1
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Post-Concussion Brain Changes Relative to Pre-Injury White Matter and Cerebral Blood Flow: A Prospective Observational Study. Neurology 2025; 104:e213374. [PMID: 40073308 DOI: 10.1212/wnl.0000000000213374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Medical clearance for return to play (RTP) after sports-related concussion is based on clinical assessment. It is unknown whether brain physiology has entirely returned to preinjury baseline at the time of clearance. In this longitudinal study, we assessed whether concussed individuals show functional and structural MRI brain changes relative to preinjury levels that persist beyond medical clearance. Secondary objectives were to test whether postconcussion changes exceed uninjured brain variability and to correlate MRI findings with clinical recovery time. METHODS For this prospective observational study, healthy athletes without a history of psychiatric, neurologic, or sensory-motor conditions were recruited from a single university sport medicine clinic. Clinical and MRI data were collected at preseason baseline, and those who were later concussed were reassessed at 1-7 days after injury, RTP, 1-3 months after RTP, and 1 year after RTP. A demographically matched control cohort of uninjured athletes was also reassessed at their subsequent preseason baseline. Primary outcomes were postconcussion changes in MRI measures of cerebral blood flow (CBF), white matter mean diffusivity (MD), and fractional anisotropy (FA), evaluated using mixed models. Secondary outcomes were group differences in MRI change scores and correlations of change scores with days to RTP. RESULTS Of the 187 athletes enrolled in the study, 25 had concussion with follow-up imaging (20.3 ± 1.5 years, 56% male, 44% female) and were compared with 27 controls (19.7 ± 1.8 years, 44% male, 56% female). Concussed athletes showed statistically significant changes from baseline, including decreased frontoinsular CBF (mean and 95% CI -8.97 [-12.80, -5.01] mL/100 g/minute, z = -4.53), along with increased MD (1.94 × 10-5 [1.26, 2.69] × 10-5, z = 5.48) and reduced FA (-7.30 × 10-3 [-9.80, -5.05] × 10-3, z = -6.07) in the corona radiata and internal capsule. Effects persisted beyond RTP, although only CBF changes exceeded longitudinal variability in controls. For participants with longer recovery periods, significantly greater changes in medial temporal CBF were also seen (ρ = 0.64 [0.44, 0.81], z = 6.80). DISCUSSION This study provides direct evidence of persistent postconcussion changes in CBF and white matter at RTP and up to 1 year later. These results support incomplete recovery of brain physiology at medical clearance, with secondary analyses emphasizing the sensitivity of CBF to clinical recovery.
Collapse
Affiliation(s)
- Nathan W Churchill
- Brain Health and Wellness Research Program, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Department of Physics, Toronto Metropolitan University, Ontario, Canada
| | - Michael G Hutchison
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Ontario, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and
| | - Tom A Schweizer
- Brain Health and Wellness Research Program, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Ontario, Canada
| |
Collapse
|
2
|
Baltazar VA, Demchenko I, Tassone VK, Sousa-Ho RL, Schweizer TA, Bhat V. Brain-based correlates of depression and traumatic brain injury: a systematic review of structural and functional magnetic resonance imaging studies. FRONTIERS IN NEUROIMAGING 2024; 3:1465612. [PMID: 39563730 PMCID: PMC11573519 DOI: 10.3389/fnimg.2024.1465612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Introduction Depression is prevalent after traumatic brain injury (TBI). However, there is a lack of understanding of the brain-based correlates of depression post-TBI. This systematic review aimed to synthesize findings of structural and functional magnetic resonance imaging (MRI) studies to identify consistently reported neural correlates of depression post-TBI. Methods A search for relevant published studies was conducted through OVID (MEDLINE, APA PsycINFO, and Embase), with an end date of August 3rd, 2023. Fourteen published studies were included in this review. Results TBI patients with depression exhibited distinct changes in diffusion- based white matter fractional anisotropy, with the direction of change depending on the acuteness or chronicity of TBI. Decreased functional connectivity (FC) of the salience and default mode networks was prominent alongside the decreased volume of gray matter within the insular, dorsomedial prefrontal, and ventromedial prefrontal cortices. Seven studies reported the correlation between observed neuroimaging and depression outcomes. Of these studies, 42% indicated that FC of the bilateral medial temporal lobe subregions was correlated with depression outcomes in TBI. Discussion This systematic review summarizes existing neuroimaging evidence and reports brain regions that can be leveraged as potential treatment targets in future studies examining depression post-TBI.
Collapse
Affiliation(s)
- Vanessa A Baltazar
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachel L Sousa-Ho
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Tom A Schweizer
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Harris S, Chinnery HR, Semple BD, Mychasiuk R. Shaking Up Our Approach: The Need for Characterization and Optimization of Pre-clinical Models of Infant Abusive Head Trauma. J Neurotrauma 2024; 41:1853-1870. [PMID: 38497766 DOI: 10.1089/neu.2023.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Traumatic brain injuries (TBIs) are a large societal and individual burden. In the first year of life, the vast majority of these injuries are the result of inflicted abusive events by a trusted caregiver. Abusive head trauma (AHT) in infants, formerly known as shaken baby syndrome, is the leading cause of inflicted mortality and morbidity in this population. In this review we address clinical diagnosis, symptoms, prognosis, and neuropathology of AHT, emphasizing the burden of repetitive AHT. Next, we consider existing animal models of AHT, and we evaluate key features of an ideal model, highlighting important developmental milestones in children most vulnerable to AHT. We draw on insights from other injury models, such as repetitive, mild TBIs (RmTBIs), post-traumatic epilepsy (PTE), hypoxic-ischemic injuries, and maternal neglect, to speculate on key knowledge gaps and underline important new opportunities in pre-clinical AHT research. Finally, potential treatment options to facilitate healthy development in children following an AHT are considered. Together, this review aims to drive the field toward optimized, well-characterized animal models of AHT, which will allow for greater insight into the underlying neuropathological and neurobehavioral consequences of AHT.
Collapse
Affiliation(s)
- Sydney Harris
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Science, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
| |
Collapse
|
4
|
Kim S, Ollinger J, Song C, Raiciulescu S, Seenivasan S, Wolfgang A, Kim H, Werner JK, Yeh PH. White Matter Alterations in Military Service Members With Remote Mild Traumatic Brain Injury. JAMA Netw Open 2024; 7:e248121. [PMID: 38635266 PMCID: PMC11161843 DOI: 10.1001/jamanetworkopen.2024.8121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Importance Mild traumatic brain injury (mTBI) is the signature injury experienced by military service members and is associated with poor neuropsychiatric outcomes. Yet, there is a lack of reliable clinical tools for mTBI diagnosis and prognosis. Objective To examine the white matter microstructure and neuropsychiatric outcomes of service members with a remote history of mTBI (ie, mTBI that occurred over 2 years ago) using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Design, Setting, and Participants This case-control study examined 98 male service members enrolled in a study at the National Intrepid Center of Excellence. Eligible participants were active duty status or able to enroll in the Defense Enrollment Eligibility Reporting system, ages 18 to 60 years, and had a remote history of mTBI; controls were matched by age. Exposures Remote history of mTBI. Main Outcomes and Measures White matter microstructure was assessed using a region-of-interest approach of skeletonized diffusion images, including DTI (fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity) and NODDI (orientation dispersion index [ODI], isotropic volume fraction, intra-cellular volume fraction). Neuropsychiatric outcomes associated with posttraumatic stress disorder (PTSD) and postconcussion syndrome were assessed. Results A total of 65 male patients with a remote history of mTBI (mean [SD] age, 40.5 [5.0] years) and 33 age-matched male controls (mean [SD] age, 38.9 [5.6] years) were included in analysis. Compared with the control cohort, the 65 service members with mTBI presented with significantly more severe PTSD-like symptoms (mean [SD] PTSD CheckList-Civilian [PCL-C] version scores: control, 19.0 [3.8] vs mTBI, 41.2 [11.6]; P < .001). DTI and NODDI metrics were altered in the mTBI group compared with the control, including intra-cellular volume fraction of the right cortico-spinal tract (β = -0.029, Cohen d = 0.66; P < .001), ODI of the left posterior thalamic radiation (β = -0.006, Cohen d = 0.55; P < .001), and ODI of the left uncinate fasciculus (β = 0.013, Cohen d = 0.61; P < .001). In service members with mTBI, fractional anisotropy of the left uncinate fasciculus was associated with postconcussion syndrome (β = 5.4 × 10-3; P = .003), isotropic volume fraction of the genu of the corpus callosum with PCL-C (β = 4.3 × 10-4; P = .01), and ODI of the left fornix and stria terminalis with PCL-C avoidance scores (β = 1.2 × 10-3; P = .02). Conclusions and Relevance In this case-control study of military-related mTBI, the results suggest that advanced magnetic resonance imaging techniques using NODDI can reveal white matter microstructural alterations associated with neuropsychiatric symptoms in the chronic phase of mTBI. Diffusion trends observed throughout widespread white matter regions-of-interest may reflect mechanisms of neurodegeneration as well as postinjury tissue scarring and reorganization.
Collapse
Affiliation(s)
- Sharon Kim
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Chihwa Song
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Sorana Raiciulescu
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Srija Seenivasan
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Aaron Wolfgang
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - J. Kent Werner
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
5
|
Sanclemente D, Belair JA, Talekar KS, Roedl JB, Stache S. Return to Play Following Concussion: Role for Imaging? Semin Musculoskelet Radiol 2024; 28:193-202. [PMID: 38484771 DOI: 10.1055/s-0043-1778031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This review surveys concussion management, focusing on the use of neuroimaging techniques in return to play (RTP) decisions. Clinical assessments traditionally were the foundation of concussion diagnoses. However, their subjective nature prompted an exploration of neuroimaging modalities to enhance diagnosis and management. Magnetic resonance spectroscopy provides information about metabolic changes and alterations in the absence of structural abnormalities. Diffusion tensor imaging uncovers microstructural changes in white matter. Functional magnetic resonance imaging assesses neuronal activity to reveal changes in cognitive and sensorimotor functions. Positron emission tomography can assess metabolic disturbances using radiotracers, offering insight into the long-term effects of concussions. Vestibulo-ocular dysfunction screening and eye tracking assess vestibular and oculomotor function. Although these neuroimaging techniques demonstrate promise, continued research and standardization are needed before they can be integrated into the clinical setting. This review emphasizes the potential for neuroimaging in enhancing the accuracy of concussion diagnosis and guiding RTP decisions.
Collapse
Affiliation(s)
- Drew Sanclemente
- Medical Student, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey A Belair
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kiran S Talekar
- Department of Radiology, Brain Mapping (fMRI and DTI) in Neuroradiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Johannes B Roedl
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen Stache
- Division of Non-Operative Sports Medicine, Department of Orthopaedics and Family and Community Medicine, Rothman Orthopaedic Institute, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
- Department of Orthopaedics and Pediatrics, University Athletics, Drexel University and Drexel College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Jin B, Gao Y, Fu Y, Zhang S, Zhang K, Su Y. Electroacupuncture improves cognitive function in a rat model of mild traumatic brain injury by regulating the SIRT-1/PGC-1α/mitochondrial pathway. Chin Med J (Engl) 2024; 137:711-719. [PMID: 38384159 PMCID: PMC10950173 DOI: 10.1097/cm9.0000000000003032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is a common neurological trauma that can lead to cognitive impairment. The sirtuin-1 (SIRT-1)/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) pathway has been reported to have neuroprotective effects in rats with craniocerebral injury. We evaluated potential mechanisms underlying electroacupuncture-mediated recovery of cognitive function after mTBI, focusing on the SIRT-1/PGC-1α/mitochondrial pathway. METHODS We included forty 6-week-old male Sprague-Dawley rats in this study. Rats were randomly divided into four groups: controlled cortical impactor (CCI, n = 10), sham operation (sham, n = 10), electroacupuncture-treated CCI (CCI+EA, n = 10), and electroacupuncture-treated sham (sham+EA, n = 10) group. Randomization was performed by assigning a random number to each rat and using a random number table. The mTBI rat model was established using a controllable cortical impactor. Electroacupuncture therapy was performed on the back of rats, by inserting acupuncture needles to the specific acupoints and setting appropriate parameters for treatment. We evaluated spatial learning and memory functions with the Morris water maze test. We performed quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, adenosine triphosphate (ATP) determination, and mitochondrial respiratory chain complex I (MRCC I) determination on rat hippocampal tissue. We analyzed SIRT-1/PGC-1α expression levels and the results of mitochondrial function assays, and compared differences between groups using bilateral Student's t -tests. RESULTS Compared with the sham group, SIRT-1/PGC-1α expression was downregulated in the hippocampus of CCI group ( P <0.01). Although this expression was upregulated following electroacupuncture, it did not reach the levels observed in the sham group ( P <0.05). Compared with the sham group, MRCC I and ATP levels in the CCI group were significantly reduced, and increased after electroacupuncture ( P <0.01). In the Morris water maze, electroacupuncture reduced the incubation period of rats and increased average speed and number of crossing platforms ( P <0.05). CONCLUSION Electroacupuncture may improve cognitive function in the mTBI rat model by regulating the SIRT-1/PGC-1α/mitochondrial pathway.
Collapse
Affiliation(s)
- Bo Jin
- Department of Neurosurgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yemei Gao
- Department of Traditional Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yixian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Suxin Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yibing Su
- Department of Neurosurgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| |
Collapse
|
7
|
DeBlois JP, London AS, Heffernan KS. Hypertension at the nexus of veteran status, psychiatric disorders, and traumatic brain injury: Insights from the 2011 Behavioral Risk Factor Surveillance System. PLoS One 2024; 19:e0298366. [PMID: 38498456 PMCID: PMC10947695 DOI: 10.1371/journal.pone.0298366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Variable military service-related experiences, such as combat exposure, psychiatric disorders (PD), and traumatic brain injuries (TBI), may differentially affect the likelihood of having health care professional-identified high blood pressure (i.e., hypertension). PURPOSE Compare the odds of self-reported hypertension among non-combat and combat veterans with and without PD/TBI to non-veterans and each other. METHODS We used data from men from the 2011 Behavioral Risk Factor Surveillance System and distinguished: non-veterans (n = 21,076); non-combat veterans with no PD/TBI (n = 3,150); combat veterans with no PD/TBI (n = 1,979); and veterans (combat and non-combat) with PD and/or TBI (n = 805). Multivariable, hierarchical logistic regression models included exogenous demographic, socioeconomic attainment and family structure, health behavior and conditions, and methodological control variables. RESULTS One-third of men reported having been told at least once by a medical professional that they had high blood pressure. Bivariate analyses indicated that each veteran group had a higher prevalence of self-reported hypertension than non-veterans (design-based F = 45.2, p<0.001). In the fully adjusted model, no statistically significant differences in the odds of self-reported hypertension were observed between non-veterans and: non-combat veterans without PD/TBI (odds ratio [OR] = 0.92); combat veterans without PD/TBI (OR = 0.87); veterans with PD and/or TBI (OR = 1.35). However, veterans with PD and/or TBI had greater odds of reporting hypertension than both combat and non-combat veterans without PD/TBI (p<0.05). DISCUSSION Military service-related experiences were differentially associated with a survey-based measure of hypertension. Specifically, veterans self-reporting PD and/or TBI had significantly higher odds of self-reporting hypertension (i.e., medical provider-identified high blood pressure).
Collapse
Affiliation(s)
- Jacob P. DeBlois
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States of America
| | - Andrew S. London
- Department of Sociology, Syracuse University, Syracuse, NY, United States of America
| | - Kevin S. Heffernan
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States of America
| |
Collapse
|
8
|
Huang SH, Li MJ, Yeh FC, Huang CX, Zhang HT, Liu J. Differential and correlational tractography as tract-based biomarkers in mild traumatic brain injury: A longitudinal MRI study. NMR IN BIOMEDICINE 2023; 36:e4991. [PMID: 37392139 DOI: 10.1002/nbm.4991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
We evaluated the fiber bundles in mild traumatic brain injury (mTBI) patients using differential and correlational tractography in a longitudinal analysis. Diffusion MRI data were acquired in 34 mTBI patients at 7 days (acute stage) and 3 months or longer (chronic stage) after mTBI. Trail Making Test A (TMT-A) and Digital Symbol Substitution Test changes were used to evaluate the cognitive performance. Longitudinal correlational tractography showed decreased anisotropy in the corpus callosum during the chronic mTBI stage. The changes in anisotropy in the corpus callosum were significantly correlated with the changes in TMT-A (false discovery rate [FDR] = 0.000094). Individual longitudinal differential tractography found that anisotropy decreased in the corpus callosum in 30 mTBI patients. Group cross-sectional differential tractography found that anisotropy increased (FDR = 0.02) in white matter in the acute mTBI patients, while no changes occurred in the chronic mTBI patients. Our study confirms the feasibility of using correlational and differential tractography as tract-based monitoring biomarkers to evaluate the disease progress of mTBI, and indicates that normalized quantitative anisotropy could be used as a biomarker to monitor the injury and/or repairs of white matter in individual mTBI patients.
Collapse
Affiliation(s)
- Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Ting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology Quality Control Center, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| |
Collapse
|
9
|
Neumann KD, Broshek DK, Newman BT, Druzgal TJ, Kundu BK, Resch JE. Concussion: Beyond the Cascade. Cells 2023; 12:2128. [PMID: 37681861 PMCID: PMC10487087 DOI: 10.3390/cells12172128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.
Collapse
Affiliation(s)
- Kiel D. Neumann
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Donna K. Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22903, USA;
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Jacob E. Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
10
|
Takagi M, Ball G, Babl FE, Anderson N, Chen J, Clarke C, Davis GA, Hearps SJC, Pascouau R, Cheng N, Rausa VC, Seal M, Shapiro JS, Anderson V. Examining post-concussion white matter change in a pediatric sample. Neuroimage Clin 2023; 39:103486. [PMID: 37634376 PMCID: PMC10474493 DOI: 10.1016/j.nicl.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Diffusion-Weight Imaging (DWI) is increasingly used to explore a range of outcomes in pediatric concussion, particularly the neurobiological underpinnings of symptom recovery. However, the DWI findings within the broader pediatric concussion literature are mixed, which can largely be explained by methodological heterogeneity. To address some of these limitations, the aim of the present study was to utilize internationally- recognized criteria for concussion and a consistent imaging timepoint to conduct a comprehensive, multi-parametric survey of white matter microstructure after concussion. Forty-three children presenting with concussion to the emergency department of a tertiary level pediatric hospital underwent neuroimaging and were classified as either normally recovering (n = 27), or delayed recovering (n = 14) based on their post-concussion symptoms at 2 weeks post-injury.We combined multiple DWI metrics across four modeling approaches using Linked Independent Component Analysis (LICA) to extract several independent patterns of covariation in tissue microstructure present in the study cohort. Our analysis did not identify significant differences between the symptomatic and asymptomatic groups and no component significantly predicted delayed recovery. If white matter microstructure changes are implicated in delayed recovery from concussion, these findings, alongside previous work, suggest that current diffusion techniques are insufficient to detect those changes at this time.
Collapse
Affiliation(s)
- Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; Department of Rehabilitation Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia; Monash School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Gareth Ball
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Franz E Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia; Emergency Department, The Royal Children's Hospital, Melbourne, Victoria, Australia.
| | - Nicholas Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jian Chen
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cathriona Clarke
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gavin A Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Neurosurgery, Austin and Cabrini Hospitals, Melbourne, Victoria, Australia
| | | | - Renee Pascouau
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
| | - Nicholas Cheng
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Monash School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Vanessa C Rausa
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Marc Seal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Jesse S Shapiro
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia; Psychology Service, The Royal Children's Hospital, Melbourne, Victoria, Australia; Monash School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Nishat E, Stojanovski S, Scratch SE, Ameis SH, Wheeler AL. Premature white matter microstructure in female children with a history of concussion. Dev Cogn Neurosci 2023; 62:101275. [PMID: 37441978 PMCID: PMC10439504 DOI: 10.1016/j.dcn.2023.101275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Childhood concussion may interfere with neurodevelopment and influence cognition. Females are more likely to experience persistent symptoms after concussion, yet the sex-specific impact of concussion on brain microstructure in children is understudied. This study examined white matter and cortical microstructure, based on neurite density (ND) from diffusion-weighted MRI, in 9-to-10-year-old children in the Adolescent Brain Cognitive Development Study with (n = 336) and without (n = 7368) a history of concussion, and its relationship with cognitive performance. Multivariate regression was used to investigate relationships between ND and group, sex, and age in deep and superficial white matter, subcortical structures, and cortex. Partial least square correlation was performed to identify associations between ND and performance on NIH Toolbox tasks in children with concussion. All tissue types demonstrated higher ND with age, reflecting brain maturation. Group comparisons revealed higher ND in deep and superficial white matter in females with concussion. In female but not male children with concussion, there were significant associations between ND and performance on cognitive tests. These results demonstrate a greater long-term impact of childhood concussion on white matter microstructure in females compared to males that is associated with cognitive function. The increase in ND in females may reflect premature white matter maturation.
Collapse
Affiliation(s)
- Eman Nishat
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Sonja Stojanovski
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Shannon E Scratch
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1V7, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Anne L Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
12
|
Raghupathi R, Prasad R, Fox D, Huh JW. Repeated mild closed head injury in neonatal rats results in sustained cognitive deficits associated with chronic microglial activation and neurodegeneration. J Neuropathol Exp Neurol 2023; 82:707-721. [PMID: 37390808 PMCID: PMC10357947 DOI: 10.1093/jnen/nlad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023] Open
Abstract
Abusive head trauma in infants is a consequence of multiple episodes of abuse and results in axonal injury, brain atrophy, and chronic cognitive deficits. Anesthetized 11-day-old rats, neurologically equivalent to infants, were subjected to 1 impact/day to the intact skull for 3 successive days. Repeated, but not single impact(s) resulted in spatial learning deficits (p < 0.05 compared to sham-injured animals) up to 5 weeks postinjury. In the first week following single or repetitive brain injury, axonal and neuronal degeneration, and microglial activation were observed in the cortex, white matter, thalamus, and subiculum; the extent of the histopathologic damage was significantly greater in the repetitive-injured animals compared to single-injured animals. At 40 days postinjury, loss of cortical, white matter and hippocampal tissue was evident only in the repetitive-injured animals, along with evidence of microglial activation in the white matter tracts and thalamus. Axonal injury and neurodegeneration were evident in the thalamus up to 40 days postinjury in the repetitive-injured rats. These data demonstrate that while single closed head injury in the neonate rat is associated with pathologic alterations in the acute post-traumatic period, repetitive closed head injury results in sustained behavioral and pathologic deficits reminiscent of infants with abusive head trauma.
Collapse
Affiliation(s)
- Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rupal Prasad
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas Fox
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Mavroudis I, Chatzikonstantinou S, Petridis F, Palade OD, Ciobica A, Balmus IM. Functional Overlay Model of Persistent Post-Concussion Syndrome. Brain Sci 2023; 13:1028. [PMID: 37508960 PMCID: PMC10377031 DOI: 10.3390/brainsci13071028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Persistent post-concussion syndrome (PPCS) is a complex and debilitating condition that can develop after head concussions or mild traumatic brain injury (mTBI). PPCS is characterized by a wide range of symptoms, including headaches, dizziness, fatigue, cognitive deficits, and emotional changes, that can persist for months or even years after the initial injury. Despite extensive research, the underlying mechanisms of PPCS are still poorly understood; furthermore, there are limited resources to predict PPCS development in mTBI patients and no established treatment. Similar to PPCS, the etiology and pathogenesis of functional neurological disorders (FNDs) are not clear neither fully described. Nonspecific multifactorial interactions that were also seen in PPCS have been identified as possible predispositions for FND onset and progression. Thus, we aimed to describe a functional overlay model of PPCS that emphasizes the interplay between functional and structural factors in the development and perpetuation of PPCS symptoms. Our model suggests that the initial brain injury triggers a cascade of physiological and psychological processes that disrupt the normal functioning of the brain leading to persistent symptoms. This disruption can be compounded by pre-existing factors, such as genetics, prior injury, and psychological distress, which can increase the vulnerability to PPCS. Moreover, specific interventions, such as cognitive behavioral therapy, neurofeedback, and physical exercise can target the PPCS treatment approach. Thus, the functional overlay model of PPCS provides a new framework for understanding the complex nature of this condition and for developing more effective treatments. By identifying and targeting specific functional factors that contribute to PPCS symptoms, clinicians and researchers can improve the diagnosis, management, and ultimately, outcomes of patients with this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | | | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Octavian Dragos Palade
- Surgical Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, B dul Carol I, No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| |
Collapse
|
14
|
Naumenko Y, Yuryshinetz I, Zabenko Y, Pivneva T. Mild traumatic brain injury as a pathological process. Heliyon 2023; 9:e18342. [PMID: 37519712 PMCID: PMC10372741 DOI: 10.1016/j.heliyon.2023.e18342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as dysfunction or other evidence of brain pathology caused by external physical force. More than 69 million new cases of TBI are registered worldwide each year, 80% of them - mild TBI. Based on the physical mechanism of induced trauma, we can separate its pathophysiology into primary and secondary injuries. Many literature sources have confirmed that mechanically induced brain injury initiates ionic, metabolic, inflammatory, and neurovascular changes in the CNS, which can lead to acute, subacute, and chronic neurological consequences. Despite the global nature of the disease, its high heterogeneity, lack of a unified classification system, rapid fluctuation of epidemiological trends, and variability of long-term consequences significantly complicate research and the development of new therapeutic strategies. In this review paper, we systematize current knowledge of biomechanical and molecular mechanisms of mild TBI and provide general information on the classification and epidemiology of this complex disorder.
Collapse
Affiliation(s)
- Yana Naumenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Irada Yuryshinetz
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Yelyzaveta Zabenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Tetyana Pivneva
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
15
|
Saar-Ashkenazy R, Naparstek S, Dizitzer Y, Zimhoni N, Friedman A, Shelef I, Cohen H, Shalev H, Oxman L, Novack V, Ifergane G. Neuro-psychiatric symptoms in directly and indirectly blast exposed civilian survivors of urban missile attacks. BMC Psychiatry 2023; 23:423. [PMID: 37312064 DOI: 10.1186/s12888-023-04943-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Blast-explosion may cause traumatic brain injury (TBI), leading to post-concussion syndrome (PCS). In studies on military personnel, PCS symptoms are highly similar to those occurring in post-traumatic stress disorder (PTSD), questioning the overlap between these syndromes. In the current study we assessed PCS and PTSD in civilians following exposure to rocket attacks. We hypothesized that PCS symptomatology and brain connectivity will be associated with the objective physical exposure, while PTSD symptomatology will be associated with the subjective mental experience. METHODS Two hundred eighty nine residents of explosion sites have participated in the current study. Participants completed self-report of PCS and PTSD. The association between objective and subjective factors of blast and clinical outcomes was assessed using multivariate analysis. White-matter (WM) alterations and cognitive abilities were assessed in a sub-group of participants (n = 46) and non-exposed controls (n = 16). Non-parametric analysis was used to compare connectivity and cognition between the groups. RESULTS Blast-exposed individuals reported higher PTSD and PCS symptomatology. Among exposed individuals, those who were directly exposed to blast, reported higher levels of subjective feeling of danger and presented WM hypoconnectivity. Cognitive abilities did not differ between groups. Several risk factors for the development of PCS and PTSD were identified. CONCLUSIONS Civilians exposed to blast present higher PCS/PTSD symptomatology as well as WM hypoconnectivity. Although symptoms are sub-clinical, they might lead to the future development of a full-blown syndrome and should be considered carefully. The similarities between PCS and PTSD suggest that despite the different etiology, namely, the physical trauma in PCS and the emotional trauma in PTSD, these are not distinct syndromes, but rather represent a combined biopsychological disorder with a wide spectrum of behavioral, emotional, cognitive and neurological symptoms.
Collapse
Affiliation(s)
- R Saar-Ashkenazy
- Faculty of Social-Work, Ashkelon Academic College, 12 Ben Tzvi St, PO Box 9071, 78211, Ashkelon, Israel.
- Department of Cognitive-Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - S Naparstek
- Department of Psychology Ben-Gurion, University of the Negev, Beer-Sheva, Israel
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Y Dizitzer
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - N Zimhoni
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - A Friedman
- Department of Cognitive-Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - I Shelef
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Faculty of Health Sciences, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - H Shalev
- Department of Psychiatry, Soroka University Medical Center, Beer-Sheva, Israel
| | - L Oxman
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - V Novack
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - G Ifergane
- Department of Neurology, Soroka University Medical Center, Beer-Sheva, Israel
| |
Collapse
|
16
|
Huang MX, Angeles-Quinto A, Robb-Swan A, De-la-Garza BG, Huang CW, Cheng CK, Hesselink JR, Bigler ED, Wilde EA, Vaida F, Troyer EA, Max JE. Assessing Pediatric Mild Traumatic Brain Injury and Its Recovery Using Resting-State Magnetoencephalography Source Magnitude Imaging and Machine Learning. J Neurotrauma 2023; 40:1112-1129. [PMID: 36884305 PMCID: PMC10259613 DOI: 10.1089/neu.2022.0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The objectives of this machine-learning (ML) resting-state magnetoencephalography (rs-MEG) study involving children with mild traumatic brain injury (mTBI) and orthopedic injury (OI) controls were to define a neural injury signature of mTBI and to delineate the pattern(s) of neural injury that determine behavioral recovery. Children ages 8-15 years with mTBI (n = 59) and OI (n = 39) from consecutive admissions to an emergency department were studied prospectively for parent-rated post-concussion symptoms (PCS) at: 1) baseline (average of 3 weeks post-injury) to measure pre-injury symptoms and also concurrent symptoms; and 2) at 3-months post-injury. rs-MEG was conducted at the baseline assessment. The ML algorithm predicted cases of mTBI versus OI with sensitivity of 95.5 ± 1.6% and specificity of 90.2 ± 2.7% at 3-weeks post-injury for the combined delta-gamma frequencies. The sensitivity and specificity were significantly better (p < 0.0001) for the combined delta-gamma frequencies compared with the delta-only and gamma-only frequencies. There were also spatial differences in rs-MEG activity between mTBI and OI groups in both delta and gamma bands in frontal and temporal lobe, as well as more widespread differences in the brain. The ML algorithm accounted for 84.5% of the variance in predicting recovery measured by PCS changes between 3 weeks and 3 months post-injury in the mTBI group, and this was significantly lower (p < 10-4) in the OI group (65.6%). Frontal lobe pole (higher) gamma activity was significantly (p < 0.001) associated with (worse) PCS recovery exclusively in the mTBI group. These findings demonstrate a neural injury signature of pediatric mTBI and patterns of mTBI-induced neural injury related to behavioral recovery.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Department of Radiology, University of California, San Diego, California, USA
- Radiology and Research Services, VA San Diego Healthcare System, San Diego, California, USA
| | - Annemarie Angeles-Quinto
- Department of Radiology, University of California, San Diego, California, USA
- Radiology and Research Services, VA San Diego Healthcare System, San Diego, California, USA
| | - Ashley Robb-Swan
- Department of Radiology, University of California, San Diego, California, USA
- Radiology and Research Services, VA San Diego Healthcare System, San Diego, California, USA
| | | | - Charles W. Huang
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Chung-Kuan Cheng
- Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | - John R. Hesselink
- Department of Radiology, University of California, San Diego, California, USA
| | - Erin D. Bigler
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - Florin Vaida
- Herbert Wertheim School of Public Health, Division of Biostatistics and Bioinformatics, University of California, San Diego, California, USA
| | - Emily A. Troyer
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Jeffrey E. Max
- Department of Psychiatry, University of California, San Diego, California, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
17
|
Grant M, Liu J, Wintermark M, Bagci U, Douglas D. Current State of Diffusion-Weighted Imaging and Diffusion Tensor Imaging for Traumatic Brain Injury Prognostication. Neuroimaging Clin N Am 2023; 33:279-297. [PMID: 36965946 DOI: 10.1016/j.nic.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Advanced imaging techniques are needed to assist in providing a prognosis for patients with traumatic brain injury (TBI), particularly mild TBI (mTBI). Diffusion tensor imaging (DTI) is one promising advanced imaging technique, but has shown variable results in patients with TBI and is not without limitations, especially when considering individual patients. Efforts to resolve these limitations are being explored and include developing advanced diffusion techniques, creating a normative database, improving study design, and testing machine learning algorithms. This article will review the fundamentals of DTI, providing an overview of the current state of its utility in evaluating and providing prognosis in patients with TBI.
Collapse
Affiliation(s)
- Matthew Grant
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA; Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; Department of Radiology, Landstuhl Regional Medical Center, Dr Hitzelberger Straße, 66849 Landstuhl, Germany.
| | - JiaJing Liu
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Max Wintermark
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA; Neuroradiology Department, The University of Texas Anderson Cancer Center, 1400 Pressler Street, Unit 1482, Houston, TX 77030, USA
| | - Ulas Bagci
- Radiology and Biomedical Engineering Department, Northwestern University, 737 North Michigan Drive, Suite 1600, Chicago, IL 60611, USA; Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, Florida, 32816
| | - David Douglas
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA; Department of Radiology, 96th Medical Group, Eglin Air Force Base, 307 Boatner Road, Eglin Air Force Base, Florida 32542, USA
| |
Collapse
|
18
|
Machine learning classification of chronic traumatic brain injury using diffusion tensor imaging and NODDI: A replication and extension study. NEUROIMAGE: REPORTS 2023; 3. [PMID: 37169013 PMCID: PMC10168530 DOI: 10.1016/j.ynirp.2023.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Individuals with acute and chronic traumatic brain injury (TBI) are associated with unique white matter (WM) structural abnormalities, including fractional anisotropy (FA) differences. Our research group previously used FA as a feature in a linear support vector machine (SVM) pattern classifier, observing high classification between individuals with and without acute TBI (i.e., an area under the curve [AUC] value of 75.50%). However, it is not known whether FA could similarly classify between individuals with and without history of chronic TBI. Here, we attempted to replicate our previous work with a new sample, investigating whether FA could similarly classify between incarcerated men with (n = 80) and without (n = 80) self-reported history of chronic TBI. Additionally, given limitations associated with FA, including underestimation of FA values in WM tracts containing crossing fibers, we extended upon our previous study by incorporating neurite orientation dispersion and density imaging (NODDI) metrics, including orientation dispersion (ODI) and isotropic volume (Viso). A linear SVM based classification approach, similar to our previous study, was incorporated here to classify between individuals with and without self-reported chronic TBI using FA and NODDI metrics as separate features. Overall classification rates were similar when incorporating FA and NODDI ODI metrics as features (AUC: 82.50%). Additionally, NODDI-based metrics provided the highest sensitivity (ODI: 85.00%) and specificity (Viso: 82.50%) rates. The current study serves as a replication and extension of our previous study, observing that multiple diffusion MRI metrics can reliably classify between individuals with and without self-reported history of chronic TBI.
Collapse
|
19
|
Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 2023; 23:59-66. [PMID: 36705882 DOI: 10.1007/s11910-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care. RECENT FINDINGS The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches. Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient's neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.
Collapse
|
20
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
21
|
Lennon MJ, Brooker H, Creese B, Thayanandan T, Rigney G, Aarsland D, Hampshire A, Ballard C, Corbett A, Raymont V. Lifetime Traumatic Brain Injury and Cognitive Domain Deficits in Late Life: The PROTECT-TBI Cohort Study. J Neurotrauma 2023. [PMID: 36716779 DOI: 10.1089/neu.2022.0360] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) causes cognitive impairment but it remains contested regarding which cognitive domains are most affected. Further, moderate-severe TBI is known to be deleterious, but studies of mild TBI (mTBI) show a greater mix of negative and positive findings. This study examines the longer-term cognitive effects of TBI severity and number of mTBIs in later life. We examined a subset (n = 15,764) of the PROTECT study, a cohort assessing risk factors for cognitive decline (ages between 50 and 90 years). Participants completed cognitive assessments annually for 4 years. Cognitive tests were grouped using a principal components analysis (PCA) into working memory, episodic memory, attention, processing speed, and executive function. Lifetime TBI severity and number were retrospectively recalled by participants using the Brain Injury Screening Questionnaire (BISQ). Linear mixed models (LMMs) examined the effect of severity of head injury (non-TBI head strike, mTBI, and moderate-severe TBI) and number of mTBI at baseline and over time. mTBI was considered as a continuous and categorical variable (groups: 0 mTBI, 1 mTBI, 2 mTBIs, 3 mTBIs, and 4+ mTBIs). Of the participants 5725 (36.3%) reported at least one mTBI and 510 (3.2%) at least one moderate-severe TBI, whereas 3711 (23.5%) had suffered at worst a non-TBI head strike and 5818 (32.9%) reported no head injuries. The participants had suffered their last reported head injury an average (standard deviation, SD) of 29.6 (20.0) years prior to the study. Regarding outcomes, there was no worsening in longitudinal cognitive trajectories over the study duration but at baseline there were significant cognitive deficits associated with TBI. At baseline, compared with those without head injury, individuals reporting at least one moderate-severe TBI had significantly poorer attention (B = -0.163, p < 0.001), executive scores (B = -0.151, p = 0.004), and processing speed (B = -0.075, p = 0.033). Those who had suffered at least a single mTBI also demonstrated significantly poorer attention scores at baseline compared with the no head injury group (B = -0.052, p = 0.001). Compared with those with no mTBI, those in the 3 mTBI group manifested poorer baseline executive function (B = -0.149, p = 0.025) and attention scores (B = -0.085, p = 0.015). At baseline, those who had suffered four or more mTBIs demonstrated poorer attention (B = -0.135, p < 0.001), processing speed (B = -0.072, p = 0.009), and working memory (B = -0.052, p = 0.036), compared with those reporting no mTBI. TBI is associated with fixed, dose, and severity-dependent cognitive deficits. The most sensitive cognitive domains are attention and executive function, with approximately double the effect compared with processing speed and working memory. Post-TBI cognitive rehabilitation should be targeted appropriately to domain-specific effects. Significant long-term cognitive deficits were associated with three or more lifetime mTBIs, a critical consideration when counseling individuals post-TBI about continuing high-risk activities.
Collapse
Affiliation(s)
- Matthew J Lennon
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Helen Brooker
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Byron Creese
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Tony Thayanandan
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Grant Rigney
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, IoPPN, Kings College London, London, United Kingdom.,Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Vanessa Raymont
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Younger DS. Mild traumatic brain injury and sports-related concussion. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:475-494. [PMID: 37620086 DOI: 10.1016/b978-0-323-98817-9.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Mild traumatic brain injury (mTBI) and concussion are equivalent terms for the sequela of injury to the head that disrupts brain functioning. Various forces may be causative from seemingly innocuous bumps to the head resulting from sports-related injuries to more severe blows to the head. However, the postconcussive motor, cognitive, emotional, and psychosocial sequelae can be just as devastating and long lasting, leading to loss of independent function and safe performance of activities. Taken together, they pose a significant challenge to recovery, requiring a multifaceted dynamic rehabilitative strategy. The current systems of health care pose challenges to suboptimal management of sports-related concussion (SRC) that goes beyond the acute injury, and into the school setting, failing to be identified by school staff, and inconsistencies in communicating medical information regarding school modifications, follow-up health services, or concussion-related educational services. Children who sustain SRC at different ages face different challenges. Young children face increased vulnerability due to SRC that coincides with periods of brain motor maturation and development.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
23
|
Tallus J, Mohammadian M, Kurki T, Roine T, Posti JP, Tenovuo O. A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation in traumatic brain injury. Neuroimage Clin 2023; 37:103284. [PMID: 36502725 PMCID: PMC9758569 DOI: 10.1016/j.nicl.2022.103284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used. In this study, we compared the results of deterministic DTI based tractography and manual tract segmentation with CSD based probabilistic tractography and automatic tract segmentation using TractSeg. 37 participants with a history of TBI (with Glasgow Coma Scale 13-15) and persistent symptoms, and 41 healthy controls underwent deterministic DTI-based tractography with manual tract segmentation and probabilistic CSD-based tractography with TractSeg automatic segmentation.Fractional anisotropy (FA) and mean diffusivity of corpus callosum and three bilateral association tracts were measured. FA and MD values derived from both tractography methods were generally moderately to strongly correlated. CSD with TractSeg differentiated the groups based on FA, while DTI did not. CSD and TractSeg-based tractography may be more sensitive in detecting microstructural changes associated with TBI than deterministic DTI tractography. Additionally, CSD with TractSeg was found to be applicable at lower b-value and number of diffusion-encoding gradients data than previously reported.
Collapse
Affiliation(s)
- Jussi Tallus
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku FI-20014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2 C, Espoo 02150, Finland
| | - Jussi P Posti
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, Hämeentie 11, Turku FI-20521, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| |
Collapse
|
24
|
Psychometric Properties of the German Version of the Rivermead Post-Concussion Symptoms Questionnaire in Adolescents after Traumatic Brain Injury and Their Proxies. J Clin Med 2022; 12:jcm12010319. [PMID: 36615119 PMCID: PMC9821190 DOI: 10.3390/jcm12010319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The Rivermead Post-Concussion Symptoms Questionnaire (RPQ) assesses post-concussion symptoms (PCS) after traumatic brain injury (TBI). The current study examines the applicability of self-report and proxy versions of the German RPQ in adolescents (13-17 years) after TBI. We investigated reliability and validity on the total and scale score level. Construct validity was investigated by correlations with the Post-Concussion Symptoms Inventory (PCSI-SR13), Generalized Anxiety Disorder Scale 7 (GAD-7), and Patient Health Questionnaire 9 (PHQ-9) and by hypothesis testing regarding individuals' characteristics. Intraclass correlation coefficients (ICC) assessed adolescent-proxy agreement. In total, 148 adolescents after TBI and 147 proxies completed the RPQ. Cronbach's α (0.81-0.91) and McDonald's ω (0.84-0.95) indicated good internal consistency. The three-factor structure outperformed the unidimensional model. The RPQ was strongly correlated with the PCSI-SR13 (self-report: r = 0.80; proxy: r = 0.75) and moderately-strongly with GAD-7 and PHQ-9 (self-report: r = 0.36, r = 0.35; proxy: r = 0.53, r = 0.62). Adolescent-proxy agreement was fair (ICC [2,1] = 0.44, CI95% [0.41, 0.47]). Overall, both self-report and proxy assessment forms of the German RPQ are suitable for application in adolescents after TBI. As proxy ratings tend to underestimate PCS, self-reports are preferable for evaluations. Only if a patient is unable to answer, a proxy should be used as a surrogate.
Collapse
|
25
|
Obiano KS, Singh R, Dawson J. Post-concussion symptoms 1-year after traumatic brain injury: using the Rivermead Post-concussion Questionnaire to identify predictors of severity. Brain Inj 2022; 36:1323-1330. [PMID: 36373981 DOI: 10.1080/02699052.2022.2140195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients who suffer traumatic brain injury (TBI) often experience a constellation of physical, cognitive, and emotional/behavioral symptoms called "post-concussion symptoms" and subsequent long-term disability. This study aimed to investigate the incidence of persistent post-concussion symptoms and possible predictors of long-term disability focusing on demographic, injury, and psychological factors. It was hoped to identify groups at high risk. METHODS A prospective cohort of 1322 individuals admitted with TBI were assessed in a specialist neurorehabilitation clinic at 10 weeks and 1-year post injury between August 2011 and July 2015. The outcome (post-concussion symptoms) was measured using the Rivermead Post-concussion Questionnaire (RPQ) at 1-year post injury. RESULTS At 1 yr, 1131 individuals were identified (>90% follow-up). Over 20% exhibited moderate or severe symptom levels on RPQ. A linear regression model showed that previous psychiatric history, lower Glasgow Coma Scale (GCS), severe CT abnormalities, injury caused by assault, pre-injury unemployment, and inability to return to work at 6 weeks post-injury were associated with worse symptoms at 1 yr. The adjusted R2 of the model was 25.1%. CONCLUSION These findings confirm the high incidence of post-concussion symptoms at 1 yr and identify certain associated features that increase risk. This may allow targeting of certain groups, e.g., return to work or victims of assault.
Collapse
Affiliation(s)
- Kelvin Sunday Obiano
- The University of Sheffield Institute for Translational Neuroscience, Neuroscience, Sheffield, UK
| | - Rajiv Singh
- Osborn Neurorehabilitation Unit, Department of Rehabilitation Medicine, Sheffield Teaching Hospitals, Sheffield, UK
| | - Jeremy Dawson
- Institute of Work Psychology, Sheffield University Management School, Sheffield, England
| |
Collapse
|
26
|
Mayer AR, Ling JM, Dodd AB, Stephenson DD, Pabbathi Reddy S, Robertson-Benta CR, Erhardt EB, Harms RL, Meier TB, Vakhtin AA, Campbell RA, Sapien RE, Phillips JP. Multicompartmental models and diffusion abnormalities in paediatric mild traumatic brain injury. Brain 2022; 145:4124-4137. [PMID: 35727944 DOI: 10.1093/brain/awac221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 01/23/2023] Open
Abstract
The underlying pathophysiology of paediatric mild traumatic brain injury and the time-course for biological recovery remains widely debated, with clinical care principally informed by subjective self-report. Similarly, clinical evidence indicates that adolescence is a risk factor for prolonged recovery, but the impact of age-at-injury on biomarkers has not been determined in large, homogeneous samples. The current study collected diffusion MRI data in consecutively recruited patients (n = 203; 8-18 years old) and age and sex-matched healthy controls (n = 170) in a prospective cohort design. Patients were evaluated subacutely (1-11 days post-injury) as well as at 4 months post-injury (early chronic phase). Healthy participants were evaluated at similar times to control for neurodevelopment and practice effects. Clinical findings indicated persistent symptoms at 4 months for a significant minority of patients (22%), along with residual executive dysfunction and verbal memory deficits. Results indicated increased fractional anisotropy and reduced mean diffusivity for patients, with abnormalities persisting up to 4 months post-injury. Multicompartmental geometric models indicated that estimates of intracellular volume fractions were increased in patients, whereas estimates of free water fractions were decreased. Critically, unique areas of white matter pathology (increased free water fractions or increased neurite dispersion) were observed when standard assumptions regarding parallel diffusivity were altered in multicompartmental models to be more biologically plausible. Cross-validation analyses indicated that some diffusion findings were more reproducible when ∼70% of the total sample (142 patients, 119 controls) were used in analyses, highlighting the need for large-sample sizes to detect abnormalities. Supervised machine learning approaches (random forests) indicated that diffusion abnormalities increased overall diagnostic accuracy (patients versus controls) by ∼10% after controlling for current clinical gold standards, with each diffusion metric accounting for only a few unique percentage points. In summary, current results suggest that novel multicompartmental models are more sensitive to paediatric mild traumatic brain injury pathology, and that this sensitivity is increased when using parameters that more accurately reflect diffusion in healthy tissue. Results also indicate that diffusion data may be insufficient to achieve a high degree of objective diagnostic accuracy in patients when used in isolation, which is to be expected given known heterogeneities in pathophysiology, mechanism of injury and even criteria for diagnoses. Finally, current results indicate ongoing clinical and physiological recovery at 4 months post-injury.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA.,Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA
| | | | | | | | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Richard A Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - John P Phillips
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA.,Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
27
|
Nakuci J, McGuire M, Schweser F, Poulsen D, Muldoon SF. Differential Patterns of Change in Brain Connectivity Resulting from Severe Traumatic Brain Injury. Brain Connect 2022; 12:799-811. [PMID: 35302399 PMCID: PMC9805864 DOI: 10.1089/brain.2021.0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Traumatic brain injury (TBI) damages white matter tracts, disrupting brain network structure and communication. There exists a wide heterogeneity in the pattern of structural damage associated with injury, as well as a large heterogeneity in behavioral outcomes. However, little is known about the relationship between changes in network connectivity and clinical outcomes. Materials and Methods: We utilize the rat lateral fluid-percussion injury model of severe TBI to study differences in brain connectivity in 8 animals that received the insult and 11 animals that received only a craniectomy. Diffusion tensor imaging is performed 5 weeks after the injury and network theory is used to investigate changes in white matter connectivity. Results: We find that (1) global network measures are not able to distinguish between healthy and injured animals; (2) injury induced alterations predominantly exist in a subset of connections (subnetworks) distributed throughout the brain; and (3) injured animals can be divided into subgroups based on changes in network motifs-measures of local structural connectivity. In addition, alterations in predicted functional connectivity indicate that the subgroups have different propensities to synchronize brain activity, which could relate to the heterogeneity of clinical outcomes. Discussion: These results suggest that network measures can be used to quantify progressive changes in brain connectivity due to injury and differentiate among subpopulations with similar injuries, but different pathological trajectories.
Collapse
Affiliation(s)
- Johan Nakuci
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Matthew McGuire
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, SUNY, Buffalo, New York, USA
| | - David Poulsen
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sarah F. Muldoon
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Mathematics and CDSE Program, University at Buffalo, SUNY, Buffalo, New York, USA
| |
Collapse
|
28
|
Migneron-Foisy V, Muckle G, Jacobson JL, Ayotte P, Jacobson SW, Saint-Amour D. Impact of chronic exposure to legacy environmental contaminants on the corpus callosum microstructure: A diffusion MRI study of Inuit adolescents. Neurotoxicology 2022; 92:200-211. [PMID: 35995272 DOI: 10.1016/j.neuro.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Exposure to environmental contaminants is an important public health concern for the Inuit population of northern Québec, who have been exposed to mercury (Hg), polychlorinated biphenyls (PCBs) and lead (Pb). During the last 25 years, the Nunavik Child Development Study (NCDS) birth cohort has reported adverse associations between these exposures and brain function outcomes. In the current study, we aimed to determine whether contaminant exposure is associated with alterations of the corpus callosum (CC), which plays an important role in various cognitive, motor and sensory function processes. Magnetic resonance imaging (MRI) was administered to 89 NCDS participants (mean age ± SD = 18.4 ± 1.2). Diffusion-weighted imaging was assessed to characterize the microstructure of the CC white matter in 7 structurally and functionally distinct regions of interest (ROIs) using a tractography-based segmentation approach. The following metrics were computed: fiber tract density, fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Multiple linear regression models adjusted for sex, age, current alcohol/drug use and fish nutrients (omega-3 fatty acids and selenium) were conducted to assess the association between diffusion-weighted imaging metrics and Hg, PCB 153 and Pb concentrations obtained at birth in the cord blood and postnatally (mean values from blood samples at 11 and 18 years of age). Exposures were not associated with fiber tract density. Nor were significant associations found with cord and postnatal blood Pb concentrations for FA. However, pre- and postnatal Hg and PCB concentrations were significantly associated with higher FA of several regions of the CC, namely anterior midbody, posterior midbody, isthmus, and splenium, with the most pronounced effects observed in the splenium. FA results were mainly associated with lower RD. This study shows that exposure to Hg and PCB 153 alters the posterior microstructure of the CC, providing neuroimaging evidence of how developmental exposure to environmental chemicals can impair brain function and behavior in late adolescence.
Collapse
Affiliation(s)
- Vincent Migneron-Foisy
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Québec, Québec, Canada; Centre de Recherche du CHUQ de Québec, Université Laval, Québec, Canada
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pierre Ayotte
- Department of Social and Preventive Medicine, Université Laval, Québec, Québec, Canada
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada.
| |
Collapse
|
29
|
Lima Santos JP, Kontos AP, Holland CL, Stiffler RS, Bitzer HB, Caviston K, Shaffer M, Suss SJ, Martinez L, Manelis A, Iyengar S, Brent D, Ladouceur CD, Collins MW, Phillips ML, Versace A. The role of sleep quality on white matter integrity and concussion symptom severity in adolescents. Neuroimage Clin 2022; 35:103130. [PMID: 35917722 PMCID: PMC9421495 DOI: 10.1016/j.nicl.2022.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sleep problems are common after concussion; yet, to date, no study has evaluated the relationship between sleep, white matter integrity, and post-concussion symptoms in adolescents. Using self-reported quality of sleep measures within the first 10 days of injury, we aimed to determine if quality of sleep exerts a main effect on white matter integrity in major tracts, as measured by diffusion Magnetic Resonance Imaging (dMRI), and further examine whether this effect can help explain the variance in post-concussion symptom severity in 12- to 17.9-year-old adolescents. METHODS dMRI data were collected in 57 concussed adolescents (mean age[SD] = 15.4[1.5] years; 41.2 % female) with no history of major psychiatric diagnoses. Severity of post-concussion symptoms was assessed at study entry (mean days[SD] = 3.7[2.5] days since injury). Using the Pittsburgh Sleep Quality Index (PSQI), concussed adolescents were divided into two groups based on their quality of sleep in the days between injury and scan: good sleepers (PSQI global score ≤ 5; N = 33) and poor sleepers (PSQI global score > 5; N = 24). Neurite Orientation Dispersion and Dispersion Index (NODDI), specifically the Neurite Density Index (NDI), was used to quantify microstructural properties in major tracts, including 18 bilateral and one interhemispheric tract, and identify whether dMRI differences existed in good vs poor sleepers. Since the interval between concussion and neuroimaging acquisition varied among concussed adolescents, this interval was included in the analysis along with an interaction term with sleep groups. Regularized regression was used to identify if quality of sleep-related dMRI measures correlated with post-concussion symptom severity. Due to higher reported concussion symptom severity in females, interaction terms between dMRI and sex were included in the regularized regression model. Data collected in 33 sex- and age-matched non-concussed controls (mean age[SD] = 15.2[1.5]; 45.5 % female) served as healthy reference and sex and age were covariates in all analyses. RESULTS Relative to good sleepers, poor sleepers demonstrated widespread lower NDI (18 of the 19 tracts; FDR corrected P < 0.048). This group effect was only significant with at least seven days between concussion and neuroimaging acquisition. Post-concussion symptoms severity was negatively correlated with NDI in four of these tracts: cingulum bundle, optic radiation, striato-fronto-orbital tract, and superior longitudinal fasciculus I. The multiple linear regression model combining sex and NDI of these four tracts was able to explain 33.2 % of the variability in symptom severity (F[7,49] = 4.9, P < 0.001, Adjusted R2 = 0.332). Relative to non-concussed controls, poor sleepers demonstrated lower NDI in the cingulum bundle, optic radiation, and superior longitudinal fasciculus I (FDR corrected P < 0.040). CONCLUSIONS Poor quality of sleep following concussion is associated with widespread lower integrity of major white matter tracts, that in turn helped to explain post-concussion symptom severity in 12-17.9-year-old adolescents. The effect of sleep on white matter integrity following concussion was significant after one week, suggesting that acute sleep interventions may need this time to begin to take effect. Our findings may suggest an important relationship between good quality of sleep in the days following concussion and integrity of major white matter tracts. Moving forward, researchers should evaluate the effectiveness of sleep interventions on white matter integrity and clinical outcomes following concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anthony P Kontos
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Cynthia L Holland
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah B Bitzer
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Kaitlin Caviston
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Madelyn Shaffer
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Stephen J Suss
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laramie Martinez
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael W Collins
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Mito R, Parker DM, Abbott DF, Makdissi M, Pedersen M, Jackson GD. White matter abnormalities characterize the acute stage of sports-related mild traumatic brain injury. Brain Commun 2022; 4:fcac208. [PMID: 36043140 PMCID: PMC9419063 DOI: 10.1093/braincomms/fcac208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Sports-related concussion, a form of mild traumatic brain injury, is characterized by transient disturbances of brain function. There is increasing evidence that functional brain changes may be driven by subtle abnormalities in white matter microstructure, and diffusion MRI has been instrumental in demonstrating these white matter abnormalities in vivo. However, the reported location and direction of the observed white matter changes in mild traumatic brain injury are variable, likely attributable to the inherent limitations of the white matter models used. This cross-sectional study applies an advanced and robust technique known as fixel-based analysis to investigate fibre tract-specific abnormalities in professional Australian Football League players with a recent mild traumatic brain injury. We used the fixel-based analysis framework to identify common abnormalities found in specific fibre tracts in participants with an acute injury (≤12 days after injury; n = 14). We then assessed whether similar changes exist in subacute injury (>12 days and <3 months after injury; n = 15). The control group was 29 neurologically healthy control participants. We assessed microstructural differences in fibre density and fibre bundle morphology and performed whole-brain fixel-based analysis to compare groups. Subsequent tract-of-interest analyses were performed within five selected white matter tracts to investigate the relationship between the observed tract-specific abnormalities and days since injury and the relationship between these tract-specific changes with cognitive abnormalities. Our whole-brain analyses revealed significant increases in fibre density and bundle cross-section in the acute mild traumatic brain injury group when compared with controls. The acute mild traumatic brain injury group showed even more extensive differences when compared with the subacute injury group than with controls. The fibre structures affected in acute concussion included the corpus callosum, left prefrontal and left parahippocampal white matter. The fibre density and cross-sectional increases were independent of time since injury in the acute injury group, and were not associated with cognitive deficits. Overall, this study demonstrates that acute mild traumatic brain injury is characterized by specific white matter abnormalities, which are compatible with tract-specific cytotoxic oedema. These potential oedematous changes were absent in our subacute mild traumatic brain injury participants, suggesting that they may normalize within 12 days after injury, although subtle abnormalities may persist in the subacute stage. Future longitudinal studies are needed to elucidate individualized recovery after brain injury.
Collapse
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - Donna M Parker
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - David F Abbott
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Olympic Park Sports Medicine Centre , Melbourne, VIC 3004 , Australia
| | - Mangor Pedersen
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Psychology and Neuroscience, Auckland University of Technology (AUT) , Auckland 1010 , New Zealand
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Neurology, Austin Health , Melbourne, VIC 3084 , Australia
| |
Collapse
|
31
|
Huang W, Hu W, Zhang P, Wang J, Jiang Y, Ma L, Zheng Y, Zhang J. Early Changes in the White Matter Microstructure and Connectome Underlie Cognitive Deficit and Depression Symptoms After Mild Traumatic Brain Injury. Front Neurol 2022; 13:880902. [PMID: 35847204 PMCID: PMC9279564 DOI: 10.3389/fneur.2022.880902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Cognitive and emotional impairments are frequent among patients with mild traumatic brain injury (mTBI) and may reflect alterations in the brain structural properties. The relationship between microstructural changes and cognitive and emotional deficits remains unclear in patients with mTBI at the acute stage. The purpose of this study was to analyze the alterations in white matter microstructure and connectome of patients with mTBI within 7 days after injury and investigate whether they are related to the clinical questionnaires. A total of 79 subjects (42 mTBI and 37 healthy controls) underwent neuropsychological assessment and diffusion-tensor MRI scan. The microstructure and connectome of white matter were characterized by tract-based spatial statistics (TBSSs) and graph theory approaches, respectively. Mini-mental state examination (MMSE) and self-rating depression scale (SDS) were used to evaluate the cognitive function and depressive symptoms of all the subjects. Patients with mTBI revealed early increases of fractional anisotropy in most areas compared with the healthy controls. Graph theory analyses showed that patients with mTBI had increased nodal shortest path length, along with decreased nodal degree centrality and nodal efficiency, mainly located in the bilateral temporal lobe and right middle occipital gyrus. Moreover, lower nodal shortest path length and higher nodal efficiency of the right middle occipital gyrus were associated with higher SDS scores. Significantly, the strength of the rich club connection in the mTBI group decreased and was associated with the MMSE. Our study demonstrated that the neuroanatomical alterations of mTBI in the acute stage might be an initial step of damage leading to cognitive deficits and depression symptoms, and arguably, these occur due to distinct mechanisms.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- *Correspondence: Jing Zhang
| |
Collapse
|
32
|
Nishioka C, Liang HF, Ong S, Sun SW. Axonal transport impairment and its relationship with diffusion tensor imaging metrics of a murine model of p301L tau induced tauopathy. Neuroscience 2022; 498:144-154. [PMID: 35753531 DOI: 10.1016/j.neuroscience.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Diffusion Tensor Imaging (DTI) and Manganese Enhanced MRI (MEMRI) are noninvasive tools to characterize neural fiber microstructure and axonal transport. A combination of both may provide novel insights into the progress of neurodegeneration. To investigate the relationship of DTI and MEMRI in white matter of tauopathy, twelve optic nerves of 11-month-old p301L tau mice were imaged and finished with postmortem immunohistochemistry. MEMRI was used to quantify Mn2+ accumulation rates in the optic nerve (ON, termed ONAR) and the Superior Colliculus (SC, termed SCAR), the primary terminal site of ON in mice. We found that both ONAR and SCAR revealed a significant linear correlation with mean diffusion (mD) and radial diffusion (rD) but not with other DTI quantities. Immunohistochemistry findings showed that ONAR, mD, and rD are significantly correlated with the myelin content (Myelin Basic Protein, p < 0.05) but not with the axonal density (SMI-31), tubulin density, or tau aggregates (AT8 staining). In summary, slower axonal transport appeared to have less myelinated axons and thinner remaining axons, associated with reduced rD and mD of in vivo DTI. A combination of in vivo MEMRI and DTI can provide critical information to delineate the progress of white matter deficits in neurodegenerative diseases.
Collapse
Affiliation(s)
- Christopher Nishioka
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Neuroscience Graduate Program, University of California, Riverside, CA, United States
| | - Hsiao-Fang Liang
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Stephen Ong
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Robert Wood Johnson Barnabas Health (RWJBH) and Rutgers University, United States
| | - Shu-Wei Sun
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Neuroscience Graduate Program, University of California, Riverside, CA, United States.
| |
Collapse
|
33
|
Under the Helmet: Perioperative Concussion-Review of Current Literature and Targets for Research. J Neurosurg Anesthesiol 2022; 34:277-281. [PMID: 35522842 DOI: 10.1097/ana.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Patients with recent concussion experience disruption in neurocellular and neurometabolic function that may persist beyond symptom resolution. Patients may require anesthesia to facilitate diagnostic or surgical procedures following concussion; these procedures may or may not be related to the injury that caused the patient to sustain a concussion. As our knowledge about concussion continues to advance, it is imperative that anesthesiologists remain up to date with current principles. This Focused Review will update readers on the latest concussion literature, discuss the potential impact of concussion on perianesthetic care, and identify knowledge gaps in our understanding of concussion.
Collapse
|
34
|
Ware AL, Yeates KO, Tang K, Shukla A, Onicas AI, Guo S, Goodrich-Hunsaker N, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson B, Craig W, Dehaes M, Doan Q, Deschenes S, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Lebel C. Longitudinal white matter microstructural changes in pediatric mild traumatic brain injury: An A-CAP study. Hum Brain Mapp 2022; 43:3809-3823. [PMID: 35467058 PMCID: PMC9294335 DOI: 10.1002/hbm.25885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023] Open
Abstract
In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8–16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children's pre‐injury and 1‐month post‐injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion‐weighted imaging at post‐acute (2–33 days post‐injury) and chronic (3 or 6 months via random assignment) post‐injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, −0.58 (−1.04, −0.11), and superior longitudinal fasciculus, −0.49 (−0.90, −0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post‐injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Keith Owen Yeates
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ken Tang
- Independent Statistical Consulting, Richmond, British Columbia, Canada
| | - Ayushi Shukla
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Adrian I Onicas
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Sunny Guo
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Nishard Abdeen
- Department of Radiology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; 2. BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Quynh Doan
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sylvain Deschenes
- CHU Sainte-Justine Research Center; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| | - Stephen B Freedman
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, Department of Pediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular and Molecular Medicine, University of Ottawa, & Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Catherine Lebel
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
35
|
Hu L, Yang S, Jin B, Wang C. Advanced Neuroimaging Role in Traumatic Brain Injury: A Narrative Review. Front Neurosci 2022; 16:872609. [PMID: 35495065 PMCID: PMC9043279 DOI: 10.3389/fnins.2022.872609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a common source of morbidity and mortality among civilians and military personnel. Initial routine neuroimaging plays an essential role in rapidly assessing intracranial injury that may require intervention. However, in the context of TBI, limitations of routine neuroimaging include poor visualization of more subtle changes of brain parenchymal after injury, poor prognostic ability and inability to analyze cerebral perfusion, metabolite and mechanical properties. With the development of modern neuroimaging techniques, advanced neuroimaging techniques have greatly boosted the studies in the diagnosis, prognostication, and eventually impacting treatment of TBI. Advances in neuroimaging techniques have shown potential, including (1) Ultrasound (US) based techniques (contrast-enhanced US, intravascular US, and US elastography), (2) Magnetic resonance imaging (MRI) based techniques (diffusion tensor imaging, magnetic resonance spectroscopy, perfusion weighted imaging, magnetic resonance elastography and functional MRI), and (3) molecular imaging based techniques (positron emission tomography and single photon emission computed tomography). Therefore, in this review, we aim to summarize the role of these advanced neuroimaging techniques in the evaluation and management of TBI. This review is the first to combine the role of the US, MRI and molecular imaging based techniques in TBI. Advanced neuroimaging techniques have great potential; still, there is much to improve. With more clinical validation and larger studies, these techniques will be likely applied for routine clinical use from the initial research.
Collapse
Affiliation(s)
- Ling Hu
- Department of Ultrasound, Hangzhou Women’s Hospital, Hangzhou, China
| | - Siyu Yang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jin
- Department of Neurology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chao Wang,
| |
Collapse
|
36
|
Miller LE, Urban JE, Espeland MA, Walkup MP, Holcomb JM, Davenport EM, Powers AK, Whitlow CT, Maldjian JA, Stitzel JD. Cumulative strain-based metrics for predicting subconcussive head impact exposure-related imaging changes in a cohort of American youth football players. J Neurosurg Pediatr 2022; 29:387-396. [PMID: 35061991 PMCID: PMC9404368 DOI: 10.3171/2021.10.peds21355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Youth football athletes are exposed to repetitive subconcussive head impacts during normal participation in the sport, and there is increasing concern about the long-term effects of these impacts. The objective of the current study was to determine if strain-based cumulative exposure measures are superior to kinematic-based exposure measures for predicting imaging changes in the brain. METHODS This prospective, longitudinal cohort study was conducted from 2012 to 2017 and assessed youth, male football athletes. Kinematic data were collected at all practices and games from enrolled athletes participating in local youth football organizations in Winston-Salem, North Carolina, and were used to calculate multiple risk-weighted cumulative exposure (RWE) kinematic metrics and 36 strain-based exposure metrics. Pre- and postseason imaging was performed at Wake Forest School of Medicine, and diffusion tensor imaging (DTI) measures, including fractional anisotropy (FA), and its components (CL, CP, and CS), and mean diffusivity (MD), were investigated. Included participants were youth football players ranging in age from 9 to 13 years. Exclusion criteria included any history of previous neurological illness, psychiatric illness, brain tumor, concussion within the past 6 months, and/or contraindication to MRI. RESULTS A total of 95 male athletes (mean age 11.9 years [SD 1.0 years]) participated between 2012 and 2017, with some participating for multiple seasons, resulting in 116 unique athlete-seasons. Regression analysis revealed statistically significant linear relationships between the FA, linear coefficient (CL), and spherical coefficient (CS) and all strain exposure measures, and well as the planar coefficient (CP) and 8 strain measures. For the kinematic exposure measures, there were statistically significant relationships between FA and RWE linear (RWEL) and RWE combined probability (RWECP) as well as CS and RWEL. According to area under the receiver operating characteristic (ROC) curve (AUC) analysis, the best-performing metrics were all strain measures, and included metrics based on tensile, compressive, and shear strain. CONCLUSIONS Using ROC curves and AUC analysis, all exposure metrics were ranked in order of performance, and the results demonstrated that all the strain-based metrics performed better than any of the kinematic metrics, indicating that strain-based metrics are better discriminators of imaging changes than kinematic-based measures. Studies relating the biomechanics of head impacts with brain imaging and cognitive function may allow equipment designers, care providers, and organizations to prevent, identify, and treat injuries in order to make football a safer activity.
Collapse
Affiliation(s)
- Logan E. Miller
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Winston-Salem
| | - Jillian E. Urban
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Winston-Salem
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem
| | - Michael P. Walkup
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem
| | - James M. Holcomb
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, Texas
| | | | - Alexander K. Powers
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem
| | - Christopher T. Whitlow
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Joseph A. Maldjian
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Joel D. Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Winston-Salem
| |
Collapse
|
37
|
Crasta JE, Tucker RN, Robinson J, Chen HW, Crocetti D, Suskauer SJ. Altered white matter diffusivity and subtle motor function in a pilot cohort of adolescents with sports-related concussion. Brain Inj 2022; 36:393-400. [PMID: 35157539 PMCID: PMC9133076 DOI: 10.1080/02699052.2022.2034181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background and objective: Adolescents with sports-related concussion (SRC) demonstrate acute and persistent deficits in subtle motor function. However, there is limited research examining related neurological underpinnings. This pilot study examined changes in motor-associated white matter pathways using diffusion tensor imaging (DTI) and their relationship with subtle motor function. Methods: Twelve adolescents with SRC (12–17 years) within two-weeks post-injury and 13 never-injured neurotypical peers completed DTI scanning. A subset of 6 adolescents with SRC returned for a follow-up visit post-medical clearance from concussion. Subtle motor function was evaluated using the Physical and Neurological Examination of Subtle Signs (PANESS). Results: Adolescents with SRC showed higher mean diffusivity (MD) of the superior corona radiata and greater subtle motor deficits compared to controls. Across all participants, greater subtle motor deficits were associated with higher (more atypical) MD of the superior corona radiata. Preliminary longitudinal analysis indicated reduction in fractional anisotropy of the corpus callosum but no change in the MD of the superior corona radiata from the initial visit to the follow-up visit post-medical clearance. Conclusions: These findings support preliminary evidence for a brain–behavior relationship between superior corona radiata microstructure and subtle motor deficits in adolescents with SRC that merits further investigation.
Collapse
Affiliation(s)
- Jewel E Crasta
- Occupational Therapy Division, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Physical Medicine and Rehabilitation and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Cao M, Luo Y, Wu Z, Wu K, Li X. Abnormal neurite density and orientation dispersion in frontal lobe link to elevated hyperactive/impulsive behaviours in young adults with traumatic brain injury. Brain Commun 2022; 4:fcac011. [PMID: 35187485 PMCID: PMC8853727 DOI: 10.1093/braincomms/fcac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury is a major public health concern. A significant proportion of individuals experience post-traumatic brain injury behavioural impairments, especially in attention and inhibitory control domains. Traditional diffusion-weighted MRI techniques, such as diffusion tensor imaging, have provided tools to assess white matter structural disruptions reflecting the long-term brain tissue alterations associated with traumatic brain injury. The recently developed neurite orientation dispersion and density imaging is a more advanced diffusion MRI modality, which provides more refined characterization of brain tissue microstructures by assessing the neurite orientation dispersion and neurite density properties. In this study, neurite orientation dispersion and density imaging data from 44 young adults with chronic traumatic brain injury (who had no prior-injury diagnoses of any sub-presentation of attention deficits/hyperactivity disorder or experience of severe inattentive and/or hyperactive behaviours) and 45 group-matched normal controls were investigated, to assess the post-injury morphometrical and microstructural brain alterations and their relationships with the behavioural outcomes. Maps of fractional anisotropy, neurite orientation dispersion index and neurite density index were calculated. Vertex-wise and voxel-wise analyses were conducted for grey matter and white matter, respectively. Post hoc region-of-interest-based analyses were also performed. Compared to the controls, the group of traumatic brain injury showed significantly increased orientation dispersion index and significantly decreased neurite density index in various grey matter regions, as well as significantly decreased orientation dispersion index in several white matter regions. Brain-behavioural association analyses indicated that the reduced neurite density index of the left precentral gyrus and the reduced orientation dispersion index of the left superior longitudinal fasciculus were significantly associated with elevated hyperactive/impulsive symptoms in the patients with traumatic brain injury. These findings suggest that post-injury chronical neurite intracellular volume and angular distribution anomalies in the frontal lobe, practically the precentral area, can significantly contribute to the onset of hyperactive/impulsive behaviours in young adults with traumatic brain injury.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yuyang Luo
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ziyan Wu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kai Wu
- Department of Electrical and Computer Engineering, School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
39
|
Roine T, Mohammadian M, Hirvonen J, Kurki T, Posti JP, Takala RS, Newcombe V, Tallus J, Katila AJ, Maanpää HR, Frantzen J, Menon D, Tenovuo O. Structural brain connectivity correlates with outcome in mild traumatic brain injury. J Neurotrauma 2022; 39:336-347. [PMID: 35018829 DOI: 10.1089/neu.2021.0093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the topology of structural brain connectivity networks and its association to outcome following mild traumatic brain injury, a major cause of permanent disability. Eighty-five patients with mild traumatic brain injury underwent MRI twice, about three weeks and eight months after injury, and 30 age-matched orthopedic trauma control subjects were scanned. Outcome was assessed with Extended Glasgow Outcome Scale on average eight months after injury. We performed constrained spherical deconvolution based probabilistic streamlines tractography on diffusion MRI data and parcellated cortical and subcortical gray matter into 84 regions based on T1-weighted data to reconstruct structural brain connectivity networks weighted by the number of streamlines. Graph theoretical methods were employed to measure network properties in both patients and controls, and correlations between these properties and outcome were calculated. We found no global differences in the network properties between patients with mild traumatic brain injury and orthopedic control subjects at either stage. However, we found significantly increased betweenness centrality of the right pars opercularis in the chronic stage compared to control subjects. Furthermore, both global and local network properties correlated significantly with outcome. Higher normalized global efficiency, degree, and strength as well as lower small-worldness were associated with better outcome. Correlations between the outcome and the local network properties were the most prominent in the left putamen and the left postcentral gyrus. Our results indicate that both global and local network properties provide valuable information about the outcome already in the acute/subacute stage, and therefore, are promising biomarkers for prognostic purposes in mild traumatic brain injury.
Collapse
Affiliation(s)
- Timo Roine
- University of Turku, 8058, Turku Brain and Mind Center, Turku, Finland.,Aalto University School of Science, 313201, Department of Neuroscience and Biomedical Engineering, Espoo, Finland;
| | - Mehrbod Mohammadian
- University of Turku Faculty of Medicine, 60654, Department of Clinical Neurosciences, Turku, Finland.,Turku University Hospital, 60652, Turku Brain Injury Center, Neurocenter, Turku, Finland;
| | - Jussi Hirvonen
- TYKS Turku University Hospital, 60652, Department of Radiology, Turku, Varsinais-Suomi, Finland;
| | - Timo Kurki
- University of Turku Faculty of Medicine, 60654, Department of Clinical Neurosciences, Turku, Finland.,Turku University Hospital, 60652, Turku Brain Injury Center, Neurocenter, Turku, Finland.,TYKS Turku University Hospital, 60652, Department of Radiology, Turku, Varsinais-Suomi, Finland;
| | - Jussi P Posti
- University of Turku Faculty of Medicine, 60654, Department of Clinical Neurosciences, Turku, Finland.,Turku University Hospital, 60652, Turku Brain Injury Center, Neurocenter, Turku, Varsinais-Suomi, Finland.,TYKS Turku University Hospital, 60652, Department of Neurosurgery. Neurocenter, Turku, Varsinais-Suomi, Finland;
| | - Riikka Sk Takala
- Turku University Hospital, Perioperative Services, Intensive Care Medicine and Pain Management, Turku, Finland.,University of Turku, 8058, Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku, Varsinais-Suomi, Finland;
| | - Virginia Newcombe
- University of Cambridge, Division of Anaesthesia, Addenbrooke's Hospital, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| | - Jussi Tallus
- Turku University Hospital, 60652, Turku Brain Injury Center, Neurocenter, Turku, Varsinais-Suomi, Finland;
| | - Ari J Katila
- Turku University Hospital, Perioperative Services, Intensive Care Medicine and Pain Management, Turku, Varsinais-Suomi, Finland;
| | - Henna-Riikka Maanpää
- Turku University Hospital, 60652, Turku Brain Injury Center, Neurocenter, Turku, Varsinais-Suomi, Finland.,Turku University Hospital, Department of Neurosurgery, Neurocenter, Turku, Varsinais-Suomi, Finland;
| | - Janek Frantzen
- Turku University Hospital, Turku Brain Injury Center, Neurocenter, Turku, Finland.,Turku University Hospital, Department of Neurosurgery, Neurocenter, Turku, Varsinais-Suomi, Finland.,University of Turku Faculty of Medicine, 60654, Department of Clinical Neurosciences, Turku, Finland;
| | - David Menon
- University of Cambridge, Division of Anaesthesia, Addenbrooke's Hospital, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| | - Olli Tenovuo
- University of Turku Faculty of Medicine, 60654, Department of Clinical Neurosciences, Turku, Finland.,Turku University Hospital, 60652, Turku Brain Injury Center, Neurocenter, Turku, Finland;
| |
Collapse
|
40
|
Vaughn KA, DeMaster D, Kook JH, Vannucci M, Ewing-Cobbs L. Effective connectivity in the default mode network after paediatric traumatic brain injury. Eur J Neurosci 2022; 55:318-336. [PMID: 34841600 PMCID: PMC9198945 DOI: 10.1111/ejn.15546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Children who experience a traumatic brain injury (TBI) are at elevated risk for a range of negative cognitive and neuropsychological outcomes. Identifying which children are at greatest risk for negative outcomes can be difficult due to the heterogeneity of TBI. To address this barrier, the current study applied a novel method of characterizing brain connectivity networks, Bayesian multi-subject vector autoregressive modelling (BVAR-connect), which used white matter integrity as priors to evaluate effective connectivity-the time-dependent relationship in functional magnetic resonance imaging (fMRI) activity between two brain regions-within the default mode network (DMN). In a prospective longitudinal study, children ages 8-15 years with mild to severe TBI underwent diffusion tensor imaging and resting state fMRI 7 weeks after injury; post-concussion and anxiety symptoms were assessed 7 months after injury. The goals of this study were to (1) characterize differences in positive effective connectivity of resting-state DMN circuitry between healthy controls and children with TBI, (2) determine if severity of TBI was associated with differences in DMN connectivity and (3) evaluate whether patterns of DMN effective connectivity predicted persistent post-concussion symptoms and anxiety. Healthy controls had unique positive connectivity that mostly emerged from the inferior temporal lobes. In contrast, children with TBI had unique effective connectivity among orbitofrontal and parietal regions. These positive orbitofrontal-parietal DMN effective connectivity patterns also differed by TBI severity and were associated with persisting behavioural outcomes. Effective connectivity may be a sensitive neuroimaging marker of TBI severity as well as a predictor of chronic post-concussion symptoms and anxiety.
Collapse
Affiliation(s)
- Kelly A. Vaughn
- University of Texas Health Science Center at Houston,,Corresponding Author
| | - Dana DeMaster
- University of Texas Health Science Center at Houston
| | | | | | | |
Collapse
|
41
|
Kim E, Yoo RE, Seong MY, Oh BM. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. Eur J Radiol 2021; 147:110117. [PMID: 34973540 DOI: 10.1016/j.ejrad.2021.110117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE This study aimed to review diffusion tensor imaging studies of mild traumatic brain injury (mTBI) in adults with longitudinal acquisition of data and investigate the variability of findings in association with related factors, such as the time post-injury. METHODS Eligible studies from PubMed and EMBASE were searched to identify relevant studies for review. Of the 540 studies, 23 observational studies without intervention and with the following characteristics were included: original research in which adults with mTBI were examined, diffusion tensor imaging was acquired at least twice, white matter integrity was investigated by estimating diffusion metrics, and mode of injury was not restricted to sport- or blast-related mTBI. RESULTS Baseline scans were acquired within 3 weeks post-injury, followed by longitudinal scans within 3 months and at 12 months post-injury. During the acute/subacute period, mixed results (increase, decrease, or no significant change) of fractional anisotropy (FA) were observed compared to those in controls. Some studies reported increased FA during the acute/subacute period compared to controls, followed by normalization of FA. Decreased FA was also reported during the acute/subacute period, which lasted long into the chronic phase. In the acute phase, the mean diffusivity (MD) was greater than that in the controls. Compared to the early phase of injury, MD was reduced in the follow-up phase in most studies in the mTBI group. Insignificant differences in FA and MD have been reported in several studies. Such variability limits the clinical usefulness of diffusion tensor metrics. CONCLUSIONS There was a high variability in reported changes in white matter integrity. Decreased FA not only in acute/subacute but also in long-term period after injury may indicate long-term neurodegenerative processes after mTBI. Nevertheless, longitudinal changes in MD towards normalization suggest possible recovery. Long-term cohort studies with research initiatives should be considered to elucidate brain changes after mTBI.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea.
| |
Collapse
|
42
|
Examining brain white matter after pediatric mild traumatic brain injury using neurite orientation dispersion and density imaging: An A-CAP study. Neuroimage Clin 2021; 32:102887. [PMID: 34911193 PMCID: PMC8633364 DOI: 10.1016/j.nicl.2021.102887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022]
Abstract
We examined white matter microstructure after pediatric mTBI using NODDI and DTI. Children with mTBI did not significantly differ from those with OI on any metrics. Minor alterations, if any, may be present in children at the post-acute stage after mTBI. Large longitudinal studies are needed to understand long-term brain changes post injury.
Background Pediatric mild traumatic brain injury (mTBI) affects millions of children annually. Diffusion tensor imaging (DTI) is sensitive to axonal injuries and white matter microstructure and has been used to characterize the brain changes associated with mild traumatic brain injury (mTBI). Neurite orientation dispersion and density imaging (NODDI) is a diffusion model that can provide additional insight beyond traditional DTI metrics, but has not been examined in pediatric mTBI. The goal of this study was to employ DTI and NODDI to gain added insight into white matter alterations in children with mTBI compared to children with mild orthopedic injury (OI). Methods Children (mTBI n = 320, OI n = 176) aged 8–16.99 years (12.39 ± 2.32 years) were recruited from emergency departments at five hospitals across Canada and underwent 3 T MRI on average 11 days post-injury. DTI and NODDI metrics were calculated for seven major white matter tracts and compared between groups using univariate analysis of covariance controlling for age, sex, and scanner type. False discovery rate (FDR) was used to correct for multiple comparisons. Results Univariate analysis revealed no significant group main effects or interactions in DTI or NODDI metrics. Fractional anisotropy and neurite density index in all tracts exhibited a significant positive association with age and mean diffusivity in all tracts exhibited a significant negative association with age in the whole sample. Conclusions Overall, there were no significant differences between mTBI and OI groups in brain white matter microstructure from either DTI or NODDI in the seven tracts. This indicates that mTBI is associated with relatively minor white matter differences, if any, at the post-acute stage. Brain differences may evolve at later stages of injury, so longitudinal studies with long-term follow-up are needed.
Collapse
|
43
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Sex differences in acute and long-term brain recovery after concussion. Hum Brain Mapp 2021; 42:5814-5826. [PMID: 34643005 PMCID: PMC8596946 DOI: 10.1002/hbm.25591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
Concussion is associated with acute disturbances in brain function and behavior, with potential long‐term effects on brain health. However, it is presently unclear whether there are sex differences in acute and long‐term brain recovery. In this study, magnetic resonance imaging (MRI) was used to scan 61 participants with sport‐related concussion (30 male, 31 female) longitudinally at acute injury, medical clearance to return to play (RTP), and 1‐year post‐RTP. A large cohort of 167 controls (80 male, 87 female) was also imaged. Each MRI session assessed cerebral blood flow (CBF), along with white matter fractional anisotropy (FA) and mean diffusivity (MD). For concussed athletes, the parameters were converted to difference scores relative to matched control subgroups, and partial least squares modeled the main and sex‐specific effects of concussion. Although male and female athletes did not differ in acute symptoms or time to RTP , all MRI measures showed significant sex differences during recovery. Males had greater reductions in occipital‐parietal CBF (mean difference and 95%CI: 9.97 ml/100 g/min, [4.84, 15.12] ml/100 g/min, z = 3.73) and increases in callosal MD (9.07 × 10−5, [−14.14, −3.60] × 10−5, z = −3.46), with greatest effects at 1‐year post‐RTP. In contrast, females had greater reductions in FA of the corona radiata (16.50 × 10−3, [−22.38, −11.08] × 10−3, z = −5.60), with greatest effects at RTP. These findings provide new insights into how the brain recovers after a concussion, showing sex differences in both the acute and chronic phases of injury.
Collapse
Affiliation(s)
- Nathan W Churchill
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael G Hutchison
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada.,The Institute of Biomaterials and Biomedical Engineering (IBBME) at the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
The diffusion-tensor imaging reveals alterations in water diffusion parameters in acute pediatric concussion. Acta Neurol Belg 2021; 121:1463-1468. [PMID: 32246319 DOI: 10.1007/s13760-020-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Wide-spread visualization methods which are computed tomography (CT) and magnetic resonance imaging (MRI) are not sensitive to mild traumatic brain injury (mTBI). However, mTBI may cause changes of cerebral microstructure that could be found using diffusion-tensor imaging. The aim of this study is to reveal the impact of acute mTBI (no more than 3 days after trauma) on diffusion parameters in corpus callosum, corticospinal tract, and thalamus in children (aged 14-18). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were analyzed. Significant increase in FA and decrease in ADC were observed in thalamus. The trend to an increase in FA is observed in corpus callosum.
Collapse
|
45
|
Hoffe B, Mazurkiewicz A, Thomson H, Banton R, Piehler T, Petel OE, Holahan MR. Relating strain fields with microtubule changes in porcine cortical sulci following drop impact. J Biomech 2021; 128:110708. [PMID: 34492445 DOI: 10.1016/j.jbiomech.2021.110708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
The biomechanical response of brain tissue to strain and the immediate neural outcomes are of fundamental importance in understanding mild traumatic brain injury (mTBI). The sensitivity of neural tissue to dynamic strain events and the resulting strain-induced changes are considered to be a primary factor in injury. Rodent models have been used extensively to investigate impact-induced injury. However, the lissencephalic structure is inconsistent with the human brain, which is gyrencephalic (convoluted structure), and differs considerably in strain field localization effects. Porcine brains have a similar structure to the human brain, containing a similar ratio of white-grey matter and gyrification in the cortex. In this study, coronal brain slabs were extracted from female pig brains within 2hrs of sacrifice. Slabs were implanted with neutral density radiopaque markers, sealed inside an elastomeric encasement, and dropped from 0.9 m onto a steel anvil. Particle tracking revealed elevated tensile strains in the sulcus. One hour after impact, decreased microtubule associated protein 2 (MAP2) was found exclusively within the sulcus with no increase in cell death. These results suggest that elevated tensile strain in the sulcus may result in compromised cytoskeleton, possibly indicating a vulnerability to pathological outcomes under the right circumstances. The results demonstrated that the observed changes were unrelated to shear strain loading of the tissues but were more sensitive to tensile load.
Collapse
Affiliation(s)
- Brendan Hoffe
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada.
| | - Ashley Mazurkiewicz
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Hannah Thomson
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Rohan Banton
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Oren E Petel
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Matthew R Holahan
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada
| |
Collapse
|
46
|
Ogino Y, Bernas T, Greer JE, Povlishock JT. Axonal injury following mild traumatic brain injury is exacerbated by repetitive insult and is linked to the delayed attenuation of NeuN expression without concomitant neuronal death in the mouse. Brain Pathol 2021; 32:e13034. [PMID: 34729854 PMCID: PMC8877729 DOI: 10.1111/bpa.13034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI) affects brain structure and function and can lead to persistent abnormalities. Repetitive mTBI exacerbates the acute phase response to injury. Nonetheless, its long‐term implications remain poorly understood, particularly in the context of traumatic axonal injury (TAI), a player in TBI morbidity via axonal disconnection, synaptic loss and retrograde neuronal perturbation. In contrast to the examination of these processes in the acute phase of injury, the chronic‐phase burden of TAI and/or its implications for retrograde neuronal perturbation or death have received little consideration. To critically assess this issue, murine neocortical tissue was investigated at acute (24‐h postinjury, 24hpi) and chronic time points (28‐days postinjury, 28dpi) after singular or repetitive mTBI induced by central fluid percussion injury (cFPI). Neurons were immunofluorescently labeled for NeuroTrace and NeuN (all neurons), p‐c‐Jun (axotomized neurons) and DRAQ5 (cell nuclei), imaged in 3D and quantified in automated manner. Single mTBI produced axotomy in 10% of neurons at 24hpi and the percentage increased after repetitive injury. The fraction of p‐c‐Jun+ neurons decreased at 28dpi but without neuronal loss (NeuroTrace), suggesting their reorganization and/or repair following TAI. In contrast, NeuN+ neurons decreased with repetitive injury at 24hpi while the corresponding fraction of NeuroTrace+ neurons decreased over 28dpi. Attenuated NeuN expression was linked exclusively to non‐axotomized neurons at 24hpi which extended to the axotomized at 28dpi, revealing a delayed response of the axotomized neurons. Collectively, we demonstrate an increased burden of TAI after repetitive mTBI, which is most striking in the acute phase response to the injury. Our finding of widespread axotomy in large fields of intact neurons contradicts the notion that repetitive mTBI elicits progressive neuronal death, rather, emphasizing the importance of axotomy‐mediated change.
Collapse
Affiliation(s)
- Yasuaki Ogino
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John E Greer
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Surgery, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
47
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Acute and Chronic Effects of Multiple Concussions on Midline Brain Structures. Neurology 2021; 97:e1170-e1181. [PMID: 34433678 PMCID: PMC8480483 DOI: 10.1212/wnl.0000000000012580] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To test the hypothesis that a history of concussion (HOC) causes greater disturbances in cerebral blood flow (CBF) and white matter microstructure of midline brain structures after subsequent concussions, during the acute and chronic phases of recovery. METHODS In this longitudinal MRI study, 61 athletes with uncomplicated concussion (36 with HOC) were imaged at the acute phase of injury (1-7 days after injury), the subacute phase (8-14 days), medical clearance to return to play (RTP), 1 month after RTP, and 1 year after RTP. A normative group of 167 controls (73 with HOC) were also imaged. Each session assessed CBF of the cingulate cortex, along with fractional anisotropy (FA) and mean diffusivity (MD) of the corpus callosum. Linear mixed models tested for interactions of HOC with time since injury. The Sport Concussion Assessment Tool (SCAT) was also used to evaluate effects of HOC on symptoms, cognition, and balance. RESULTS Athletes with HOC had significantly greater declines in midcingulate CBF subacutely (z = -3.29, p = 0.002) and greater declines in posterior cingulate CBF at 1 year after RTP (z = -2.42, p = 0.007). No significant effects of HOC were seen for FA, whereas athletes with HOC had higher MD of the splenium at RTP (z = 2.54, p = 0.008). These effects were seen in the absence of significant differences in SCAT domains (|z| ≤ 1.14, p ≥ 0.256) or time to RTP (z = 0.23, p = 0.818). DISCUSSION Results indicate subacute and chronic effects of HOC on cingulate CBF and callosal microstructure in the absence of differences in clinical indices. These findings provide new insights into physiologic brain recovery after concussion, with cumulative effects of repeated injury detected among young, healthy athletes.
Collapse
Affiliation(s)
- Nathan W Churchill
- From the Keenan Research Centre for Biomedical Science (N.W.C., M.G.H., T.A.S.) and Neuroscience Research Program (N.W.C., T.A.S.), St. Michael's Hospital; Faculty of Kinesiology and Physical Education (M.G.H.), Department of Medical Biophysics (S.J.G.), Faculty of Medicine (Neurosurgery) (T.A.S.), and Institute of Biomaterials and Biomedical Engineering (T.A.S.), University of Toronto; and Physical Sciences Platform (S.J.G.), Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Michael G Hutchison
- From the Keenan Research Centre for Biomedical Science (N.W.C., M.G.H., T.A.S.) and Neuroscience Research Program (N.W.C., T.A.S.), St. Michael's Hospital; Faculty of Kinesiology and Physical Education (M.G.H.), Department of Medical Biophysics (S.J.G.), Faculty of Medicine (Neurosurgery) (T.A.S.), and Institute of Biomaterials and Biomedical Engineering (T.A.S.), University of Toronto; and Physical Sciences Platform (S.J.G.), Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Simon J Graham
- From the Keenan Research Centre for Biomedical Science (N.W.C., M.G.H., T.A.S.) and Neuroscience Research Program (N.W.C., T.A.S.), St. Michael's Hospital; Faculty of Kinesiology and Physical Education (M.G.H.), Department of Medical Biophysics (S.J.G.), Faculty of Medicine (Neurosurgery) (T.A.S.), and Institute of Biomaterials and Biomedical Engineering (T.A.S.), University of Toronto; and Physical Sciences Platform (S.J.G.), Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tom A Schweizer
- From the Keenan Research Centre for Biomedical Science (N.W.C., M.G.H., T.A.S.) and Neuroscience Research Program (N.W.C., T.A.S.), St. Michael's Hospital; Faculty of Kinesiology and Physical Education (M.G.H.), Department of Medical Biophysics (S.J.G.), Faculty of Medicine (Neurosurgery) (T.A.S.), and Institute of Biomaterials and Biomedical Engineering (T.A.S.), University of Toronto; and Physical Sciences Platform (S.J.G.), Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Shapiro JS, Takagi M, Silk T, Anderson N, Clarke C, Davis GA, Hearps SJ, Ignjatovic V, Rausa V, Seal ML, Babl FE, Anderson V. No Evidence of a Difference in Susceptibility-Weighted Imaging Lesion Burden or Functional Network Connectivity between Children with Typical and Delayed Recovery Two Weeks Post-Concussion. J Neurotrauma 2021; 38:2384-2390. [PMID: 33823646 PMCID: PMC8881952 DOI: 10.1089/neu.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Susceptibility weighted imaging (SWI) and resting state functional magnetic resonance imaging have been highlighted as two novel neuroimaging modalities that have been underutilized when attempting to predict whether a child with concussion will recover normally or have a delayed recovery course. This study aimed to investigate whether there was a difference between children who recover normally from a concussion and children with delayed recovery in terms of SWI lesion burden and resting state network makeup. Forty-one children who presented to the emergency department of a tertiary level pediatric hospital with concussion participated in this study as a part of a larger prospective, longitudinal observational cohort study into concussion assessment and recovery. Children underwent neuroimaging 2 weeks post-injury and were classified as either normally recovering (n = 27), or delayed recovering (n = 14) based on their post-concussion symptoms at 2 weeks post-injury. No participants showed lesions detected using SWI; therefore, no group differences could be assessed. No between-group resting state network differences were uncovered using dual regression analysis. These findings, alongside previously published work, suggest that potential causes of delayed recovery from concussion may not be found using current neuroimaging paradigms.
Collapse
Affiliation(s)
- Jesse S. Shapiro
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Monash School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Monash School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Tim Silk
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychology, Deakin University, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Nicholas Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cathriona Clarke
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gavin A. Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | - Vera Ignjatovic
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Vanessa Rausa
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Marc L. Seal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Franz E. Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
- Emergency Department, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
- Psychology Service, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Implications of DTI in mild traumatic brain injury for detecting neurological recovery and predicting long-term behavioural outcome in paediatric and young population-a systematic review. Childs Nerv Syst 2021; 37:2475-2486. [PMID: 34128118 DOI: 10.1007/s00381-021-05240-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This systematic review was done with the aim to answer these three questions: 1) Is there any change in diffusion metrics in MRI-DTI sequences after mild traumatic brain injury in paediatric and young population?, 2) Is there any correlation of these changes in diffusion metrics with severity of post concussion symptoms?, 3) Is the change in diffusion metrics predictive of neurocognitive function or neurological recovery? MATERIAL AND METHODS Eligibility criteria- Mild TBI patients upto 22 years of age, MRI- DTI sequence done post injury, Outcome measurement with follow up at least for onemonth and articles published in English language only. Data sources- PubMed, EMBASE, CINAHL, Scopus and Cochrane RESULTS: Some studies show increased FA and some studies show decrease FA and few showed no change in white matter microstructure in mTBI patients and this depends on the duration of injury. Prediction of PCSs severity on the basis of changes in white matter microstructure showed inconsistent results. Radiological recovery in contrast to clinical recovery, is often delayed ranging from 6 months to 2-3 years. But change in diffusion metrics after mTBI is not definite predictive of neurocognitive outcomes. CONCLUSION Large, properly designed, multicentric studies with appropriate extracranial or orthopedic control and long follow up are needed to establish the use of DTIin mTBI for predicting behavioral outcome.
Collapse
|
50
|
Zimmerman KA, Laverse E, Samra R, Yanez Lopez M, Jolly AE, Bourke NJ, Graham NSN, Patel MC, Hardy J, Kemp S, Morris HR, Sharp DJ. White matter abnormalities in active elite adult rugby players. Brain Commun 2021; 3:fcab133. [PMID: 34435188 PMCID: PMC8381344 DOI: 10.1093/braincomms/fcab133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Etienne Laverse
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - Ravjeet Samra
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of
Biomedical Engineering and Imaging Sciences, King’s College
London, London SE1 7EH, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Neil S N Graham
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Maneesh C Patel
- Imaging Department, Imperial College Healthcare NHS
Trust, Charing Cross Hospital, London W6 8RF, UK
| | - John Hardy
- Department of Neurodegenerative Disease, Reta Lila
Weston Laboratories, Queen Square Genomics, UCL Dementia Research
Institute, London WC1N 3BG, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham,
London TW2 7BA, UK
- Faculty of Epidemiology and Public Health, London
School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
- The Royal British Legion Centre for Blast Injury
Studies, Imperial College London SW7 2AZ, UK
| |
Collapse
|