1
|
Wilson JL, Soo AKS, Gregory A, Nardocci N, Zorzi G, Ritzman M, Hope A, Duncan DW, Thomas M, Bertoldi S, Scalise NA, Wood P, Massey H, Denton A, Sargent A, Panwala L, Hogarth P, Kurian MA, Hayflick SJ. Consensus Clinical Management Guideline for PLA2G6-Associated Neurodegeneration (PLAN). J Child Neurol 2025:8830738251323649. [PMID: 40262088 DOI: 10.1177/08830738251323649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
This clinical guideline provides recommendations for the evaluation and management of individuals with PLA2G6-associated neurodegeneration (PLAN). PLAN, a neurodegeneration with brain iron accumulation disorder, presents with infantile-onset (infantile neuroaxonal dystrophy), juvenile-onset, and adult-onset forms with motor, cognitive, ophthalmologic, and autonomic symptoms. This guideline was developed using a modified Delphi process with input from PLAN experts and family members of individuals with PLAN. A literature search was performed, although in the absence of data, recommendations were based on expert opinion. The guideline contains recommendations on diagnostic approach, disease-specific treatment, and symptom-based management.
Collapse
Affiliation(s)
- Jenny L Wilson
- Division of Pediatric Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Audrey K S Soo
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Foundation IRCCS Neurological Institute "Carlo Besta, Miano, Italy
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Foundation IRCCS Neurological Institute "Carlo Besta, Miano, Italy
| | | | | | | | | | | | - Natale A Scalise
- AISNAF-Associazione Italiana Sindromi Neurodegenerative Da Accumulo Di Ferro, Rossano, Italy
| | | | | | | | | | | | - Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Okubo S, Matsukawa T, Kawamoto N, Tsujita M, Orimo K, Naruse H, Mitsui J, Hamada M, Satake W, Toda T. Elevated serum autotaxin levels and multiple system atrophy-like presentation in a patient with PLA2G6-associated neurodegeneration. J Hum Genet 2025:10.1038/s10038-025-01342-0. [PMID: 40263418 DOI: 10.1038/s10038-025-01342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/24/2025]
Abstract
PLA2G6-associated neurodegeneration (PLAN) encompasses a spectrum of phenotypes caused by biallelic pathogenic variants in PLA2G6. Initially linked to infantile and atypical neuroaxonal dystrophy, PLAN now includes adult-onset conditions such as dystonia-parkinsonism, ataxia, and spastic paraplegia. We report a female patient presenting young-onset parkinsonism with pyramidal tract signs, cerebellar atrophy, and autonomic dysfunction, mimicking multiple system atrophy (MSA). Neuroimaging showed decreased dopamine uptake and cerebellar hypoperfusion. Genetic analysis identified a homozygous pathogenic variant in PLA2G6 (c.967G>A, p.Val323Met), confirming a diagnosis of PLAN. Interestingly, elevated serum autotaxin levels (4.67 ng/mL) without liver abnormalities. Bilateral brachymetatarsia was also observed, which may indicate an association with the PLA2G6 variant. This case underscores the importance of considering PLAN in cases of young-onset parkinsonism with multisystem involvement. Genetic testing is crucial for accurate diagnosis and management of such cases. Elevated serum autotaxin levels may be associated with decreased phospholipase activity in PLAN and warrants further investigation.
Collapse
Affiliation(s)
- So Okubo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Norifumi Kawamoto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiko Tsujita
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Orimo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Hamada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wataru Satake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
4
|
Hosseinpour S, Bemanalizadeh M, Mohammadi P, Ashrafi MR, Heidari M. An overview of early-onset cerebellar ataxia: a practical guideline. Acta Neurol Belg 2024; 124:1791-1804. [PMID: 38951452 DOI: 10.1007/s13760-024-02595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Early onset ataxias (EOAs) are a heterogeneous group of rare neurological disorders that not only involve the central and peripheral nervous system but also involve other organs. They are mainly manifested by degeneration or abnormal development of the cerebellum occurring before the age of 25 years and typically the pattern of inheritance is autosomal recessive.The diagnosis of autosomal recessive cerebellar ataxias (ARCAs) is confirmed by the clinical, laboratory, electrophysiological examination, neuroimaging findings, and mutation analysis when the causative gene is detected. Correct diagnosis is crucial for appropriate genetic counseling, estimating the prognosis, and, in some cases, pharmacological intervention. The wide variety of genotypes with a heterogeneous phenotypic manifestation makes the diagnostic work-up challenging, time-consuming, and expensive, not only for the clinician but also for the children and their parents. In this review, we focused on the step-by-step approach in which cerebellar ataxia is a prominent sign. We also outline the most common disorders in ataxias with early-onset manifestations.
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatrics, Division of Pediatric Neurology, Vali-e-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Maryam Bemanalizadeh
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Mohammadi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mouchlis VD, Hsu YH, Hayashi D, Cao J, Li S, McCammon JA, Dennis EA. The mechanism of allosteric regulation of calcium-independent phospholipase A 2 by ATP and calmodulin binding to the ankyrin domain. Proc Natl Acad Sci U S A 2024; 121:e2411539121. [PMID: 39560651 PMCID: PMC11621833 DOI: 10.1073/pnas.2411539121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024] Open
Abstract
Group VIA calcium-independent phospholipase A2 (iPLA2) is a member of the PLA2 superfamily that exhibits calcium-independent activity in contrast to the other two major types, secreted phospholipase A2 (sPLA2) and cytosolic phospholipase A2 (cPLA2), which both require calcium for their enzymatic activity. Adenosine triphosphate (ATP) has been reported to allosterically activate iPLA2, and this has now been verified with a lipidomics-based mixed-micelle assay, but its mechanism of action has been unknown. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to identify ATP interaction peptide regions located within the ankyrin repeat domain at which ATP interacts. Molecular dynamics simulations revealed the mechanism by which ATP binds to its site and the main residues that interact. Site-directed mutagenesis was used to verify the importance of these residues in the role of ATP in regulating iPLA2 activity. Importantly, calcium was found to abolish the enhancing regulatory function of ATP and to promote the inhibitory activity by calmodulin. Given previous evidence that calcium does not bind directly to iPLA2, its effect appears to be indirect via association with ATP and/or calmodulin. Using HDX-MS, we found that calmodulin interacts with the N terminus peptide region of iPLA2 consisting of residues 20 to 28. These two regulatory iPLA2 sites open the road to the development of potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Varnavas D. Mouchlis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Daiki Hayashi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Jian Cao
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Sheng Li
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA92093
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0601
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093-0601
| |
Collapse
|
6
|
Gogus B, Elmas M, Turk Boru U. Genetic aspects of ataxias in a cohort of Turkish patients. Neurol Sci 2024; 45:4349-4365. [PMID: 38587696 PMCID: PMC11306380 DOI: 10.1007/s10072-024-07484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Ataxia is one of the clinical findings of the movement disorder disease group. Although there are many underlying etiological reasons, genetic etiology has an increasing significance thanks to the recently developing technology. The aim of this study is to present the variants detected in WES analysis excluding non-genetic causes, in patients with ataxia. METHODS Thirty-six patients who were referred to us with findings of ataxia and diagnosed through WES or other molecular genetic analysis methods were included in our study. At the same time, information such as the onset time of the complaints, consanguinity status between parents, and the presence of relatives with similar symptoms were evaluated. If available, the patient's biochemical and radiological test results were presented. RESULTS Thirty-six patients were diagnosed through WES or CES. The rate of detected autosomal recessive inheritance disease was 80.5%, while that of autosomal dominant inheritance disease was 19.5%. Abnormal cerebellum was detected on brain MRI images in 26 patients, while polyneuropathy was detected on EMG in eleven of them. While the majority of the patients were compatible with similar cases reported in the literature, five patients had different/additional features (variants in MCM3AP, AGTPBP1, GDAP2, and SH3TC2 genes). CONCLUSIONS The diagnosis of ataxia patients with unknown etiology is made possible thanks to these clues. Consideration of a genetic approach is recommended in patients with ataxia of unknown etiology.
Collapse
Affiliation(s)
- Basak Gogus
- Ministry of Health General Directorate of Public Health, Ankara, Turkey.
- Department of Medical Genetics, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Muhsin Elmas
- Department of Medical Genetics, İstanbul Medipol University, Istanbul, Turkey
| | - Ulku Turk Boru
- Department of Neurology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
7
|
Marupudi N, Xiong MP. Genetic Targets and Applications of Iron Chelators for Neurodegeneration with Brain Iron Accumulation. ACS BIO & MED CHEM AU 2024; 4:119-130. [PMID: 38911909 PMCID: PMC11191567 DOI: 10.1021/acsbiomedchemau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 06/25/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.
Collapse
Affiliation(s)
- Neharika Marupudi
- Department of Pharmaceutical
& Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| | - May P. Xiong
- Department of Pharmaceutical
& Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| |
Collapse
|
8
|
Zhao C, Tu J, Wang C, Liu W, Gu J, Yin Y, Zhang S, Li D, Diao J, Zhu ZJ, Liu C. Lysophosphatidylcholine binds α-synuclein and prevents its pathological aggregation. Natl Sci Rev 2024; 11:nwae182. [PMID: 38962715 PMCID: PMC11221426 DOI: 10.1093/nsr/nwae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Accumulation of aggregated α-synuclein (α-syn) in Lewy bodies is the pathological hallmark of Parkinson's disease (PD). Genetic mutations in lipid metabolism are causative for a subset of patients with Parkinsonism. The role of α-syn's lipid interactions in its function and aggregation is recognized, yet the specific lipids involved and how lipid metabolism issues trigger α-syn aggregation and neurodegeneration remain unclear. Here, we found that α-syn shows a preference for binding to lysophospholipids (LPLs), particularly targeting lysophosphatidylcholine (LPC) without relying on electrostatic interactions. LPC is capable of maintaining α-syn in a compact conformation, significantly reducing its propensity to aggregate both in vitro and within cellular environments. Conversely, a reduction in the production of cellular LPLs is associated with an increase in α-syn accumulation. Our work underscores the critical role of LPLs in preserving the natural conformation of α-syn to inhibit improper aggregation, and establishes a potential connection between lipid metabolic dysfunction and α-syn aggregation in PD.
Collapse
Affiliation(s)
- Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Tu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
9
|
Wu R, Li X, Meng Z, Li P, He Z, Liang L. Phenotypic and genetic analysis of children with unexplained neurodevelopmental delay and neurodevelopmental comorbidities in a Chinese cohort using trio-based whole-exome sequencing. Orphanet J Rare Dis 2024; 19:205. [PMID: 38764027 PMCID: PMC11103872 DOI: 10.1186/s13023-024-03214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Trio-based whole-exome sequencing (trio-WES) enables identification of pathogenic variants, including copy-number variants (CNVs), in children with unexplained neurodevelopmental delay (NDD) and neurodevelopmental comorbidities (NDCs), including autism spectrum disorder (ASD), epilepsy, and attention deficit hyperactivity disorder. Further phenotypic and genetic analysis on trio-WES-tested NDD-NDCs cases may help to identify key phenotypic factors related to higher diagnostic yield of using trio-WES and novel risk genes associated with NDCs in clinical settings. METHODS In this study, we retrospectively performed phenotypic analysis on 163 trio-WES-tested NDD-NDCs children to determine the phenotypic differences between genetically diagnosed and non-genetically diagnosed groups. Additionally, we conducted genetic analysis of ASD genes with the help of Simons Foundation for Autism Research Institute (SFARI) Gene database to identify novel possible ASD-risk genes underlying genetic NDD conditions. RESULTS Among these 163 patients, pathogenic variants were identified in 82 cases (82/163, 50.3%), including 20 cases with CNVs. By comparing phenotypic variables between genetically diagnosed group (82 cases) and non-genetically diagnosed group (81 cases) with multivariate binary logistic regression analysis, we revealed that NDD-NDCs cases presenting with severe-profound NDD [53/82 vs 17/81, adjusted-OR (95%CI): 4.865 (2.213 - 10.694), adjusted-P < 0.001] or having multiple NDCs [26/82 vs 8/81, adjusted-OR (95%CI): 3.731 (1.399 - 9.950), adjusted-P = 0.009] or accompanying ASD [64/82 vs 35/81, adjusted-OR (95%CI): 3.256 (1.479 - 7.168), adjusted-P = 0.003] and head circumference abnormality [33/82 vs 11/81, adjusted-OR (95%CI): 2.788 (1.148 - 6.774), adjusted-P = 0.024] were more likely to have a genetic diagnosis using trio-WES. Moreover, 37 genes with monogenetic variants were identified in 48 patients genetically diagnosed with NDD-ASD, and 15 dosage-sensitive genes were identified in 16 individuals with NDD-ASD carrying CNVs. Most of those genes had been proven to be ASD-related genes. However, some of them (9 genes) were not proven sufficiently to correlate with ASD. By literature review and constructing protein-protein interaction networks among these 9 candidate ASD-risk genes and 102 established ASD genes obtained from the SFARI Gene database, we identified CUL4B, KCNH1, and PLA2G6 as novel possible ASD-risk genes underlying genetic NDD conditions. CONCLUSIONS Trio-WES testing is recommended for patients with unexplained NDD-NDCs that have severe-profound NDD or multiple NDCs, particularly those with accompanying ASD and head circumference abnormality, as these independent factors may increase the likelihood of genetic diagnosis using trio-WES. Moreover, NDD patients with pathogenic variants in CUL4B, KCNH1 and PLA2G6 should be aware of potential risks of developing ASD during their disease courses.
Collapse
Affiliation(s)
- Ruohao Wu
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Xiaojuan Li
- Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhe Meng
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Pinggan Li
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Zhanwen He
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China.
| | - Liyang Liang
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China.
| |
Collapse
|
10
|
Chen Y, Wu Z, Li S, Chen Q, Wang L, Qi X, Tian C, Yang M. Mapping the Research of Ferroptosis in Parkinson's Disease from 2013 to 2023: A Scientometric Review. Drug Des Devel Ther 2024; 18:1053-1081. [PMID: 38585257 PMCID: PMC10999190 DOI: 10.2147/dddt.s458026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Methods Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.
Collapse
Affiliation(s)
- Yingfan Chen
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhenhui Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Qi Chen
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Liang Wang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiaorong Qi
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Chujiao Tian
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Liu J, Tan J, Tang B, Guo J. Unveiling the role of iPLA 2β in neurodegeneration: From molecular mechanisms to advanced therapies. Pharmacol Res 2024; 202:107114. [PMID: 38395207 DOI: 10.1016/j.phrs.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Calcium-independent phospholipase A2β (iPLA2β), a member of the phospholipase A2 (PLA2s) superfamily, is encoded by the PLA2G6 gene. Mutations in the PLA2G6 gene have been identified as the primary cause of infantile neuroaxonal dystrophy (INAD) and, less commonly, as a contributor to Parkinson's disease (PD). Recent studies have revealed that iPLA2β deficiency leads to neuroinflammation, iron accumulation, mitochondrial dysfunction, lipid dysregulation, and other pathological changes, forming a complex pathogenic network. These discoveries shed light on potential mechanisms underlying PLA2G6-associated neurodegeneration (PLAN) and offer valuable insights for therapeutic development. This review provides a comprehensive analysis of the fundamental characteristics of iPLA2β, its association with neurodegeneration, the pathogenic mechanisms involved in PLAN, and potential targets for therapeutic intervention. It offers an overview of the latest advancements in this field, aiming to contribute to ongoing research endeavors and facilitate the development of effective therapies for PLAN.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Amini E, Rohani M, Jalessi M, Azad Z, Valzania F, Cavallieri F, Farhadi M, Gholibeigian Z. Olfactory status in neurodegeneration with brain iron accumulation disorders. Neurol Sci 2024; 45:647-654. [PMID: 37651040 DOI: 10.1007/s10072-023-07037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Olfactory dysfunction has been suggested as a diagnostic and discriminative biomarker in some neurodegenerative disorders. However, there are few studies regarding the olfactory status in rare diseases including neurodegeneration with brain iron accumulation (NBIA) disorders. METHODS Genetically-confirmed NBIA patients were enrolled. Neurological and cognitive examinations were conducted according to the Pantothenate Kinase-Associated Neurodegeneration-Disease Rating Scale (PKAN-DRS) and the Mini-Mental State Examination (MMSE) questionnaire, respectively. Olfaction was assessed in three domains of odor threshold (OT), odor discrimination (OD), odor identification (OI), and total sum (TDI) score by the Sniffin' Sticks test. The olfactory scores were compared to a control group and a normative data set. RESULTS Thirty-seven patients, including 22 PKAN, 6 Kufor Rakeb syndrome, 4 Mitochondrial membrane Protein-Associated Neurodegeneration (MPAN), 5 cases of other 4 subtypes, and 37 controls were enrolled. The mean PKAN-DRS score was 51.83±24.93. Sixteen patients (55.2%) had normal cognition based on MMSE. NBIA patients had significantly lower olfactory scores compared to the controls in TDI and all three subtests, and 60% of them were hyposmic according to the normative data. Including only the cognitively-normal patients, still, OI and TDI scores were significantly lower compared to the controls. The phospholipase A2-Associated Neurodegeneration (PLAN) and MPAN patients had a significantly lower OI score compared to the cognitively-matched PKAN patients. CONCLUSION Olfactory impairment as a common finding in various subtypes of NBIA disorder can potentially be considered a discriminative biomarker. Better OI in PKAN compared to PLAN and MPAN patients may be related to the different underlying pathologies.
Collapse
Affiliation(s)
- Elahe Amini
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, The Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gholibeigian
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Deng X, Yuan L, Jankovic J, Deng H. The role of the PLA2G6 gene in neurodegenerative diseases. Ageing Res Rev 2023; 89:101957. [PMID: 37236368 DOI: 10.1016/j.arr.2023.101957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
PLA2G6-associated neurodegeneration (PLAN) represents a continuum of clinically and genetically heterogeneous neurodegenerative disorders with overlapping features. Usually, it encompasses three autosomal recessive diseases, including infantile neuroaxonal dystrophy or neurodegeneration with brain iron accumulation (NBIA) 2A, atypical neuronal dystrophy with childhood-onset or NBIA2B, and adult-onset dystonia-parkinsonism form named PARK14, and possibly a certain subtype of hereditary spastic paraplegia. PLAN is caused by variants in the phospholipase A2 group VI gene (PLA2G6), which encodes an enzyme involved in membrane homeostasis, signal transduction, mitochondrial dysfunction, and α-synuclein aggregation. In this review, we discuss PLA2G6 gene structure and protein, functional findings, genetic deficiency models, various PLAN disease phenotypes, and study strategies in the future. Our primary aim is to provide an overview of genotype-phenotype correlations of PLAN subtypes and speculate on the role of PLA2G6 in potential mechanisms underlying these conditions.
Collapse
Affiliation(s)
- Xinyue Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Disease Genome Research Center, Central South University, Changsha 410013, Hunan, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030-4202, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Disease Genome Research Center, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
14
|
Dehnavi AZ, Bemanalizadeh M, Kahani SM, Ashrafi MR, Rohani M, Toosi MB, Heidari M, Hosseinpour S, Amini B, Zokaei S, Rezaei Z, Aryan H, Amanat M, Vahidnezhad H, Mohammadi P, Garshasbi M, Tavasoli AR. Phenotype and genotype heterogeneity of PLA2G6-associated neurodegeneration in a cohort of pediatric and adult patients. Orphanet J Rare Dis 2023; 18:177. [PMID: 37403138 DOI: 10.1186/s13023-023-02780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/18/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Phospholipase-associated neurodegeneration (PLAN) caused by mutations in the PLA2G6 gene is a rare neurodegenerative disorder that presents with four sub-groups. Infantile neuroaxonal dystrophy (INAD) and PLA2G6-related dystonia-parkinsonism are the main two subtypes. In this cohort, we reviewed clinical, imaging, and genetic features of 25 adult and pediatric patients harboring variants in the PLA2G6. METHODS An extensive review of the patients' data was carried out. Infantile Neuroaxonal Dystrophy Rating Scale (INAD-RS) was used for evaluating the severity and progression of INAD patients. Whole-exome sequencing was used to determine the disease's underlying etiology followed by co-segregation analysis using Sanger sequencing. In silico prediction analysis based on the ACMG recommendation was used to assess the pathogenicity of genetic variants. We aimed to survey a genotype-genotype correlation in PLA2G6 considering all reported disease-causing variants in addition to our patients using the HGMD database and the chi-square statistical approach. RESULTS Eighteen cases of INAD and 7 cases of late-onset PLAN were enrolled. Among 18 patients with INAD, gross motor regression was the most common presenting symptom. Considering the INAD-RS total score, the mean rate of progression was 0.58 points per month of symptoms (Standard error 0.22, lower 95% - 1.10, and upper 95% - 0.15). Sixty percent of the maximum potential loss in the INAD-RS had occurred within 60 months of symptom onset in INAD patients. Among seven adult cases of PLAN, hypokinesia, tremor, ataxic gate, and cognitive impairment were the most frequent clinical features. Various brain imaging abnormalities were also observed in 26 imaging series of these patients with cerebellar atrophy being the most common finding in more than 50%. Twenty unique variants in 25 patients with PLAN were detected including nine novel variants. Altogether, 107 distinct disease-causing variants from 87 patient were analyzed to establish a genotype-phenotype correlation. The P value of the chi-square test did not indicate a significant relationship between age of disease onset and the distribution of reported variants on PLA2G6. CONCLUSION PLAN presents with a wide spectrum of clinical symptoms from infancy to adulthood. PLAN should be considered in adult patients with parkinsonism or cognition decline. Based on the current knowledge, it is not possible to foresee the age of disease onset based on the identified genotype.
Collapse
Affiliation(s)
- Ali Zare Dehnavi
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bemanalizadeh
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed Mohammad Kahani
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Skull Base Research Center, The Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Amini
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Zokaei
- Dr. Farhud's Genetic Clinic, Tehran, Iran
- School of Advanced Medical Science, Islamic Azad University, Tehran, Iran
| | - Zahra Rezaei
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hajar Aryan
- Dr. Farhud's Genetic Clinic, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Man Amanat
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Hassan Vahidnezhad
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pouria Mohammadi
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran, Iran
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
16
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
17
|
Lin G, Tepe B, McGrane G, Tipon RC, Croft G, Panwala L, Hope A, Liang AJH, Zuo Z, Byeon SK, Wang L, Pandey A, Bellen HJ. Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14). eLife 2023; 12:e82555. [PMID: 36645408 PMCID: PMC9889087 DOI: 10.7554/elife.82555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is caused by recessive variants in PLA2G6 and is a lethal pediatric neurodegenerative disorder. Loss of the Drosophila homolog of PLA2G6, leads to ceramide accumulation, lysosome expansion, and mitochondrial defects. Here, we report that retromer function, ceramide metabolism, the endolysosomal pathway, and mitochondrial morphology are affected in INAD patient-derived neurons. We show that in INAD mouse models, the same features are affected in Purkinje cells, arguing that the neuropathological mechanisms are evolutionary conserved and that these features can be used as biomarkers. We tested 20 drugs that target these pathways and found that Ambroxol, Desipramine, Azoramide, and Genistein alleviate neurodegenerative phenotypes in INAD flies and INAD patient-derived neural progenitor cells. We also develop an AAV-based gene therapy approach that delays neurodegeneration and prolongs lifespan in an INAD mouse model.
Collapse
Affiliation(s)
- Guang Lin
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Geoff McGrane
- New York Stem Cell Foundation Research InstituteNew YorkUnited States
| | - Regine C Tipon
- New York Stem Cell Foundation Research InstituteNew YorkUnited States
| | - Gist Croft
- New York Stem Cell Foundation Research InstituteNew YorkUnited States
| | | | | | - Agnes JH Liang
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo ClinicRochesterUnited States
| | - Lily Wang
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo ClinicRochesterUnited States
- Manipal Academy of Higher Education, ManipalKarnatakaIndia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
18
|
Seizure in Neurodegeneration with Brain Iron Accumulation: A Systematic Review. Can J Neurol Sci 2023; 50:60-71. [PMID: 35067244 DOI: 10.1017/cjn.2021.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) is a rare genetic disorder. Its clinical manifestations comprise a wide spectrum mainly movement disorders. Seizure as a clinical manifestation is known to occur in some NBIAs, but the exact prevalence of epilepsy in each individual disorder is not well elucidated. The aim of this review was to investigate the frequency of seizures in NBIA disorders as well as to determine the associated features of patients with seizures. METHOD The electronic bibliographic databases PubMed, Scopus, Embase, and Google Scholar were systematically searched for all cases in any type of article from inception to December 16, 2019. All the reported cases of NBIA (with or without genetic confirmation) were identified. Case reports with an explicit diagnosis of any types of NBIA, which have reported occurrence (or absence) of any type of seizure or epilepsy, in the English language, were included. Seizure incidence rate, type, and age of onset were reported as frequencies and percentages. RESULT 1698 articles were identified and 51 were included in this review. Of 305 reported cases, 150 (49.2%) had seizures (phospholipase A2-associated neurodegeneration (PLAN) = 64 (50.8%), beta-propeller protein-associated neurodegeneration (BPAN) = 57 (72.1%), pantothenate kinase-associated neurodegeneration (PKAN) = 11 (23.4%), and others = 18 (very variable proportions)). The most frequent seizure type in NBIA patients was generalized tonic-clonic seizure with the mean age of seizure onset between 2 and 36 years. However, most of these papers had been published before the new classification of epilepsy became accessible. Affected patients were more likely to be females. CONCLUSION Seizures are common in NBIA, particularly in PLAN and BPAN. In PKAN, the most common type of NBIA, around 10% of patients are affected by seizures. BPAN is the most possible NBIA accompanying seizure. Most of the findings regarding the seizure characteristics in the NBIAs are biased due to the huge missing data. Therefore, any conclusions should be made with caution and need further investigations.
Collapse
|
19
|
Oizumi H, Sugimura Y, Totsune T, Kawasaki I, Ohshiro S, Baba T, Kimpara T, Sakuma H, Hasegawa T, Kawahata I, Fukunaga K, Takeda A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One 2022; 17:e0279315. [PMID: 36525454 PMCID: PMC9757566 DOI: 10.1371/journal.pone.0279315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Iori Kawasaki
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Saki Ohshiro
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Teiko Kimpara
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Hiroaki Sakuma
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
- Department of Cognitive and Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
20
|
Puri S, Agrawal RK, Singh A, Verma A, Mishra A, Singh A, Narayan R, Mishra OP. Spectrum of Neurodegeneration with Brain Iron Accumulation with PLA2G6 Variation: A Report of Three Cases from Two Families. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1758454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AbstractNeurodegeneration with brain iron accumulation consists of disorders characterized by progressive neuronal degeneration, cognitive decline, brain iron accumulation in extrapyramidal system, dentate nucleus, and gray and white matters boundary. We present a case series of PLA2G6-associated neurodegeneration (PLAN), with definite PLA2G6 gene mutations in two cases and suspected in one case. Diagnosis was based on clinical presentations, brain magnetic resonance imaging (MRI) findings, and detection of PLA2G6 mutations. Case 1: An 8-year-old boy presented with weakness of lower limbs, subnormal intelligence, scanning speech, spasticity, dysdiadochokinesia, pendular knee jerk, and extensor plantar reflex. MRI of the brain showed diffuse cerebellar atrophy and white matter T2 hyperintensity with iron deposition in bilateral globus pallidi. Case 2: Elder sister of Case 1, who developed ataxia at the age of 6 years and became bedridden at 14 years. She had nocturnal enuresis, seizures, cervical dystonia, dysphagia, and died at 23 years of age. MRI showed cerebral and cerebellar atrophies and iron deposition in basal ganglia and substantia nigra. Case 3 had infantile onset with quadriparesis, optic atrophy, developmental delay, cerebral and cerebellar atrophies, and brain iron accumulation in basal ganglia. Case 1 revealed two heterozygous mutations of PLA2G6 gene in exons 16 (c.2264G > A, p. Arg755Gln) and 12 (c.1637G > A, p. Arg546Gln), classified as likely pathogenic. Elder sister (Case 2) could not be tested for this mutation. Case 3 showed homozygous silent splice site point variation in exon 7 (c.1077 G > A; p. Ser 359 Ser) of PLA2G6 gene. Thus, in patients presenting with neurodegeneration and imaging findings of brain iron accumulation, diagnosis can be established by PLA2G6 gene mutation analysis.
Collapse
Affiliation(s)
- Shivangi Puri
- Department of Pediatrics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ritesh K. Agrawal
- Department of Pediatrics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ankur Singh
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Arpita Mishra
- Department of Pediatrics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ashok Singh
- Department of Pediatrics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Raghvendra Narayan
- Department of Pediatrics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Om P. Mishra
- Department of Pediatrics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| |
Collapse
|
21
|
Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022; 175:105920. [DOI: 10.1016/j.nbd.2022.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
22
|
Chen C, Lou MM, Sun YM, Luo F, Liu FT, Luo SS, Wang WY, Wang J. Serum metabolomic characterization of PLA2G6-associated dystonia-parkinsonism: A case-control biomarker study. Front Neurosci 2022; 16:879548. [PMID: 36033628 PMCID: PMC9406281 DOI: 10.3389/fnins.2022.879548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Phospholipase A2 Group VI (PLA2G6), encoding calcium-independent phospholipase A2, has been isolated as the gene responsible for an autosomal recessive form of early-onset Parkinson's disease (namely, PARK14). Compared to idiopathic Parkinson's disease (iPD), PARK14 has several atypical clinical features. PARK14 has an earlier age at onset and is more likely to develop levodopa-induced dyskinesia. In iPD, serum metabolomics has observed alterations in several metabolic pathways that are related to disease status and clinical manifestations. This study aims to describe the serum metabolomics features of patients with PARK14. Design This case-control biomarker study tested nine patients diagnosed with PARK14. Eight age and sex-matched healthy subjects were recruited as controls. To evaluate the influence of single heterozygous mutation, we enrolled eight healthy one-degree family members of patients with PARK14, two patients diagnosed with early-onset Parkinson's disease (EOPD) who had only a single heterozygous PLA2G6 mutation, and one patient with EOPD without any known pathogenic mutation. Methods The diagnosis of PARK14 was made according to the diagnostic criteria for Parkinson's disease (PD) and confirmed by genetic testing. To study the serum metabolic features, we analyzed participants' serum using UHPLC-QTOF/MS analysis, a well-established technology. Results We quantified 50 compounds of metabolites from the serum of all the study subjects. Metabolites alterations in serum had good predictive accuracy for PARK14 diagnosis (AUC 0.903) and advanced stage in PARK14 (AUC 0.944). Of the 24 metabolites that changed significantly in patients' serum, eight related to lipid metabolism. Oleic acid and xanthine were associated with MMSE scores. Xanthine, L-histidine, and phenol correlated with UPDRS-III scores. Oleic acid and 1-oleoyl-L-alpha-lysophosphatidic acid could also predict the subclass of the more advanced stage in the PLA2G6 Group in ROC models. Conclusion The significantly altered metabolites can be used to differentiate PLA2G6 pathogenic mutations and predict disease severity. Patients with PLA2G6 mutations had elevated lipid compounds in C18:1 and C16:0 groups. The alteration of lipid metabolism might be the key intermediate process in PLA2G6-related disease that needs further investigation.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Medical Neurobiology, Department of Neurology and National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Min-Min Lou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences – University of Chinese Academy of Sciences, Shanghai, China
| | - Yi-Min Sun
- State Key Laboratory of Medical Neurobiology, Department of Neurology and National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences – University of Chinese Academy of Sciences, Shanghai, China
| | - Feng-Tao Liu
- State Key Laboratory of Medical Neurobiology, Department of Neurology and National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Su-Shan Luo
- State Key Laboratory of Medical Neurobiology, Department of Neurology and National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences – University of Chinese Academy of Sciences, Shanghai, China,*Correspondence: Wen-Yuan Wang,
| | - Jian Wang
- State Key Laboratory of Medical Neurobiology, Department of Neurology and National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China,Jian Wang,
| |
Collapse
|
23
|
Hanna Al-Shaikh R, Milanowski LM, Holla VV, Kurihara K, Yadav R, Kamble N, Muthusamy B, Bellad A, Koziorowski D, Szlufik S, Hoffman-Zacharska D, Fujioka S, Tsuboi Y, Ross OA, Wierenga K, Uitti RJ, Wszolek Z, Pal PK. PLA2G6-associated neurodegeneration in four different populations-case series and literature review. Parkinsonism Relat Disord 2022; 101:66-74. [PMID: 35803092 DOI: 10.1016/j.parkreldis.2022.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND PLA2G6-Associated Neurodegeneration, PLAN, is subdivided into: Infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, and adult-onset dystonia parkinsonism [1]. It is elicited by a biallelic pathogenic variant in phospholipase A2 group VI (PLA2G6) gene. In this study we describe new cases and provide a comprehensive review of previously published cases. METHODS Eleven patients, from four different institutions and four different countries. All underwent a comprehensive chart review. RESULTS Ages at onset ranged from 1 to 36 years, with a median of 16 and a mean of 16.18 ± 11.91 years. Phenotypic characteristics were heterogenous and resembled that of patients with infantile neuroaxonal dystrophy (n = 2), atypical neuroaxonal dystrophy (n = 1), adult-onset dystonia parkinsonism (n = 1), complex hereditary spastic paraparesis (n = 3), and early onset Parkinson's disease (n = 2). Parental genetic studies were performed for all patients and confirmed with sanger sequencing in five. Visual evoked potential illustrated optic atrophy in P4. Mineralization was evident in brain magnetic resonance imaging of P1, P2, P4, P5, P7, and P11. Single photon emission computed tomography was conducted for three patients, revealed decreased perfusion in the occipital lobes for P10. DaTscan was performed for P11 and showed decreased uptake in the deep gray matter, bilateral caudate nuclei, and bilateral putamen. Positive response to Apomorphine was noted for P10 and to Baclofen in P2, and P3. CONCLUSIONS PLAN encompasses a wide clinical spectrum. Age and symptom at onset are crucial when classifying patients. Reporting new variants is critical to draw more attention to this condition and identify biomarkers to arrive at potential therapeutics.
Collapse
Affiliation(s)
| | - Lukasz M Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | | | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, Bengaluru, India; Manipal Academy of Higher Education, Manipal, India
| | - Anikha Bellad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Stanislaw Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Klaas Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
24
|
Wan Y, Jiang Y, Xie Z, Ling C, Du K, Li R, Yuan Y, Wang Z, Sun W, Jin H. Novel PLA2G6 Pathogenic Variants in Chinese Patients With PLA2G6-Associated Neurodegeneration. Front Neurol 2022; 13:922528. [PMID: 35911906 PMCID: PMC9327523 DOI: 10.3389/fneur.2022.922528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background PLA2G6-associated neurodegeneration (PLAN) is a heterogeneous group of neurodegenerative diseases caused by biallelic PLA2G6 mutations, covering diseases such as infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (ANAD), dystonia parkinsonism (DP), and autosomal recessive early-onset parkinsonism (AREP). The study aims to report the clinical and genetic features of a series of PLAN patients. Methods The clinical and radiological findings of five Chinese patients from three families were collected. Whole-exome next generation sequencing (NGS) was applied to identify the genetic causes. Co-segregation analysis of the detected candidate variants were performed in their families. The pathogenicity of identified novel variants was predicted by in silico analysis. Results NGS revealed compound heterozygous variants of PLA2G6 gene in all five patients. There were six PLA2G6 variants identified, including two known variants (c.116G>A, c.238G>A) and four novel variants (c.2120dupA, c.2071C>G, c.967G>A, c1534T>A). ACMG predicts c.2120dupA to be pathogenic, c.2071C>G and c.1534T>A to be likely pathogenic, and c1534T>A to be of uncertain significance. Clinically, four patients fell into the diagnosis of ANAD, and 1 into the diagnosis of AREP. Brain imaging revealed cerebellar atrophy, iron deposition in bilateral globus pallidus, and substantia nigra in three cases. Conclusions Four novel pathogenic variants were discovered and the pathogenic variant spectrum of the PLA2G6 gene was expanded.
Collapse
Affiliation(s)
- Yalan Wan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yanyan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kang Du
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Li
- Department of Neurology, Huoguosi TCM Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- *Correspondence: Wei Sun
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
- Haiqiang Jin
| |
Collapse
|
25
|
Sahu M, Tripathi R, Jha NK, Jha SK, Ambasta RK, Kumar P. Cross talk mechanism of disturbed sleep patterns in neurological and psychological disorders. Neurosci Biobehav Rev 2022; 140:104767. [PMID: 35811007 DOI: 10.1016/j.neubiorev.2022.104767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
The incidence and prevalence of sleep disorders continue to increase in the elderly populace, particularly those suffering from neurodegenerative and neuropsychiatric disorders. This not only affects the quality of life but also accelerates the progression of the disease. There are many reasons behind sleep disturbances in such patients, for instance, medication use, nocturia, obesity, environmental factors, nocturnal motor disturbances and depressive symptoms. This review focuses on the mechanism and effects of sleep dysfunction in neurodegenerative and neuropsychiatric disorders. Wherein we discuss disturbed circadian rhythm, signaling cascade and regulation of genes during sleep deprivation. Moreover, we explain the perturbation in brainwaves during disturbed sleep and the ocular perspective of neurodegenerative and neuropsychiatric manifestations in sleep disorders. Further, as the pharmacological approach is often futile and carries side effects, therefore, the non-pharmacological approach opens newer possibilities to treat these disorders and widens the landscape of treatment options for patients.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India.
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
| |
Collapse
|
26
|
Zou Y, Luo H, Yuan H, Xie K, Yang Y, Huang S, Yang B, Liu Y. Identification of a Novel Nonsense Mutation in PLA2G6 and Prenatal Diagnosis in a Chinese Family With Infantile Neuroaxonal Dystrophy. Front Neurol 2022; 13:904027. [PMID: 35873758 PMCID: PMC9298276 DOI: 10.3389/fneur.2022.904027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Infantile neuroaxonal dystrophy (INAD) is a subtype of PLA2G6-Associated Neurodegeneration (PLAN) with an age of early onset and severe clinical phenotypes of neurodegeneration. Individuals affected with INAD are characterized by rapid progressive psychomotor deterioration, neuroregression, and hypotonia followed by generalized spasticity, optic atrophy, and dementia. In this case, we aimed to identify the underlying causative genetic factors of a Chinese family with two siblings who presented with walking difficulty and inability to speak. We provided a prenatal diagnosis for the family and information for the prevention of this genetic disease. Methods Retrospective clinical information and magnetic resonance imaging (MRI) findings of the proband were collected. Trio-whole exome sequencing (WES) including the proband and his parents was performed to explore the genetic causes, while Sanger sequencing was subsequently used to validate the variants identified by Trio-WES in the pedigree. Furthermore, prenatal molecular genetic diagnosis was carried out through amniocentesis to investigate the status of pathogenic mutations in the fetus by Sanger sequencing at an appropriate gestational age. Results The two siblings were both clinically diagnosed with rapid regression in psychomotor development milestones. Brain MRI showed cerebellar atrophy and typical bilaterally symmetrical T2/FLAIR hyperintense signal changes in periventricular areas, indicating periventricular leukomalacia, and myelin sheath dysplasia. Trio-WES revealed two heterozygous variants in PlA2G6 associated with clinical manifestations in the proband: a novel maternally inherited variant c.217C>T (p.Gln73*) and a previously reported paternally inherited recurrent pathogenic variant c.1894C>T (p.Arg632Trp). These two heterozygous mutations were also detected in the younger brother who had similar clinical features as the proband. The novel variant c.217C>T was classified as “pathogenic (PVS1 + PM2 + PP3),” while the variant c.1894C>T was “pathogenic” (PS1 + PM1 + PM2 + PM3 + PP3) based on the latest American College of Medical Genetics and Genomics (ACMG) guidelines on sequence variants. Combining the molecular evidence and clinical phenotypes, the diagnosis of INAD was established for the two affected siblings. The two variants that were identified were considered the causative mutations for INAD in this family. Prenatal diagnosis suggested compound heterozygous mutations of c.217C>T and c.1894C>T in the fetus, indicating a high risk of INAD, and the parents chose to terminate the pregnancy. Conclusion We identified a novel pathogenic mutation that broadens the mutation spectrum of PLA2G6 and will provide clues for the molecular diagnosis of INAD. Furthermore, our study has helped to elucidate the causative genetic factors of this Chinese family with INAD effectively and efficiently by using the emerging Trio-WES strategy and providing precise genetic counseling for this family.
Collapse
|
27
|
Thapa K, Khan H, Kanojia N, Singh TG, Kaur A, Kaur G. Therapeutic Insights on Ferroptosis in Parkinson's disease. Eur J Pharmacol 2022; 930:175133. [DOI: 10.1016/j.ejphar.2022.175133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022]
|
28
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
29
|
Huang Y, Wan Z, Tang Y, Xu J, Laboret B, Nallamothu S, Yang C, Liu B, Lu RO, Lu B, Feng J, Cao J, Hayflick S, Wu Z, Zhou B. Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism. Nat Commun 2022; 13:2412. [PMID: 35504872 PMCID: PMC9065001 DOI: 10.1038/s41467-022-30178-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Human neurodegenerative disorders often exhibit similar pathologies, suggesting a shared aetiology. Key pathological features of Parkinson's disease (PD) are also observed in other neurodegenerative diseases. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is caused by mutations in the human PANK2 gene, which catalyzes the initial step of de novo CoA synthesis. Here, we show that fumble (fbl), the human PANK2 homolog in Drosophila, interacts with PINK1 genetically. fbl and PINK1 mutants display similar mitochondrial abnormalities, and overexpression of mitochondrial Fbl rescues PINK1 loss-of-function (LOF) defects. Dietary vitamin B5 derivatives effectively rescue CoA/acetyl-CoA levels and mitochondrial function, reversing the PINK1 deficiency phenotype. Mechanistically, Fbl regulates Ref(2)P (p62/SQSTM1 homolog) by acetylation to promote mitophagy, whereas PINK1 regulates fbl translation by anchoring mRNA molecules to the outer mitochondrial membrane. In conclusion, Fbl (or PANK2) acts downstream of PINK1, regulating CoA/acetyl-CoA metabolism to promote mitophagy, uncovering a potential therapeutic intervention strategy in PD treatment.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihui Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Junxuan Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Sree Nallamothu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Chenyu Yang
- Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Boxiang Liu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rongze Olivia Lu
- Department of Neurosurgery, Dell Medical School, University of Texas Austin, Austin, TX, 78712, USA
- Department of Neurological Surgery, Brain Tumor Center, University of California San Francisco, California, CA, 94143, USA
| | - Bingwei Lu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Juan Feng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Cao
- Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Susan Hayflick
- Department of Molecular & Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
30
|
Oe S, Hayashi S, Tanaka S, Koike T, Hirahara Y, Seki-Omura R, Kakizaki R, Sakamoto S, Nakano Y, Noda Y, Yamada H, Kitada M. Cytoplasmic Polyadenylation Element-Binding Protein 1 Post-transcriptionally Regulates Fragile X Mental Retardation 1 Expression Through 3′ Untranslated Region in Central Nervous System Neurons. Front Cell Neurosci 2022; 16:869398. [PMID: 35496917 PMCID: PMC9051318 DOI: 10.3389/fncel.2022.869398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3′ untranslated region, and that CPEB1 knockdown might affect mitochondrial function.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- *Correspondence: Souichi Oe,
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | | | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yosuke Nakano
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yasuko Noda
- Department of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Japan
| | - Hisao Yamada
- Biwako Professional University of Rehabilitation, Higashiomi, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- Masaaki Kitada,
| |
Collapse
|
31
|
Suzuki M, Sango K, Nagai Y. Roles of α-Synuclein and Disease-Associated Factors in Drosophila Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23031519. [PMID: 35163450 PMCID: PMC8835920 DOI: 10.3390/ijms23031519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
α-Synuclein (αSyn) plays a major role in the pathogenesis of Parkinson’s disease (PD), which is the second most common neurodegenerative disease after Alzheimer’s disease. The accumulation of αSyn is a pathological hallmark of PD, and mutations in the SNCA gene encoding αSyn cause familial forms of PD. Moreover, the ectopic expression of αSyn has been demonstrated to mimic several key aspects of PD in experimental model systems. Among the various model systems, Drosophila melanogaster has several advantages for modeling human neurodegenerative diseases. Drosophila has a well-defined nervous system, and numerous tools have been established for its genetic analyses. The rapid generation cycle and short lifespan of Drosophila renders them suitable for high-throughput analyses. PD model flies expressing αSyn have contributed to our understanding of the roles of various disease-associated factors, including genetic and nongenetic factors, in the pathogenesis of PD. In this review, we summarize the molecular pathomechanisms revealed to date using αSyn-expressing Drosophila models of PD, and discuss the possibilities of using these models to demonstrate the biological significance of disease-associated factors.
Collapse
Affiliation(s)
- Mari Suzuki
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| |
Collapse
|
32
|
ANSARI B, NASIRI J, NAMAZI H, SEDGHI M, AFZALI M. Infantile Neuroaxonal Dystrophy in Two Cases: Siblings with Different Presentations. IRANIAN JOURNAL OF CHILD NEUROLOGY 2022; 16:193-198. [PMID: 36204426 PMCID: PMC9531199 DOI: 10.22037/ijcn.v16i2.30864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare recessive neurodegenerative disorder manifested by symptoms like hypotonia, extrapyramidal signs, spastic tetraplegia, vision problems, cerebellar ataxia, cognitive complications, and dementia before the age of three. Various reports evaluated the relationship between the incidence of INAD and different mutations in the PLA2G6 gene. We described cases of two children with INAD whose diagnoses were challenging due to misleading findings and a mutation in the C.2370 T>G (p. Y790X) in the PLA2G6 gene based on NM_001349864, which has been reported previously.
Collapse
Affiliation(s)
- Behnaz ANSARI
- Neurologist, Isfahan Neuroscience Research Center, Al-Zahra Hospital Research Institute, Department of Pediatric Neurology, Isfahan University of Medical Science, Isfahan, Iran
| | - Jafar NASIRI
- Professor of Neurology, Department of Pediatric Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamide NAMAZI
- Medical Genetics, Medical Genetics Laboratory, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam SEDGHI
- Medical Genetics, Medical Genetics Laboratory, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh AFZALI
- Neurologist, Department of Neurologist, School of Medicine, Yas Hospital, Tehran University of Medical Sciences Tehran, Iran
| |
Collapse
|
33
|
Magrinelli F, Mehta S, Di Lazzaro G, Latorre A, Edwards MJ, Balint B, Basu P, Kobylecki C, Groppa S, Hegde A, Mulroy E, Estevez-Fraga C, Arora A, Kumar H, Schneider SA, Lewis PA, Jaunmuktane Z, Revesz T, Gandhi S, Wood NW, Hardy JA, Tinazzi M, Lal V, Houlden H, Bhatia KP. Dissecting the Phenotype and Genotype of PLA2G6-Related Parkinsonism. Mov Disord 2022; 37:148-161. [PMID: 34622992 DOI: 10.1002/mds.28807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Complex parkinsonism is the commonest phenotype in late-onset PLA2G6-associated neurodegeneration. OBJECTIVES The aim of this study was to deeply characterize phenogenotypically PLA2G6-related parkinsonism in the largest cohort ever reported. METHODS We report 14 new cases of PLA2G6-related parkinsonism and perform a systematic literature review. RESULTS PLA2G6-related parkinsonism shows a fairly distinct phenotype based on 86 cases from 68 pedigrees. Young onset (median age, 23.0 years) with parkinsonism/dystonia, gait/balance, and/or psychiatric/cognitive symptoms were common presenting features. Dystonia occurred in 69.4%, pyramidal signs in 77.2%, myoclonus in 65.2%, and cerebellar signs in 44.6% of cases. Early bladder overactivity was present in 71.9% of cases. Cognitive impairment affected 76.1% of cases and psychiatric features 87.1%, the latter being an isolated presenting feature in 20.1%. Parkinsonism was levodopa responsive but complicated by early, often severe dyskinesias. Five patients benefited from deep brain stimulation. Brain magnetic resonance imaging findings included cerebral (49.3%) and/or cerebellar (43.2%) atrophy, but mineralization was evident in only 28.1%. Presynaptic dopaminergic terminal imaging was abnormal in all where performed. Fifty-four PLA2G6 mutations have hitherto been associated with parkinsonism, including four new variants reported in this article. These are mainly nontruncating, which may explain the phenotypic heterogeneity of childhood- and late-onset PLA2G6-associated neurodegeneration. In five deceased patients, median disease duration was 13.0 years. Brain pathology in three cases showed mixed Lewy and tau pathology. CONCLUSIONS Biallelic PLA2G6 mutations cause early-onset parkinsonism associated with dystonia, pyramidal and cerebellar signs, myoclonus, and cognitive impairment. Early psychiatric manifestations and bladder overactivity are common. Cerebro/cerebellar atrophy are frequent magnetic resonance imaging features, whereas brain iron deposition is not. Early, severe dyskinesias are a tell-tale sign. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sahil Mehta
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark J Edwards
- Motor Control and Movement Disorders Group, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Purba Basu
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Christopher Kobylecki
- Department of Neurology, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Sergiu Groppa
- Department of Neurology, University Medical Center of the Johannes-Gutenberg-University of Mainz, Mainz, Germany
| | - Anaita Hegde
- Department of Paediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Anshita Arora
- Department of Paediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Patrick A Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tamas Revesz
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John A Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vivek Lal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
34
|
Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation. Tremor Other Hyperkinet Mov (N Y) 2021; 11:51. [PMID: 34909266 PMCID: PMC8641530 DOI: 10.5334/tohm.661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Neurodegeneration with brain iron accumulation (NBIA) disorders comprise a group of rare but devastating inherited neurological diseases with unifying features of progressive cognitive and motor decline, and increased iron deposition in the basal ganglia. Although at present there are no proven disease-modifying treatments, the severe nature of these monogenic disorders lends to consideration of personalized medicine strategies, including targeted gene therapy. In this review we summarize the progress and future direction towards precision therapies for NBIA disorders. Methods: This review considered all relevant publications up to April 2021 using a systematic search strategy of PubMed and clinical trials databases. Results: We review what is currently known about the underlying pathophysiology of NBIA disorders, common NBIA disease pathways, and how this knowledge has influenced current management strategies and clinical trial design. The safety profile, efficacy and clinical outcome of clinical studies are reviewed. Furthermore, the potential for future therapeutic approaches is also discussed. Discussion: Therapeutic options in NBIAs remain very limited, with no proven disease-modifying treatments at present. However, a number of different approaches are currently under development with increasing focus on targeted precision therapies. Recent advances in the field give hope that novel strategies, such as gene therapy, gene editing and substrate replacement therapies are both scientifically and financially feasible for these conditions. Highlights This article provides an up-to-date review of the current literature about Neurodegeneration with Brain Iron Accumulation (NBIA), with a focus on disease pathophysiology, current and previously trialed therapies, and future treatments in development, including consideration of potential genetic therapy approaches.
Collapse
|
35
|
Schreiber JA, Tajuddin NF, Kouzoukas DE, Kevala K, Kim HY, Collins MA. Moderate blood alcohol and brain neurovulnerability: Selective depletion of calcium-independent phospholipase A2, omega-3 docosahexaenoic acid, and its synaptamide derivative as a potential harbinger of deficits in anti-inflammatory reserve. Alcohol Clin Exp Res 2021; 45:2506-2517. [PMID: 34719812 PMCID: PMC11049540 DOI: 10.1111/acer.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Repetitive, highly elevated blood alcohol (ethanol) concentrations (BACs) of 350 to 450 mg/dl over several days cause brain neurodegeneration and coincident neuroinflammation in adult rats localized in the hippocampus (HC), temporal cortex (especially the entorhinal cortex; ECX), and olfactory bulb (OB). The profuse neuroinflammation involves microgliosis, increased proinflammatory cytokines, and elevations of Ca+2 -dependent phospholipase A2 (cPLA2) and secretory PLA2 (sPLA2), which both mobilize proinflammatory ω-6 arachidonic acid (ARA). In contrast, Ca+2 -independent PLA2 (iPLA2) and anti-inflammatory ω-3 docosahexaenoic acid (DHA), a polyunsaturated fatty acid regulated primarily by iPLA2, are diminished. Furthermore, supplemented DHA exerts neuroprotection. Given uncertainties about the possible effects of lower circulating BACs that are common occurring during short- term binges, we examined how moderate BACs affected the above inflammatory events, and the impact of supplemented DHA. METHODS AND RESULTS Young adult male rats sustaining upper-moderate BACs (~150 mg/dl) from once-daily alcohol intubations were sacrificed with appropriate controls after 1 week. The HC, ECX and OB were quantitatively examined using immunoblotting, neurodegeneration staining, and lipidomics assays. Whereas neurodegeneration, increases in cPLA2 IVA, sPLA2 IIA, and ARA, and microglial activation were not detected, the HC and ECX regions demonstrated significantly reduced iPLA2 levels. Levels of DHA and synaptamide, its anti-inflammatory N-docosahexaenoylethanolamide derivative, also were lower in HC, and DHA supplementation prevented the iPLA2 decrements in HC. Additionally, adult mice maintaining upper-moderate BACs from limited alcohol binges had reduced midbrain iPLA2 levels. CONCLUSIONS The apparently selective depletion by moderate BACs of the metabolically linked anti-inflammatory triad of hippocampal iPLA2, DHA, and synaptamide, and of iPLA2 in the ECX, potentially indicates an unappreciated deficit in brain anti-inflammatory reserve that may be a harbinger of regional neurovulnerability.
Collapse
Affiliation(s)
- Jennifer A Schreiber
- Neuroscience Graduate Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Alcohol Research Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Nuzhath F Tajuddin
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Dimitrios E Kouzoukas
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Collins
- Neuroscience Graduate Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Alcohol Research Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
36
|
Cavestro C, Panteghini C, Reale C, Nasca A, Fenu S, Salsano E, Chiapparini L, Garavaglia B, Pareyson D, Di Meo I, Tiranti V. Novel deep intronic mutation in PLA2G6 causing early-onset Parkinson's disease with brain iron accumulation through pseudo-exon activation. Neurogenetics 2021; 22:347-351. [PMID: 34387792 PMCID: PMC8426226 DOI: 10.1007/s10048-021-00667-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
PLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the paramount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Celeste Panteghini
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Reale
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Fenu
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ettore Salsano
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
37
|
Toth-Bencsik R, Balicza P, Varga ET, Lengyel A, Rudas G, Gal A, Molnar MJ. New Insights of Phospholipase A2 Associated Neurodegeneration Phenotype Based on the Long-Term Follow-Up of a Large Hungarian Family. Front Genet 2021; 12:628904. [PMID: 34168672 PMCID: PMC8217829 DOI: 10.3389/fgene.2021.628904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Phospholipase A2-associated Neurodegeneration (PLAN) is a group of neurodegenerative diseases associated with the alterations of PLA2G6. Some phenotype-genotype association are well known but there is no clear explanation why some cases can be classified into distinct subgroups, while others follow a continuous clinical spectrum. Methods Long-term neurological, and psychiatric follow-up, neuropathological, radiological, and genetic examinations, were performed in three affected girls and their family. Results Two 24-years old twins and their 22-years old sister harbored the p.P622S, and p.R600W mutation in PLA2G6. The age of onset and the most prominent presenting symptoms (gaze palsy, ataxia, dystonia, psychomotor regression indicated atypical neuroaxonal dystrophy (ANAD), however, optic atrophy, severe tetraparesis would fit into infantile neuroaxonal dystrophy (INAD). All siblings had hyperintensity in the globi pallidi and substantiae nigrae which is reported in ANAD, whereas it is considered a later neuroradiological marker in INAD. The slow progression, rigidity, bradykinesis, and the prominent psychiatric symptoms indicate PLA2G6-related dystonia-parkinsonism. Abnormal mitochondria, lipid accumulation and axonal spheroids were observed in the muscle and nerve tissue. Brain deposition appeared 6 years following the initial cerebellar atrophy. Mild MRI alterations were detected in the asymptomatic carrier parents. Conclusion The colorful clinical symptoms, the slightly discordant phenotype, and the neuroimaging data in the family supports the view that despite the distinct definition of age-related phenotypes in PLAN, these are not strict disease categories, but rather a continuous phenotypic spectrum. The mild MRI alterations of the parents and the family history suggest that even heterozygous pathogenic variants might be associated with clinical symptoms, although systematic study is needed to prove this.
Collapse
Affiliation(s)
- Renata Toth-Bencsik
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Peter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Edina Timea Varga
- Department of Neurology, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, Szeged, Hungary
| | - Andras Lengyel
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Gabor Rudas
- MR Research Center, Semmelweis University, Budapest, Hungary
| | - Aniko Gal
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
38
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
39
|
Iankova V, Karin I, Klopstock T, Schneider SA. Emerging Disease-Modifying Therapies in Neurodegeneration With Brain Iron Accumulation (NBIA) Disorders. Front Neurol 2021; 12:629414. [PMID: 33935938 PMCID: PMC8082061 DOI: 10.3389/fneur.2021.629414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegeneration with Brain Iron Accumulation (NBIA) is a heterogeneous group of progressive neurodegenerative diseases characterized by iron deposition in the globus pallidus and the substantia nigra. As of today, 15 distinct monogenetic disease entities have been identified. The four most common forms are pantothenate kinase-associated neurodegeneration (PKAN), phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN), beta-propeller protein-associated neurodegeneration (BPAN) and mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurodegeneration with Brain Iron Accumulation disorders present with a wide spectrum of clinical symptoms such as movement disorder signs (dystonia, parkinsonism, chorea), pyramidal involvement (e.g., spasticity), speech disorders, cognitive decline, psychomotor retardation, and ocular abnormalities. Treatment remains largely symptomatic but new drugs are in the pipeline. In this review, we discuss the rationale of new compounds, summarize results from clinical trials, provide an overview of important results in cell lines and animal models and discuss the future development of disease-modifying therapies for NBIA disorders. A general mechanistic approach for treatment of NBIA disorders is with iron chelators which bind and remove iron. Few studies investigated the effect of deferiprone in PKAN, including a recent placebo-controlled double-blind multicenter trial, demonstrating radiological improvement with reduction of iron load in the basal ganglia and a trend to slowing of disease progression. Disease-modifying strategies address the specific metabolic pathways of the affected enzyme. Such tailor-made approaches include provision of an alternative substrate (e.g., fosmetpantotenate or 4′-phosphopantetheine for PKAN) in order to bypass the defective enzyme. A recent randomized controlled trial of fosmetpantotenate, however, did not show any significant benefit of the drug as compared to placebo, leading to early termination of the trials' extension phase. 4′-phosphopantetheine showed promising results in animal models and a clinical study in patients is currently underway. Another approach is the activation of other enzyme isoforms using small molecules (e.g., PZ-2891 in PKAN). There are also compounds which counteract downstream cellular effects. For example, deuterated polyunsaturated fatty acids (D-PUFA) may reduce mitochondrial lipid peroxidation in PLAN. In infantile neuroaxonal dystrophy (a subtype of PLAN), desipramine may be repurposed as it blocks ceramide accumulation. Gene replacement therapy is still in a preclinical stage.
Collapse
Affiliation(s)
- Vassilena Iankova
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ivan Karin
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Klopstock
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Susanne A Schneider
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
40
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
41
|
Allouche S. Reevaluating the pathogenicity of the variations c.439 G>A and c.2132 C>T in the PLA2G6 gene. J Genet 2020. [DOI: 10.1007/s12041-020-01246-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Compound heterozygous PLA2G6 loss-of-function variants in Swaledale sheep with neuroaxonal dystrophy. Mol Genet Genomics 2020; 296:235-242. [PMID: 33159255 PMCID: PMC7840627 DOI: 10.1007/s00438-020-01742-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 10/28/2022]
Abstract
Sporadic occurrences of neurodegenerative disorders including neuroaxonal dystrophy (NAD) have been previously reported in sheep. However, so far no causative genetic variant has been found for ovine NAD. The aim of this study was to characterize the phenotype and the genetic aetiology of an early-onset neurodegenerative disorder observed in several lambs of purebred Swaledale sheep, a native English breed. Affected lambs showed progressive ataxia and stiff gait and subsequent histopathological analysis revealed the widespread presence of axonal spheroid indicating neuronal degeneration. Thus, the observed clinical phenotype could be explained by a novel form of NAD. After SNP genotyping and subsequent linkage mapping within a paternal half-sib pedigree with a total of five NAD-affected lambs, we identified two loss-of-function variants by whole-genome sequencing in the ovine PLA2G6 gene situated in a NAD-linked genome region on chromosome 3. All cases were carriers of a compound heterozygous splice site variant in intron 2 and a nonsense variant in exon 8. Herein we present evidence for the occurrence of a familial novel form of recessively inherited NAD in sheep due to allelic heterogeneity at PLA2G6. This study reports two pathogenic variants in PLA2G6 causing a novel form of NAD in Swaledale sheep which enables selection against this fatal disorder.
Collapse
|
43
|
Pandey A, Oliver R, Kar SK. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020; 2:442-465. [PMID: 33114225 PMCID: PMC7711450 DOI: 10.3390/clockssleep2040033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is essential for the survival of most living beings. Numerous researchers have identified a series of genes that are thought to regulate "sleep-state" or the "deprived state". As sleep has a significant effect on physiology, we believe that lack of total sleep, or particularly rapid eye movement (REM) sleep, for a prolonged period would have a profound impact on various body tissues. Therefore, using the microarray method, we sought to determine which genes and processes are affected in the brain and liver of rats following nine days of REM sleep deprivation. Our findings showed that REM sleep deprivation affected a total of 652 genes in the brain and 426 genes in the liver. Only 23 genes were affected commonly, 10 oppositely, and 13 similarly across brain and liver tissue. Our results suggest that nine-day REM sleep deprivation differentially affects genes and processes in the brain and liver of rats.
Collapse
Affiliation(s)
- Atul Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Ryan Oliver
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Santosh K Kar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Bio Incubator, Campus-11, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
44
|
Lee JH, Yun JY, Gregory A, Hogarth P, Hayflick SJ. Brain MRI Pattern Recognition in Neurodegeneration With Brain Iron Accumulation. Front Neurol 2020; 11:1024. [PMID: 33013674 PMCID: PMC7511538 DOI: 10.3389/fneur.2020.01024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
Most neurodegeneration with brain iron accumulation (NBIA) disorders can be distinguished by identifying characteristic changes on magnetic resonance imaging (MRI) in combination with clinical findings. However, a significant number of patients with an NBIA disorder confirmed by genetic testing have MRI features that are atypical for their specific disease. The appearance of specific MRI patterns depends on the stage of the disease and the patient's age at evaluation. MRI interpretation can be challenging because of heterogeneously acquired MRI datasets, individual interpreter bias, and lack of quantitative data. Therefore, optimal acquisition and interpretation of MRI data are needed to better define MRI phenotypes in NBIA disorders. The stepwise approach outlined here may help to identify NBIA disorders and delineate the natural course of MRI-identified changes.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Ji Young Yun
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Allison Gregory
- Departments of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Penelope Hogarth
- Departments of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Susan J Hayflick
- Departments of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
45
|
Atwal PS, Midei M, Adams D, Fay A, Heerinckx F, Milner P. The infantile neuroaxonal dystrophy rating scale (INAD-RS). Orphanet J Rare Dis 2020; 15:195. [PMID: 32727524 PMCID: PMC7392694 DOI: 10.1186/s13023-020-01479-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background INAD is an autosomal recessive neurogenetic disorder caused by biallelic pathogenic variants in PLA2G6. The downstream enzyme, iPLA2, plays a critical role in cell membrane homeostasis by helping to regulate levels of phospholipids. The clinical presentation occurs between 6 months and 3 years with global developmental regression, hypotonia, and progressive spastic tetraparesis. Progression is often rapid, resulting in severe spasticity, visual impairment, and cognitive decline, with many children not surviving past the first decade of life. To date, no accepted tool for assessing the severity of INAD exists; other commonly used scales (e.g. CHOP-INTEND, Modified Ashworth, Hammersmith Functional Motor Scale) do not accurately gauge the current severity of INAD, nor are they sensitive/specific enough to monitor disease progression. Finally, these other scales are not appropriate, because they do not address the combination of CNS, peripheral nerve, and visual pathology that occurs in children with INAD. Methods We have developed and validated a structured neurological examination for INAD (scored out of 80). The examination includes six main categories of pediatric developmental evaluation: 1) gross motor-and-truncal-stability skills, 2) fine motor skills, 3) bulbar function, 4) ocular function, 5) temporo-frontal function, and, 6) Functional evaluation of the autonomic nervous system. A cohort of patients diagnosed with INAD were followed prospectively to validate the score against disease severity and disease progression. Results We show significant correlation between the total neurological assessment score and months since symptom onset with a statistically significant (p = 6.7 × 10− 07) correlation between assessment score and disease onset. As hypothesized, the coefficient of months-since-symptom-onset is strongly negative, indicating a negative correlation between total score and months since symptom onset. Conclusion We have developed and validated a novel neurological assessment score in INAD that demonstrates strong correlation with disease severity and disease progression.
Collapse
Affiliation(s)
| | | | - Darius Adams
- Atlantic Medical Group, Morris Township, NJ, USA
| | - Alexander Fay
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | | | | |
Collapse
|
46
|
Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease. Prog Neurobiol 2020; 196:101890. [PMID: 32726602 DOI: 10.1016/j.pneurobio.2020.101890] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's Disease (PD) is a common and progressive neurodegenerative disorder characterised by motor impairments as well as non-motor symptoms. While dopamine-based therapies are effective in fighting the symptoms in the early stages of the disease, a lack of neuroprotective drugs means that the disease continues to progress. Along with the traditionally recognised pathological hallmarks of dopaminergic neuronal death and intracellular α-synuclein (α-syn) depositions, iron accumulation, elevated oxidative stress and lipid peroxidation damage are further conspicuous features of PD pathophysiology. However, the underlying mechanisms linking these pathological hallmarks with neurodegeneration still remain unclear. Ferroptosis, a regulated iron dependent cell death pathway involving a lethal accumulation of lipid peroxides, shares several features with PD pathophysiology. Interestingly, α-syn has been functionally linked with the metabolism of both iron and lipid, suggesting a possible interplay between dysregulated α-syn and other PD pathological hallmarks related to ferroptosis. This review will address the importance for understanding these disease mechanisms that could be targeted therapeutically. Anti-ferroptosis molecules are neuroprotective in PD animal models and the anti-ferroptotic iron chelator, deferiprone, slowed disease progression and improved motor function in two independent clinical trials for PD. An ongoing larger multi-centre phase 2 clinical trial will confirm the therapeutic potential of deferiprone and the relevance of ferroptosis in PD. This review addresses the known pathological features of PD in relation to the ferroptosis pathway with therapeutic implications of targeting this cell death pathway.
Collapse
Affiliation(s)
- Laura Mahoney-Sánchez
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France
| | - Hind Bouchaoui
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France.
| | - James A Duce
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia; ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom.
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France; Université du Littoral Côte d'Opale-1, place de l'Yser, BP 72033, 59375, Dunkerque Cedex, France
| |
Collapse
|
47
|
Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med 2020; 75:100867. [PMID: 32654761 DOI: 10.1016/j.mam.2020.100867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Iron accumulation is a recurring pathological phenomenon in many neurological diseases including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and others. Iron is essential for normal development and functions of the brain; however, excess redox-active iron can also lead to oxidative damage and cell death. Especially for terminally differentiated cells like neurons, regulation of reactive oxygen species is critical for cell viability. As a result, cellular iron level is tightly regulated. Although iron accumulation related to neurological diseases has been well documented, the pathoetiological contributions of the homeostatic iron regulator (HFE), which controls cellular iron uptake, is less understood. Furthermore, a common HFE variant, H63D HFE, has been identified as a modifier of multiple neurological diseases. This review will discuss the roles of iron and HFE in the brain as well as their impact on various disease processes.
Collapse
Affiliation(s)
- Yunsung Kim
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA
| | - James R Connor
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA.
| |
Collapse
|
48
|
Li K, Ge YL, Gu CC, Zhang JR, Jin H, Li J, Cheng XY, Yang YP, Wang F, Zhang YC, Chen J, Mao CJ, Liu CF. Substantia nigra echogenicity is associated with serum ferritin, gender and iron-related genes in Parkinson's disease. Sci Rep 2020; 10:8660. [PMID: 32457446 PMCID: PMC7250839 DOI: 10.1038/s41598-020-65537-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Substantia nigra (SN) hyperechogenicity is present in most Parkinson’s disease (PD) cases but is occasionally absent in some. To date, age, gender, disease severity, and other factors have been reported to be associated with SN hyperechogenicity in PD. Previous studies have discovered that excess iron deposition in the SN underlies its hyperechogenicity in PD, which may also indicate the involvement of genes associated with iron metabolism in hyperechogenicity. The objective of our study is to explore the potential associations between variants in iron metabolism-associated genes and SN echogenicity in Han Chinese PD. Demographic profiles, clinical data, SN echogenicity and genotypes were obtained from 221 Han Chinese PD individuals with a sufficient bone window. Serum ferritin levels were quantified in 92 of these individuals by immunochemical assay. We then compared factors between PD individuals with SN hyperechogenicity and those with SN hypoechogenicity to identify factors that predispose to SN hyperechogenicity. Of our 221 participants, 122 (55.2%) displayed SN hyperechogenicity, and 99 (44.8%) displayed SN hypoechogenicity. Gender and serum ferritin levels were found to be associated with SN hyperechogenicity. In total, 14 genes were included in the sequencing part. After data processing, 34 common single nucleotide polymorphisms were included in our further analyses. In our data, we also found a significantly higher frequency of PANK2 rs3737084 (genotype: OR = 2.07, P = 0.013; allele: OR = 2.51, P = 0.002) in the SN hyperechogenic group and a higher frequency of PLA2G6 rs731821 (genotype: OR = 0.45, P = 0.016; allele: OR = 0.44, P = 0.011) in the SN hypoechogenic group. However, neither of the two variants was found to be correlated with serum ferritin. This study demonstrated that genetic factors, serum ferritin level, and gender may explain the interindividual variability in SN echogenicity in PD. This is an explorative study, and further replication is warranted in larger samples and different populations.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi-Lun Ge
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen-Chen Gu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin-Ru Zhang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Jin
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiao Li
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Yu Cheng
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ya-Ping Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ying-Chun Zhang
- Department of Ultrasound, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Chen
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cheng-Jie Mao
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China. .,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
49
|
Altuame FD, Foskett G, Atwal PS, Endemann S, Midei M, Milner P, Salih MA, Hamad M, Al-Muhaizea M, Hashem M, Alkuraya FS. The natural history of infantile neuroaxonal dystrophy. Orphanet J Rare Dis 2020; 15:109. [PMID: 32357911 PMCID: PMC7193406 DOI: 10.1186/s13023-020-01355-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infantile neuroaxonal dystrophy (INAD) is a rapidly progressive neurodegenerative disorder of early onset causing premature death. It results from biallelic pathogenic variants in PLA2G6, which encodes a calcium-independent phospholipase A2. OBJECTIVE We aim to outline the natural history of INAD and provide a comprehensive description of its clinical, radiological, laboratory, and molecular findings. MATERIALS AND METHODS We comprehensively analyzed the charts of 28 patients: 16 patients from Riyadh, Saudi Arabia, 8 patients from North and South America and 4 patients from Europe with a molecularly confirmed diagnosis of PLA2G6-associated neurodegeneration (PLAN) and a clinical history consistent with INAD. RESULTS In our cohort, speech impairment and loss of gross motor milestones were the earliest signs of the disease. As the disease progressed, loss of fine motor milestones and bulbar dysfunction were observed. Temporo-frontal function was among the last of the milestones to be lost. Appendicular spastic hypertonia, axial hypotonia, and hyperreflexia were common neurological findings. Other common clinical findings include nystagmus (60.7%), seizures (42.9%), gastrointestinal disease (42.9%), skeletal deformities (35.7%), and strabismus (28.6%). Cerebellar atrophy and elevations in serum AST and LDH levels were consistent features of INAD. There was a statistically significant difference when comparing patients with non-sense/truncating variants compared with missense/in-frame deletions in the time of initial concern (p = 0.04), initial loss of language (p = 0.001), initial loss of fine motor skills (p = 0.009), and initial loss of bulbar skills (p = 0.007). CONCLUSION INAD is an ultra-rare neurodegenerative disorder that presents in early childhood, with a relentlessly progressive clinical course. Knowledge of the natural history of INAD may serve as a resource for healthcare providers to develop a targeted care plan and may facilitate the design of clinical trials to treat this disease.
Collapse
Affiliation(s)
- Fadie D Altuame
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | | | | | | | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Muddathir Hamad
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
50
|
[Clinical features of infantile neuroaxonal dystrophy and PLA2G6 gene testing]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019. [PMID: 31506141 PMCID: PMC7390253 DOI: 10.7499/j.issn.1008-8830.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disease. Two boys aged 3 years and 4 years and 2 months respectively, were admitted to the hospital due to delayed mental and motor development. There were no abnormalities at birth, and both children had low muscle strength and tension on admission. One child was not able to stand alone and had impaired vision. Electromyography showed neurogenic damage, and head MRI revealed cerebellar atrophy. High-throughput sequencing revealed compound heterozygous mutations in the PLA2G6 gene in the two children. The mutations (IVS11-1G>T and c.1984C>G) in one child were new mutations, and immunohistochemistry showed a reduction in the protein expression of PLAG6 in the muscular tissue of this child. INAD has the main clinical manifestations of psychomotor developmental regression and cerebellar atrophy. High-throughput sequencing can help with clinical diagnosis.
Collapse
|