1
|
Gorgich EA, Heidari Z, Mahmoudzadeh-Sagheb H, Rustamzadeh A, Shabani A, Amirzadeh A, Haghi Ashtiani B. Brain Metabolite Profiles are Associated with Selective Neuronal Vulnerability and Underlying Mechanisms in Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2025; 16:1469-1480. [PMID: 40156516 DOI: 10.1021/acschemneuro.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurological syndrome accompanied by selective degeneration of somatic motor neurons and neurochemistry alterations. Nevertheless, eye movement's nuclei are relatively spared from ALS damage. This survey was to probe metabolite changes in the primary motor cortex (PMC) and interstitial nucleus of Cajal (INC) of ALS patients using proton magnetic resonance spectroscopy (1H-MRS). In this case-control study, 20 patients with ALS and 20 healthy controls underwent 1.5 T MRI and multivoxel 1H-MRS. 1H-MRS spectra to determine metabolite profiles including tNAA, mIns, tCr, tCho, and also tNAA/tCr, tNAA/tCho, and mIns/tNAA metabolite ratios from the PMC and INC were quantified via a point resolved spectroscopy pulse (PRESS) sequence in two groups. Further, the associations between 1H-MRS markers with forced vital capacity (FVC), ALS functional rating scale (ALSFRS-R), and disease progression rate (ΔFS) were investigated. In the PMC, tNAA and tNAA/tCr were significantly lower in ALS patients than the healthy controls, but mIns and mIns/tNAA were significantly greater in these patients (p < 0.05). In the INC, tCho and mIns concentrations, and mIns/tNAA ratio were significantly increased (p < 0.05) in ALS patients, while tNAA and tNAA/tCr ratio did not show significant discriminations between the two groups (p > 0.05). The PMC tNAA/Cr ratio is associated with ALSFRS-R (p = 0.001, r = 0.71), FVC (p = 0.03, r = 0.58), and ΔFS (p = 0.01, r = -0.33). The mIns/tNAA ratio in PMC is also associated with ΔFS (p = 0.02, r = 0.41). In the INC, tCho concentrations (p = 0.04, r = -0.54) and mIns/tNAA ratio (p = 0.02, r = -0.38) were negatively associated with ALSFRS-R and positively correlated with ΔFS (p = 0.01, r = 0.33) and (p = 0.001, r = 0.61), respectively. The study suggests that neurochemistry changes in ALS patients' brains are linked to selective neuronal vulnerability and the underlying pathophysiology of the disease.
Collapse
Affiliation(s)
- Enam Alhagh Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr 99166-43535, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin 34148-53135, Iran
| | - Arash Shabani
- Department of Advanced Imaging and Image Processing, Saadatabad Medical Imaging Center, Tehran 14496-14535, Iran
| | - Ali Amirzadeh
- Department of Advanced Imaging and Image Processing, Saadatabad Medical Imaging Center, Tehran 14496-14535, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran 15937-48711, Iran
| |
Collapse
|
2
|
Chaabouni S, Al-Kiyoumi W, Fessi MS, Methnani R, Al-Hadabi B, Al Kitani M, Al-Jadidi K, Moalla W, Gmada N. Impact of a 6-week foot tapping training program on lower limb strength, sprinting, jumping, and change of direction ability in soccer players. J Sports Sci 2025:1-8. [PMID: 40197275 DOI: 10.1080/02640414.2025.2489853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
This study aimed to evaluate the effects of a 6-week foot tapping training program (TAP-Training) on enhancing lower limb strength, sprinting, jumping, and change of direction ability in soccer players. Twenty-two soccer players were randomly assigned to either the TAP-Training group (TAP-TG, N = 11), which underwent the 6-week TAP-Training program, or the control group (CG, N = 11). Pre- and post-training assessments included jumps, sprints, the foot tapping test (TAP-test), and the change of direction test (MICOD), which were compared within and between groups. Significant improvements were observed post-training only in TAP score (p < 0.01) and MICOD performance (p < 0.05) within the TAP-TG. This indicates a positive impact of the neuromuscular frequency training program on TAP scores and change of direction performance. Conversely, no significant differences were noted in any parameters for the CG (p > 0.05) between pre-and post-training assessments. Furthermore, post-training comparisons between groups revealed statistically significant differences favoring the TAP-TG in TAP score and MICOD performance (p < 0.01). In conclusion, a 6-week TAP neuromuscular training program positively influences the change of direction performance and TAP scores in soccer players.
Collapse
Affiliation(s)
- Safouen Chaabouni
- LR 15JS01 EM2S, Education, Motricity, Sport and Health, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Waleed Al-Kiyoumi
- Physical Education and Sport Sciences Department, College of Education, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mohamed Saifeddine Fessi
- LR 15JS01 EM2S, Education, Motricity, Sport and Health, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Rihab Methnani
- LR 15JS01 EM2S, Education, Motricity, Sport and Health, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Badria Al-Hadabi
- Physical Education and Sport Sciences Department, College of Education, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mahfoodha Al Kitani
- Physical Education and Sport Sciences Department, College of Education, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Khalifa Al-Jadidi
- Physical Education and Sport Sciences Department, College of Education, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Wassim Moalla
- LR 15JS01 EM2S, Education, Motricity, Sport and Health, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Nabil Gmada
- Physical Education and Sport Sciences Department, College of Education, Sultan Qaboos University, Muscat, Sultanate of Oman
- Research Unit, "Sportive Performance and Physical Rehabilitation," High Institute of Sports and Physical Education, Kef, University of Jendouba, Jendouba, Tunisia
| |
Collapse
|
3
|
Neupane K, Narayan A, Sen Mojumdar S, Adhikari G, Garen CR, Woodside MT. Direct observation of prion-like propagation of protein misfolding templated by pathogenic mutants. Nat Chem Biol 2024; 20:1220-1226. [PMID: 39009686 DOI: 10.1038/s41589-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024]
Abstract
Many neurodegenerative diseases feature misfolded proteins that propagate via templated conversion of natively folded molecules. However, crucial questions about how such prion-like conversion occurs and what drives it remain unsolved, partly because technical challenges have prevented direct observation of conversion for any protein. We observed prion-like conversion in single molecules of superoxide dismutase-1 (SOD1), whose misfolding is linked to amyotrophic lateral sclerosis. Tethering pathogenic misfolded SOD1 mutants to wild-type molecules held in optical tweezers, we found that the mutants vastly increased misfolding of the wild-type molecule, inducing multiple misfolded isoforms. Crucially, the pattern of misfolding was the same in the mutant and converted wild-type domains and varied when the misfolded mutant was changed, reflecting the templating effect expected for prion-like conversion. Ensemble measurements showed decreased enzymatic activity in tethered heterodimers as conversion progressed, mirroring the single-molecule results. Antibodies sensitive to disease-specific epitopes bound to the converted protein, implying that conversion produced disease-relevant misfolded conformers.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Supratik Sen Mojumdar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India
| | - Gaurav Adhikari
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Vacchiano V, Bonan L, Liguori R, Rizzo G. Primary Lateral Sclerosis: An Overview. J Clin Med 2024; 13:578. [PMID: 38276084 PMCID: PMC10816328 DOI: 10.3390/jcm13020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder which causes the selective deterioration of the upper motor neurons (UMNs), sparing the lower motor neuron (LMN) system. The clinical course is defined by a progressive motor disability due to muscle spasticity which typically involves lower extremities and bulbar muscles. Although classically considered a sporadic disease, some familiar cases and possible causative genes have been reported. Despite it having been recognized as a rare but distinct entity, whether it actually represents an extreme end of the motor neuron diseases continuum is still an open issue. The main knowledge gap is the lack of specific biomarkers to improve the clinical diagnostic accuracy. Indeed, the diagnostic imprecision, together with some uncertainty about overlap with UMN-predominant ALS and Hereditary Spastic Paraplegia (HSP), has become an obstacle to the development of specific therapeutic trials. In this study, we provided a comprehensive analysis of the existing literature, including neuropathological, clinical, neuroimaging, and neurophysiological features of the disease, and highlighting the controversies still unsolved in the differential diagnoses and the current diagnostic criteria. We also discussed the current knowledge gaps still present in both diagnostic and therapeutic fields when approaching this rare condition.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| | - Luigi Bonan
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Rocco Liguori
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Rizzo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| |
Collapse
|
5
|
Abstract
Although the past two decades have produced exciting discoveries in the genetics and pathology of amyotrophic lateral sclerosis (ALS), progress in developing an effective therapy remains slow. This review summarizes the critical discoveries and outlines the advances in disease characterization, diagnosis, imaging, and biomarkers, along with the current status of approaches to ALS care and treatment. Additional knowledge of the factors driving disease progression and heterogeneity will hopefully soon transform the care for patients with ALS into an individualized, multi-prong approach able to prevent disease progression sufficiently to allow for a dignified life with limited disability.
Collapse
Affiliation(s)
- Hristelina Ilieva
- Jefferson Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Justin Kwan
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Tahedl M, Tan EL, Shing SLH, Chipika RH, Siah WF, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Finegan E, Bede P. Not a benign motor neuron disease: longitudinal imaging captures relentless motor connectome disintegration in primary lateral sclerosis. Eur J Neurol 2023; 30:1232-1245. [PMID: 36739888 DOI: 10.1111/ene.15725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Primary lateral sclerosis (PLS) is a progressive upper motor neuron disorder associated with considerable clinical disability. Symptoms are typically exclusively linked to primary motor cortex degeneration and the contribution of pre-motor, supplementary motor, cortico-medullary and inter-hemispheric connectivity alterations are less well characterized. METHODS In a single-centre, prospective, longitudinal neuroimaging study 41 patients with PLS were investigated. Patients underwent standardized neuroimaging, genetic profiling with whole exome sequencing, and comprehensive clinical assessments including upper motor neuron scores, tapping rates, mirror movements, spasticity assessment, cognitive screening and evaluation for pseudobulbar affect. Longitudinal neuroimaging data from 108 healthy controls were used for image interpretation. A standardized imaging protocol was implemented including 3D T1-weighted structural, diffusion tensor imaging and resting-state functional magnetic resonance imaging. Following somatotopic segmentation, cortical thickness analyses, probabilistic tractography, blood oxygenation level dependent signal analyses and brainstem volumetry were conducted to evaluate cortical, brainstem, cortico-medullary and inter-hemispheric connectivity alterations both cross-sectionally and longitudinally. RESULTS Our data confirm progressive primary motor cortex degeneration, considerable supplementary motor and pre-motor area involvement, progressive brainstem atrophy, cortico-medullary and inter-hemispheric disconnection, and close associations between clinical upper motor neuron scores and somatotopic connectivity indices in PLS. DISCUSSION Primary lateral sclerosis is associated with relentlessly progressive motor connectome degeneration. Clinical disability in PLS is likely to stem from a combination of intra- and inter-hemispheric connectivity decline and primary, pre- and supplementary motor cortex degeneration. Simple 'bedside' clinical tools, such as tapping rates, are excellent proxies of the integrity of the relevant fibres of the contralateral corticospinal tract.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Zakharova MN, Abramova AA. Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:65-73. [PMID: 34100429 PMCID: PMC8451581 DOI: 10.4103/1673-5374.314289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle wasting, breathing and swallowing difficulties resulting in patient’s death in two to five years after disease onset. In amyotrophic lateral sclerosis, both upper and lower motor neurons of the corticospinal tracts are involved in the process of neurodegeneration, accounting for great clinical heterogeneity of the disease. Clinical phenotype has great impact on the pattern and rate of amyotrophic lateral sclerosis progression and overall survival prognosis. Creating more homogenous patient groups in order to study the effects of drug agents on specific manifestations of the disease is a challenging issue in amyotrophic lateral sclerosis clinical trials. Since amyotrophic lateral sclerosis has low incidence rates, conduction of multicenter trials requires certain standardized approaches to disease diagnosis and staging. This review focuses on the current approaches in amyotrophic lateral sclerosis classification and staging system based on clinical examination and additional instrumental methods, highlighting the role of upper and lower motor neuron involvement in different phenotypes of the disease. We demonstrate that both clinical and instrumental findings can be useful in evaluating severity of upper motor neuron and lower motor neuron involvement and predicting the following course of the disease. Addressing disease heterogeneity in amyotrophic lateral sclerosis clinical trials could lead to study designs that will assess drug efficacy in specific patient groups, based on the disease pathophysiology and spatiotemporal pattern. Although clinical evaluation can be a sufficient screening method for dividing amyotrophic lateral sclerosis patients into clinical subgroups, we provide proof that instrumental studies could provide valuable insights in the disease pathology.
Collapse
|
8
|
Ishaque A, Ta D, Khan M, Zinman L, Korngut L, Genge A, Dionne A, Briemberg H, Luk C, Yang YH, Beaulieu C, Emery D, Eurich DT, Frayne R, Graham S, Wilman A, Dupré N, Kalra S. Distinct patterns of progressive gray and white matter degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2021; 43:1519-1534. [PMID: 34908212 PMCID: PMC8886653 DOI: 10.1002/hbm.25738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023] Open
Abstract
Progressive cerebral degeneration in amyotrophic lateral sclerosis (ALS) remains poorly understood. Here, three-dimensional (3D) texture analysis was used to study longitudinal gray and white matter cerebral degeneration in ALS from routine T1-weighted magnetic resonance imaging (MRI). Participants were included from the Canadian ALS Neuroimaging Consortium (CALSNIC) who underwent up to three clinical assessments and MRI at four-month intervals, up to 8 months after baseline (T0 ). Three-dimensional maps of the texture feature autocorrelation were computed from T1-weighted images. One hundred and nineteen controls and 137 ALS patients were included, with 81 controls and 84 ALS patients returning for at least one follow-up. At baseline, texture changes in ALS patients were detected in the motor cortex, corticospinal tract, insular cortex, and bilateral frontal and temporal white matter compared to controls. Longitudinal comparison of texture maps between T0 and Tmax (last follow-up visit) within ALS patients showed progressive texture alterations in the temporal white matter, insula, and internal capsule. Additionally, when compared to controls, ALS patients had greater texture changes in the frontal and temporal structures at Tmax than at T0 . In subgroup analysis, slow progressing ALS patients had greater progressive texture change in the internal capsule than the fast progressing patients. Contrastingly, fast progressing patients had greater progressive texture changes in the precentral gyrus. These findings suggest that the characteristic longitudinal gray matter pathology in ALS is the progressive involvement of frontotemporal regions rather than a worsening pathology within the motor cortex, and that phenotypic variability is associated with distinct progressive spatial pathology.
Collapse
Affiliation(s)
- Abdullah Ishaque
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Daniel Ta
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Muhammad Khan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Canada
| | - Annie Dionne
- Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, CHU de Québec, Quebec City, Canada
| | - Hannah Briemberg
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Collin Luk
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Yee-Hong Yang
- Department of Computing Science, University of Alberta, Edmonton
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Derek Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Richard Frayne
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada
| | - Simon Graham
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Alan Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec, Université Laval, Quebec City, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sanjay Kalra
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Hardiman O, Bede P. Propagation patterns in motor neuron diseases: Individual and phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of MNDs. Neurobiol Aging 2021; 109:78-87. [PMID: 34656922 DOI: 10.1016/j.neurobiolaging.2021.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Motor neuron diseases encompass a divergent group of conditions with considerable differences in clinical manifestations, survival, and genetic vulnerability. One of the key aspects of clinical heterogeneity is the preferential involvement of upper (UMN) and lower motor neurons (LMN). While longitudinal imaging patters are relatively well characterized in ALS, progressive cortical changes in UMN,- and LMN-predominant conditions are seldom evaluated. Accordingly, the objective of this study is the juxtaposition of longitudinal trajectories in 3 motor neuron phenotypes; a UMN-predominant syndrome (PLS), a mixed UMN-LMN condition (ALS), and a lower motor neuron condition (poliomyelitis survivors). A standardized imaging protocol was implemented in a prospective, multi-timepoint longitudinal study with a uniform follow-up interval of 4 months. Forty-five poliomyelitis survivors, 61 patients with amyotrophic lateral sclerosis (ALS), and 23 patients with primary lateral sclerosis (PLS) were included. Cortical thickness alterations were evaluated in a dual analysis pipeline, using standard cortical thickness analyses, and a z-score-based individualized approach. Our results indicate that PLS patients exhibit rapidly progressive cortical thinning primarily in motor regions; ALS patients show cortical atrophy in both motor and extra-motor regions, while poliomyelitis survivors exhibit cortical thickness gains in a number of cerebral regions. Our findings suggest that dynamic cortical changes in motor neuron diseases may depend on relative UMN and/or LMN involvement, and increased cortical thickness in LMN-predominant conditions may represent compensatory, adaptive processes.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Psychiatry and Psychotherapy and Institute for Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
10
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
11
|
Ta D, Ishaque A, Srivastava O, Hanstock C, Seres P, Eurich DT, Luk C, Briemberg H, Frayne R, Genge AL, Graham SJ, Korngut L, Zinman L, Kalra S. Progressive Neurochemical Abnormalities in Cognitive and Motor Subgroups of Amyotrophic Lateral Sclerosis: A Prospective Multicenter Study. Neurology 2021; 97:e803-e813. [PMID: 34426551 PMCID: PMC8397589 DOI: 10.1212/wnl.0000000000012367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate progressive cerebral degeneration in amyotrophic lateral sclerosis (ALS) by assessing alterations in N-acetylaspartate (NAA) ratios in the motor and prefrontal cortex within clinical subgroups of ALS. METHODS Seventy-six patients with ALS and 59 healthy controls were enrolled in a prospective, longitudinal, multicenter study in the Canadian ALS Neuroimaging Consortium. Participants underwent serial clinical evaluations and magnetic resonance spectroscopy at baseline and 4 and 8 months using a harmonized protocol across 5 centers. NAA ratios were quantified in the motor cortex and prefrontal cortex. Patients were stratified into subgroups based on disease progression rate, upper motor neuron (UMN) signs, and cognitive status. Linear mixed models were used for baseline and longitudinal comparisons of NAA metabolite ratios. RESULTS Patients with ALS had reduced NAA ratios in the motor cortex at baseline (p < 0.001). Ratios were lower in those with more rapid disease progression and greater UMN signs (p < 0.05). A longitudinal decline in NAA ratios was observed in the motor cortex in the rapidly progressing (p < 0.01) and high UMN burden (p < 0.01) cohorts. The severity of UMN signs did not change significantly over time. NAA ratios were reduced in the prefrontal cortex only in cognitively impaired patients (p < 0.05); prefrontal cortex metabolites did not change over time. CONCLUSIONS Progressive degeneration of the motor cortex in ALS is associated with more aggressive clinical presentations. These findings provide biological evidence of variable spatial and temporal cerebral degeneration linked to the disease heterogeneity of ALS. The use of standardized imaging protocols may have a role in clinical trials for patient selection or subgrouping. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that MRS NAA metabolite ratios of the motor cortex are associated with more rapid disease progression and greater UMN signs in patients with ALS. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT02405182.
Collapse
Affiliation(s)
- Daniel Ta
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada.
| | - Abdullah Ishaque
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Ojas Srivastava
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Chris Hanstock
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Peter Seres
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Dean T Eurich
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Collin Luk
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Hannah Briemberg
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Richard Frayne
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Angela L Genge
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Simon J Graham
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Lawrence Korngut
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Lorne Zinman
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Sanjay Kalra
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Neuroanatomical associations of the Edinburgh cognitive and Behavioural ALS screen (ECAS). Brain Imaging Behav 2021; 15:1641-1654. [PMID: 33155172 DOI: 10.1007/s11682-020-00359-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cognitive impairment is now recognized in a subset of patients with amyotrophic lateral sclerosis (ALS). The objective of the study was to identify group differences and neuroanatomical correlates of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) in participants ALS. Fifty-three ALS patients and 43 healthy controls recruited as a part of our multicentre study (CALSNIC) were administered the ECAS and underwent an MRI scan. Voxel-based morphometry and tract based spatial statistics (TBSS) was performed to identify structural changes and associations with impaired ECAS scores. Lower performance in the ECAS verbal fluency and executive domains were noted in ALS patients as compared to controls (p < 0.01). Extensive white matter degeneration was noted in the corticospinal tract in all ALS patients, while ALS patients with impaired verbal fluency or executive domains (ALS-exi, n = 22), displayed additional degeneration in the corpus callosum, cingulum and superior longitudinal fasciculus as compared to controls (p < 0.05, TFCE corrected). Mild grey matter changes and associations with ECAS verbal fluency or executive performance were noted at lenient statistical thresholds (p < 0.001, uncorrected). Executive impairment was detected using the ECAS in our multicentre sample of Canadian ALS patients. White matter degeneration in motor regions was revealed in ALS patients with extensive spread to frontal regions in the ALS-exi sub-group. Mild associations between ECAS verbal fluency, executive function scores and MRI metrics suggest that reduced performance may be associated with widespread structural integrity.
Collapse
|
13
|
Bede P, Pradat PF, Lope J, Vourc'h P, Blasco H, Corcia P. Primary Lateral Sclerosis: Clinical, radiological and molecular features. Rev Neurol (Paris) 2021; 178:196-205. [PMID: 34243936 DOI: 10.1016/j.neurol.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 10/20/2022]
Abstract
Primary Lateral Sclerosis (PLS) is an uncommon motor neuron disorder. Despite the well-recognisable constellation of clinical manifestations, the initial diagnosis can be challenging and therapeutic options are currently limited. There have been no recent clinical trials of disease-modifying therapies dedicated to this patient cohort and awareness of recent research developments is limited. The recent consensus diagnostic criteria introduced the category 'probable' PLS which is likely to curtail the diagnostic journey of patients. Extra-motor clinical manifestations are increasingly recognised, challenging the view of PLS as a 'pure' upper motor neuron condition. The post mortem literature of PLS has been expanded by seminal TDP-43 reports and recent PLS studies increasingly avail of meticulous genetic profiling. Research in PLS has gained unprecedented momentum in recent years generating novel academic insights, which may have important clinical ramifications.
Collapse
Affiliation(s)
- P Bede
- Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland.
| | - P-F Pradat
- Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| | - J Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - P Vourc'h
- Department of Biochemistry and Molecular Biology, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Université de Tours, Inserm, France
| | - H Blasco
- Department of Biochemistry and Molecular Biology, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Université de Tours, Inserm, France
| | - P Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, France; ALS and MND centre (FILSLAN), University of Tours, "iBrain", inserm, France
| |
Collapse
|
14
|
Fullam T, Statland J. Upper Motor Neuron Disorders: Primary Lateral Sclerosis, Upper Motor Neuron Dominant Amyotrophic Lateral Sclerosis, and Hereditary Spastic Paraplegia. Brain Sci 2021; 11:brainsci11050611. [PMID: 34064596 PMCID: PMC8151104 DOI: 10.3390/brainsci11050611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Following the exclusion of potentially reversible causes, the differential for those patients presenting with a predominant upper motor neuron syndrome includes primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), or upper motor neuron dominant ALS (UMNdALS). Differentiation of these disorders in the early phases of disease remains challenging. While no single clinical or diagnostic tests is specific, there are several developing biomarkers and neuroimaging technologies which may help distinguish PLS from HSP and UMNdALS. Recent consensus diagnostic criteria and use of evolving technologies will allow more precise delineation of PLS from other upper motor neuron disorders and aid in the targeting of potentially disease-modifying therapeutics.
Collapse
|
15
|
Mòdol-Caballero G, García-Lareu B, Herrando-Grabulosa M, Verdés S, López-Vales R, Pagès G, Chillón M, Navarro X, Bosch A. Specific Expression of Glial-Derived Neurotrophic Factor in Muscles as Gene Therapy Strategy for Amyotrophic Lateral Sclerosis. Neurotherapeutics 2021; 18:1113-1126. [PMID: 33786805 PMCID: PMC8423878 DOI: 10.1007/s13311-021-01025-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a powerful neuroprotective growth factor. However, systemic or intrathecal administration of GDNF is associated with side effects. Here, we aimed to avoid this by restricting the transgene expression to the skeletal muscle by gene therapy. To specifically target most skeletal muscles in the mouse model of amyotrophic lateral sclerosis (ALS), SOD1G93A transgenic mice were intravenously injected with adeno-associated vectors coding for GDNF under the control of the desmin promoter. Treated and control SOD1G93A mice were evaluated by rotarod and nerve conduction tests from 8 to 20 weeks of age, and then histological and molecular analyses were performed. Muscle-specific GDNF expression delayed the progression of the disease in SOD1G93A female and male mice by preserving the neuromuscular function; increasing the number of innervated neuromuscular junctions, the survival of spinal motoneurons; and reducing glial reactivity in treated SOD1G93A mice. These beneficial actions are attributed to a paracrine protective mechanism from the muscle to the motoneurons by GDNF. Importantly, no adverse secondary effects were detected. These results highlight the potential of muscle GDNF-targeted expression for ALS therapy.
Collapse
Affiliation(s)
- Guillem Mòdol-Caballero
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén García-Lareu
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Herrando-Grabulosa
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Verdés
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Unitat Mixta UAB-VHIR, Vall D'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Rubén López-Vales
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Pagès
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Chillón
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Unitat Mixta UAB-VHIR, Vall D'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Institut Català de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Assumpció Bosch
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Unitat Mixta UAB-VHIR, Vall D'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
| |
Collapse
|
16
|
Makary MM, Weerasekara A, Rodham H, Hightower BG, Tseng CEJ, Chan J, Chew S, Paganoni S, Ratai EM, Zürcher NR, Hooker JM, Atassi N, Babu S. Comparison of Two Clinical Upper Motor Neuron Burden Rating Scales in ALS Using Quantitative Brain Imaging. ACS Chem Neurosci 2021; 12:906-916. [PMID: 33576234 DOI: 10.1021/acschemneuro.0c00772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several clinical upper motor neuron burden scales (UMNSs) variably measure brain dysfunction in amyotrophic lateral sclerosis (ALS). Here, we compare relationship of two widely used clinical UMNSs in ALS (Penn and MGH UMNSs) with (a) neuroimaging markers of brain dysfunction and (b) neurological impairment status using the gold-standard functional measure, the revised ALS Functional Rating Scale (ALSFRS-R). MGH UMNS measures hyperreflexia alone, and Penn UMNS measures hyperreflexia, spasticity, and pseudobulbar affect. Twenty-eight ALS participants underwent both Penn and MGH UMNSs, at a matching time-point as a simultaneous [11C]PBR28 positron emission tomography (PBR28-PET)/Magnetic Resonance scan and ALSFRS-R. The two UMNSs were compared for localization and strength of association with neuroimaging markers of: (a) neuroinflammation, PBR28-PET and MR Spectroscopy metabolites (myo-inositol and choline) and (b) corticospinal axonal loss, fractional anisotropy (FA), and MR Spectroscopy metabolite (N-acetylaspartate). Among clinical UMN manifestations, segmental hyperreflexia, spasticity, and pseudobulbar affect occurred in 100, 43, and 18% ALS participants, respectively. Pseudobulbar affect did not map to any specific brain regional dysfunction, while hyperreflexia and spasticity subdomains significantly correlated and colocalized neurobiological changes to corticospinal pathways on whole brain voxel-wise analyses. Both UMNS total scores showed significant and similar strength of association with (a) neuroimaging changes (PBR28-PET, FA, MR Spectroscopy metabolites) in primary motor cortices and (b) severity of functional decline (ALSFRS-R). Hyperreflexia is the most frequent clinical UMN manifestation and correlates best with UMN molecular imaging changes in ALS. Among Penn UMNS's subdomains, hyperreflexia carries the weight of association with neuroimaging markers of biological changes in ALS. A clinical UMN scale comprising hyperreflexia items alone is clinically relevant and sufficient to predict the highest yield of molecular neuroimaging abnormalities in ALS.
Collapse
Affiliation(s)
- Meena M. Makary
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| | - Akila Weerasekara
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Haley Rodham
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Baileigh G. Hightower
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Chieh-En J. Tseng
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - James Chan
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sheena Chew
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Sabrina Paganoni
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of PM&R, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Eva-Maria Ratai
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicole R. Zürcher
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nazem Atassi
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Sanofi Genzyme, Cambridge, Massachusetts 02142, United States
| | - Suma Babu
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
MR spectroscopy and imaging-derived measurements in the supplementary motor area for biomarkers of amyotrophic lateral sclerosis. Neurol Sci 2021; 42:4257-4263. [PMID: 33594539 DOI: 10.1007/s10072-021-05107-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/31/2021] [Indexed: 12/11/2022]
Abstract
The diagnosis of amyotrophic lateral sclerosis (ALS) requires both upper and lower motor neuron signs. However, quite a few patients with ALS lack the upper motor neuron sign during the disease. This study sought to investigate whether metabolites, including glutamate (Glu), N-acetyl aspartate (NAA), and gamma aminobutyric acid (GABA), in the supplementary motor area (SMA) measured by magnetic resonance spectroscopy (MRS), could be a surrogate biomarker for ALS. Twenty-five patients with ALS and 12 controls underwent 3.0-T MR scanning, which measured Glu, NAA, and GABA. Finally, receiver operating characteristic (ROC) curves were created and the area under curve (AUC) was calculated to assess the diagnostic power. Logistic regression analysis revealed the usefulness of both Glu and NAA for the differentiation of ALS from controls (Glu, P = 0.009; NAA, P = 0.033). The ratio of Glu to NAA or GABA was significantly increased in patients with ALS (Glu/NAA, P = 0.027; Glu/GABA, P = 0.003). Both the AUCs were more than 0.7, with high specificity but low sensitivity. The present findings might indicate that both the Glu/NAA and the Glu/GABA ratios in the SMA could be potential biomarkers for the diagnosis of ALS.
Collapse
|
18
|
Pioro EP, Turner MR, Bede P. Neuroimaging in primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:18-27. [PMID: 33602015 DOI: 10.1080/21678421.2020.1837176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Increased interest in the underlying pathogenesis of primary lateral sclerosis (PLS) and its relationship to amyotrophic lateral sclerosis (ALS) has corresponded to a growing number of CNS imaging studies, especially in the past decade. Both its rarity and uncertainty of definite diagnosis prior to 4 years from symptom onset have resulted in PLS being less studied than ALS. In this review, we highlight most relevant papers applying magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) to analyzing CNS changes in PLS, often in relation to ALS. In patients with PLS, mostly brain, but also spinal cord has been evaluated since significant neurodegeneration is essentially restricted to upper motor neuron (UMN) structures and related pathways. Abnormalities of cortex and subcortical white matter tracts have been identified by structural and functional MRI and MRS studies, while metabolic and cell-specific changes in PLS brain have been revealed using various PET radiotracers. Future neuroimaging studies will continue to explore the interface between the PLS-ALS continuum, identify more changes unique to PLS, apply novel MRI and MRS sequences showing greater structural and neurochemical detail, as well as expand the repertoire of PET radiotracers that reveal various cellular pathologies. Neuroimaging has the potential to play an important role in the evaluation of novel therapies for patients with PLS.
Collapse
Affiliation(s)
- Erik P Pioro
- Section of ALS & Related Disorders, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Sato S, Lim J, Miehm JD, Buonaccorsi J, Rajala C, Khalighinejad F, Ionete C, Kent JA, van Emmerik RE. Rapid foot-tapping but not hand-tapping ability is different between relapsing-remitting and progressive multiple sclerosis. Mult Scler Relat Disord 2020; 41:102031. [DOI: 10.1016/j.msard.2020.102031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
|
20
|
Mitsumoto H, Garofalo DC, Santella RM, Sorenson EJ, Oskarsson B, Fernandes JAM, Andrews H, Hupf J, Gilmore M, Heitzman D, Bedlack RS, Katz JS, Barohn RJ, Kasarskis EJ, Lomen-Hoerth C, Mozaffar T, Nations SP, Swenson AJ, Factor-Litvak P. Plasma creatinine and oxidative stress biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:263-272. [PMID: 32276554 DOI: 10.1080/21678421.2020.1746810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To determine the associations between plasma creatinine (PCr), plasma uric acid (PUA), and urinary oxidative stress (OS) biomarkers with the ALSFRS-R at baseline and survival in a large epidemiological cohort study (ALS COSMOS) with a well-phenotyped patient population (N = 355).Methods: Fasting plasma and first void urine samples were obtained. PCr, PUA, urinary 8-oxo-deoxy guanosine (8-oxodG), and 15-F2t-isoprostane (IsoP) were analyzed at baseline, near the midpoint of follow-up, and at the final blood draw (before death or withdrawal from study). We estimated associations between these biomarkers and the ALSFRS-R at baseline and survival.Results: At baseline, PCr correlated with ALSFRS-R (Spearman r = 0.30), percent (%) FVC (r = 0.20), PUA (r = 0.37), and 8-oxodG (r = -0.13, all p < 0.05). Baseline PCr significantly predicted survival (adjusted hazard ratio 0.28, p < 0.001). Time to death from baseline was shortest for those in the lowest two PCr quartiles relative to the highest two quartiles. PCr and ALSFRS-R values were significantly correlated at all three time points (baseline: r = 0.29, midpoint: r = 0.23, final: r = 0.38, all p < 0.001). PCr and PUA significantly declined over time, whereas OS biomarkers significantly increased over time.Conclusions: To date, PCr predicted survival the best, compared to PUA, 8-oxodG, and IsoP. Although PCr represents the degree of muscle mass, it may also represent complex biochemical changes in ALS. Because the field has no reliable prognostic biomarkers, the importance of PCr warrants further investigation through clinical studies in ALS.
Collapse
Affiliation(s)
- Hiroshi Mitsumoto
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Diana C Garofalo
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | | | | | - J Americo M Fernandes
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard Andrews
- Data Coordinating Center (DCC), Mailman School of Public Health Biostatistics Department, Columbia University Irving Medical Center, New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Jonathan Hupf
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Madison Gilmore
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Jonathan S Katz
- Forbes Norris ALS Center, California Pacific Medical Center, San Francisco, CA, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas, San Francisco, CA, USA
| | | | | | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| | - Sharon P Nations
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA, and
| | | | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Baldacci F, Mazzucchi S, Della Vecchia A, Giampietri L, Giannini N, Koronyo-Hamaoui M, Ceravolo R, Siciliano G, Bonuccelli U, Elahi FM, Vergallo A, Lista S, Giorgi FS. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn 2020; 20:421-441. [PMID: 32066283 PMCID: PMC7445079 DOI: 10.1080/14737159.2020.1731306] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Introduction: The postmortem examination still represents the reference standard for detecting the pathological nature of chronic neurodegenerative diseases (NDD). This approach displays intrinsic conceptual limitations since NDD represent a dynamic spectrum of partially overlapping phenotypes, shared pathomechanistic alterations that often give rise to mixed pathologies.Areas covered: We scrutinized the international clinical diagnostic criteria of NDD and the literature to provide a roadmap toward a biomarker-based classification of the NDD spectrum. A few pathophysiological biomarkers have been established for NDD. These are time-consuming, invasive, and not suitable for preclinical detection. Candidate screening biomarkers are gaining momentum. Blood neurofilament light-chain represents a robust first-line tool to detect neurodegeneration tout court and serum progranulin helps detect genetic frontotemporal dementia. Ultrasensitive assays and retinal scans may identify Aβ pathology early, in blood and the eye, respectively. Ultrasound also represents a minimally invasive option to investigate the substantia nigra. Protein misfolding amplification assays may accurately detect α-synuclein in biofluids.Expert opinion: Data-driven strategies using quantitative rather than categorical variables may be more reliable for quantification of contributions from pathophysiological mechanisms and their spatial-temporal evolution. A systems biology approach is suitable to untangle the dynamics triggering loss of proteostasis, driving neurodegeneration and clinical evolution.
Collapse
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
| | - Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fanny M. Elahi
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
22
|
Blicher JU, Eskildsen SF, Stærmose TG, Møller AT, Figlewski K, Near J. Short echo-time Magnetic Resonance Spectroscopy in ALS, simultaneous quantification of glutamate and GABA at 3 T. Sci Rep 2019; 9:17593. [PMID: 31772352 PMCID: PMC6879471 DOI: 10.1038/s41598-019-53009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cortical hyperexcitability has been found in early Amyotrophic Lateral Sclerosis (ALS) and is hypothesized to be a key factor in pathogenesis. The current pilot study aimed to investigate cortical inhibitory/excitatory balance in ALS using short-echo Magnetic Resonance Spectroscopy (MRS). Patients suffering from ALS were scanned on a 3 T Trio Siemens MR scanner using Spin Echo Full Intensity Acquired Localized (SPECIAL) Magnetic Resonance Spectroscopy in primary motor cortex and the occipital lobe. Data was compared to a group of healthy subjects. Nine patients completed the scan. MRS data was of an excellent quality allowing for quantification of a range of metabolites of interest in ALS. In motor cortex, patients had Glutamate/GABA and GABA/Cr- ratios comparable to healthy subjects. However, Glutamate/Cr (p = 0.002) and the neuronal marker N-acetyl-aspartate (NAA/Cr) (p = 0.034) were low, possibly due to grey-matter atrophy, whereas Glutathione/Cr (p = 0.04) was elevated. In patients, NAA levels correlated significantly with both hand strength (p = 0.027) and disease severity (p = 0.016). In summary SPECIAL MRS at 3 T allows of reliable quantification of a range of metabolites of interest in ALS, including both excitatory and inhibitory neurotransmitters. The method is a promising new technique as a biomarker for future studies on ALS pathophysiology and monitoring of disease progression.
Collapse
Affiliation(s)
- J U Blicher
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark. .,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | - S F Eskildsen
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - T G Stærmose
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - A T Møller
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - K Figlewski
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - J Near
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
23
|
Measurement of structural integrity of the spinal cord in patients with amyotrophic lateral sclerosis using diffusion tensor magnetic resonance imaging. PLoS One 2019; 14:e0224078. [PMID: 31661496 PMCID: PMC6818775 DOI: 10.1371/journal.pone.0224078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/05/2019] [Indexed: 12/29/2022] Open
Abstract
Background The value of conventional magnetic resonance imaging (MRI) for amyotrophic lateral sclerosis (ALS) is low. Functional and quantitative MRI could be more accurate. We aimed to examine the value of diffusion tensor imaging (DTI) with fractional anisotropy (FA) measurements of the cervical and upper thoracic spinal cord in patients with ALS. Patients and methods Fourteen patients with ALS and 15 sex- and age-matched controls were examined with DTI at a 3T MRI scanner. Region-of-interest (ROI) based fractional anisotropy measurements were performed at the levels C2-C4, C5-C7 and Th1-Th3. ROIs were placed at different anatomical locations of the axial cross sections of the spinal cord. Results FA was significantly reduced in ALS patients in anterolateral ROIs and the whole cross section at the C2-C4 level and the cross section of the Th1-Th3 level. There was a trend towards a statistically significant FA reduction in the anterolateral ROIs at the C5-C7 level in ALS patients. No significant differences between patients and controls were found in posterior ROIs. Conclusion FA was reduced in ROIs representing the motor tracts in ALS patients. DTI with FA measurements is a promising method in this circumstance. However, for DTI to become a valuable and established method in the diagnostic workup of ALS, larger studies and further standardisation are warranted.
Collapse
|
24
|
Abstract
PURPOSE To identify upper motor neuron (UMN) dysfunction using the triple stimulation technique (TST) in amyotrophic lateral sclerosis (ALS). METHODS Fifty ALS and 42 non-ALS patients were examined clinically, using conventional transcranial magnetic stimulation and TST. RESULTS For ALS patients presenting with UMN in tested limb, the TST amplitude ratio was abnormal in 25 of 28 patients (89.3%). For ALS patients without UMN signs, 6 of 22 patients (27.3%) had an abnormal TST ratio. When clinical signs were not present, both abnormal resting motor threshold and TST indicated a UMN involvement. In non-ALS patients with central motor conduction disorders, the percentage of patients with an abnormal TST was higher for those presenting with clinical UMN signs (9/12, 75.0%) than for those without these signs (1/8, 12.5%). CONCLUSIONS Triple stimulation technique appears to be an accurate, early measure for detecting clinical and subclinical UMN abnormalities in ALS. Triple stimulation technique could also be useful to investigate central motor conduction abnormalities in other disorders.
Collapse
|
25
|
Srivastava O, Hanstock C, Chenji S, Mah D, Eurich D, Ta D, Seres P, Luk C, Zinman L, Abrahao A, Graham SJ, Genge A, Korngut L, Frayne R, Kalra S. Cerebral degeneration in amyotrophic lateral sclerosis: A prospective multicenter magnetic resonance spectroscopy study. Neurol Clin Pract 2019; 9:400-407. [PMID: 31750025 DOI: 10.1212/cpj.0000000000000674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 01/20/2023]
Abstract
Background We investigated cerebral degeneration and neurochemistry in patients with amyotrophic lateral sclerosis (ALS) using magnetic resonance spectroscopy (MRS). Methods We prospectively studied 65 patients and 43 age-matched healthy controls. Participants were recruited from 4 centers as part of a study in the Canadian ALS Neuroimaging Consortium. All participants underwent single-voxel proton MRS using a protocol standardized across all sites. Metabolites reflecting neuronal integrity (total N-acetyl aspartyl moieties [tNAA]) and gliosis (myo-inositol [Ino]), as well as creatine (Cr) and choline (Cho), were quantified in the midline motor cortex and midline prefrontal cortex. Comparisons were made between patients with ALS and healthy controls. Metabolites were correlated with clinical measures of upper motor neuron dysfunction, disease progression rate, and cognitive performance. Results In the motor cortex, tNAA/Cr, tNAA/Cho, and tNAA/Ino ratios were reduced in the ALS group compared with controls. Group differences in tNAA/Cr and tNAA/Cho in the prefrontal cortex displayed reduced ratios in ALS patients; however, these were not statistically significant. Reduced motor cortex ratios were associated with slower foot tapping rate, whereas only motor tNAA/Ino was associated with finger tapping rate. Disease progression rate was associated with motor tNAA/Cho. Verbal fluency, semantic fluency, and digit span forwards and backwards were associated with prefrontal tNAA/Cr. Conclusions This study demonstrates that cerebral degeneration in ALS is more pronounced in the motor than prefrontal cortex, that multicenter MRS studies are feasible, and that motor tNAA/Ino shows promise as a potential biomarker.
Collapse
Affiliation(s)
- Ojas Srivastava
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Chris Hanstock
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Sneha Chenji
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Dennell Mah
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Dean Eurich
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Daniel Ta
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Peter Seres
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Collin Luk
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Lorne Zinman
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Agessandro Abrahao
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Simon J Graham
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Angela Genge
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Lawrence Korngut
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Richard Frayne
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Sanjay Kalra
- Faculty of Science (OS); Department of Biomedical Engineering (CH, PS, SK); Neuroscience and Mental Health Institute (SC, DT, SK); Divison of Neurology (DM, CL, SK), Department of Medicine; School of Public Health (DE); University of Alberta, Edmonton, Alberta; Sunnybrook Health Sciences Centre (LZ, AA, SJG), University of Toronto, Toronto, Ontario; Montreal Neurological Institute and Hospital (AG), McGill University, Montreal, Quebec; Departments of Radiology and Clinical Neurosciences (LK, RF), Hotchkiss Brain Institute, University of Calgary; and Seaman Family MR Research Centre (LK, RF), Foothills Medical Centre, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Abstract
Proton magnetic resonance spectroscopy (MRS) provides a means of measuring cerebral metabolites relevant to neurodegeneration in vivo. In amyotrophic lateral sclerosis (ALS), neurochemical changes reflecting neuronal loss or dysfunction (decreased N-actylaspartate [NAA]) is most significant in the motor cortex and corticospinal tracts. Other neurochemical changes observed include increased myo-inositol (mIns), a putative marker of gliosis. MRS confirmation of involvement of non-motor regions such as the frontal lobes, thalamus, basal ganglia, and cingulum are consistent with the multi-system facet of motor neuron disease with ALS being part of a MND-FTD spectrum. MRS-derived markers exhibit an encouraging discriminatory ability to identify patients from healthy controls, however more data is needed to determine its ability to assist with the diagnosis in early stages when upper motor neuron signs are limited, and in distinguishing from disease mimics. Longitudinal change of NAA and mIns do not appear to be reliable in monitoring disease progression. Technological advances in hardware and high field scanning are increasing the number of accessible metabolites available for interrogation.
Collapse
Affiliation(s)
- Sanjay Kalra
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Cheong I, Deelchand DK, Eberly LE, Marjańska M, Manousakis G, Guliani G, Walk D, Öz G. Neurochemical correlates of functional decline in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:294-301. [PMID: 30467209 PMCID: PMC6467050 DOI: 10.1136/jnnp-2018-318795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 09/19/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine whether proton magnetic resonance spectroscopy (1H-MRS) can detect neurochemical changes in amyotrophic lateral sclerosis (ALS) associated with heterogeneous functional decline. METHODS Nineteen participants with early-stage ALS and 18 age-matched and sex ratio-matched controls underwent ultra-high field 1H-MRS scans of the upper limb motor cortex and pons, ALS Functional Rating Scale-Revised (ALSFRS-R total, upper limb and bulbar) and upper motor neuron burden assessments in a longitudinal observational study design with follow-up assessments at 6 and 12 months. Slopes of neurochemical levels over time were compared between patient subgroups classified by the rate of upper limb or bulbar functional decline. 1H-MRS and clinical ratings at baseline were assessed for ability to predict study withdrawal due to disease progression. RESULTS Motor cortex total N-acetylaspartate to myo-inositol ratio (tNAA:mIns) significantly declined in patients who worsened in upper limb function over the follow-up period (n=9, p=0.002). Pons glutamate + glutamine significantly increased in patients who worsened in bulbar function (n=6, p<0.0001). Neurochemical levels did not change in patients with stable function (n=5-6) or in healthy controls (n=14-16) over time. Motor cortex tNAA:mIns and ALSFRS-R at baseline were significantly lower in patients who withdrew from follow-up due to disease progression (n=6) compared with patients who completed the 12-month scan (n=10) (p<0.001 for tNAA:mIns; p<0.01 for ALSFRS-R), with a substantially larger overlap in ALSFRS-R between groups. CONCLUSION Neurochemical changes in motor areas of the brain are associated with functional decline in corresponding body regions. 1H-MRS was a better predictor of study withdrawal due to ALS progression than ALSFRS-R.
Collapse
Affiliation(s)
- Ian Cheong
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | | | - Gaurav Guliani
- Hennepin County Medical Center and HealthPartners Neuroscience Center, Minneapolis, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| |
Collapse
|
29
|
Alruwaili AR, Pannek K, Henderson RD, Gray M, Kurniawan ND, McCombe PA. Tract integrity in amyotrophic lateral sclerosis: 6-month evaluation using MR diffusion tensor imaging. BMC Med Imaging 2019; 19:19. [PMID: 30795741 PMCID: PMC6387547 DOI: 10.1186/s12880-019-0319-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Background This study was performed to assess changes in diffusion tensor imaging (DTI) over time in patients with amyotrophic lateral sclerosis (ALS). Methods We performed DTI in 23 ALS patients who had two magnetic resonance imaging (MRI) scans at 6 month intervals and to correlate results with clinical features. The revised ALS functional rating scale (ALSFRS–R) was administered at each clinical visit. Data analysis included voxel–based white matter tract–based spatial statistics (TBSS) and atlas–based region–of–interest (ROI) analysis of fractional anisotropy (FA) and mean diffusivity (MD). Results With TBSS, there were no significant changes between the two scans. The average change in FA and MD in the ROIs over 6 months was small and not significant after allowing for multiple comparisons. After allowing for multiple comparisons, there was no significant correlation of FA or MD with ALSFRS–R. Conclusion This study shows that there is little evidence of progressive changes in DTI over time in ALS. This could be because white matter is already substantially damaged by the time of onset of symptoms of ALS.
Collapse
Affiliation(s)
- Ashwag R Alruwaili
- Faculty of Medicine, The University of Queensland, Australia and King Saud University, Brisbane, Australia
| | - Kerstin Pannek
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Robert D Henderson
- Department of Neurology, Faculty of Medicine, Royal Brisbane and Women's Hospital and The University of Queensland, Brisbane, Australia
| | - Marcus Gray
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Pamela A McCombe
- Faculty of Medicine, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia.
| |
Collapse
|
30
|
Finegan E, Chipika RH, Shing SLH, Hardiman O, Bede P. Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:133-145. [PMID: 30654671 DOI: 10.1080/21678421.2018.1550518] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Primary lateral sclerosis (PLS) has been traditionally viewed as a distinct upper motor neuron condition (UMN) but is increasingly regarded as a sub-phenotype within the amyotrophic lateral sclerosis (ALS) spectrum. Despite established diagnostic criteria, formal diagnosis can be challenging and the protracted diagnostic journey and uncertainty about longer-term prognosis cause considerable distress to patients and caregivers. PLS patients are invariably excluded from ALS clinical trials, while PLS pharmacological trials are lacking. There remains an unmet need for diagnostic biomarkers for upper motor neuron predominant conditions and prognostic indicators regarding prognosis, survival, and risk of conversion to ALS. Validated biomarkers will not only have implications for individualized patient care but also serve as outcome measures in pharmaceutical trials. Given the paucity of post-mortem studies in PLS, novel pathological insights are generally inferred from state-of-the-art imaging studies. Computational neuroimaging has already contributed significantly to the characterization of PLS-associated pathology in vivo and has underscored the role of neuro-inflammation, the presence of extra-motor changes, and confirmed pathological patterns similar to ALS. This systematic review assesses the current state of PLS research across clinical, neuroimaging and neuropathological domains from a combined clinical and academic perspective. We discuss patterns of pathological overlap with other ALS phenotypes, examine if the biological processes of PLS warrant therapeutic strategies distinct from ALS, and evaluate the evidence that classes PLS as a distinct clinico-pathological entity.
Collapse
Affiliation(s)
- Eoin Finegan
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Rangariroyashe H Chipika
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Stacey Li Hi Shing
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Orla Hardiman
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Peter Bede
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| |
Collapse
|
31
|
Enoki H, Tani T, Ishida K. Foot Tapping Test as Part of Routine Neurologic Examination in Degenerative Compression Myelopathies: A Significant Correlation between 10-sec Foot-tapping Speed and 30-m Walking Speed. Spine Surg Relat Res 2019; 3:207-213. [PMID: 31440678 PMCID: PMC6698509 DOI: 10.22603/ssrr.2018-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/18/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction Leg spasticity in degenerative compression myelopathy causes impairment of fast and rapid repetitive movements, which tends to appear despite the disproportionate paucity of clinical weakness. As clinically useful measures used to quantify the slowness of voluntary leg movements in this pathological condition, we compared the foot tapping test (FTT) with the simple walking test, which is now considered the gold standard in this field. Methods We compared the FTT with the simple walking test, the grip-and-release test, and the functional scales of Nurick and the Japanese Orthopedic Association (JOA) in 77 patients with cervical compression myelopathy and 56 age-matched healthy subjects. The FTT was conducted on both sides separately, and the subject, while being seated on a chair, moved his/her toes up and down repeatedly to tap the floor as fast and as vigorously as possible for 10 sec with his/her heels planted on the floor. Results The number of 10-sec foot tapping in the patient group significantly correlated with the Nurick grades (r = −0.566; P < 0.0001), the JOA scores (r = 0.520; P < 0.0001), and the grip-and-release rates (r = 0.609; P < 0.0001). It also significantly correlated with the 30-m walking time (r = −0.507; P < 0.0001) and the number of steps taken (r = −0.494; P < 0.0001). Assessments of wheelchair-dependent patients and side-to-side comparison, in which the simple walking test plays no role, revealed significantly fewer FTT taps in wheelchair-bound patients than in the ambulatory patients and a significant trend for cervical compression myelopathy to dominantly affect the upper and lower limbs on the same side. Conclusions This study contributes to the reassessment of the currently underutilized FTT as part of a routine neurologic examination of degenerative compression myelopathy.
Collapse
Affiliation(s)
- Hayato Enoki
- Department of Physical Therapy Faculty of Health and Welfare, Tokushima Bunri University, Tokushima, Japan
| | - Toshikazu Tani
- Department of Orthopaedic Surgery, Kubokawa Hospital, Kochi, Japan.,Department of Rehabilitation Center, Kochi Medical School Hospital, Kochi, Japan
| | - Kenji Ishida
- Department of Rehabilitation Center, Kochi Medical School Hospital, Kochi, Japan
| |
Collapse
|
32
|
Jacobsen AB, Bostock H, Tankisi H. Following disease progression in motor neuron disorders with 3 motor unit number estimation methods. Muscle Nerve 2018; 59:82-87. [DOI: 10.1002/mus.26304] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Anna Bystrup Jacobsen
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, 8000 Aarhus C Denmark
| | - Hugh Bostock
- Institute of Neurology; University College London; London UK
| | - Hatice Tankisi
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, 8000 Aarhus C Denmark
| |
Collapse
|
33
|
Abstract
Although we currently have two, approved, disease-modifying drugs for the treatment of amyotrophic lateral sclerosis (ALS), we are in disperate need for more efficacious treatment. To aggressively test for newer therapies, we must develop reliable objective biomarkers to supplement clinical outcome measures. Many biomarker candidates have been actively and vigorously investigated. Among neurophysiological biomarkers, transcranial magnetic stimulation (TMS)-based biomarkers show potential in exploring disease mechanisms. Neuroimaging biomarkers have high specificity in diagnosing ALS but are an expensive endeavor and are not sensitive enough to detect changes over time of the disease. Among fluid-based biochemical biomarkers, creatinine (Crn) and uric acids (UA), which have been known for decades, may prove to be highly promising biomarkers that can predict disease progression. They can be easily tested in any clinical trials because the costs are minimal. Although known for some time, neurofilaments (NF), either phosphorylated-NF heavy subunit (pNFH) or NF light subunit (NFL), have emerged as "new" biomarkers using specific antibodies. They appear to be highly specific and sensitive in diagnosing ALS, yet they may be insensitive to assess changes in disease over time. These two NF biomarkers along with Crn and UA should be explored extensively in future clinical trials and any other clinical studies in ALS. Yet, we still need newer, more innovative, and reliable biomarkers for future ALS research. Fortunatley, aggressive investigations appear to be currently underway.
Collapse
Affiliation(s)
- Hiroshi Mitsumoto
- Wesley J Howe Professor of Neurology (at CUMC), Eleanor and Lou Gehrig ALS Center, Department of Neurology, Columbia University Medical Center (CUMC)
| | | |
Collapse
|
34
|
Mazón M, Vázquez Costa JF, Ten-Esteve A, Martí-Bonmatí L. Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis. Front Neurosci 2018; 12:784. [PMID: 30410433 PMCID: PMC6209630 DOI: 10.3389/fnins.2018.00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The term amyotrophic lateral sclerosis (ALS) comprises a heterogeneous group of fatal neurodegenerative disorders of largely unknown etiology characterized by the upper motor neurons (UMN) and/or lower motor neurons (LMN) degeneration. The development of brain imaging biomarkers is essential to advance in the diagnosis, stratification and monitoring of ALS, both in the clinical practice and clinical trials. In this review, the characteristics of an optimal imaging biomarker and common pitfalls in biomarkers evaluation will be discussed. Moreover, the development and application of the most promising brain magnetic resonance (MR) imaging biomarkers will be reviewed. Finally, the integration of both qualitative and quantitative multimodal brain MR biomarkers in a structured report will be proposed as a support tool for ALS diagnosis and stratification.
Collapse
Affiliation(s)
- Miguel Mazón
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Juan Francisco Vázquez Costa
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Amadeo Ten-Esteve
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
35
|
Wirth AM, Khomenko A, Baldaranov D, Kobor I, Hsam O, Grimm T, Johannesen S, Bruun TH, Schulte-Mattler W, Greenlee MW, Bogdahn U. Combinatory Biomarker Use of Cortical Thickness, MUNIX, and ALSFRS-R at Baseline and in Longitudinal Courses of Individual Patients With Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:614. [PMID: 30104996 PMCID: PMC6077217 DOI: 10.3389/fneur.2018.00614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative process affecting upper and lower motor neurons as well as non-motor systems. In this study, precentral and postcentral cortical thinning detected by structural magnetic resonance imaging (MRI) were combined with clinical (ALS-specific functional rating scale revised, ALSFRS-R) and neurophysiological (motor unit number index, MUNIX) biomarkers in both cross-sectional and longitudinal analyses. Methods: The unicenter sample included 20 limb-onset classical ALS patients compared to 30 age-related healthy controls. ALS patients were treated with standard Riluzole and additional long-term G-CSF (Filgrastim) on a named patient basis after written informed consent. Combinatory biomarker use included cortical thickness of atlas-based dorsal and ventral subdivisions of the precentral and postcentral cortex, ALSFRS-R, and MUNIX for the musculus abductor digiti minimi (ADM) bilaterally. Individual cross-sectional analysis investigated individual cortical thinning in ALS patients compared to age-related healthy controls in the context of state of disease at initial MRI scan. Beyond correlation analysis of biomarkers at cross-sectional group level (n = 20), longitudinal monitoring in a subset of slow progressive ALS patients (n = 4) explored within-subject temporal dynamics of repeatedly assessed biomarkers in time courses over at least 18 months. Results: Cross-sectional analysis demonstrated individually variable states of cortical thinning, which was most pronounced in the ventral section of the precentral cortex. Correlations of ALSFRS-R with cortical thickness and MUNIX were detected. Individual longitudinal biomarker monitoring in four slow progressive ALS patients revealed evident differences in individual disease courses and temporal dynamics of the biomarkers. Conclusion: A combinatory use of structural MRI, neurophysiological and clinical biomarkers allows for an appropriate and detailed assessment of clinical state and course of disease of ALS.
Collapse
Affiliation(s)
- Anna M Wirth
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany.,Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Andrei Khomenko
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Dobri Baldaranov
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Ines Kobor
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Ohnmar Hsam
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Thomas Grimm
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Tim-Henrik Bruun
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | | | - Mark W Greenlee
- Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Lee JH, Liu JW, Lin SZ, Harn HJ, Chiou TW. Advances in Patient-Specific Induced Pluripotent Stem Cells Shed Light on Drug Discovery for Amyotrophic Lateral Sclerosis. Cell Transplant 2018; 27:1301-1312. [PMID: 30033758 PMCID: PMC6168987 DOI: 10.1177/0963689718785154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs), which are generated through reprogramming adult somatic cells by expressing specific transcription factors, can differentiate into derivatives of the three embryonic germ layers and accelerate rapid advances in stem cell research. Neurological diseases such as amyotrophic lateral sclerosis (ALS) have benefited enormously from iPSC technology. This approach can be particularly important for creating iPSCs from patients with familial or sporadic forms of ALS. Motor neurons differentiated from the ALS-patient-derived iPSC can help to determine the relationship between cellular phenotype and genotype. Patient-derived iPSCs facilitate the development of new drugs and/or drug screening for ALS treatment and allow the exploration of the possible mechanism of ALS disease. In this article, we reviewed ALS-patient-specific iPSCs with various genetic mutations, progress in drug development for ALS disease, functional assays showing the differentiation of iPSCs into mature motor neurons, and promising biomarkers in ALS patients for the evaluation of drug candidates.
Collapse
Affiliation(s)
- Jui-Hao Lee
- 1 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China.,2 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Jen-Wei Liu
- 1 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China.,2 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Shinn-Zong Lin
- 3 Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,4 Department of Neurosurgery, Tzu Chi University, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Horng-Jyh Harn
- 3 Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,5 Department of Pathology, Tzu Chi University, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Tzyy-Wen Chiou
- 2 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| |
Collapse
|
37
|
Ng SSM, Tse MMY, Tam EWC, Lai CYY. The psychometric properties of the toe tap test in people with stroke. Disabil Rehabil 2018; 41:2817-2825. [PMID: 29957080 DOI: 10.1080/09638288.2018.1479454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objectives: To investigate the: (i) inter-rater and test-retest reliability of the toe tap test for people with stroke, (ii) the convergent validity of toe tap test counts with stroke-specific impairments, (iii) minimum detectable change in toe tap test counts, (iv) toe tap test cutoff counts which best discriminating the performance between stroke survivors and healthy controls.Design: Cross-sectional study.Setting: University-based rehabilitation center.Participants: Thirty-seven people with stroke and 35 healthy controls.Main Outcome Measures: The toe tap test was administered along with the Fugl-Meyer lower extremity assessment, muscle strength of ankle dorsiflexors and plantarflexors, five times sit-to-stand test, Berg Balance Scale, limit of stability test, timed up and go test, and Community Integration Measures questionnaire.Results: Excellent inter-rater and test-retest reliabilities (intraclass correlation coefficient = 0.868-0.995 on the affected side) were found. A minimal detectable change of 8.7 counts and a cutoff score of 21 counts was found on the affected side, while 12.6 counts and 25 counts were found on the unaffected side, respectively. Toe tap test counts on the affected side were significantly associated with Fugl-Meyer lower extremity assessment scores, ankle muscle strength, Berg Balance Scale scores and timed up and go test times.Conclusions: Toe tap test count on the affected side is a simple and reliable tool for assessing ankle control in people with stroke.Implications for rehabilitationToe Tap Test counts have excellent intra-rater, inter-rater, and test-retest reliabilities in people with stroke.Toe Tap Test counts on the affected side were significantly associated with Fugl-Meyer Assessment of Lower Extremity scores, ankle muscle strength, Berg Balance Scale scores, and timed Up and Go test completion times.The 95% Minimal Detectable Change for the Toe Tap Test counts was 8.7 counts of the affected side and 12.6 of the unaffected side.Toe Tap Test counts of 21 on the affected side and 25 on the unaffected side (sensitivity 70.3-83.3%; specificity 71.4-85.7%) was found to be the most representative for discriminating performance of Toe Tap Test in chronic stroke survivors and healthy older adults.Toe Tap Test is a simple and reliable tool for assessing ankle control in people with stroke.
Collapse
Affiliation(s)
- Shamay S M Ng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong (SAR), China
| | - Mimi M Y Tse
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong (SAR), China
| | - Eric W C Tam
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong (SAR), China
| | - Cynthia Y Y Lai
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
38
|
Driven to decay: Excitability and synaptic abnormalities in amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:318-333. [PMID: 29870780 DOI: 10.1016/j.brainresbull.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease and is clinically characterised by the death of corticospinal motor neurons (CSMNs), spinal and brainstem MNs and the degeneration of the corticospinal tract. Degeneration of CSMNs and MNs leads inexorably to muscle wastage and weakness, progressing to eventual death within 3-5 years of diagnosis. The CSMNs, located within layer V of the primary motor cortex, project axons constituting the corticospinal tract, forming synaptic connections with brainstem and spinal cord interneurons and MNs. Clinical ALS may be divided into familial (∼10% of cases) or sporadic (∼90% of cases), based on apparent random incidence. The emergence of transgenic murine models, expressing different ALS-associated mutations has accelerated our understanding of ALS pathogenesis, although precise mechanisms remain elusive. Multiple avenues of investigation suggest that cortical electrical abnormalities have pre-eminence in the pathophysiology of ALS. In addition, glutamate-mediated functional and structural alterations in both CSMNs and MNs are present in both sporadic and familial forms of ALS. This review aims to promulgate debate in the field with regard to the common aetiology of sporadic and familial ALS. A specific focus on a nexus point in ALS pathogenesis, namely, the synaptic and intrinsic hyperexcitability of CSMNs and MNs and alterations to their structure are comprehensively detailed. The association of extramotor dysfunction with neuronal structural/functional alterations will be discussed. Finally, the implications of the latest research on the dying-forward and dying-back controversy are considered.
Collapse
|
39
|
Dharmadasa T, Huynh W, Tsugawa J, Shimatani Y, Ma Y, Kiernan MC. Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Rev Neurother 2018; 18:407-419. [PMID: 29667443 DOI: 10.1080/14737175.2018.1464912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes progressive muscle weakness and disability, eventually leading to death. Heterogeneity of disease has become a major barrier to understanding key clinical questions such as prognosis and disease spread, and has disadvantaged clinical trials in search of therapeutic intervention. Patterns of disease have been explored through recent advances in neuroimaging, elucidating structural, molecular and functional changes. Unique brain signatures have emerged that have lent a greater understanding of critical disease mechanisms, offering opportunities to improve diagnosis, guide prognosis, and establish candidate biomarkers to direct future therapeutic strategies. Areas covered: This review explores patterns of cortical and subcortical change in ALS through advanced neuroimaging techniques and discusses the implications of these findings. Expert commentary: Cortical and subcortical signatures and patterns of atrophy are now consistently recognised, providing important pathophysiological insight into this heterogenous disease. The spread of cortical change, particularly involving frontotemporal networks, correlates with cognitive impairment and poorer prognosis. Cortical differences are also evident between ALS phenotypes and genotypes, which may partly explain the heterogeneity of prognosis. Ultimately, multimodal approaches with larger cohorts will be needed to provide sensitive biomarkers of disease spread at the level of the individual patient.
Collapse
Affiliation(s)
| | - William Huynh
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Jun Tsugawa
- c Department of Neurology , Fukuoka University Hospital , Fukuoka city , Japan
| | - Yoshimitsu Shimatani
- d Department of Neurology , Tokushima Prefectural Hospital , Tokushima city , Japan
| | - Yan Ma
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Matthew C Kiernan
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia.,b Department of Neurology , Royal Prince Alfred Hospital , Sydney , Australia
| |
Collapse
|
40
|
Stämpfli P, Sommer S, Czell D, Kozerke S, Neuwirth C, Weber M, Sartoretti-Schefer S, Seifritz E, Gutzeit A, Reischauer C. Investigation of Neurodegenerative Processes in Amyotrophic Lateral Sclerosis Using White Matter Fiber Density. Clin Neuroradiol 2018; 29:493-503. [DOI: 10.1007/s00062-018-0670-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/19/2018] [Indexed: 12/20/2022]
|
41
|
Atassi N, Xu M, Triantafyllou C, Keil B, Lawson R, Cernasov P, Ratti E, Long CJ, Paganoni S, Murphy A, Salibi N, Seethamraju R, Rosen B, Ratai EM. Ultra high-field (7tesla) magnetic resonance spectroscopy in Amyotrophic Lateral Sclerosis. PLoS One 2017; 12:e0177680. [PMID: 28498852 PMCID: PMC5428977 DOI: 10.1371/journal.pone.0177680] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
The main objective of this study was to utilize high field (7T) in vivo proton magnetic resonance imaging to increase the ability to detect metabolite changes in people with ALS, specifically, to quantify levels of glutamine and glutamine separately. The second objective of this study was to correlate metabolic markers with clinical outcomes of disease progression. 13 ALS participants and 12 age-matched healthy controls (HC) underwent 7 Tesla MRI and MRS. Single voxel MR spectra were acquired from the left precentral gyrus using a very short echo time (TE = 5 ms) STEAM sequence. MRS data was quantified using LCModel and correlated to clinical outcome markers. N-acetylaspartate (NAA) and total NAA (tNA, NAA + NAAG) were decreased by 17% in people with ALS compared to HC (P = 0.004 and P = 0.005, respectively) indicating neuronal injury and/or loss in the precentral gyrus. tNA correlated with disease progression as measured by forced vital capacity (FVC) (P = 0.014; Rρ = 0.66) and tNA/tCr correlated with overall functional decline as measured by worsening of the ALS Functional Rating Scale-Revised (ALSFRS-R) (P = 0.004; Rρ = -0.74). These findings underscore the importance of NAA as a reliable biomarker for neuronal injury and disease progression in ALS. Glutamate (Glu) was 15% decreased in people with ALS compared to HC (P = 0.02) while glutamine (Gln) concentrations were similar between the two groups. Furthermore, the decrease in Glu correlated with the decrease in FVC (P = 0.013; Rρ = 0.66), a clinical marker of disease progression. The decrease in Glu is most likely driven by intracellular Glu loss due to neuronal loss and degeneration. Neither choline containing components (Cho), a marker for cell membrane turnover, nor myo-Inositol (mI), a suspected marker for neuroinflammation, showed significant differences between the two groups. However, mI/tNA was correlated with upper motor neuron burden (P = 0.004, Rρ = 0.74), which may reflect a relative increase of activated microglia around motor neurons. In summary, 7T 1H MRS is a powerful non-invasive imaging technique to study molecular changes related to neuronal injury and/or loss in people with ALS.
Collapse
Grants
- Harvard NeuroDiscovery Center, Muscular Dystrophy Association Clinical Research Training Grant, Research fellowship from the American Academy of Neurology, and the Anne B. Young neuroscience translational medicine fellowship
- Harvard NeuroDiscovery Center
- Siemens Healthcare GmbH provided support in the form of salaries for author CT, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Siemens Healthcare GmbH provided support in the form of salaries for author NS, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Siemens Healthcare GmbH provided support in the form of salaries for author RS, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Biogen provided support in the form of salaries for author ER, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Harvard NeuroDiscovery Center and the Amyotrophic Lateral Sclerosis Association (ALSA), National Institute of Neurological Disorders and Stroke (NINDS), R25NS065743, title: Neuroscience resident research program, and the Dr. Anne B. Young Neuroscience Translational Medicine Fellowship (Massachusetts General Hospital Neurology and Biogen).
Collapse
Affiliation(s)
- Nazem Atassi
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maosheng Xu
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Christina Triantafyllou
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Boris Keil
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Robert Lawson
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul Cernasov
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elena Ratti
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher J. Long
- Massachusetts Institute of Technology, Sloan School of Management, Cambridge, Massachusetts, United States of America
| | - Sabrina Paganoni
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, United States of America
| | - Alyssa Murphy
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nouha Salibi
- Siemens Healthineers, MR R&D, Siemens, Auburn, Alabama, United States of America
| | - Ravi Seethamraju
- Siemens Healthineers, MR R&D, Siemens, Charlestown, Massachusetts, United States of America
| | - Bruce Rosen
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Juntas Morales R, Pageot N, Taieb G, Camu W. Adult-onset spinal muscular atrophy: An update. Rev Neurol (Paris) 2017; 173:308-319. [DOI: 10.1016/j.neurol.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|
43
|
Ultra-High Field Proton MR Spectroscopy in Early-Stage Amyotrophic Lateral Sclerosis. Neurochem Res 2017; 42:1833-1844. [PMID: 28367604 DOI: 10.1007/s11064-017-2248-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
A major hurdle in the development of effective treatments for amyotrophic lateral sclerosis (ALS) has been the lack of robust biomarkers for use as clinical trial endpoints. Neurochemical profiles obtained in vivo by high field proton magnetic resonance spectroscopy (1H-MRS) can potentially provide biomarkers of cerebral pathology in ALS. However, previous 1H-MRS studies in ALS have produced conflicting findings regarding alterations in the levels of neurochemical markers such as glutamate (Glu) and myo-inositol (mIns). Furthermore, very few studies have investigated the neurochemical abnormalities associated with ALS early in its course. In this study, we measured neurochemical profiles using single-voxel 1H-MRS at 7 T (T) and glutathione (GSH) levels using edited MRS at 3 T in 19 subjects with ALS who had relatively high functional status [ALS Functional Rating Scale-Revised (ALSFRS-R) mean ± SD = 39.8 ± 5.6] and 17 healthy controls. We observed significantly lower total N-acetylaspartate over mIns (tNAA/mIns) ratio in the motor cortex and pons of subjects with ALS versus healthy controls. No group differences were detected in GSH at 3 and 7 T. In subjects with ALS, the levels of tNAA, mIns, and Glu in the motor cortex were dependent on the extent of disease represented by El Escorial diagnostic subcategories. Specifically, combined probable/definite ALS had lower tNAA than possible ALS and controls (both p = 0.03), higher mIns than controls (p < 0.01), and lower Glu than possible ALS (p < 0.01). The effect of disease stage on MRS-measured metabolite levels may account for dissimilar findings among previous 1H-MRS studies in ALS.
Collapse
|
44
|
Duclos Y, Grapperon A, Jouve E, Truillet R, Zemmour C, Verschueren A, Pouget J, Attarian S. Motor-evoked potential gain is a helpful test for the detection of corticospinal tract dysfunction in amyotrophic lateral sclerosis. Clin Neurophysiol 2017; 128:357-364. [DOI: 10.1016/j.clinph.2016.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
|
45
|
Wang Y, Li X, Chen W, Wang Z, Xu Y, Luo J, Lin H, Sun G. Detecting neuronal dysfunction of hand motor cortex in ALS: A MRSI study. Somatosens Mot Res 2017; 34:15-20. [PMID: 28114839 DOI: 10.1080/08990220.2016.1275544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although hand motor cortex (HMC) has been constantly used for identification of primary motor cortex in magnetic resonance spectroscopy (MRS) studies of amyotrophic lateral sclerosis (ALS), neurochemical profiles of HMC have never been assessed independently. As HMC has a constant location and the clinic-anatomic correlation between hand motor function and HMC has been established, we hypothesize that HMC may serve as a promising region of interest in diagnosing ALS. PATIENTS AND METHODS Fourteen ALS patients and 14 age- and gender-matched healthy controls (HC) were recruited in this study. An optimized magnetic resonance spectroscopic imaging (MRSI) method was developed and for each subject bilateral HMC areas were scanned separately (two-dimensional multi-voxel MRSI, voxel size 0.56 cm3). N-acetyl aspartate (NAA)-creatine (Cr) ratio was measured from HMC and the adjacent postcentral gyrus. RESULTS Compared with HC, NAA/Cr ratios from HMC and the postcentral gyrus were significantly reduced in ALS. However, in each group the difference of NAA/Cr ratios between HMC and the postcentral gyrus was not significant. Limb predominance of HMC was not found in either ALS or HC. In ALS, there was a significant difference in NAA/Cr ratio between the most affected HMC and the less affected HMC. A positive relationship between NAA/Cr ratio of HMC and the severity of hand strength (assessed by finger tapping speed) was demonstrated. CONCLUSION Neuronal dysfunction of HMC can differentiate ALS patients from HC when represented as reduced NAA/Cr ratio. Postcentral gyrus could not serve as normal internal reference tissue in diagnosing ALS. Asymmetrical NAA/Cr ratios from bilateral HMC may serve as a promising diagnostic biomarker of ALS at the individual level.
Collapse
Affiliation(s)
- Yuzhou Wang
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Xiaodi Li
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Wenming Chen
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Zhanhang Wang
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Yan Xu
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Jingpan Luo
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Hanbo Lin
- b Department of Neuroradiology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Guijun Sun
- b Department of Neuroradiology , Guangdong 999 Brain Hospital , Guangzhou , China
| |
Collapse
|
46
|
Abstract
The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.
Collapse
Affiliation(s)
- Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital and University of Queensland Centre for Clinical Research, Herston, Brisbane, 4006, Australia.
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane & Women's Hospital and University of Queensland Centre for Clinical Research, Herston, Brisbane, 4006, Australia
| |
Collapse
|
47
|
Mcilduff CE, Yim SJ, Pacheck AK, Rutkove SB. Optimizing electrical impedance myography of the tongue in amyotrophic lateral sclerosis. Muscle Nerve 2016; 55:539-543. [DOI: 10.1002/mus.25375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/17/2016] [Accepted: 08/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Courtney E. Mcilduff
- Department of Neurology; Beth Israel Deaconess Medical Center; 330 Brookline Avenue, CC-810 Boston Massachusetts 02215 USA
| | - Sung J. Yim
- Department of Neurology; Beth Israel Deaconess Medical Center; 330 Brookline Avenue, CC-810 Boston Massachusetts 02215 USA
| | - Adam K. Pacheck
- Department of Neurology; Beth Israel Deaconess Medical Center; 330 Brookline Avenue, CC-810 Boston Massachusetts 02215 USA
| | - Seward B. Rutkove
- Department of Neurology; Beth Israel Deaconess Medical Center; 330 Brookline Avenue, CC-810 Boston Massachusetts 02215 USA
| |
Collapse
|
48
|
Traub R, Mitsumoto H. Recent advances and opportunities for improving diagnosis of amyotrophic lateral sclerosis. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1213164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rebecca Traub
- Department of Neurology, Columbia University, New York, NY, USA
| | - Hiroshi Mitsumoto
- Department of Neurology, The Eleanor and Lou Gehrig MDA/ALS, Research Center, Columbia University, New York, NY, USA
| |
Collapse
|
49
|
Abstract
Progressive muscular atrophy (PMA) is a rare, sporadic, adult-onset motor neuron disease, clinically characterized by isolated lower motor neuron features; however, clinically evident upper motor neuron signs may emerge in some patients. Subclinical upper motor neuron involvement is identified pathologically, radiologically, and neurophysiologically in a substantial number of patients with PMA. Patients with subclinical upper motor neuron involvement do not fulfill the revised El Escorial criteria to participate in amyotrophic lateral sclerosis clinical trials. Intravenous immunoglobulin therapy is only marginally beneficial in a small subgroup of patients with lower motor neuron syndrome without conduction block.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, 12631 East 17th Avenue, Mail Stop B-185, Aurora, CO 80045, USA; Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - David S Saperstein
- Phoenix Neurological Associates, University of Arizona College of Medicine, 5090 North 40th Street, Suite 250, Phoenix, AZ 85018, USA
| |
Collapse
|
50
|
Blasco H, Vourc'h P, Pradat PF, Gordon PH, Andres CR, Corcia P. Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Mol Diagn 2016; 16:853-68. [PMID: 27275785 DOI: 10.1080/14737159.2016.1199277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an idiopathic neurodegenerative disease usually fatal in less than three years. Even if standard guidelines are available to diagnose ALS, the mean diagnosis delay is more than one year. In this context, biomarker discovery is a priority. Research has to focus on new diagnostic tools, based on combined explorations. AREAS COVERED In this review, we specifically focus on biology and imaging markers. We detail the innovative field of 'omics' approach and imaging and explain their limits to be useful in routine practice. We describe the most relevant biomarkers and suggest some perspectives for biomarker research. Expert commentary: The successive failures of clinical trials in ALS underline the need for new strategy based on innovative tools to stratify patients and to evaluate their responses to treatment. Biomarker data may be useful to improve the designs of clinical trials. Biomarkers are also needed to better investigate disease pathophysiology, to identify new therapeutic targets, and to improve the performance of clinical assessments for diagnosis and prognosis in the clinical setting. A consensus on the best management of neuroimaging and 'omics' methods is necessary and a systematic independent validation of findings may add robustness to future studies.
Collapse
Affiliation(s)
- H Blasco
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Vourc'h
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P F Pradat
- c Département des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris , Hôpital de la Salpêtrière , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM , Laboratoire d'Imagerie Biomédicale , Paris , France
| | - P H Gordon
- e Neurology Unit, Northern Navajo Medical Center , Shiprock , NM , USA
| | - C R Andres
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Corcia
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France.,f Centre SLA , Service de Neurologie et Neurophysiologie Clinique, CHRU de Tours , Tours , France
| |
Collapse
|