation between FLNA mutations and patient phenotype.
Collapse
Affiliation(s)
- Daisuke Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Ikumi Hori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Hironori Ohshita
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Tsutomu Shinohara
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takenori Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Sachiko Inukai
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Katsumasa Kitamura
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan
| | - Tomoki Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Japan
| | - Shinji Kunishima
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan.
| |
Collapse
|
35
|
Cortini F, Villa C. Ehlers-Danlos syndromes and epilepsy: An updated review. Seizure 2018; 57:1-4. [DOI: 10.1016/j.seizure.2018.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/17/2018] [Accepted: 02/23/2018] [Indexed: 01/10/2023] Open
|
36
|
BIG2-ARF1-RhoA-mDia1 Signaling Regulates Dendritic Golgi Polarization in Hippocampal Neurons. Mol Neurobiol 2018; 55:7701-7716. [PMID: 29455446 DOI: 10.1007/s12035-018-0954-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Proper dendrite development is essential for establishing neural circuitry, and Rho GTPases play key regulatory roles in this process. From mouse brain lysates, we identified Brefeldin A-inhibited guanine exchange factor 2 (BIG2) as a novel Rho GTPase regulatory protein involved in dendrite growth and maintenance. BIG2 was highly expressed during early development, and knockdown of the ARFGEF2 gene encoding BIG2 significantly reduced total dendrite length and the number of branches. Expression of the constitutively active ADP-ribosylation factor 1 ARF1 Q71L rescued the defective dendrite morphogenesis of ARFGEF2-null neurons, indicating that BIG2 controls dendrite growth and maintenance by activating ARF1. Moreover, BIG2 co-localizes with the Golgi apparatus and is required for Golgi deployment into major dendrites in cultured hippocampal neurons. Simultaneous overexpression of BIG2 and ARF1 activated RhoA, and treatment with the RhoA activator lysophosphatidic acid in neurons lacking BIG2 or ARF1 increased the number of cells with dendritic Golgi, suggesting that BIG2 and ARF1 activate RhoA to promote dendritic Golgi polarization. mDia1 was identified as a downstream effector of BIG2-ARF1-RhoA axis, mediating Golgi polarization and dendritic morphogenesis. Furthermore, in utero electroporation of ARFGEF2 shRNA into the embryonic mouse brain confirmed an in vivo role of BIG2 for Golgi deployment into the apical dendrite. Taken together, our results suggest that BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization and dendrite growth and maintenance in hippocampal neurons.
Collapse
|
37
|
Fernández L, Tenorio J, Polo-Vaquero C, Vallespín E, Palomares-Bralo M, García-Miñaúr S, Santos-Simarro F, Arias P, Carnicer H, Giannivelli S, Medina J, Pérez-Piaya R, Solís J, Rodríguez M, Villagrá A, Rodríguez L, Nevado J, Martínez-Glez V, Heath KE, Lapunzina P. In-frame Variants in FLNA Proximal Rod 1 Domain Associate With a Predominant Cardiac Valvular Phenotype. ACTA ACUST UNITED AC 2017; 71:545-552. [PMID: 29146485 DOI: 10.1016/j.rec.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND OBJECTIVES X-linked cardiac valvular dysplasia is a rare form of male-specific congenital heart defect mainly characterized by myxomatous degeneration of the atrioventricular valves with variable hemodynamic consequences. It is caused by genetic defects in FLNA-encoded filamin A, a widely expressed actin-binding protein that regulates cytoskeleton organization. Filamin A loss of function has also been associated with often concurring neurologic and connective tissue manifestations, with mutations in the first half of the Rod 1 domain apparently expressing the full cardiac phenotype. We contribute to previous genotype-phenotype correlations with a multidisciplinary approach in a newly-described family. METHODS Cardiologic, dysmorphologic, and genetic evaluation of available members were complemented with transcriptional and X-chromosome inactivation studies. RESULTS A novel FLNA mutation c.1066-3C>G cosegregated with a male-expressed, apparently isolated, cardiac phenotype with no skewed X-inactivation pattern in female carriers. This variant was shown to result in an in-frame deletion of 8 amino acid residues near the N-terminal region of the protein. CONCLUSIONS A nonimprinted, partial loss of function of filamin A proximal Rod 1 domain seems to be the pathogenetic mechanism of cardiac valvular dysplasia, with some cases occasionally expressing associated extracardiac manifestations.
Collapse
Affiliation(s)
- Luis Fernández
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Coral Polo-Vaquero
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Elena Vallespín
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sixto García-Miñaúr
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hernán Carnicer
- Unidad de Pediatría, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | | | - Juan Medina
- Unidad de Cardiología, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Rosa Pérez-Piaya
- Unidad de Pediatría, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Jorge Solís
- Unidad de Cardiología, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Mónica Rodríguez
- Unidad de Cardiología Infantil, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Alexandra Villagrá
- Unidad de Cardiología Infantil, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Laura Rodríguez
- Laboratorio Clínico, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Víctor Martínez-Glez
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Karen E Heath
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Unidad de Genética Clínica, Hospital Universitario HM Montepríncipe, Madrid, Spain
| |
Collapse
|
38
|
Seidelmann SB, Smith E, Subrahmanyan L, Dykas D, Abou Ziki MD, Azari B, Hannah-Shmouni F, Jiang Y, Akar JG, Marieb M, Jacoby D, Bale AE, Lifton RP, Mani A. Application of Whole Exome Sequencing in the Clinical Diagnosis and Management of Inherited Cardiovascular Diseases in Adults. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001573. [PMID: 28087566 DOI: 10.1161/circgenetics.116.001573] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND With the advent of high throughput sequencing, the identification of genetic causes of cardiovascular disease (CVD) has become an integral part of medical diagnosis and management and at the forefront of personalized medicine in this field. The use of whole exome sequencing for clinical diagnosis, risk stratification, and management of inherited CVD has not been previously evaluated. METHODS AND RESULTS We analyzed the results of whole exome sequencing in first 200 adult patients with inherited CVD, who underwent genetic testing at the Yale Program for Cardiovascular Genetics. Genetic diagnosis was reached and reported with a success rate of 26.5% (53 of 200 patients). This compares to 18% (36 of 200) that would have been diagnosed using commercially available genetic panels (P=0.04). Whole exome sequencing was particularly useful for clinical diagnosis in patients with aborted sudden cardiac death, in whom the primary insult for the presence of both depressed cardiac function and prolonged QT had remained unknown. The analysis of the remaining cases using genome annotation and disease segregation led to the discovery of novel candidate genes in another 14% of the cases. CONCLUSIONS Whole exome sequencing is an exceptionally valuable screening tool for its capability to establish the clinical diagnosis of inherited CVDs, particularly for poorly defined cases of sudden cardiac death. By presenting novel candidate genes and their potential disease associations, we also provide evidence for the use of this genetic tool for the identification of novel CVD genes. Creation and sharing of exome databases across centers of care should facilitate the discovery of unknown CVD genes.
Collapse
Affiliation(s)
- Sara B Seidelmann
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Emily Smith
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Lakshman Subrahmanyan
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Daniel Dykas
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Maen D Abou Ziki
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Bani Azari
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Fady Hannah-Shmouni
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Yuexin Jiang
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Joseph G Akar
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Mark Marieb
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Daniel Jacoby
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Allen E Bale
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Richard P Lifton
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.)
| | - Arya Mani
- From the Division of Cardiovascular Medicine (S.B.S., E.S., L.S., M.D.A.Z., B.A., J.G.A., M.M., D.J., A.M.), Yale Program for Cardiovascular Genetics (S.B.S., E.S., L.S., F.H.-S., A.M.), Department of Genetics, Yale School of Medicine, New Haven, CT (D.D., A.E.B., R.P.L., A.M.); Division of Cardiovascular Medicine, Department of Radiology (S.B.S.) and Division of Cardiac Imaging (S.B.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Key Laboratory of Clinical Trail Research in Cardiovascular Drugs, Ministry of Health Cardiovascular Institute, Fu Wai Hospital, CAMS and PUMC, Beijing, China (Y.J.).
| |
Collapse
|
39
|
[Ehlers-Danlos syndromes]. Ann Dermatol Venereol 2017; 144:744-758. [PMID: 29032848 DOI: 10.1016/j.annder.2017.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/27/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022]
Abstract
Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inheritable connective tissue disorders characterized by skin hyperextensibility, joint hypermobility and cutaneous fragility with delayed wound healing. Over and above these common features, they differ in the presence or absence of various organ and tissue abnormalities, and differences in genetic causal mechanisms and degree of severity. They are complex and multisystem diseases, with the majority being highly disabling because of major joint problems and neurosensory deficiencies, and in some cases, they may be life-threatening due to associated complications, especially vascular disorders. In 1997, the Villefranche classification defined 6 subtypes of EDS. However, many other new variants have been described over the last years. The "historical" EDS were characterized by abnormalities in fibrillar collagen protein synthesis. More recently, disorders of synthesis and organization of the extracellular matrix have been shown to be responsible for other types of EDS. Thus, many EDS are in fact metabolic diseases related to enzymatic defects. While there is no curative treatment for any type of EDS, early diagnosis is of utmost importance in order to optimize the symptomatic management of patients and to prevent avoidable complications. Patients must be treated and monitored by multidisciplinary teams in highly specialized reference centers. In this article, we present the current state of knowledge on these diseases that continue to be elucidated thanks to new molecular genetic techniques.
Collapse
|
40
|
Zou M, Huang C, Li X, He X, Chen Y, Liao W, Liao Y, Sun J, Liu Z, Zhong L, Bin J. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection. Oncotarget 2017; 8:81825-81837. [PMID: 29137225 PMCID: PMC5669851 DOI: 10.18632/oncotarget.18998] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022] Open
Abstract
Objective To assess the circular RNAs (circRNAs) expression profile and explore the potential functions in human thoracic aortic dissection (TAD). Methods The differentially expressed circRNAs profiles of the aortic segments between human type A TAD patients (n=3) and age-matched normal donors (NA; n=3) were analyzed using the Arraystar human circRNAs microarray. Quantitative real-time PCR was used to validate the expression pattern of circRNAs, parental genes, and hsa-miR-320a; Western blotting confirmed MMP9 expression with additional samples. Bioinformatic tools including network analysis, Gene ontology, and KEGG pathway analysis were utilized. Results Among 8,173 detected circRNA genes, 156 upregulated and 106 downregulated significantly in human TAD as compared to NA (P£0.05). Quantitative real-time PCR showed an elevated expression of the upregulated hsa_circRNA_101238, hsa_circRNA_104634, hsa_circRNA_002271, hsa_circRNA_102771, hsa_circRNA_104349, COL1A1, and COL6A3 and reduced of the downregulated hsa_circRNA_102683, hsa_circRNA_005525, hsa_circRNA_103458, and FLNA. Gene ontology analysis revealed that the parental genes favored several pathological processes, such as negative regulation of cell proliferation and extracellular matrix organization. The circRNA-miRNA co-expression network predicted that 33 circRNAs might interact with at least one target miRNAs altered in TAD. KEGG pathway analysis revealed that 28 altered miRNAs were enriched on focal adhesion and vascular smooth muscle contraction. The hsa_circRNA_101238-miRNA-mRNA network indicated the highest degree of hsa-miR-320a. Quantitative real-time PCR and Western blot manifested the low expression of hsa-miR-320a and high of MMP9 in human TAD tissues, respectively. Conclusions This study revealed hundreds of differentially expressed circular RNAs in human TAD, suggesting that hsa_circRNA_101238 might inhibit the expression of hsa-miR-320a and increase that of MMP9 in TAD.
Collapse
Affiliation(s)
- Meisheng Zou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Wards of Cadres, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou, China
| | - Chixiong Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Cardiology, Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Ze Liu
- Wards of Cadres, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Burrage LC, Guillerman RP, Das S, Singh S, Schady DA, Morris SA, Walkiewicz M, Schecter MG, Heinle JS, Lotze TE, Lalani SR, Mallory GB. Lung Transplantation for FLNA-Associated Progressive Lung Disease. J Pediatr 2017; 186:118-123.e6. [PMID: 28457522 PMCID: PMC5534178 DOI: 10.1016/j.jpeds.2017.03.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To describe a series of patients with pathogenic variants in FLNA and progressive lung disease necessitating lung transplantation. STUDY DESIGN We conducted a retrospective chart review of 6 female infants with heterozygous presumed loss-of-function pathogenic variants in FLNA whose initial presentation was early and progressive respiratory failure. RESULTS Each patient received lung transplantation at an average age of 11 months (range, 5-15 months). All patients had pulmonary arterial hypertension and chronic respiratory failure requiring tracheostomy and escalating levels of ventilator support before transplantation. All 6 patients survived initial lung transplantation; however, 1 patient died after a subsequent heart-lung transplant. The remaining 5 patients are living unrestricted lives on chronic immunosuppression at most recent follow-up (range, 19 months to 11.3 years post-transplantation). However, in all patients, severe ascending aortic dilation has been observed with aortic regurgitation. CONCLUSIONS Respiratory failure secondary to progressive obstructive lung disease during infancy may be the presenting phenotype of FLNA-associated periventricular nodular heterotopia. We describe a cohort of patients with progressive respiratory failure related to a pathogenic variant in FLNA and present lung transplantation as a viable therapeutic option for this group of patients.
Collapse
Affiliation(s)
- Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine,Texas Children’s Hospital
| | | | - Shailendra Das
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine
| | - Shipra Singh
- Division of Pulmonology, Department of Pediatrics, State University of New York - Buffalo
| | | | - Shaine A. Morris
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine
| | | | - Marc G. Schecter
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati School of Medicine
| | - Jeffrey S. Heinle
- Division of Congenital Heart Surgery, Department of Surgery, Baylor College of Medicine
| | - Timothy E. Lotze
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine,Texas Children’s Hospital
| | - George B. Mallory
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine
| |
Collapse
|
42
|
Hu J, Lu J, Goyal A, Wong T, Lian G, Zhang J, Hecht JL, Feng Y, Sheen VL. Opposing FlnA and FlnB interactions regulate RhoA activation in guiding dynamic actin stress fiber formation and cell spreading. Hum Mol Genet 2017; 26:1294-1304. [PMID: 28175289 DOI: 10.1093/hmg/ddx047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Filamins are a family of actin-binding proteins responsible for diverse biological functions in the context of regulating actin dynamics and vesicle trafficking. Disruption of these proteins has been implicated in multiple human developmental disorders. To investigate the roles of different filamin isoforms, we focused on FlnA and FlnB interactions in the cartilage growth plate, since mutations in both molecules cause chondrodysplasias. Current studies show that FlnA and FlnB share a common function in stabilizing the actin cytoskeleton, they physically interact in the cytoplasm of chondrocytes, and loss of FlnA enhances FlnB expression of chondrocytes in the growth plate (and vice versa), suggesting compensation. Prolonged FlnB loss, however, promotes actin-stress fiber formation following plating onto an integrin activating substrate whereas FlnA inhibition leads to decreased actin formation. FlnA more strongly binds RhoA, although both filamins overlap with RhoA expression in the cell cytoplasm. FlnA promotes RhoA activation whereas FlnB indirectly inhibits this pathway. Moreover, FlnA loss leads to diminished expression of β1-integrin, whereas FlnB loss promotes integrin expression. Finally, fibronectin mediated integrin activation has been shown to activate RhoA and activated RhoA leads to stress fiber formation and cell spreading. Fibronectin stimulation in null FlnA cells impairs enhanced spreading whereas FlnB inhibited cells show enhanced spreading. While filamins serve a primary static function in stabilization of the actin cytoskeleton, these studies are the first to demonstrate a dynamic and antagonistic relationship between different filamin isoforms in the dynamic regulation of integrin expression, RhoGTPase activity and actin stress fiber remodeling.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Akshay Goyal
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jingping Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Berrou E, Adam F, Lebret M, Planche V, Fergelot P, Issertial O, Coupry I, Bordet JC, Nurden P, Bonneau D, Colin E, Goizet C, Rosa JP, Bryckaert M. Gain-of-Function Mutation in Filamin A Potentiates Platelet Integrin α IIbβ 3 Activation. Arterioscler Thromb Vasc Biol 2017; 37:1087-1097. [PMID: 28428218 DOI: 10.1161/atvbaha.117.309337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/31/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Dominant mutations of the X-linked filamin A (FLNA) gene are responsible for filaminopathies A, which are rare disorders including brain periventricular nodular heterotopia, congenital intestinal pseudo-obstruction, cardiac valves or skeleton malformations, and often macrothrombocytopenia. APPROACH AND RESULTS We studied a male patient with periventricular nodular heterotopia and congenital intestinal pseudo-obstruction, his unique X-linked FLNA allele carrying a stop codon mutation resulting in a 100-amino acid-long FLNa C-terminal extension (NP_001447.2: p.Ter2648SerextTer101). Platelet counts were normal, with few enlarged platelets. FLNa was detectable in all platelets but at 30% of control levels. Surprisingly, all platelet functions were significantly upregulated, including platelet aggregation and secretion, as induced by ADP, collagen, or von Willebrand factor in the presence of ristocetin, as well as thrombus formation in blood flow on a collagen or on a von Willebrand factor matrix. Most importantly, patient platelets stimulated with ADP exhibited a marked increase in αIIbβ3 integrin activation and a parallel increase in talin recruitment to β3, contrasting with normal Rap1 activation. These results are consistent with the mutant FLNa affecting the last step of αIIbβ3 activation. Overexpression of mutant FLNa in the HEL megakaryocytic cell line correlated with an increase (compared with wild-type FLNa) in PMA-induced fibrinogen binding to and in talin and kindlin-3 recruitment by αIIbβ3. CONCLUSIONS Altogether, our results are consistent with a less binding of mutant FLNa to β3 and the facilitated recruitment of talin by β3 on platelet stimulation, explaining the increased αIIbβ3 activation and the ensuing gain-of-platelet functions.
Collapse
Affiliation(s)
- Eliane Berrou
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Frédéric Adam
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Marilyne Lebret
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Virginie Planche
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Patricia Fergelot
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Odile Issertial
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Isabelle Coupry
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Jean-Claude Bordet
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Paquita Nurden
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Dominique Bonneau
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Estelle Colin
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Cyril Goizet
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Jean-Philippe Rosa
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.)
| | - Marijke Bryckaert
- From the INSERM UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (E.B., F.A., M.L., V.P., O.I., J.-P.R., M.B.); INSERM UMR_S 1211, Université de Bordeaux, CHU Bordeaux UNIV EA 4576, Place Aurélie Raba-Léon, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Place Aurélie Raba-Léon, France (P.F., C.G.); Unité d'Hémostase Biologique, Hospices Civils de Lyon, CBE Bron, EA4609 and CIQLE-Lyon Bio Image, Université Lyon, France (J.-C.B.); Institut Hospitalo-Universitaire LIRYC PTIB, Hôpital Xavier Arnozan, av du Haut Lévêque, Pessac, France (P.N.); and Département de Biochimie et Génétique, INSERM UMR_S 1083 - CNRS 6214, CHU Angers, Angers, France (D.B., E.C.).
| |
Collapse
|
44
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
45
|
Abstract
Thoracic aortic aneurysm is a potentially life-threatening condition in that it places patients at risk for aortic dissection or rupture. However, our modern understanding of the pathogenesis of thoracic aortic aneurysm is quite limited. A genetic predisposition to thoracic aortic aneurysm has been established, and gene discovery in affected families has identified several major categories of gene alterations. The first involves mutations in genes encoding various components of the transforming growth factor beta (TGF-β) signaling cascade (FBN1, TGFBR1, TGFBR2, TGFB2, TGFB3, SMAD2, SMAD3 and SKI), and these conditions are known collectively as the TGF-β vasculopathies. The second set of genes encode components of the smooth muscle contractile apparatus (ACTA2, MYH11, MYLK, and PRKG1), a group called the smooth muscle contraction vasculopathies. Mechanistic hypotheses based on these discoveries have shaped rational therapies, some of which are under clinical evaluation. This review discusses published data on genes involved in thoracic aortic aneurysm and attempts to explain divergent hypotheses of aneurysm origin.
Collapse
Affiliation(s)
- Eric M Isselbacher
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christian Lacks Lino Cardenas
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mark E Lindsay
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
46
|
Ritelli M, Morlino S, Giacopuzzi E, Carini G, Cinquina V, Chiarelli N, Majore S, Colombi M, Castori M. Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA. Am J Med Genet A 2016; 173:169-176. [PMID: 27739212 DOI: 10.1002/ajmg.a.38004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022]
Abstract
Filamin A is an X-linked, ubiquitous actin-binding protein whose mutations are associated to multiple disorders with limited genotype-phenotype correlations. While gain-of-function mutations cause various bone dysplasias, loss-of-function variants are the most common cause of periventricular nodular heterotopias with variable soft connective tissue involvement, as well as X-linked cardiac valvular dystrophy (XCVD). The term "Ehlers-Danlos syndrome (EDS) with periventricular heterotopias" has been used in females with neurological, cardiovascular, integument and joint manifestations, but this nosology is still a matter of debate. We report the clinical and molecular update of an Italian family with an X-linked recessive soft connective tissue disorder and which was described, in 1975, as the first example of EDS type V of the Berlin nosology. The cutaneous phenotype of the index patient was close to classical EDS and all males died for a lethal cardiac valvular dystrophy. Whole exome sequencing identified the novel c.1829-1G>C splice variation in FLNA in two affected cousins. The nucleotide change was predicted to abolish the canonical splice acceptor site of exon 13 and to activate a cryptic acceptor site 15 bp downstream, leading to in frame deletion of five amino acid residues (p.Phe611_Gly615del). The predicted in frame deletion clusters with all the mutations previously identified in XCVD and falls within the N-terminus rod 1 domain of filamin A. Our findings expand the male-specific phenotype of FLNA mutations that now includes classical-like EDS with lethal cardiac valvular dystrophy, and offer further insights for the genotype-phenotype correlations within this spectrum. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Silvia Morlino
- Unit of Clinical Genetics, San Camillo-Forlanini Hospital, Rome, Italy
| | - Edoardo Giacopuzzi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Giulia Carini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Silvia Majore
- Unit of Clinical Genetics, San Camillo-Forlanini Hospital, Rome, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Marco Castori
- Unit of Clinical Genetics, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
47
|
Meester JAN, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S, Waitzman K, Young L, Markham LW, Vogt J, Richer J, Beauchesne LM, Unger S, Superti-Furga A, Prsa M, Dhillon R, Reyniers E, Dietz HC, Wuyts W, Mortier G, Verstraeten A, Van Laer L, Loeys BL. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med 2016; 19:386-395. [PMID: 27632686 PMCID: PMC5207316 DOI: 10.1038/gim.2016.126] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. METHODS We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. RESULTS We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. CONCLUSION In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Pintelon
- Department of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Martin Lammens
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Lana Van Hoorick
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Simon De Belder
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Kathryn Waitzman
- Department of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Luciana Young
- Department of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Larry W Markham
- Divisions of Pediatric and Adult Cardiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Luc M Beauchesne
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Sheila Unger
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Milan Prsa
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Rami Dhillon
- The Heart Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Edwin Reyniers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Harry C Dietz
- Howard Hughes Medical Institute, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wim Wuyts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
48
|
Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016; 35:1021-44. [PMID: 27056680 PMCID: PMC4868950 DOI: 10.15252/embj.201593701] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Cristina Llinares-Benadero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
49
|
Hommel AL, Jewett T, Mortenson M, Caress JB. Juvenile muscular atrophy of the distal upper extremities associated with x-linked periventricular heterotopia with features of Ehlers-Danlos syndrome. Muscle Nerve 2016; 54:794-7. [PMID: 27144976 DOI: 10.1002/mus.25175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Juvenile muscular atrophy of the distal upper extremities (JMADUE) is a rare, sporadic disorder that affects adolescent males and is characterized by progressive but self-limited weakness of the distal upper extremities. The etiology is unknown, but cervical hyperflexion has been hypothesized. METHODS We report a case of an adolescent male who presented with typical JMADUE but also had joint hypermobility and multiple congenital anomalies, including periventricular heterotopias, suggesting a multisystem syndrome. RESULTS Subsequent diagnostic testing confirmed a diagnosis of JMADUE, and sequencing of the filamin-A gene showed a novel, pathogenic mutation that confirmed an additional diagnosis of X-linked periventricular heterotopias with features of Ehlers-Danlos syndrome (XLPH-EDS). CONCLUSIONS The concurrent diagnosis of these 2 rare conditions suggests a pathogenic connection. It is likely that the joint hypermobility from XLPH-EDS predisposed this patient to developing JMADUE. This supports the cervical hyperflexion theory of pathogenesis. This case also expands the phenotype associated with FLNA mutations. Muscle Nerve 54: 794-797, 2016.
Collapse
Affiliation(s)
- Alyson L Hommel
- Department of Neurology, Section on Neuromuscular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Tamison Jewett
- Department of Pediatrics, Section on Medical Genetics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Megan Mortenson
- Department of Pediatrics, Section on Medical Genetics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James B Caress
- Department of Neurology, Section on Neuromuscular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
50
|
Eltahir S, Ahmad KS, Al-Balawi MM, Bukhamsien H, Al-Mobaireek K, Alotaibi W, Al-Shamrani A. Lung disease associated with filamin A gene mutation: a case report. J Med Case Rep 2016; 10:97. [PMID: 27091362 PMCID: PMC4836084 DOI: 10.1186/s13256-016-0871-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding filamin A (FLNA) lead to diseases with high phenotypic diversity including periventricular nodular heterotopia, skeletal dysplasia, otopalatodigital spectrum disorders, cardiovascular abnormalities, and coagulopathy. FLNA mutations were recently found to be associated with lung disease. In this study, we report a novel FLNA gene associated with significant lung disease and unique angiogenesis. CASE PRESENTATION Here, we describe a 1-year-old Saudi female child with respiratory distress at birth. The child then had recurrent lower respiratory tract infections, bilateral lung emphysema with basal atelectasis, bronchospasm, pulmonary artery hypertension, and oxygen and mechanical ventilation dependency. Molecular testing showed a new pathogenic variant of one copy of c.3153dupC in exon 21 in the FLNA gene. CONCLUSIONS Our data support previous reports in the literature that associate FLNA gene mutation and lung disease.
Collapse
Affiliation(s)
- Safa Eltahir
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Khalid S Ahmad
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Mohammed M Al-Balawi
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia.
| | - Hussien Bukhamsien
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Khalid Al-Mobaireek
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Wadha Alotaibi
- King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia
| | | |
Collapse
|