1
|
Zhang C, Wang Z, Wang Y, Cao H, Ren L, Yu T, Shan Y, He X, Duncan JS, Lu J, Wei P, Zhao G. Quantitative Cortex-Based Mapping With Hybrid 18F-FDG-PET/MR Images in MRI-Negative Epilepsy. CNS Neurosci Ther 2025; 31:e70336. [PMID: 40251821 PMCID: PMC12008173 DOI: 10.1111/cns.70336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025] Open
Abstract
OBJECTIVES Localization of the network underlying drug-resistant focal epilepsy in individuals considering surgical treatment with unremarkable MRI is challenging. Concordance rates of 40%-69% have been reported with FDG-PET image statistical parametric mapping (SPM). We investigated the efficacy of postprocessing specific to cortices by cortex-based mapping (CBM) on hybrid PET/MR images with healthy subjects to localize sites of seizure onset. METHODS We retrospectively examined the PET/MR images of 42 MRI-negative individuals with drug-resistant focal epilepsy who had surgery and 23 healthy subjects. Visual interpretation of standardized uptake value ratios (SUVRs), voxelwise mapping with a two-sample t-test of SUVRs (t-map, SPM), and the proposed z-transformation of the SUVR of patients compared with those of healthy subjects acquired with CBM were compared with the surgical field. Kappa tests, conclusive concordance (CC), partial concordance (PC), and discordance were estimated, with McNemar's test determining the superiority. RESULTS After an average follow-up of 37.2 months, in people who were seizure-free (n = 31; functionally silent cortices in 26), the CC rate with CBM was 87.10%. Performance was CBM (CC:PC = 27:1), t-map (CC:PC = 15:1), and SUVR (CC:PC = 0:17). The sensitivity, specificity, and kappa scores were 0.87, 0.91, and 0.717 (p < 0.001) for CBM and 0.48, 0.73, and 0.153 (p = 0.288) for t-maps, respectively. The CBM approach was superior to the t-map (p < 0.001) in most extratemporal epilepsies. The average Pearson's r of CBM and t-map to artifacts was 0.08 ± 0.02 and 0.33 ± 0.02, respectively. INTERPRETATION By eliminating intersubject morphological variations and explicit statistics at the cortex, CBM localized the seizure origin in MRI-negative epilepsy patients with superior efficiency.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Clinical Research Center for EpilepsyCapital Medical UniversityBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
| | - Zhenming Wang
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Radiation Oncology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Clinical & Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Hang Cao
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Liankun Ren
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Tao Yu
- Clinical Research Center for EpilepsyCapital Medical UniversityBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yong‐Zhi Shan
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Clinical Research Center for EpilepsyCapital Medical UniversityBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
| | - Xiaosong He
- Department of PsychologyUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - John S. Duncan
- Department of Clinical & Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyGerrards CrossUK
| | - Jie Lu
- Clinical Research Center for EpilepsyCapital Medical UniversityBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Clinical Research Center for EpilepsyCapital Medical UniversityBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Clinical Research Center for EpilepsyCapital Medical UniversityBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
| |
Collapse
|
2
|
Flaus A, Guedj E, Horowitz T, Semah F, Verger A, Hammers A. Brain PET Imaging in the Presurgical Evaluation of Drug-Resistant Focal Epilepsy. PET Clin 2025; 20:57-66. [PMID: 39426849 DOI: 10.1016/j.cpet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Presurgical evaluation aims to localize the seizure onset zone (SOZ) for a tailored resection. Interictal [18F]fluorodeoxyglucose PET is now an established test to lateralize and/or localize the SOZ, particularly if MR imaging is negative or if the noninvasive assessment shows discrepancies. PET can show hypometabolic areas associated with SOZ and the potential altered metabolic brain networks. It is very sensitive, and this is increased if images are read coregistered to the patient's MR imaging. PET hypometabolic intensity and pattern show prognostic value.
Collapse
Affiliation(s)
- Anthime Flaus
- Nuclear Medicine Department, Hospices Civils de Lyon, Medical Faculty of Lyon Est, University Claude Bernard Lyon 1, Lyon, France; Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France.
| | - Eric Guedj
- Biophysics and Nuclear Medicine, Aix Marseille University; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France
| | - Tatiana Horowitz
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France; Aix Marseille University
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, Service de Médecine Nucléaire, Hôpital Salengro, CHU de Lille, Lille Cedex 59037, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, rue du morvan, 54511 Vandoeuvre-les-Nancy, Nancy, France; Université de Lorraine, IADI, INSERM U1254, Nancy, France; Nuclear Medecine Department, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, Vandoeuvre les Nancy 54500, France
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, Office Suite 6, 4th Floor Lambeth Wing, London, UK; St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
3
|
Yao L, Cheng N, Chen AQ, Wang X, Gao M, Kong QX, Kong Y. Advances in Neuroimaging and Multiple Post-Processing Techniques for Epileptogenic Zone Detection of Drug-Resistant Epilepsy. J Magn Reson Imaging 2024; 60:2309-2331. [PMID: 38014782 DOI: 10.1002/jmri.29157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Among the approximately 20 million patients with drug-resistant epilepsy (DRE) worldwide, the vast majority can benefit from surgery to minimize seizure reduction and neurological impairment. Precise preoperative localization of epileptogenic zone (EZ) and complete resection of the lesions can influence the postoperative prognosis. However, precise localization of EZ is difficult, and the structural and functional alterations in the brain caused by DRE vary by etiology. Neuroimaging has emerged as an approach to identify the seizure-inducing structural and functional changes in the brain, and magnetic resonance imaging (MRI) and positron emission tomography (PET) have become routine noninvasive imaging tools for preoperative evaluation of DRE in many epilepsy treatment centers. Multimodal neuroimaging offers unique advantages in detecting EZ, especially in improving the detection rate of patients with negative MRI or PET findings. This approach can characterize the brain imaging characteristics of patients with DRE caused by different etiologies, serving as a bridge between clinical and pathological findings and providing a basis for individualized clinical treatment plans. In addition to the integration of multimodal imaging modalities and the development of special scanning sequences and image post-processing techniques for early and precise localization of EZ, the application of deep machine learning for extracting image features and deep learning-based artificial intelligence have gradually improved diagnostic efficiency and accuracy. These improvements can provide clinical assistance for precisely outlining the scope of EZ and indicating the relationship between EZ and functional brain areas, thereby enabling standardized and precise surgery and ensuring good prognosis. However, most existing studies have limitations imposed by factors such as their small sample sizes or hypothesis-based study designs. Therefore, we believe that the application of neuroimaging and post-processing techniques in DRE requires further development and that more efficient and accurate imaging techniques are urgently needed in clinical practice. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Lei Yao
- Clinical Medical College, Jining Medical University, Jining, China
| | - Nan Cheng
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - An-Qiang Chen
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xun Wang
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ming Gao
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yu Kong
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
4
|
Ponisio MR, Zempel JM, Willie JT, Tomko SR, McEvoy SD, Roland JL, Williams JP. FDG-PET/MRI in the presurgical evaluation of pediatric epilepsy. Pediatr Radiol 2024; 54:1589-1602. [PMID: 39123082 DOI: 10.1007/s00247-024-06011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
In patients with drug-resistant epilepsy, difficulties in identifying the epileptogenic zone are well known to correlate with poorer clinical outcomes post-surgery. The integration of PET and MRI in the presurgical assessment of pediatric patients likely improves diagnostic precision by confirming or widening treatment targets. PET and MRI together offer superior insights compared to either modality alone. For instance, PET highlights abnormal glucose metabolism, while MRI precisely localizes structural anomalies, providing a comprehensive understanding of the epileptogenic zone. Furthermore, both methodologies, whether utilized through simultaneous PET/MRI scanning or the co-registration of separately acquired PET and MRI data, present unique advantages, having complementary roles in lesional and non-lesional cases. Simultaneous FDG-PET/MRI provides precise co-registration of functional (PET) and structural (MR) imaging in a convenient one-stop-shop approach, which minimizes sedation time and reduces radiation exposure in children. Commercially available fusion software that allows retrospective co-registration of separately acquired PET and MRI images is a commonly used alternative. This review provides an overview and illustrative cases that highlight the role of combining 18F-FDG-PET and MRI imaging and shares the authors' decade-long experience utilizing simultaneous PET/MRI in the presurgical evaluation of pediatric epilepsy.
Collapse
Affiliation(s)
- Maria R Ponisio
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St Louis, MSC 8223-0019-10, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA.
| | - John M Zempel
- Department of Neurology, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Stuart R Tomko
- Department of Neurology, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Sean D McEvoy
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Jarod L Roland
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Jonathan P Williams
- Department of Neurology, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Qian Z, Lin J, Jiang R, Jean S, Dai Y, Deng D, Tagu PT, Shi L, Song S. Evaluation of MRI post-processing methods combined with PET in detecting focal cortical dysplasia lesions for patients with MRI-negative epilepsy. Seizure 2024; 117:275-283. [PMID: 38579502 DOI: 10.1016/j.seizure.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
OBJECTIVE Accurate detection of focal cortical dysplasia (FCD) through magnetic resonance imaging (MRI) plays a pivotal role in the preoperative assessment of epilepsy. The integration of multimodal imaging has demonstrated substantial value in both diagnosing FCD and devising effective surgical strategies. This study aimed to enhance MRI post-processing by incorporating positron emission tomography (PET) analysis. We sought to compare the diagnostic efficacy of diverse image post-processing methodologies in patients presenting MRI-negative FCD. METHODS In this retrospective investigation, we assembled a cohort of patients with negative preoperative MRI results. T1-weighted volumetric sequences were subjected to morphometric analysis program (MAP) and composite parametric map (CPM) post-processing techniques. We independently co-registered images derived from various methods with PET scans. The alignment was subsequently evaluated, and its correlation was correlated with postoperative seizure outcomes. RESULTS A total of 41 patients were enrolled in the study. In the PET-MAP(p = 0.0189) and PET-CPM(p = 0.00041) groups, compared with the non-overlap group, the overlap group significantly associated with better postoperative outcomes. In PET(p = 0.234), CPM(p = 0.686) and MAP(p = 0.672), there is no statistical significance between overlap and seizure-free outcomes. The sensitivity of using the CPM alone outperformed the MAP (0.65 vs 0.46). The use of PET-CPM demonstrated superior sensitivity (0.96), positive predictive value (0.83), and negative predictive value (0.91), whereas the MAP displayed superior specificity (0.71). CONCLUSIONS Our findings suggested a superiority in sensitivity of CPM in detecting potential FCD lesions compared to MAP, especially when it is used in combination with PET for diagnosis of MRI-negative epilepsy patients. Moreover, we confirmed the superiority of synergizing metabolic imaging (PET) with quantitative maps derived from structural imaging (MAP or CPM) to enhance the identification of subtle epileptogenic zones (EZs). This study serves to illuminate the potential of integrated multimodal techniques in advancing our capability to pinpoint elusive pathological features in epilepsy cases.
Collapse
Affiliation(s)
- Zhe Qian
- Fujian Medical University, Fuzhou, China.
| | - Jiuluan Lin
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Fuzhou, China.
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Stéphane Jean
- Department of Neurosurgery, Fuzhou Children's Hospital, Fuzhou, China
| | - Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Donghuo Deng
- Fujian Medical University Union Hospital, Fuzhou, China.
| | | | - Lin Shi
- BrainNow Research Institute, Guangdong, China.
| | - Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
6
|
Yao Y, Wang X, Zhao B, Mo J, Guo Z, Yang B, Li Z, Fan X, Cai D, Sang L, Zheng Z, Shao X, Ai L, Hu W, Zhang C, Zhang K. Hypometabolic patterns are related to post-surgical seizure outcomes in focal cortical dysplasia: A semi-quantitative study. Epilepsia Open 2024; 9:653-664. [PMID: 38265725 PMCID: PMC10984320 DOI: 10.1002/epi4.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Fluorine-18-fluorodeoxyglucose-positron emission tomography (FDG-PET) is routinely used for presurgical evaluation in many epilepsy centers. Hypometabolic characteristics have been extensively examined in prior studies, but the metabolic patterns associated with specific pathological types of drug-resistant epilepsy remain to be fully defined. This study was developed to explore the relationship between metabolic patterns or characteristics and surgical outcomes in type I and II focal cortical dysplasia (FCD) patients based on results from a large cohort. METHODS Data from individuals who underwent epilepsy surgery from 2014 to 2019 with a follow-up duration of over 3 years and a pathological classification of type I or II FCD in our hospital were retrospectively analyzed. Hypometabolic patterns were quantitatively identified via statistical parametric mapping (SPM) and qualitatively analyzed via visual examination of PET-MRI co-registration images. Univariate analyses were used to explore the relationship between metabolic patterns and surgical outcomes. RESULTS In total, this study included data from 210 patients. Following SPM calculations, four hypometabolic patterns were defined including unilobar, multi-lobar, and remote patterns as well as cases where no pattern was evident. In type II FCD patients, the unilobar pattern was associated with the best surgical outcomes (p = 0.014). In visual analysis, single gyrus (p = 0.032) and Clear-cut hypometabolism edge (p = 0.040) patterns exhibited better surgery outcomes in the type II FCD group. CONCLUSIONS PET metabolic patterns are well-correlated with the prognosis of type II FCD patients. However, similar correlations were not observed in type I FCD, potentially owing to the complex distribution of the epileptogenic region. PLAIN LANGUAGE SUMMARY In this study, we demonstrated that FDG-PET was a crucial examination for patients with FCD, which was a common cause of epilepsy. We compared the surgical prognosis for patients with different hypometabolism distribution patterns and found that clear and focal abnormal region in PET was correlated with good surgical outcome in type II FCD patients.
Collapse
Affiliation(s)
- Yuan Yao
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Xiu Wang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Baotian Zhao
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Jiajie Mo
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Zhihao Guo
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Bowen Yang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Zilin Li
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Xiuliang Fan
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Du Cai
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Lin Sang
- Department of NeurosurgeryBeijing FengTai HospitalBeijingChina
| | - Zhong Zheng
- Department of NeurosurgeryBeijing FengTai HospitalBeijingChina
| | - Xiaoqiu Shao
- Department of NeurologyBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Lin Ai
- Department of Nuclear MedicineBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Wenhan Hu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Kai Zhang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Bacon EJ, Jin C, He D, Hu S, Wang L, Li H, Qi S. Cortical surface analysis for focal cortical dysplasia diagnosis by using PET images. Heliyon 2024; 10:e23605. [PMID: 38187332 PMCID: PMC10770482 DOI: 10.1016/j.heliyon.2023.e23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/14/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a neurological disorder distinguished by faulty brain cell structure and development. Repetitive and uncontrollable seizures may be linked to FCD's aberrant cortical thickness, gyrification, and sulcal depth. Quantitative cortical surface analysis is a crucial alternative to ineffective visual inspection. This study recruited 42 subjects including 22 FCD patients who underwent surgery and 20 healthy controls (HC). For the FCD patients, T1-weighted and PET images were obtained by a PET-MRI scanner, and the confirmed epileptogenic zone (EZ) was collected from postsurgical follow-up. For the HCs, CT and PET images were obtained by a PET-CT scanner. Cortical thickness, gyrification index, and sulcal depth were calculated using a computational anatomical toolbox (CAT12). A cluster-based analysis is carried out to determine each FCD patient's aberrant cortical surface. After parcellating the cerebral cortex into 68 regions by the Desikan-Killiany atlas, a region of interest (ROI) analysis was conducted to know whether the feature in the FCD group is significantly different from that in the HC group. Finally, the features of all ROIs were utilised to train a support vector machine classifier (SVM). The classification performance is evaluated by the leave-one-out cross-validation. The cluster-based analysis can localize the EZ cluster with the highest accuracy of 54.5 % (12/22) for cortical thickness, 40.9 % (9/22) and 13.6 % (3/22) for sulcal depth and gyrification, respectively. Moderate concordance (Kappa, 0.6) is observed between the confirmed EZs and identified clusters by using the cortical thickness. Fair concordance (Kappa, 0.3) and no concordance (Kappa, 0.1) is found by using sulcal depth and gyrification. Significant differences are found in 46 of 68 regions (67.7 %) for the three measures. The trained SVM classifier achieved a prediction accuracy of 95.5 % for the cortical thickness, while the sulcal depth and the gyrification obtained 86.0 % and 81.5 %. Cortical thickness, as determined by quantitative cortical surface analysis of PET data, has a greater ability than sulcal depth and gyrification to locate aberrant EZ clusters in FCD. Surface measures might be different in many regions for FCD and HC. By integrating machine learning and cortical morphologies features, individual prediction of FCD seems to be feasible.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuaishuai Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
8
|
Kerr WT, McFarlane KN. Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist. Curr Neurol Neurosci Rep 2023; 23:869-879. [PMID: 38060133 DOI: 10.1007/s11910-023-01318-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Machine Learning (ML) and Artificial Intelligence (AI) are data-driven techniques to translate raw data into applicable and interpretable insights that can assist in clinical decision making. Some of these tools have extremely promising initial results, earning both great excitement and creating hype. This non-technical article reviews recent developments in ML/AI in epilepsy to assist the current practicing epileptologist in understanding both the benefits and limitations of integrating ML/AI tools into their clinical practice. RECENT FINDINGS ML/AI tools have been developed to assist clinicians in almost every clinical decision including (1) predicting future epilepsy in people at risk, (2) detecting and monitoring for seizures, (3) differentiating epilepsy from mimics, (4) using data to improve neuroanatomic localization and lateralization, and (5) tracking and predicting response to medical and surgical treatments. We also discuss practical, ethical, and equity considerations in the development and application of ML/AI tools including chatbots based on Large Language Models (e.g., ChatGPT). ML/AI tools will change how clinical medicine is practiced, but, with rare exceptions, the transferability to other centers, effectiveness, and safety of these approaches have not yet been established rigorously. In the future, ML/AI will not replace epileptologists, but epileptologists with ML/AI will replace epileptologists without ML/AI.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Informatics, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA.
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Katherine N McFarlane
- Department of Neurology, University of Pittsburgh, 3471 Fifth Ave, Kaufmann 811.22, Pittsburgh, PA, 15213, USA
| |
Collapse
|
9
|
Flaus A, Jung J, Ostrowky‐Coste K, Rheims S, Guénot M, Bouvard S, Janier M, Yaakub SN, Lartizien C, Costes N, Hammers A. Deep-learning predicted PET can be subtracted from the true clinical fluorodeoxyglucose PET co-registered to MRI to identify the epileptogenic zone in focal epilepsy. Epilepsia Open 2023; 8:1440-1451. [PMID: 37602538 PMCID: PMC10690662 DOI: 10.1002/epi4.12820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE Normal interictal [18 F]FDG-PET can be predicted from the corresponding T1w MRI with Generative Adversarial Networks (GANs). A technique we call SIPCOM (Subtraction Interictal PET Co-registered to MRI) can then be used to compare epilepsy patients' predicted and clinical PET. We assessed the ability of SIPCOM to identify the Resection Zone (RZ) in patients with drug-resistant epilepsy (DRE) with reference to visual and statistical parametric mapping (SPM) analysis. METHODS Patients with complete presurgical work-up and subsequent SEEG and cortectomy were included. RZ localisation, the reference region, was assigned to one of eighteen anatomical brain regions. SIPCOM was implemented using healthy controls to train a GAN. To compare, the clinical PET coregistered to MRI was visually assessed by two trained readers, and a standard SPM analysis was performed. RESULTS Twenty patients aged 17-50 (32 ± 7.8) years were included, 14 (70%) with temporal lobe epilepsy (TLE). Eight (40%) were MRI-negative. After surgery, 14 patients (70%) had a good outcome (Engel I-II). RZ localisation rate was 60% with SIPCOM vs 35% using SPM (P = 0.015) and vs 85% using visual analysis (P = 0.54). Results were similar for Engel I-II patients, the RZ localisation rate was 64% with SIPCOM vs 36% with SPM. With SIPCOM localisation was correct in 67% in MRI-positive vs 50% in MRI-negative patients, and 64% in TLE vs 43% in extra-TLE. The average number of false-positive clusters was 2.2 ± 1.3 using SIPCOM vs 2.3 ± 3.1 using SPM. All RZs localized with SPM were correctly localized with SIPCOM. In one case, PET and MRI were visually reported as negative, but both SIPCOM and SPM localized the RZ. SIGNIFICANCE SIPCOM performed better than the reference computer-assisted method (SPM) for RZ detection in a group of operated DRE patients. SIPCOM's impact on epilepsy management needs to be prospectively validated.
Collapse
Affiliation(s)
- Anthime Flaus
- Department of Nuclear MedicineHospices Civils de LyonLyonFrance
- Medical Faculty of Lyon EstUniversity Claude Bernard Lyon 1LyonFrance
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
| | - Julien Jung
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Member of the ERN EpiCARELyon 1 UniversityLyonFrance
| | - Karine Ostrowky‐Coste
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional NeurologyHospices Civils de Lyon, Member of the ERN EpiCARELyonFrance
| | - Sylvain Rheims
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Member of the ERN EpiCARELyon 1 UniversityLyonFrance
| | - Marc Guénot
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Functional Neurosurgery, Hospices Civils de Lyon, Member of the ERN EpiCARELyon 1 UniversityLyonFrance
| | - Sandrine Bouvard
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
| | - Marc Janier
- Department of Nuclear MedicineHospices Civils de LyonLyonFrance
- Medical Faculty of Lyon EstUniversity Claude Bernard Lyon 1LyonFrance
| | - Siti N. Yaakub
- Brain Research & Imaging CentreUniversity of PlymouthPlymouthUK
| | - Carole Lartizien
- INSA‐Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294University Claude Bernard Lyon 1LyonFrance
| | - Nicolas Costes
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- CERMEP‐Life ImagingLyonFrance
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
10
|
Jin SO, Mérida I, Stavropoulos I, Elwes RDC, Lam T, Guedj E, Girard N, Costes N, Hammers A. Characterisation of a novel [ 18F]FDG brain PET database and combination with a second database for optimising detection of focal abnormalities, using focal cortical dysplasia as an example. EJNMMI Res 2023; 13:98. [PMID: 37964137 PMCID: PMC10645721 DOI: 10.1186/s13550-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Brain [18F]FDG PET is used clinically mainly in the presurgical evaluation for epilepsy surgery and in the differential diagnosis of neurodegenerative disorders. While scans are usually interpreted visually on an individual basis, comparison against normative cohorts allows statistical assessment of abnormalities and potentially higher sensitivity for detecting abnormalities. Little work has been done on out-of-sample databases (acquired differently to the patient data). Combination of different databases would potentially allow better power and discrimination. We fully characterised an unpublished healthy control brain [18F]FDG PET database (Marseille, n = 60, ages 21-78 years) and compared it to another publicly available database (MRXFDG, n = 37, ages 23-65 years). We measured and then harmonised spatial resolution and global values. A collection of patient scans (n = 34, 13-48 years) with histologically confirmed focal cortical dysplasias (FCDs) obtained on three generations of scanners was used to estimate abnormality detection rates using standard software (statistical parametric mapping, SPM12). RESULTS Regional SUVs showed similar patterns, but global values and resolutions were different as expected. Detection rates for the FCDs were 50% for comparison with the Marseille database and 53% for MRXFDG. Simply combining both databases worsened the detection rate to 41%. After harmonisation of spatial resolution, using a full factorial design matrix to accommodate global differences, and leaving out controls older than 60 years, we achieved detection rates of up to 71% for both databases combined. Detection rates were similar across the three scanner types used for patients, and high for patients whose MRI had been normal (n = 10/11). CONCLUSIONS As expected, global and regional data characteristics are database specific. However, our work shows the value of increasing database size and suggests ways in which database differences can be overcome. This may inform analysis via traditional statistics or machine learning, and clinical implementation.
Collapse
Affiliation(s)
- Sameer Omer Jin
- Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- King's College London & Guy's and St Thomas' PET Centre, London, UK
| | - Inés Mérida
- Centre d'Etude et de Recherche Multimodale et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Lyon, France
| | - Ioannis Stavropoulos
- Department of Clinical Neurophysiology, King's College Hospital, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Robert D C Elwes
- Department of Clinical Neurophysiology, King's College Hospital, London, UK
| | - Tanya Lam
- Children's Neuroscience Centre, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - Eric Guedj
- Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Aix Marseille University, Marseille, France
| | - Nadine Girard
- Department of Neuroradiology, APHM, CRMBM, UMR CNRS 7339, Timone Hospital, Aix Marseille University, Marseille, France
| | - Nicolas Costes
- Centre d'Etude et de Recherche Multimodale et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Lyon, France
| | - Alexander Hammers
- Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- King's College London & Guy's and St Thomas' PET Centre, London, UK.
| |
Collapse
|
11
|
Giraudo C, Carraro S, Zucchetta P, Cecchin D. Pediatric Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:625-636. [PMID: 37741646 DOI: 10.1016/j.mric.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
PET/MR imaging is a one-stop shop technique for pediatric diseases allowing not only an accurate clinical assessment of tumors at staging and restaging but also the diagnosis of neurologic, inflammatory, and infectious diseases in complex cases. Moreover, applying PET kinetic analyses and sequences such as diffusion-weighted imaging as well as quantitative analysis investigating the relationship between disease metabolic activity and cellularity can be applied. Complex radiomics analysis can also be performed.
Collapse
Affiliation(s)
- Chiara Giraudo
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women's and Children's Health Department, University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Pietro Zucchetta
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Diego Cecchin
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
12
|
Xu Y, Chen Y, Liu H, Zhang H, Yin Z, Liu D, Zhu G, Diao Y, Wu D, Xie H, Hu W, Zhang X, Shao X, Zhang K, Zhang J, Yang A. The clinical application of neuro-robot in the resection of epileptic foci: a novel method assisting epilepsy surgery. J Robot Surg 2023; 17:2259-2269. [PMID: 37308790 DOI: 10.1007/s11701-023-01615-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
During surgery for foci-related epilepsy, neurosurgeons face significant difficulties in identifying and resecting MRI-negative or deep-seated epileptic foci. Here, we present a neuro-robotic navigation system that is specifically designed for resection of MRI negative epileptic foci. We recruited 52 epileptic patients, and randomly assigned them to treatment group with either neuro-robotic navigation or conventional neuronavigation system. For each patient, in the neuro-robotic navigation group, we integrated multimodality imaging including MRI and PET-CT into the robotic workstation and marked the boundary of foci from the fused image. During surgery, this boundary was delineated by the robotic laser device with high accuracy, guiding resection for the surgeon. For deeply seated foci, we exploited the neuro-robotic navigation system to localize the deepest point with biopsy needle insertion and methylene dye application to locate the boundary of the foci. Our results show that, compared with the conventional neuronavigation, the neuro-robotic navigation system performs equally well in MRI positive epilepsy patients (ENGEL I ratio: 71.4% vs 100%, p = 0.255) systems and show better performance in patients with MRI-negative focal cortical dysplasia (ENGEL I ratio: 88.2% vs 50%, p = 0.0439). At present, there are no documented neurosurgery robots with similar function and application in the field of epilepsy. Our research highlights the added value of using neuro-robotic navigation systems in resection surgery for epilepsy, particularly in cases that involve MRI-negative or deep-seated epileptic foci.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yingchuan Chen
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zixiao Yin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Defeng Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guanyu Zhu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu Diao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenhan Hu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kai Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
13
|
Wang X, Hu W, Shao X, Zheng Z, Ai L, Sang L, Zhang C, Zhang JG, Zhang K. Hypometabolic patterns of focal cortical dysplasia in PET-MRI co-registration imaging: a retrospective evaluation in a series of 83 patients. Front Neurosci 2023; 17:1173534. [PMID: 37817803 PMCID: PMC10561385 DOI: 10.3389/fnins.2023.1173534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Objective To characterize the PET-MRI co-registration of hypometabolic patterns in focal cortical dysplasia (FCD) types I and II and provide some suggestions in presurgical evaluation of epilepsy surgery. Methods We retrospectively analyzed PET-MRI co-registration imaging data from a cohort of 83 epilepsy patients with histologically confirmed FCD types I and II. Hypometabolic patterns were classified into 4 types: bottom of sulcus hypometabolism (BOSH), single island of sulcus hypometabolism (SIOS), single gyrus or sulcus hypometabolism (SGOS), and multiple gyri and sulci hypometabolism (MGOS). Results Most of cases that were overlooked by conventional MRI and PET evaluation but positive in PET-MRI co-registration were focalized lesions in dorsolateral frontal lobe (9/15) and FCD type IIa was the most prevalent pathological type (11/15). The FCD histological types (p = 0.027) and locations (p < 0.001) were independent predictors of PET-MRI co-registration hypometabolic patterns. Focalized hypometabolic patterns (BOSH, SIOS, SGOS) were primarily observed in the frontal lobe (33/39) and FCD type II (43/62) and extensive pattern (MGOS) in temporal lobe (18/20) and FCD type I (16/21; p < 0.005). Conclusion PET-MRI co-registration enhanced the detection of FCD type IIa compared with conventional MRI and PET reading. The hypometabolic patterns of FCD type I and temporal lobe FCD were more extensive than those of FCD type II and frontal lobe FCD, respectively. The predilection of focalized hypometabolic patterns in frontal lobe FCD suggested that subtle lesions should be checked carefully in patients with suspected frontal lobe epilepsy.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Zhong Zheng
- Epilepsy Center, Medical Alliance of Beijing Tian Tan Hospital, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Lin Sang
- Epilepsy Center, Medical Alliance of Beijing Tian Tan Hospital, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jian-guo Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
14
|
Pedersen C, Aboian M, Messina SA, Daldrup-Link H, Franceschi AM. PET/MRI Applications in Pediatric Epilepsy. World J Nucl Med 2023; 22:78-86. [PMID: 37223623 PMCID: PMC10202574 DOI: 10.1055/s-0043-1764303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Epilepsy neuroimaging assessment requires exceptional anatomic detail, physiologic and metabolic information. Magnetic resonance (MR) protocols are often time-consuming necessitating sedation and positron emission tomography (PET)/computed tomography (CT) comes with a significant radiation dose. Hybrid PET/MRI protocols allow for exquisite assessment of brain anatomy and structural abnormalities, in addition to metabolic information in a single, convenient imaging session, which limits radiation dose, sedation time, and sedation events. Brain PET/MRI has proven especially useful for accurate localization of epileptogenic zones in pediatric seizure cases, providing critical additional information and guiding surgical decision making in medically refractory cases. Accurate localization of seizure focus is necessary to limit the extent of the surgical resection, preserve healthy brain tissue, and achieve seizure control. This review provides a systematic overview with illustrative examples demonstrating the applications and diagnostic utility of PET/MRI in pediatric epilepsy.
Collapse
Affiliation(s)
- Christian Pedersen
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Mariam Aboian
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Steven A. Messina
- Neuroradiology Division, Department of Radiology, Mayo Clinic Radiology, Rochester, Minnesota, United States
| | - Heike Daldrup-Link
- Department of Radiology and Pediatrics, Stanford University School of Medicine, Palo Alto, California, United States
| | - Ana M. Franceschi
- Neuroradiology Division, Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York, United States
| |
Collapse
|
15
|
Yoganathan K, Malek N, Torzillo E, Paranathala M, Greene J. Neurological update: structural and functional imaging in epilepsy surgery. J Neurol 2023; 270:2798-2808. [PMID: 36792721 PMCID: PMC10130132 DOI: 10.1007/s00415-023-11619-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Structural and functional imaging prior to surgery in drug-resistant focal epilepsy, has an important role to play alongside electroencephalography (EEG) techniques, in planning the surgical approach and predicting post-operative outcome. This paper reviews the role of structural and functional imaging of the brain, namely computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging in the preoperative work-up of people with medically refractory epilepsy. In MRI-negative patients, the precise localisation of the epileptogenic zone may be established by demonstrating hypometabolism on PET imaging or hyperperfusion on SPECT imaging in the area surrounding the seizure focus. These imaging modalities are far less invasive than intracranial EEG, which is the gold standard but requires surgical placement of electrodes or recording grids. Even when intracranial EEG is needed, PET or SPECT imaging can assist in the planning of EEG electrode placement, due to its' limited spatial sampling. Multimodal imaging techniques now allow the multidisciplinary epilepsy surgery team to identify and better characterise focal pathology, determine its' relationship to eloquent areas of the brain and the degree of interconnectedness within both physiological and pathological networks, as well as improve planning and surgical outcomes for patients. This paper will update the reader on this whole field and provide them with a practical guide, to aid them in the selection of appropriate investigations, interpretation of the findings and facilitating patient discussions in individuals with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Katie Yoganathan
- University of Oxford and Oxford University Hospitals, Oxford, UK. .,Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Naveed Malek
- Department of Neurology, Queen's Hospital, Romford, UK
| | - Emma Torzillo
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - John Greene
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
16
|
Abstract
OBJECTIVE This article discusses the fundamental importance of optimal epilepsy imaging using the International League Against Epilepsy-endorsed Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS) protocol and the use of multimodality imaging in the evaluation of patients with drug-resistant epilepsy. It outlines a methodical approach to evaluating these images, particularly in the context of clinical information. LATEST DEVELOPMENTS Epilepsy imaging is rapidly evolving, and a high-resolution epilepsy protocol MRI is essential in evaluating newly diagnosed, chronic, and drug-resistant epilepsy. The article reviews the spectrum of relevant MRI findings in epilepsy and their clinical significance. Integrating multimodality imaging is a powerful tool in the presurgical evaluation of epilepsy, particularly in "MRI-negative" cases. For example, correlation of clinical phenomenology, video-EEG with positron emission tomography (PET), ictal subtraction single-photon emission computerized tomography (SPECT), magnetoencephalography (MEG), functional MRI, and advanced neuroimaging such as MRI texture analysis and voxel-based morphometry enhances the identification of subtle cortical lesions such as focal cortical dysplasias to optimize epilepsy localization and selection of optimal surgical candidates. ESSENTIAL POINTS The neurologist has a unique role in understanding the clinical history and seizure phenomenology, which are the cornerstones of neuroanatomic localization. When integrated with advanced neuroimaging, the clinical context has a profound impact on identifying subtle MRI lesions or finding the "epileptogenic" lesion when multiple lesions are present. Patients with an identified lesion on MRI have a 2.5-fold improved chance of achieving seizure freedom with epilepsy surgery compared with those without a lesion. This clinical-radiographic integration is essential to accurate classification, localization, determination of long-term prognosis for seizure control, and identification of candidates for epilepsy surgery to reduce seizure burden or attain seizure freedom.
Collapse
|
17
|
Senger KPS, Kesavadas C. Imaging in Pediatric Epilepsy. Semin Roentgenol 2023; 58:28-46. [PMID: 36732009 DOI: 10.1053/j.ro.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - C Kesavadas
- Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
18
|
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas USA
- Department of Cell Biology and Physiology University of New Mexico School of Medicine Albuquerque New Mexico USA
| | - Lisa Gillinder
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Aileen McGonigal
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Karin Borges
- Faculty of Medicine School of Biomedical Sciences, University of Queensland St Lucia Queensland Australia
| |
Collapse
|
19
|
Dienel GA, Gillinder L, McGonigal A, Borges K. Potential new roles for glycogen in epilepsy. Epilepsia 2023; 64:29-53. [PMID: 36117414 PMCID: PMC10952408 DOI: 10.1111/epi.17412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Seizures often originate in epileptogenic foci. Between seizures (interictally), these foci and some of the surrounding tissue often show low signals with 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in many epileptic patients, even when there are no radiologically detectable structural abnormalities. Low FDG-PET signals are thought to reflect glucose hypometabolism. Here, we review knowledge about metabolism of glucose and glycogen and oxidative stress in people with epilepsy and in acute and chronic rodent seizure models. Interictal brain glucose levels are normal and do not cause apparent glucose hypometabolism, which remains unexplained. During seizures, high amounts of fuel are needed to satisfy increased energy demands. Astrocytes consume glycogen as an additional emergency fuel to supplement glucose during high metabolic demand, such as during brain stimulation, stress, and seizures. In rodents, brain glycogen levels drop during induced seizures and increase to higher levels thereafter. Interictally, in people with epilepsy and in chronic epilepsy models, normal glucose but high glycogen levels have been found in the presumed brain areas involved in seizure generation. We present our new hypothesis that as an adaptive response to repeated episodes of high metabolic demand, high interictal glycogen levels in epileptogenic brain areas are used to support energy metabolism and potentially interictal neuronal activity. Glycogenolysis, which can be triggered by stress or oxidative stress, leads to decreased utilization of plasma glucose in epileptogenic brain areas, resulting in low FDG signals that are related to functional changes underlying seizure onset and propagation. This is (partially) reversible after successful surgery. Last, we propose that potential interictal glycogen depletion in epileptogenic and surrounding areas may cause energy shortages in astrocytes, which may impair potassium buffering and contribute to seizure generation. Based on these hypotheses, auxiliary fuels or treatments that support glycogen metabolism may be useful to treat epilepsy.
Collapse
Affiliation(s)
- Gerald A. Dienel
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Cell Biology and PhysiologyUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Lisa Gillinder
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Aileen McGonigal
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical Sciences, University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
20
|
Flaus A, Deddah T, Reilhac A, Leiris ND, Janier M, Merida I, Grenier T, McGinnity CJ, Hammers A, Lartizien C, Costes N. PET image enhancement using artificial intelligence for better characterization of epilepsy lesions. Front Med (Lausanne) 2022; 9:1042706. [PMID: 36465898 PMCID: PMC9708713 DOI: 10.3389/fmed.2022.1042706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2023] Open
Abstract
INTRODUCTION [18F]fluorodeoxyglucose ([18F]FDG) brain PET is used clinically to detect small areas of decreased uptake associated with epileptogenic lesions, e.g., Focal Cortical Dysplasias (FCD) but its performance is limited due to spatial resolution and low contrast. We aimed to develop a deep learning-based PET image enhancement method using simulated PET to improve lesion visualization. METHODS We created 210 numerical brain phantoms (MRI segmented into 9 regions) and assigned 10 different plausible activity values (e.g., GM/WM ratios) resulting in 2100 ground truth high quality (GT-HQ) PET phantoms. With a validated Monte-Carlo PET simulator, we then created 2100 simulated standard quality (S-SQ) [18F]FDG scans. We trained a ResNet on 80% of this dataset (10% used for validation) to learn the mapping between S-SQ and GT-HQ PET, outputting a predicted HQ (P-HQ) PET. For the remaining 10%, we assessed Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Root Mean Squared Error (RMSE) against GT-HQ PET. For GM and WM, we computed recovery coefficients (RC) and coefficient of variation (COV). We also created lesioned GT-HQ phantoms, S-SQ PET and P-HQ PET with simulated small hypometabolic lesions characteristic of FCDs. We evaluated lesion detectability on S-SQ and P-HQ PET both visually and measuring the Relative Lesion Activity (RLA, measured activity in the reduced-activity ROI over the standard-activity ROI). Lastly, we applied our previously trained ResNet on 10 clinical epilepsy PETs to predict the corresponding HQ-PET and assessed image quality and confidence metrics. RESULTS Compared to S-SQ PET, P-HQ PET improved PNSR, SSIM and RMSE; significatively improved GM RCs (from 0.29 ± 0.03 to 0.79 ± 0.04) and WM RCs (from 0.49 ± 0.03 to 1 ± 0.05); mean COVs were not statistically different. Visual lesion detection improved from 38 to 75%, with average RLA decreasing from 0.83 ± 0.08 to 0.67 ± 0.14. Visual quality of P-HQ clinical PET improved as well as reader confidence. CONCLUSION P-HQ PET showed improved image quality compared to S-SQ PET across several objective quantitative metrics and increased detectability of simulated lesions. In addition, the model generalized to clinical data. Further evaluation is required to study generalization of our method and to assess clinical performance in larger cohorts.
Collapse
Affiliation(s)
- Anthime Flaus
- Department of Nuclear Medicine, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France
- CERMEP-Life Imaging, Lyon, France
| | | | - Anthonin Reilhac
- Brain Health Imaging Centre, Center for Addiction and Mental Health (CAHMS), Toronto, ON, Canada
| | - Nicolas De Leiris
- Departement of Nuclear Medicine, CHU Grenoble Alpes, University Grenoble Alpes, Grenoble, France
- Laboratoire Radiopharmaceutiques Biocliniques, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Marc Janier
- Department of Nuclear Medicine, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Thomas Grenier
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Colm J. McGinnity
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Alexander Hammers
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carole Lartizien
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Nicolas Costes
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France
- CERMEP-Life Imaging, Lyon, France
| |
Collapse
|
21
|
Cohen NT, You X, Krishnamurthy M, Sepeta LN, Zhang A, Oluigbo C, Whitehead MT, Gholipour T, Baldeweg T, Wagstyl K, Adler S, Gaillard WD. Networks Underlie Temporal Onset of Dysplasia-Related Epilepsy: A MELD Study. Ann Neurol 2022; 92:503-511. [PMID: 35726354 PMCID: PMC10410674 DOI: 10.1002/ana.26442] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate if focal cortical dysplasia (FCD) co-localization to cortical functional networks is associated with the temporal distribution of epilepsy onset in FCD. METHODS International (20 center), retrospective cohort from the Multi-Centre Epilepsy Lesion Detection (MELD) project. Patients included if >3 years old, had 3D pre-operative T1 magnetic resonance imaging (MRI; 1.5 or 3 T) with radiologic or histopathologic FCD after surgery. Images processed using the MELD protocol, masked with 3D regions-of-interest (ROI), and co-registered to fsaverage_sym (symmetric template). FCDs were then co-localized to 1 of 7 distributed functional cortical networks. Negative binomial regression evaluated effect of FCD size, network, histology, and sulcal depth on age of epilepsy onset. From this model, predictive age of epilepsy onset was calculated for each network. RESULTS Three hundred eighty-eight patients had median age seizure onset 5 years (interquartile range [IQR] = 3-11 years), median age at pre-operative scan 18 years (IQR = 11-28 years). FCDs co-localized to the following networks: limbic (90), default mode (87), somatomotor (65), front parietal control (52), ventral attention (32), dorsal attention (31), and visual (31). Larger lesions were associated with younger age of onset (p = 0.01); age of epilepsy onset was associated with dominant network (p = 0.04) but not sulcal depth or histology. Sensorimotor networks had youngest onset; the limbic network had oldest age of onset (p values <0.05). INTERPRETATION FCD co-localization to distributed functional cortical networks is associated with age of epilepsy onset: sensory neural networks (somatomotor and visual) with earlier onset, and limbic latest onset. These variations may reflect developmental differences in synaptic/white matter maturation or network activation and may provide a biological basis for age-dependent epilepsy onset expression. ANN NEUROL 2022;92:503-511.
Collapse
Affiliation(s)
- Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Xiaozhen You
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Manu Krishnamurthy
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Leigh N Sepeta
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Anqing Zhang
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC
| | - Chima Oluigbo
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Department of Neurosurgery, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Matthew T Whitehead
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Department of Neuroradiology, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- George Washington University Epilepsy Center, The George Washington University School of Medicine, Washington, DC
| | - Torsten Baldeweg
- Great Ormond Street Institute for Child Health, University College of London, London, UK
| | | | - Sophie Adler
- Great Ormond Street Institute for Child Health, University College of London, London, UK
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| |
Collapse
|
22
|
PET/MRI in the Presurgical Evaluation of Patients with Epilepsy: A Concordance Analysis. Biomedicines 2022; 10:biomedicines10050949. [PMID: 35625684 PMCID: PMC9138772 DOI: 10.3390/biomedicines10050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of our prospective study was to evaluate the clinical impact of hybrid [18F]-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) on the decision workflow of epileptic patients with discordant electroclinical and MRI data. A novel mathematical model was introduced for a clinical concordance calculation supporting the classification of our patients by subgroups of clinical decisions. Fifty-nine epileptic patients with discordant clinical and diagnostic results or MRI negativity were included in this study. The diagnostic value of the PET/MRI was compared to other modalities of presurgical evaluation (e.g., electroclinical data, PET, and MRI). The results of the population-level statistical analysis of the introduced data fusion technique and concordance analysis demonstrated that this model could be the basis for the development of a more accurate clinical decision support parameter in the future. Therefore, making the establishment of “invasive” (operable and implantable) and “not eligible for any further invasive procedures” groups could be much more exact. Our results confirmed the relevance of PET/MRI with the diagnostic algorithm of presurgical evaluation. The introduction of a concordance analysis could be of high importance in clinical and surgical decision-making in the management of epileptic patients. Our study corroborated previous findings regarding the advantages of hybrid PET/MRI technology over MRI and electroclinical data.
Collapse
|
23
|
Jaafar N, Bhatt A, Eid A, Koubeissi MZ. The Temporal Lobe as a Symptomatogenic Zone in Medial Parietal Lobe Epilepsy. Front Neurol 2022; 13:804128. [PMID: 35370889 PMCID: PMC8965346 DOI: 10.3389/fneur.2022.804128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Some surgical failures after temporal lobe epilepsy surgery may be due to the presence of an extratemporal epileptogenic zone. Of particular interest is the medial parietal lobe due to its robust connectivity with mesial temporal structures. Seizures in that area may be clinically silent before propagating to the symptomatogenic temporal lobe. In this paper, we present an overview of the anatomical connectivity, semiology, radiology, electroencephalography, neuropsychology, and outcomes in medial parietal lobe epilepsy. We also present two illustrative cases of seizures originating from the precuneus and the posterior cingulate cortex. We conclude that the medial parietal lobe should be strongly considered for sampling by intracranial electrodes in individuals with nonlesional temporal lobe epilepsy, especially if scrutinizing the presurgical data produces discordant findings.
Collapse
Affiliation(s)
- Nadim Jaafar
- Department of Neurology, George Washington University, Washington, DC, United States
| | - Amar Bhatt
- Rush Medical College, Rush University, Chicago, IL, United States
| | - Alexandra Eid
- Department of Neurology, George Washington University, Washington, DC, United States
| | - Mohamad Z. Koubeissi
- Department of Neurology, George Washington University, Washington, DC, United States
- *Correspondence: Mohamad Z. Koubeissi
| |
Collapse
|
24
|
Kong Y, Cheng N, Dang N, Hu XB, Zhang GQ, Dong YW, Wang X, Gao JY. Application of combined multimodal neuroimaging and video-electroencephalography in intractable epilepsy patients for improved post-surgical outcome prediction. Clin Radiol 2022; 77:e250-e259. [PMID: 35000762 DOI: 10.1016/j.crad.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
AIM To investigate the ability of a multidisciplinary approach that combines multimodal neuroimaging with video-electroencephalography (v-EEG) to predict post-surgical outcomes in patients with intractable epilepsy, and explore prognostic predictors for these patients. MATERIALS AND METHODS Fifty-eight patients with intractable epilepsy who underwent surgery between March 2016 and October 2019 were reviewed retrospectively. Demographic, clinical, v-EEG, neuroimaging, surgical, and regular follow-up seizure outcome data were collected. Forty-six patients with a follow-up of at least 12 months were graded by Engel scores. Univariate and multivariate analyses were applied to explore prognostic factors that could predict post-surgical seizure outcomes. RESULTS Of the 58 patients, 28 were males. The median age was 27 years, the median age at first seizure was 11 years, and the median duration of seizures was 10 years. The Kaplan-Meier log-rank test showed that regardless of whether the follow-up duration was considered, epilepsy type, v-EEG, PET/CT, image post-processing methods, and a multidisciplinary approach that combined multimodal imaging with v-EEG were all correlated with seizure outcomes. Multivariate analysis found that the multidisciplinary approach was an independent predictor of post-surgical outcomes in patients with intractable epilepsy (hazard ratio = 11.400, 95% confidence interval = 2.249-57.787, p=0.003). CONCLUSIONS The present study showed that the multidisciplinary approach could provide independent prognostic information for patients with intractable epilepsy undergoing surgery. This approach has strong potential for the easier selection of patients to undergo surgical treatment and accurate prognostication.
Collapse
Affiliation(s)
- Y Kong
- PET/CT Center of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| | - N Cheng
- PET/CT Center of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - N Dang
- PET/CT Center of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - X-B Hu
- MRI Unit of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - G-Q Zhang
- PET/CT Center of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Y-W Dong
- PET/CT Center of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - X Wang
- PET/CT Center of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - J-Y Gao
- PET/CT Center of Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
25
|
18F-FDG PET/MR in focal epilepsy: A new step for improving the detection of epileptogenic lesions. Epilepsy Res 2021; 178:106819. [PMID: 34847426 DOI: 10.1016/j.eplepsyres.2021.106819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Hybrid PET/MR is a promising tool in focal drug-resistant epilepsy, however the additional value for the detection of epileptogenic lesions and surgical decision-making remains to be established. METHODS We retrospectively compared 18F-FDG PET/MR images with those obtained by a previous 18F-FDG PET co-registered with MRI (PET+MR) in 25 consecutive patients (16 females, 13-60 years) investigated for focal drug-resistant epilepsy. Visual analysis was performed by two readers blinded from imaging modalities, asked to assess the technical characteristics (co-registration, quality of images), the confidence in results, the location of PET abnormalities and the presence of a structural lesion on MRI. Clinical impact on surgical strategy and outcome was assessed independently. RESULTS The location of epileptic focus was temporal in 9 patients and extra-temporal in 16 others. MRI was initially considered negative in 21 patients. PET stand-alone demonstrated metabolic abnormalities in 19 cases (76%), and the co-registration with MRI allowed the detection of 4 additional structural lesions. Compared to PET+MR, the PET/MR sensitivity was increased by 13% and new structural lesions (mainly focal cortical dysplasias) were detected in 6 patients (24%). Change of surgical decision-making was substantial for 10 patients (40%), consisting in avoiding invasive monitoring in 6 patients and modifying the planning in 4 others. Seizure-free outcome (follow-up>1 year) was obtained in 12/14 patients who underwent a cortical resection. CONCLUSION Hybrid PET/MR may improve the detection of epileptogenic lesions, allowing to optimize the presurgical work-up and to increase the proportion of successful surgery even in the more complex cases.
Collapse
|
26
|
Bacon EJ, Jin C, He D, Hu S, Wang L, Li H, Qi S. Epileptogenic Zone Localization in Refractory Epilepsy by FDG-PET: The Comparison of SPM and SPM-CAT With Different Parameter Settings. Front Neurol 2021; 12:724680. [PMID: 34690915 PMCID: PMC8529991 DOI: 10.3389/fneur.2021.724680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Refractory epilepsy is a complex case of epileptic disease. The quantitative analysis of fluorodeoxyglucose positron emission tomography (FDG-PET) images complements visual assessment and helps localize the epileptogenic zone (EZ) for better curative treatment. Statistical parametric mapping (SPM) and its computational anatomy toolbox (SPM-CAT) are two commonly applied tools in neuroimaging analysis. This study compares SPM and SPM-CAT with different parameters to find the optimal approach for localizing EZ in refractory epilepsy. The current study enrolled 45 subjects, including 25 refractory epilepsy patients and 20 healthy controls. All of the 25 patients underwent surgical operations. Pathological results and the postoperative outcome evaluation by the Engel scale were likewise presented. SPM and SPM-CAT were used to assess FDG-PET images with three different uncorrected p-values and the corresponding cluster sizes (k), as in voxels in the cluster, namely p < 0.0002, k > 25; p < 0.001, k > 100; p < 0.005, and k > 200. When combining three settings, SPM and SPM-CAT yielded overall positive finding scores of 96.0% (24/25) and 100.0% (25/25) respectively. However, for the individual setting, SPM-CAT achieved the diverse positive finding scores of 96.0% (24/25), 96.0% (24/25), and 88.0% (22/24), which are higher than those of SPM [88.0% (22/25), 76.0% (19/25), and 72.0% (18/25)]. SPM and SPM-CAT localized EZ correctly with 28.0% (7/25) and 64.0% (16/25), respectively. SPM-CAT with parameter settings p < 0.0002 and k > 25 yielded a correct localization at 56.0% (14/25), which is slightly higher than that for the other two settings (48.0 and 20.0%). Moderate concordance was found between the confirmed and pre-surgical EZs, identified by SPM-CAT (kappa value = 0.5). Hence, SPM-CAT is more efficient than SPM in localizing EZ for refractory epilepsy by quantitative analysis of FDG-PET images. SPM-CAT with the setting of p < 0.0002 and k > 25 might perform as an objective complementary tool to the visual assessment for EZ localization.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuaishuai Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
27
|
Cheng L, Xing Y, Zhang H, Liu R, Lai H, Piao Y, Wang W, Yan X, Li X, Wang J, Li D, Loh HH, Yu T, Zhang G, Yang X. Mechanistic Analysis of Micro-Neurocircuits Underlying the Epileptogenic Zone in Focal Cortical Dysplasia Patients. Cereb Cortex 2021; 32:2216-2230. [PMID: 34664065 DOI: 10.1093/cercor/bhab350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
We aim to explore the microscopic neurophysiology of focal cortical dysplasia (FCD) induced epileptogenesis in specific macroscopic brain regions, therefore mapping a micro-macro neuronal network that potentially indicates the epileptogenic mechanism. Epileptic and relatively non-epileptic temporal neocortex specimens were resected from FCD and mesial temporal lobe epilepsy (mTLE) patients, respectively. Whole-cell patch-clamping was performed on cells from the seizure onset zone (SOZ) and non-SOZ inside the epileptogenic zone (EZ) of FCD patients, as well as the non-epileptic neocortex of mTLE patients. Microscopic data were recorded, including membrane characteristics, spontaneous synaptic activities, and evoked action potentials. Immunohistochemistry was also performed on parvalbumin-positive (PV+) interneurons. We found that SOZ interneurons exhibited abnormal neuronal expression and distribution as well as reduced overall function compared with non-SOZ and mTLE interneurons. The SOZ pyramidal cells experienced higher excitation but lower inhibition than the mTLE controls, whereas the non-SOZ pyramidal cells exhibited intermediate excitability. Action potential properties of both types of neurons also suggested more synchronized neuronal activity inside the EZ, particularly inside the SOZ. Together, our research provides evidence for a potential neurocircuit underlying SOZ epileptogenesis and non-SOZ seizure susceptibility. Further investigation of this microscopic network may promote understanding of the mechanism of FCD-induced epileptogenesis.
Collapse
Affiliation(s)
- Lipeng Cheng
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yue Xing
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Herui Zhang
- Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China
| | - Ru Liu
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Huanling Lai
- Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoming Yan
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaonan Li
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaoyang Wang
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Donghong Li
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510635, China
| | - Horace H Loh
- Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaofeng Yang
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
28
|
Sepehrizadeh T, Jong I, DeVeer M, Malhotra A. PET/MRI in paediatric disease. Eur J Radiol 2021; 144:109987. [PMID: 34649143 DOI: 10.1016/j.ejrad.2021.109987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Nuclear medicine and molecular imaging have a small but growing role in the management of paediatric and neonatal diseases. During the past decade, combined PET/MRI has emerged as a clinically important hybrid imaging modality in paediatric medicine due to diagnostic advantages and reduced radiation exposure compared to alternative techniques. The applications for nuclear medicine, radiopharmaceuticals and combined PET/MRI in paediatric diagnosis is broadly similar to adults, however there are some key differences. There are a variety of clinical applications for PET/MRI imaging in children including, but not limited to, oncology, neurology, cardiovascular, infection and chronic inflammatory diseases, and in renal-urological disorders. In this article, we review the applications of PET/MRI in paediatric and neonatal imaging, its current role, advantages and disadvantages over other hybrid imaging techniques such as PET/CT, and its future applications. Overall, PET/MRI is a powerful imaging technology in diagnostic medicine and paediatric diseases. Higher soft tissue contrasts and lower radiation dose of the MRI makes it the superior technology compared to other conventional techniques such as PET/CT or scintigraphy. However, this relatively new hybrid imaging has also some limitations. MRI based attenuation correction remains a challenge and although methodologies have improved significantly in the last decades, most remain under development.
Collapse
Affiliation(s)
| | - Ian Jong
- Department of diagnostic imaging, Monash Health, Melbourne, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Nowak A, Bala A. Occult focal cortical dysplasia may predict poor outcome of surgery for drug-resistant mesial temporal lobe epilepsy. PLoS One 2021; 16:e0257678. [PMID: 34591859 PMCID: PMC8483375 DOI: 10.1371/journal.pone.0257678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The results of surgery in patients with mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are favorable, with a success rate over 70% following resection. An association of HS with focal cortical dysplasia (FCD) in the temporal lobe is one of the potential causes for poor surgical outcome in MTLE. We aimed to analyzed seizure outcome in a population of MTLE patients and recognize the role of occult FCD in achieving postoperative seizure control. METHODS We retrospectively analyzed postoperative outcomes for 82 consecutive adult patients with the syndrome of MTLE due to HS, who had no concomitant lesions within temporal lobe in MRI and who underwent surgical treatment in the years 2005-2016, and correlated factors associated with seizure relapse. RESULTS At the latest follow-up evaluation after surgery, 59 (72%) were free of disabling seizures (Engel Class I) and 48 (58,5%) had an Engel Class Ia. HS associated with FCD in neocortical structures were noted in 33 patients (40%). Analyzes have shown that dual pathology was the most significant negative predictive factor for Engel class I and Engel class Ia outcome. CONCLUSIONS The incidence of dual pathology in patients with temporal lobe epilepsy seems to be underestimated. An incomplete epileptogenic zone resection of occult focal temporal dysplasia within temporal lobe is supposed to be the most important negative prognostic factor for seizure freedom after epilepsy surgery in MTLE-HS patients. The study indicates the need to improve diagnostics for other temporal lobe pathologies, despite the typical clinical and radiological picture of MTLE-HS.
Collapse
Affiliation(s)
- Arkadiusz Nowak
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | | |
Collapse
|
30
|
Kure AJ, Savas H, Hijaz TA, Hussaini SF, Korutz AW. Advancements in Positron Emission Tomography/Magnetic Resonance Imaging and Applications to Diagnostic Challenges in Neuroradiology. Semin Ultrasound CT MR 2021; 42:434-451. [PMID: 34537113 DOI: 10.1053/j.sult.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the clinical adoption of magnetic resonance (MR) in medical imaging, MR has proven to be a workhorse in diagnostic neuroradiology, with the ability to provide superb anatomic detail as well as additional functional and physiologic data, depending on the techniques utilized. Positron emission tomography/computed tomography has also shown irreplaceable diagnostic value in certain disease processes of the central nervous system by providing molecular and metabolic information through the development of numerous disease-specific PET tracers, many of which can be utilized as a diagnostic technique in and of themselves or can provide a valuable adjunct to information derived from MR. Despite these advances, many challenges still remain in neuroradiology, particularly in malignancy, neurodegenerative disease, epilepsy, and cerebrovascular disease. Through improvements in attenuation correction, motion correction, and PET detectors, combining the 2 modalities of PET and MR through simultaneous imaging has proven feasible and allows for improved spatial and temporal resolution without compromising either of the 2 individual modalities. The complementary information offered by both technologies has provided increased diagnostic accuracy in both research and many clinical applications in neuroradiology.
Collapse
Affiliation(s)
- Andrew J Kure
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Hatice Savas
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Tarek A Hijaz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Syed F Hussaini
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Alexander W Korutz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
31
|
Tóth M, Barsi P, Tóth Z, Borbély K, Lückl J, Emri M, Repa I, Janszky J, Dóczi T, Horváth Z, Halász P, Juhos V, Gyimesi C, Bóné B, Kuperczkó D, Horváth R, Nagy F, Kelemen A, Jordán Z, Újvári Á, Hagiwara K, Isnard J, Pál E, Fekésházy A, Fabó D, Vajda Z. The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 2021; 21:363. [PMID: 34537017 PMCID: PMC8449490 DOI: 10.1186/s12883-021-02352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background When MRI fails to detect a potentially epileptogenic lesion, the chance of a favorable outcome after epilepsy surgery becomes significantly lower (from 60 to 90% to 20–65%). Hybrid FDG-PET/MRI may provide additional information for identifying the epileptogenic zone. We aimed to investigate the possible effect of the introduction of hybrid FDG-PET/MRI into the algorithm of the decision-making in both lesional and non-lesional drug-resistant epileptic patients. Methods In a prospective study of patients suffering from drug-resistant focal epilepsy, 30 nonlesional and 30 lesional cases with discordant presurgical results were evaluated using hybrid FDG-PET/MRI. Results The hybrid imaging revealed morphological lesion in 18 patients and glucose hypometabolism in 29 patients within the nonlesional group. In the MRI positive group, 4 patients were found to be nonlesional, and in 9 patients at least one more epileptogenic lesion was discovered, while in another 17 cases the original lesion was confirmed by means of hybrid FDG-PET/MRI. As to the therapeutic decision-making, these results helped to indicate resective surgery instead of intracranial EEG (iEEG) monitoring in 2 cases, to avoid any further invasive diagnostic procedures in 7 patients, and to refer 21 patients for iEEG in the nonlesional group. Hybrid FDG-PET/MRI has also significantly changed the original therapeutic plans in the lesional group. Prior to the hybrid imaging, a resective surgery was considered in 3 patients, and iEEG was planned in 27 patients. However, 3 patients became eligible for resective surgery, 6 patients proved to be inoperable instead of iEEG, and 18 cases remained candidates for iEEG due to the hybrid FDG-PET/MRI. Two patients remained candidates for resective surgery and one patient became not eligible for any further invasive intervention. Conclusions The results of hybrid FDG-PET/MRI significantly altered the original plans in 19 of 60 cases. The introduction of hybrid FDG-PET/MRI into the presurgical evaluation process had a potential modifying effect on clinical decision-making. Trial registration Trial registry: Scientific Research Ethics Committee of the Medical Research Council of Hungary. Trial registration number: 008899/2016/OTIG. Date of registration: 08 February 2016.
Collapse
Affiliation(s)
- Márton Tóth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.
| | - Péter Barsi
- Department of Medical Imaging, Semmelweis University, Balassa út 6, Budapest, H-1083, Hungary
| | - Zoltán Tóth
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Katalin Borbély
- PET/CT Ambulance, National Institute of Oncology, Ráth György u.7-9, Budapest, H-1122, Hungary
| | - János Lückl
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Miklós Emri
- MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Imre Repa
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.,MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary
| | - Tamás Dóczi
- MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Péter Halász
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Vera Juhos
- Epihope Non-Profit Kft, Szilágyi Erzsébet fasor 17-21, Budapest, 1026, Hungary
| | - Csilla Gyimesi
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Beáta Bóné
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Diána Kuperczkó
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Réka Horváth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Ferenc Nagy
- Department of Neurology, Somogy County Moritz Kaposi Teaching Hospital, Sándor u. 40, Guba, H-7400, Hungary
| | - Anna Kelemen
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Ákos Újvári
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, 3-6-45, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery Pierre Wertheimer, 59 Boulevard Pinel, 69500, Lyon, France
| | - Endre Pál
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Attila Fekésházy
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsolt Vajda
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| |
Collapse
|
32
|
Jain P, Ochi A, McInnis C, Otsubo H, Snead OC, Ibrahim GM, Donner E, Widjaja E. Surgical outcomes in children with bottom-of-sulcus dysplasia and drug-resistant epilepsy: a retrospective cohort study. J Neurosurg Pediatr 2021; 28:295-305. [PMID: 34214982 DOI: 10.3171/2021.2.peds20967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Bottom-of-sulcus dysplasia (BOSD) is challenging to identify radiologically. The aim of this study was to explore seizure outcomes after resective surgery or MR-guided laser interstitial thermal therapy (MRgLITT) in children with BOSD. METHODS Children with radiologically defined BOSD who underwent resective surgery or MRgLITT, with at least 1 year of follow-up were included. Clinical, radiological, neurophysiological, and histological data were extracted from medical records. Invasive video EEG (IVEEG) was used to evaluate the ictal onset zone or motor/language mapping, wherever appropriate. Histology of MRI-visible BOSD, including the overlying and adjacent cortex, was also evaluated. RESULTS Forty-one children with BOSD underwent surgical treatment. The lesion was initially overlooked on MRI in 20 patients (48.8%). Of 34 patients who underwent IVEEG and who had available ictal data, the ictal onset zone extended beyond the MRI-visible BOSD in 23 patients (67.6%). Surgical treatment included lesionectomy (24 patients), extended lesionectomy (12 patients), lobectomy (1 patient), and ablation of BOSD (4 patients). The pathology in 37 patients who underwent resection showed focal cortical dysplasia type IIB and type IIA in 21 (53.8%) and 16 patients (41%), respectively. Seizure freedom was achieved in 32 patients (78.1%) after a mean follow-up of 4.3 years. CONCLUSIONS Seizure outcomes after resective surgery or MRgLITT in children with BOSD were generally favorable. The authors found that the neurophysiological abnormality and pathology often extended beyond the MRI-visible BOSD.
Collapse
Affiliation(s)
- Puneet Jain
- 1Epilepsy Program, Division of Neurology, Department of Pediatrics
| | - Ayako Ochi
- 1Epilepsy Program, Division of Neurology, Department of Pediatrics
| | | | - Hiroshi Otsubo
- 1Epilepsy Program, Division of Neurology, Department of Pediatrics
| | - O Carter Snead
- 1Epilepsy Program, Division of Neurology, Department of Pediatrics
| | | | - Elizabeth Donner
- 1Epilepsy Program, Division of Neurology, Department of Pediatrics
| | - Elysa Widjaja
- 1Epilepsy Program, Division of Neurology, Department of Pediatrics
- 4Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Algahtany M, Abdrabou A, Elhaddad A, Alghamdi A. Advances in Brain Imaging Techniques for Patients With Intractable Epilepsy. Front Neurosci 2021; 15:699123. [PMID: 34421522 PMCID: PMC8377195 DOI: 10.3389/fnins.2021.699123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Intractable epilepsy, also known as drug resistance or refractory epilepsy, is a major problem affecting nearly one-third of epilepsy patients. Surgical intervention could be an option to treat these patients. Correct identification and localization of epileptogenic foci is a crucial preoperative step. Some of these patients, however, have no abnormality on routine magnetic resonance imaging (MRI) of the brain. Advanced imaging techniques, therefore, can be helpful to identify the area of concern. Moreover, a clear delineation of certain anatomical brain structures and their relation to the surgical lesion or the surgical approach is essential to avoid postoperative complications, and advanced imaging techniques can be very helpful. In this review, we discuss and highlight the use of advanced imaging techniques, particularly positron emission tomography (PET)–MRI, single-photon emission computed tomography, functional MRI, and diffusion tensor imaging–tractography for the preoperative assessment of epileptic patients.
Collapse
Affiliation(s)
- Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Abdrabou
- Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Ahmed Elhaddad
- Department of Radiology, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
34
|
Abstract
PET/MR imaging is in routine clinical use and is at least as effective as PET/CT for oncologic and neurologic studies with advantages with certain PET radiopharmaceuticals and applications. In addition, whole body PET/MR imaging substantially reduces radiation dosages compared with PET/CT which is particularly relevant to pediatric and young adult population. For cancer imaging, assessment of hepatic, pelvic, and soft-tissue malignancies may benefit from PET/MR imaging. For neurologic imaging, volumetric brain MR imaging can detect regional volume loss relevant to cognitive impairment and epilepsy. In addition, the single-bed position acquisition enables dynamic brain PET imaging without extending the total study length which has the potential to enhance the diagnostic information from PET.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| | - Andrei Iagaru
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, JT 773, Birmingham, AL 35249, USA
| |
Collapse
|
35
|
Sone D. Making the Invisible Visible: Advanced Neuroimaging Techniques in Focal Epilepsy. Front Neurosci 2021; 15:699176. [PMID: 34385902 PMCID: PMC8353251 DOI: 10.3389/fnins.2021.699176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
It has been a clinically important, long-standing challenge to accurately localize epileptogenic focus in drug-resistant focal epilepsy because more intensive intervention to the detected focus, including resection neurosurgery, can provide significant seizure reduction. In addition to neurophysiological examinations, neuroimaging plays a crucial role in the detection of focus by providing morphological and neuroanatomical information. On the other hand, epileptogenic lesions in the brain may sometimes show only subtle or even invisible abnormalities on conventional MRI sequences, and thus, efforts have been made for better visualization and improved detection of the focus lesions. Recent advance in neuroimaging has been attracting attention because of the potentials to better visualize the epileptogenic lesions as well as provide novel information about the pathophysiology of epilepsy. While the progress of newer neuroimaging techniques, including the non-Gaussian diffusion model and arterial spin labeling, could non-invasively detect decreased neurite parameters or hypoperfusion within the focus lesions, advances in analytic technology may also provide usefulness for both focus detection and understanding of epilepsy. There has been an increasing number of clinical and experimental applications of machine learning and network analysis in the field of epilepsy. This review article will shed light on recent advances in neuroimaging for focal epilepsy, including both technical progress of images and newer analytical methodologies and discuss about the potential usefulness in clinical practice.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
36
|
Kerr WT, Lee JK, Karimi AH, Tatekawa H, Hickman LB, Connerney M, Sreenivasan SS, Dubey I, Allas CH, Smith JM, Savic I, Silverman DHS, Hadjiiski LM, Beimer NJ, Stacey WC, Cohen MS, Engel J, Feusner JD, Salamon N, Stern JM. A minority of patients with functional seizures have abnormalities on neuroimaging. J Neurol Sci 2021; 427:117548. [PMID: 34216975 DOI: 10.1016/j.jns.2021.117548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Functional seizures often are managed incorrectly as a diagnosis of exclusion. However, a significant minority of patients with functional seizures may have abnormalities on neuroimaging that typically are associated with epilepsy, leading to diagnostic confusion. We evaluated the rate of epilepsy-associated findings on MRI, FDG-PET, and CT in patients with functional seizures. METHODS We studied radiologists' reports from neuroimages at our comprehensive epilepsy center from a consecutive series of patients diagnosed with functional seizures without comorbid epilepsy from 2006 to 2019. We summarized the MRI, FDG-PET, and CT results as follows: within normal limits, incidental findings, unrelated findings, non-specific abnormalities, post-operative study, epilepsy risk factors (ERF), borderline epilepsy-associated findings (EAF), and definitive EAF. RESULTS Of the 256 MRIs, 23% demonstrated ERF (5%), borderline EAF (8%), or definitive EAF (10%). The most common EAF was hippocampal sclerosis, with the majority of borderline EAF comprising hippocampal atrophy without T2 hyperintensity or vice versa. Of the 87 FDG-PETs, 26% demonstrated borderline EAF (17%) or definitive EAF (8%). Epilepsy-associated findings primarily included focal hypometabolism, especially of the temporal lobes, with borderline findings including subtle or questionable hypometabolism. Of the 51 CTs, only 2% had definitive EAF. SIGNIFICANCE This large case series provides further evidence that, while uncommon, EAF are seen in patients with functional seizures. A significant portion of these abnormal findings are borderline. The moderately high rate of these abnormalities may represent framing bias from the indication of the study being "seizures," the relative subtlety of EAF, or effects of antiseizure medications.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - L Brian Hickman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Internal Medicine, University of California at Irvine, Irvine, CA, USA
| | - Michael Connerney
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Ishita Dubey
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Corinne H Allas
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jena M Smith
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Daniel H S Silverman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Lubomir M Hadjiiski
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Beimer
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William C Stacey
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mark S Cohen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Departments of Bioengineering, Psychology and Biomedical Physics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Noriko Salamon
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Li X, Yu T, Ren Z, Wang X, Yan J, Chen X, Yan X, Wang W, Xing Y, Zhang X, Zhang H, Loh HH, Zhang G, Yang X. Localization of the Epileptogenic Zone by Multimodal Neuroimaging and High-Frequency Oscillation. Front Hum Neurosci 2021; 15:677840. [PMID: 34168546 PMCID: PMC8217465 DOI: 10.3389/fnhum.2021.677840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022] Open
Abstract
Accurate localization of the epileptogenic zone (EZ) is a key factor to obtain good surgical outcome for refractory epilepsy patients. However, no technique, so far, can precisely locate the EZ, and there are barely any reports on the combined application of multiple technologies to improve the localization accuracy of the EZ. In this study, we aimed to explore the use of a multimodal method combining PET-MRI, fluid and white matter suppression (FLAWS)—a novel MRI sequence, and high-frequency oscillation (HFO) automated analysis to delineate EZ. We retrospectively collected 15 patients with refractory epilepsy who underwent surgery and used the above three methods to detect abnormal brain areas of all patients. We compared the PET-MRI, FLAWS, and HFO results with traditional methods to evaluate their diagnostic value. The sensitivities, specificities of locating the EZ, and marking extent removed versus not removed [RatioChann(ev)] of each method were compared with surgical outcome. We also tested the possibility of using different combinations to locate the EZ. The marked areas in every patient established using each method were also compared to determine the correlations among the three methods. The results showed that PET-MRI, FLAWS, and HFOs can provide more information about potential epileptic areas than traditional methods. When detecting the EZs, the sensitivities of PET-MRI, FLAWS, and HFOs were 68.75, 53.85, and 87.50%, and the specificities were 80.00, 33.33, and 100.00%. The RatioChann(ev) of HFO-marked contacts was significantly higher in patients with good outcome than those with poor outcome (p< 0.05). When intracranial electrodes covered all the abnormal areas indicated by neuroimaging with the overlapping EZs being completely removed referred to HFO analysis, patients could reach seizure-free (p < 0.01). The periphery of the lesion marked by neuroimaging may be epileptic, but not every lesion contributes to seizures. Therefore, approaches in multimodality can detect EZ more accurately, and HFO analysis may help in defining real epileptic areas that may be missed in the neuroimaging results. The implantation of intracranial electrodes guided by non-invasive PET-MRI and FLAWS findings as well as HFO analysis would be an optimized multimodal approach for locating EZ.
Collapse
Affiliation(s)
- Xiaonan Li
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| | - Tao Yu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Xin Chen
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| | - Yue Xing
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| | | | | | | | - Guojun Zhang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| |
Collapse
|
38
|
Das K, Pachori RB. Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Sager G, Akgun E, Abuqbeitah M, Uslu L, Asa S, Akgun MY, Beytur F, Baydili KN, Sager S. Comparison of brain F-18 FDG PET/MRI with PET/CT imaging in pediatric patients. Clin Neurol Neurosurg 2021; 206:106669. [PMID: 33984753 DOI: 10.1016/j.clineuro.2021.106669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 04/17/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Standardized uptake values (SUVs) are important indexes for evaluating the accuracy of disease diagnoses achieved via fluoro-18 deoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI). The purpose of this study is to describe normal cerebral FDG uptake in the pediatric population and compare SUVmax/mean results for brain images obtained from PET/CT and PET/MRI in neurologically healthy pediatric examinees. METHODS This study included 20 patients who were < 18 years of age and were without intracranial malignancy and/or brain disorders. Patients underwent either PET/CT imaging (n = 10) or PET/MRI imaging (n = 10) after 70-80 min of F-18 FDG injection. The SUVmax and SUVmean for various brain regions were calculated and compared between sides and imaging modalities using with appropriate statistical tests. RESULTS The median SUVmax/SUVmean values of the right-sided frontal, parietal, temporal, and occipital lobes were 8.63/ 6.18, 8.85 / 6.97, 6.88 / 4.99, and 11.06 / 7.02 in PET/CT, respectively, and 11.45 / 8.59, 10.16 / 8.47, 8.82 / 6.6, and 11.71 / 8.25 in PET/MRI, respectively. The median SUVmax/SUVmean values of the left-sided frontal, parietal, temporal, and occipital lobes were 9.05 / 6.86, 8.03 / 6.62, 6.49 / 4.77, and 10.6 / 7.73 in PET/CT, respectively, and 10.7 / 8.16, 11.06 / 7.88, 8.13 / 6.09, and 10.96 / 9.22 in PET/MRI, respectively. CONCLUSIONS These results showed that there was no statistically significant difference in SUVs values between the two brain imaging modalities except from SUVmax value of left-sided parietal lobe and no asymmetric radiopharmaceutical uptake between the left and right brain regions or cerebellums in each modality, suggested that in brain imaging, PET/MRI can be used reliably instead of PET/CT.
Collapse
Affiliation(s)
- Gunes Sager
- Kartal Lutfi Kirdar Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | - Elife Akgun
- Kirikkale Yuksek Ihtisas Hospital, Department of Nuclear Medicine, Kirikkale, Turkey.
| | - Muhammed Abuqbeitah
- Istanbul University-Cerrahpasa, School of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Lebriz Uslu
- Istanbul University-Cerrahpasa, School of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Sertac Asa
- Istanbul University-Cerrahpasa, School of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Mehmet Yigit Akgun
- Kirikkale Yuksek Ihtisas Hospital, Department of Neurosurgery, Kirikkale, Turkey
| | - Fatih Beytur
- Istanbul University-Cerrahpasa, School of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | | | - Sait Sager
- Istanbul University-Cerrahpasa, School of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| |
Collapse
|
40
|
Abstract
INTRODUCTION Focal cortical dysplasias (FCDs) represent the most common etiology in pediatric drug-resistant focal epilepsies undergoing surgical treatment. The localization, extent and histopathological features of FCDs are considerably variable. Somatic mosaic mutations of genes that encode proteins in the PI3K-AKTmTOR pathway, which also includes the tuberous sclerosis associated genes TSC1 and TSC2, have been implicated in FCD type II in a substantial subset of patients. Surgery is the principal therapeutic option for FCD-related epilepsy. Advanced neurophysiological and neuroimaging techniques have improved surgical outcome and reduced the risk of postsurgical deficits. Pharmacological MTOR inhibitors are being tested in clinical trials and might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease, used alone or in combination with surgery. AREAS COVERED This review will critically analyze the advances in the diagnosis and treatment of FCDs, with a special focus on the novel therapeutic options prompted by a better understanding of their pathophysiology. EXPERT OPINION Focal cortical dysplasia is a main cause of drug-resistant epilepsy, especially in children. Novel, personalized approaches are needed to more effectively treat FCD-related epilepsy and its cognitive consequences.
Collapse
Affiliation(s)
- Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| |
Collapse
|
41
|
Mendes Coelho VC, Morita-Sherman M, Yasuda CL, Alvim MMK, Amorim BJ, Tedeschi H, Ghizoni E, Rogerio F, Cendes F. Magnetic resonance imaging findings and clinical characteristics in mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy in a predominantly adult cohort. Epilepsia 2021; 62:1429-1441. [PMID: 33884614 DOI: 10.1111/epi.16907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We aimed to better characterize the magnetic resonance imaging (MRI) findings of mild malformation of cortical development with oligodendroglial hyperplasia (MOGHE), a rare clinicopathological entity associated with pharmacoresistance recently described in patients with frontal lobe epilepsy. METHODS We studied 12 patients who underwent epilepsy surgery and whose surgical specimens showed histopathological findings of MOGHE, characterized by preserved cortical lamination, blurred gray-white matter interface due to increased number of oligodendrocytes, and heterotopic neurons in the white matter. The age at MRI evaluation ranged from 11 to 58 years, except for one 4.5-year-old patient. RESULTS Following a detailed MRI analysis using an in-house protocol, we found abnormalities in all cases. The lesion was circumscribed in the frontal lobe in six (50%) and in the temporal lobe in three (25%) patients. In the remaining three patients (25%), the lesion was multilobar (frontotemporal and temporoparieto-occipital). Cortical thickening was mild in all patients, except in the 4.5-year-old patient, who had pronounced cortical thickening and white matter blurring. We also identified cortical/subcortical hyperintense T2/fluid-attenuated inversion recovery signal associated with gray/white matter blurring in all but one patient. When present, cleft cortical dimple, and deep sulci aided in localizing the lesion. Overall, the MRI findings were like those in focal cortical dysplasia (FCD) Type IIa. Surgical outcome was excellent in five patients (Engel Class I in 25% and II in 17%). The remaining seven patients (58%) had worthwhile seizure reduction (Engle Class III). Incomplete lesion resection was significantly associated with worse outcomes. SIGNIFICANCE MRI findings associated with MOGHE are similar to those described in FCD Type IIa. Although more frequent in the frontal lobe, MOGHE also occurred in the temporal lobe or involved multiple lobes. Multilobar or extensive MOGHE MRI lesions are associated with less favorable surgical outcomes. Because this is a rare condition, multicenter studies are necessary to characterize MOGHE further.
Collapse
Affiliation(s)
| | - Marcia Morita-Sherman
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil.,Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Marina M K Alvim
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Barbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, University of Campinas, Campinas, São Paulo, Brazil
| | - Helder Tedeschi
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Enrico Ghizoni
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabio Rogerio
- Department of Pathology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Specchio N, Pepi C, De Palma L, Trivisano M, Vigevano F, Curatolo P. Neuroimaging and genetic characteristics of malformation of cortical development due to mTOR pathway dysregulation: clues for the epileptogenic lesions and indications for epilepsy surgery. Expert Rev Neurother 2021; 21:1333-1345. [PMID: 33754929 DOI: 10.1080/14737175.2021.1906651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Malformation of cortical development (MCD) is strongly associated with drug-resistant epilepsies for which surgery to remove epileptogenic lesions is common. Two notable technological advances in this field are identification of the underlying genetic cause and techniques in neuroimaging. These now question how presurgical evaluation ought to be approached for 'mTORpathies.'Area covered: From review of published primary and secondary articles, the authors summarize evidence to consider focal cortical dysplasia (FCD), tuber sclerosis complex (TSC), and hemimegalencephaly (HME) collectively as MCD mTORpathies. The authors also consider the unique features of these related conditions with particular focus on the practicalities of using neuroimaging techniques currently available to define surgical targets and predict post-surgical outcome. Ultimately, the authors consider the surgical dilemmas faced for each condition.Expert opinion: Considering FCD, TSC, and HME collectively as mTORpathies has some merit; however, a unified approach to presurgical evaluation would seem unachievable. Nevertheless, the authors believe combining genetic-centered classification and morphologic findings using advanced imaging techniques will eventually form the basis of a paradigm when considering candidacy for early surgery.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
43
|
Sun K, Ren Z, Yang D, Wang X, Yu T, Ni D, Qiao L, Xu C, Gao R, Lin Y, Zhang X, Shang K, Chen X, Wang Y, Zhang G. Voxel-based morphometric MRI post-processing and PET/MRI co-registration reveal subtle abnormalities in cingulate epilepsy. Epilepsy Res 2021; 171:106568. [PMID: 33610065 DOI: 10.1016/j.eplepsyres.2021.106568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Diagnostic challenges exist in the presurgical evaluation of patients with magnetic resonance imaging (MRI) negative cingulate epilepsy (CE) because of the heterogeneity in clinical semiology and lack of localizing findings on scalp electroencephalographic (EEG) recordings. We aimed to examine the neuroimaging characteristics in a consecutive cohort of patients with MRI-negative CE with a focus on two image post-processing methods, including the MRI post-processing morphometric analysis program (MAP) and 18F-fluorodeoxyglucose-positron emission tomography-MRI (PET/MRI) co-registration. METHODS Included in this retrospective study were patients with MRI-negative CE who met the following criteria: negative on preoperative MRI, invasive EEG (iEEG) confirmed cingulate gyrus-onset seizures, surgical resection of the cingulate gyrus with/without adjacent cortex, and seizure-free for more than 12 months. MAP and PET/MRI co-registration were performed and investigated by comparison to ictal intracranial EEG findings. Other characteristics obtained from scalp EEG, magnetoencephalography (MEG), iEEG, and pathological study were also reported. RESULTS Ten patients were included, of which eight were diagnosed with anterior CE, one with middle CE, and one with posterior CE. The semiology included fear, embarrassment, vocalization, ictal pouting, asymmetric tonic posture, hypermotor, and automatism. Scalp EEG revealed unilateral or bilateral frontal-temporal onset. MEG localized the dipoles correctly in one patient (1/10). MAP detected subtle abnormalities in regions concordant with iEEG onset in seven patients (7/10) while PET/MRI co-registration revealed focal concordant hypometabolism in five patients (5/10). Combining MAP with PET/MRI co-registration improved the detection rate to 90 % in this cohort. The pathology was focal cortical dysplasia (FCD), including FCD type IIA in three, type IIB in three, and type I in four. CONCLUSION MAP and PET/MRI co-registration show promising results in identifying subtle FCD abnormalities in CE with negative results on conventional MRI, which can be otherwise challenging. More importantly, a combination of MRI post-processing and PET/MRI co-registration can greatly improve the identification of epileptic abnormalities, which can be used as surgical target. MAP and PET/MRI co-registration should be incorporated into the routine presurgical evaluation.
Collapse
Affiliation(s)
- Ke Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiating Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Shang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
McGonigal A, El Youssef N, Bartolomei F, Giusiano B, Guedj E. Interictal 18F-FDG brain PET metabolism in patients with postictal EEG suppression. Epilepsy Behav 2021; 116:107742. [PMID: 33493809 DOI: 10.1016/j.yebeh.2020.107742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Postictal generalized suppression (PGES) may be associated with SUDEP risk. We aimed to study metabolic changes on 18Fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in patients with focal to bilateral (generalized) seizures (GTCS) and PGES on stereoelectroencephalography (SEEG). METHODS We analyzed interictal brain metabolism in a group of 19 patients with widespread postictal suppression (PGES+) associated with SEEG-recorded GTCS. This group was compared to 25 patients without widespread suppression (PGES-) as defined by SEEG, matched for epilepsy localization and lateralization. Frequency of GTCS was observed to be higher in the PGES+ group (high risk group for SUDEP). Analysis of metabolic data was performed by statistical parametric mapping (SPM) on the whole-brain, and principal component analysis (PCA) on AAL (automated anatomical labeling) atlas. RESULTS Statistical parametric mapping showed right temporal pole hypometabolism in the PGES+ group (T-score = 3.90; p < 0.001; k = 185), in comparison to the PGES- group. Principal component analysis showed association between the metabolic values of certain regions of interest and PGES+/PGES- groups, confirmed by a significant difference (p < 0.05) in the values of the right dorsal temporal pole and of the left temporal pole between the two groups. Principal component analysis showed two dimensions significantly related to the PGES+/PGES- partition, involving the following regions: right temporal pole, right parahippocampal gyrus, right Rolandic operculum, bilateral paracentral lobule, right precuneus, right thalamus, right caudate and pallidum, bilateral cerebellum, left temporal pole, left Heschl's gyrus, left calcarine region, and left caudate, with loss of connection in PGES+ patients. Metabolic differences were independent of epilepsy localization and lateralization and persisted after correction for GTCS frequency. SIGNIFICANCE Interictal metabolic changes within a predominantly right-sided network involving temporal lobe and connected cortical and subcortical structures were seen in patients with frequent GTCS presenting widespread postictal suppression.
Collapse
Affiliation(s)
- Aileen McGonigal
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Nada El Youssef
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France
| | - Fabrice Bartolomei
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Public Health Department, Marseille, France
| | - Eric Guedj
- APHM, Timone Hospital, Nuclear Medicine Department, Marseille, France; Aix Marseille Univ, CNRS, Ecole Centrale Marseille, UMR 7249, Institut Fresnel, Marseille, France; Aix Marseille Univ, CERIMED, Marseille, France
| |
Collapse
|
45
|
Stecher X, Schonstedt V, Manterola C, Carreño F, Zamorano F, Velasquez A, Castillo M. Morphometric analysis program: Detection of epileptic foci in young children using an adult normative database: Initial experience. Epilepsia Open 2021; 6:235-238. [PMID: 33681667 PMCID: PMC7918321 DOI: 10.1002/epi4.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
Objective To report our initial experience using an adult-template MAP in drug-resistant focal epilepsy in five children with apparently normal MRI. Methods Patients selected were highly suspicious of harboring focal structural lesions and had negative brain MRI studies. MAP was performed using a locally obtained adult database as a template. Results were reviewed by two neuroradiologists. Pertinence of MAP-positive areas was confirmed by the focal epileptic hypothesis or by pathology when possible (J Neuroradiol, 39, 2012, 87). Visual analysis was performed using Mango Software. MRI studies were reanalyzed at the workstation with knowledge of the clinical suspicion to confirm or discard the possibility of FCD. Results Five patients aged 19-48 months were studied, all with initial 3T MRI studies interpreted as normal. All had focal epileptic hypothesis with coherence of clinical seizure characterization and electroencephalographic findings. In two patients, histology showed type 1 FCD. Due to the age of our subjects, the junction map always highlighted the subcortical white matter in relationship to maturity differences. FCD was identified as asymmetric U-shaped highlighted regions in the junction map. Significance FCD is the most frequent pathology reported in pediatric epilepsy surgery series (Epileptic Disord, 18, 2016, 240). Significant number of FCDs may be overlooked on MRIs, reducing the odds of seizure freedom after surgery (Epilepsy Res, 89, 2010, 310). MAP is an image postprocessing method for enhanced visualization of FCD; however, when using an adult template in developing brains, normal subcortical regions may be highlighted as pathological. Creating a pediatric template is difficult, due to the need for general anesthesia to acquire the MRI database. Here, we were able to show that MAP identified FCDs as asymmetric "U-" shaped highlighted regions in the junction maps of all five patients, which may indicate that obtaining childhood databases for this purpose may not be necessary and that adult ones suffice for diagnosis of FCD.
Collapse
Affiliation(s)
- Ximena Stecher
- Radiology DepartmentClínica Alemana de SantiagoVitacuraChile
- Facultad de MedicinaClínica Alemana ‐ Universidad del DesarrolloSantiagoChile
| | | | - Carla Manterola
- Pediatric DepartmentClínica Alemana de SantiagoVitacuraChile
- Facultad de MedicinaUniversidad de ChileSantiagoChile
| | | | - Francisco Zamorano
- Radiology DepartmentClínica Alemana de SantiagoVitacuraChile
- Facultad de MedicinaClínica Alemana ‐ Universidad del DesarrolloSantiagoChile
- Laboratorio de Neurociencia Social y NeuromodulaciónCentro de Investigación en Complejidad Social (neuroCICS)Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - Alvaro Velasquez
- Facultad de MedicinaClínica Alemana ‐ Universidad del DesarrolloSantiagoChile
- Pediatric DepartmentClínica Alemana de SantiagoVitacuraChile
- Chilean League against epilepsySantiagoChile
| | | |
Collapse
|
46
|
Assessment of localization accuracy and postsurgical prediction of simultaneous 18F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 2021; 31:6974-6982. [PMID: 33638688 DOI: 10.1007/s00330-021-07738-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the accuracies of simultaneous 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) in preoperative localization and the postsurgical prediction. METHODS This retrospective study was performed on ninety-eight patients diagnosed with refractory epilepsy whose presurgical evaluation included [18F]-FDG PET/MRI, with 1-year post-surgery follow-up between August 2016 and December 2018. PET/MRI images were interpreted by two radiologists and a nuclear medicine physician to localize the EOZ using standard visual analysis and asymmetry index based on standard uptake value (SUV). The localization accuracy and predictive performance of simultaneous 18F-FDG PET/MRI based on the surgial pathology and postsurgical outcome were evaluated. RESULTS A total of 41.8% (41/98) patients were found to have a definitely structural abnormality on the MR portion of PET/MRI; 93.9% (92/98) were shown hypometabolism on the PET portion of the hybrid PET/MRI. PET/MRI identified 18 cases with subtle structural abnormalities on MRI re-read. Six percent (6/98) of patients PET/MRI were negative. A total of 65.3% (64/98) patients showed seizure-free at 1-year follow-up after epilepsy surgery. The sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI was 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. Multivariate regression analysis indicated that concordant of EOZ localization between PET/MRI and surgical resection range, which was a good positive predictor of seizure freedom (Engel I) (OR = 14.741, 95% CI 3.934-55.033, p < 0.001). CONCLUSIONS [18F]-FDG PET/MRI used as two combined modalities providing additional sensitivity when detecting possible epileptic foci and will probably improve the surgical outcome. KEY POINTS • Sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI were 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. • Concordance of EOZ localization between PET/MRI and surgical resection range was a good positive predictor of seizure freedom; presurgical [18F]-FDG PET/MRI will probably improve the surgical outcome.
Collapse
|
47
|
Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Iacobelli M, Steven DA, Lam Shin Cheung V, Moran G, Prato FS, Thompson RT, Burneo JG, Anazodo UC, Thiessen JD. An evaluation of the diagnostic equivalence of 18F-FDG-PET between hybrid PET/MRI and PET/CT in drug-resistant epilepsy: A pilot study. Epilepsy Res 2021; 172:106583. [PMID: 33636504 DOI: 10.1016/j.eplepsyres.2021.106583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Hybrid PET/MRI may improve detection of seizure-onset zone (SOZ) in drug-resistant epilepsy (DRE), however, concerns over PET bias from MRI-based attenuation correction (MRAC) have limited clinical adoption of PET/MRI. This study evaluated the diagnostic equivalency and potential clinical value of PET/MRI against PET/CT in DRE. MATERIALS AND METHODS MRI, FDG-PET and CT images (n = 18) were acquired using a hybrid PET/MRI and a CT scanner. To assess diagnostic equivalency, PET was reconstructed using MRAC (RESOLUTE) and CT-based attenuation correction (CTAC) to generate PET/MRI and PET/CT images, respectively. PET/MRI and PET/CT images were compared qualitatively through visual assessment and quantitatively through regional standardized uptake value (SUV) and z-score assessment. Diagnostic accuracy and sensitivity of PET/MRI and PET/CT for SOZ detection were calculated through comparison to reference standards (clinical hypothesis and histopathology, respectively). RESULTS Inter-reader agreement in visual assessment of PET/MRI and PET/CT images was 78 % and 81 %, respectively. PET/MRI and PET/CT were strongly correlated in mean SUV (r = 0.99, p < 0.001) and z-scores (r = 0.92, p < 0.001) across all brain regions. MRAC SUV bias was <5% in most brain regions except the inferior temporal gyrus, temporal pole, and cerebellum. Diagnostic accuracy and sensitivity were similar between PET/MRI and PET/CT (87 % vs. 85 % and 83 % vs. 83 %, respectively). CONCLUSION We demonstrate here that PET/MRI with optimal MRAC can yield similar diagnostic performance as PET/CT. Nevertheless, further exploration of the potential added value of PET/MRI is necessary before clinical adoption of PET/MRI for epilepsy imaging.
Collapse
Affiliation(s)
- Stefan E Poirier
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Benjamin Y M Kwan
- Department of Diagnostic Radiology, Queen's University, Kingston, ON, Canada
| | - Michael T Jurkiewicz
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Samargandy
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Maryssa Iacobelli
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Victor Lam Shin Cheung
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Frank S Prato
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - R Terry Thompson
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Udunna C Anazodo
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada.
| | - Jonathan D Thiessen
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
48
|
Berlangieri SU, Mito R, Semmelroch M, Pedersen M, Jackson G. Bottom-of-sulcus dysplasia: the role of 18F-FDG PET in identifying a focal surgically remedial epileptic lesion. Eur J Hybrid Imaging 2020; 4:23. [PMID: 34191213 PMCID: PMC8218059 DOI: 10.1186/s41824-020-00092-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/01/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Bottom-of-sulcus dysplasia (BOSD) is a type of focal cortical dysplasia and an important cause of intractable epilepsy. While the MRI features of BOSD have been well documented, the contribution of PET to the identification of these small lesions has not been widely explored. The aim of this study was to investigate the role of F-18 fluorodeoxyglucose (18F-FDG) PET in the identification of BOSD. METHODS Twenty patients with BOSD underwent both 18F-FDG PET and structural MRI scans as part of preoperative planning for surgery. Visual PET analysis was performed, and patients were classified as positive if they exhibited a focal or regional hypometabolic abnormality, or negative in the absence of a hypometabolic abnormality. MRI data were reviewed to determine if any structural abnormality characteristic of BOSD were observed before and after co-registration with PET findings. RESULTS PET detected hypometabolic abnormalities consistent with the seizure focus location in 95% (19/20) of cases. Focal abnormalities were detected on 18F-FDG PET in 12/20 (60%) patients, while regional hypometabolism was evident in 7/20 (35%). BOSD lesions were missed in 20% (4/20) of cases upon initial review of MRI scans. Co-registration of 18F-FDG PET with MRI enabled detection of the BOSD in all four cases where the lesion was initially missed. CONCLUSION Our findings show that 18F-FDG PET provides additional clinical value in the localisation and detection of BOSD lesions, when used in conjunction with MRI.
Collapse
Affiliation(s)
- S U Berlangieri
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| | - R Mito
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
| | - M Semmelroch
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M Pedersen
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - G Jackson
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Neurology, Austin Health, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Hassankhani A, Stein JM, Haboosheh AG, Vossough A, Loevner LA, Nabavizadeh SA. Anatomical Variations, Mimics, and Pitfalls in Imaging of Patients with Epilepsy. J Neuroimaging 2020; 31:20-34. [PMID: 33314527 DOI: 10.1111/jon.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022] Open
Abstract
Epilepsy is among one of the most common neurologic disorders. The role of magnetic resonance imaging (MRI) in the diagnosis and management of patients with epilepsy is well established, and most patients with epilepsy are likely to undergo at least one or more MRI examinations in the course of their disease. Recent advances in high-field MRI have enabled high resolution in vivo visualization of small and intricate anatomic structures that are of great importance in the assessment of seizure disorders. Familiarity with normal anatomic variations is essential in the accurate diagnosis and image interpretation, as these variations may be mistaken for epileptogenic foci, leading to unnecessary follow-up imaging, or worse, unnecessary treatment. After a brief overview of normal imaging anatomy of the mesial temporal lobe, this article will review a few important common and uncommon anatomic variations, mimics, and pitfalls that may be encountered in the imaging evaluation of patients with epilepsy.
Collapse
Affiliation(s)
- Alvand Hassankhani
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joel M Stein
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Amit G Haboosheh
- Department of Radiology, Hadassah Ein Karem Hospital, Jerusalem, Israel
| | - Arastoo Vossough
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Laurie A Loevner
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Seyed Ali Nabavizadeh
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
50
|
Kuruva M, Moncayo VM, Peterson RB. PET and SPECT Imaging of Epilepsy: Technical Considerations, Pathologies, and Pitfalls. Semin Ultrasound CT MR 2020; 41:551-561. [DOI: 10.1053/j.sult.2020.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|