1
|
Liu L, Zhao Y, Bu J, Peng S, Li Y, Su P, Li Y. Baicalin and kaempferol alleviates cuprizone-induced demyelination and microglial activation by inhibiting the STAT3 and NF-κB signaling pathways. Int Immunopharmacol 2025; 154:114592. [PMID: 40174341 DOI: 10.1016/j.intimp.2025.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Microglia-mediated neuroinflammation plays a critical role in myelin loss in multiple sclerosis (MS). Baicalin (BAI) and kaempferol (KAE) are known for their potent anti-inflammatory properties; however, their potential to alleviate demyelination and treat MS has rarely been rarely investigated. METHODS Demyelination was induced in mice using cuprizone (CPZ), and behavioral assessments were conducted to evaluate motor function recovery following treatment with BAI and KAE. Myelin loss was assessed using transmission electron microscopy. Immunofluorescence and Western blot analyses were employed to assess microglial activation and neuroinflammatory responses. Moreover, network pharmacology, molecular docking, and Drug Affinity Responsive Target Stability (DARTS) were utilized to identify molecular targets involved in the therapeutic effects of BAI and KAE. RESULTS Both BAI and KAE significantly improved motor function and mitigated myelin loss in CPZ-treated mice. These compounds effectively inhibited CPZ-induced microglial activation and attenuated secretion of pro-inflammatory cytokines. Network pharmacology identified the STAT3 and NF-κB as potential targets of BAI and KAE. In vivo and in vitro validation further confirmed that both compounds significantly suppressed the phosphorylation of STAT3 and NF-κB p65 proteins. CONCLUSION Our findings suggest that BAI and KAE alleviate CPZ-induced demyelination by inhibiting STAT3 and NF-κB signaling pathways, thereby reduced microglial activation and alleviation of neuroinflammation.
Collapse
Affiliation(s)
- Liming Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yufang Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jingjing Bu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shuaijun Peng
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yuyao Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
2
|
Shiraki H, Segi-Nishida E, Suzuki K. Effect of chronic corticosterone administration on acute stress-mediated gene expression in the cortex and hippocampus of male mice. Biochem Biophys Res Commun 2025; 762:151729. [PMID: 40199127 DOI: 10.1016/j.bbrc.2025.151729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Corticosterone plays an important role in the stress response, physiological regulation, and development of stress-related psychiatric disorders. Although several studies have demonstrated that chronic corticosterone induces anxiety- or depressive-related behaviors in mice, it remains unclear whether chronic corticosterone administration affects gene expression in the brain during the stress response. This study investigated whether chronic corticosterone administration has a significant effect on stress-related gene expression in the brain. Therefore, mice were chronically treated with corticosterone in drinking water and gene expression was analyzed by quantitative PCR (qPCR). Moreover, restraint stress was acutely applied as a novel stressor in mice chronically treated with corticosterone in the cortex and hippocampus. We initially found that chronic corticosterone administration altered glucocorticoid signaling-mediated gene expression, such as FK506 binding protein 5 (Fkbp5) and glucocorticoid-inducible kinase 1 (Sgk1), in the cortex and hippocampus of mice. Next, we found that restraint stress exposure elevated Fkbp5 expression in the vehicle group; however, chronic corticosterone administration occluded further induction of Fkbp5 expression after restraint stress exposure. In addition, pro-inflammatory cytokines tumor necrosis factor α (Tnfa) and interleukin-1β (Il1b) mRNA expression in the cortex and hippocampus were remarkably enhanced by restraint stress in corticosterone-treated mice, but not in the vehicle group. Collectively, our results demonstrated that chronic corticosterone administration modulates glucocorticoid signaling and uncovered the robust induction of pro-inflammatory cytokines after restraint stress exposure in chronically corticosterone-treated mice. These mechanisms may be involved in the molecular basis for the onset of stress-related mental illnesses.
Collapse
Affiliation(s)
- Hirono Shiraki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan.
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
3
|
Gazerani P. The neuroplastic brain: current breakthroughs and emerging frontiers. Brain Res 2025:149643. [PMID: 40280532 DOI: 10.1016/j.brainres.2025.149643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Neuroplasticity, the brain's capacity to reorganize itself by forming new neural connections, is central to modern neuroscience. Once believed to occur only during early development, research now shows that plasticity continues throughout the lifespan, supporting learning, memory, and recovery from injury or disease. Substantial progress has been made in understanding the mechanisms underlying neuroplasticity and their therapeutic applications. This overview article examines synaptic plasticity, structural remodeling, neurogenesis, and functional reorganization, highlighting both adaptive (beneficial) and maladaptive (harmful) processes across different life stages. Recent strategies to harness neuroplasticity, ranging from pharmacological agents and lifestyle interventions to cutting-edge technologies like brain-computer interfaces (BCIs) and targeted neuromodulation are evaluated in light of current empirical evidence. Contradictory findings in the literature are addressed, and methodological limitations that hamper widespread clinical adoption are discussed. The ethical and societal implications of deploying novel neuroplasticity-based interventions, including issues of equitable access, data privacy, and the blurred line between treatment and enhancement, are then explored in a structured manner. By integrating mechanistic insights, empirical data, and ethical considerations, the aim is to provide a comprehensive and balanced perspective for researchers, clinicians, and policymakers working to optimize brain health across diverse populations.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 50, 0167 Oslo, Norway.
| |
Collapse
|
4
|
Smiley CE, Pate BS, Bouknight SJ, Harrington EN, Jasnow AM, Wood SK. The functional role of locus coeruleus microglia in the female stress response. Mol Psychiatry 2025:10.1038/s41380-025-02971-9. [PMID: 40188312 DOI: 10.1038/s41380-025-02971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Neuropsychiatric disorders that result from stress exposure are highly associated with central inflammation. Our previous work established that females selectively exhibit heightened proinflammatory cytokine production within the noradrenergic locus coeruleus (LC) along with a hypervigilant behavioral phenotype in response to witnessing social stress. Notably, ablation of microglia using pharmacological techniques prevents this behavioral response. These studies were designed to further investigate the impact of stress-induced neuroimmune signaling on the long-term behavioral and neuronal consequences of social stress exposure in females using chemogenetics. We first characterized the use of an AAV-CD68-Gi-DREADD virus targeted to microglia within the LC and confirmed viral transduction, selectivity, and efficacy. Clozapine-n-oxide (CNO) was used for the suppression of microglial reactivity during acute and chronic exposure to vicarious/witness social defeat in female rats. Chemogenetic-mediated inhibition of microglial reactivity during stress blunted the neuroimmune response to stress and prevented both acute and long-term hypervigilant behavioral responses. Further, a history of microglial suppression during stress prevented the heightened LC activity typically observed in response to stress cues. These studies are among the first to use a chemogenetic approach to inhibit central microglia in vivo and establish LC microglia as a key driver of the behavioral and neuronal responses to social stress in females.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC, 29209, US
- WJB Dorn Veterans Administration Medical Center, Columbia, SC, 29209, US
| | - Brittany S Pate
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC, 29209, US
- University of South Carolina, Department of Exercise Science, Columbia, SC, 29209, US
| | - Samantha J Bouknight
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC, 29209, US
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC, 29209, US
- WJB Dorn Veterans Administration Medical Center, Columbia, SC, 29209, US
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC, 29209, US
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC, 29209, US.
- WJB Dorn Veterans Administration Medical Center, Columbia, SC, 29209, US.
- USC Institute for Cardiovascular Disease Research, Columbia, SC, 29209, US.
| |
Collapse
|
5
|
de Rezende VL, de Aguiar da Costa M, Martins CD, Mathias K, Gonçalves CL, Barichello T, Petronilho F. Systemic Rejuvenating Interventions: Perspectives on Neuroinflammation and Blood-Brain Barrier Integrity. Neurochem Res 2025; 50:112. [PMID: 40035979 DOI: 10.1007/s11064-025-04361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The aging process results in structural, functional, and immunological changes in the brain, which contribute to cognitive decline and increase vulnerability to neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke-related complications. Aging leads to cognitive changes and also affect executive functions. Additionally, it causes neurogenic and neurochemical alterations, such as a decline in dopamine and acetylcholine levels, which also impact cognitive performance. The chronic inflammation caused by aging contributes to the impairment of the blood-brain barrier (BBB), contributing to the infiltration of immune cells and exacerbating neuronal damage. Therefore, rejuvenating therapies such as heterochronic parabiosis, cerebrospinal fluid (CSF) administration, plasma, platelet-rich plasma (PRP), and stem cell therapy have shown potential to reverse these changes, offering new perspectives in the treatment of age-related neurological diseases. This review focuses on highlighting the effects of rejuvenating interventions on neuroinflammation and the BBB.
Collapse
Affiliation(s)
- Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, Mcgovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
6
|
Wang D, Fukuda T, Wu T, Xu X, Isaji T, Gu J. Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: Implicating core fucosylation has an antidepressant potential. J Biol Chem 2025; 301:108230. [PMID: 39864626 PMCID: PMC11879694 DOI: 10.1016/j.jbc.2025.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8-/-) and heterozygous KO (Fut8+/-) mice contrasted to the wild-type (Fut8+/+) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation. Numerous studies indicate that neuroinflammation plays a vital role in the development of depression. Here, we investigated whether core fucosylation regulates depression induced by chronic unpredictable stress (CUS), a well-established model for depression. Our results showed that Fut8+/- mice exhibited depressive-like behaviors and increased neuroinflammation earlier than Fut8+/+ mice. Administration of L-fucose significantly reduced CUS-induced depressive-like behaviors and pro-inflammatory cytokine levels in Fut8+/- mice. The L-fucose treatment produced antidepressant effects by attenuating the complex formation between gp130 and the interleukin-6 (IL-6) receptor and the JAK2/STAT3 signaling pathway. Notably, L-fucose treatment increased dendritic spine density and postsynaptic density protein 95 (PSD-95) expression, which were suppressed in CUS-induced depression. Furthermore, the effects of L-fucose on the CUS-induced depression were also observed in Fut8+/+ mice. Our results clearly demonstrate that L-fucose ameliorates neuroinflammation and synaptic defects in CUS-induced depression, implicating that core fucosylation has significant anti-neuroinflammatory activity and an antidepressant potential.
Collapse
Affiliation(s)
- Dan Wang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
7
|
Broderick MZL, Khan Q, Moradikor N. Understanding the connection between stress and sleep: From underlying mechanisms to therapeutic solutions. PROGRESS IN BRAIN RESEARCH 2025; 291:137-159. [PMID: 40222777 DOI: 10.1016/bs.pbr.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The objective of this chapter is to navigate through the nexus between stress and sleep, highlighting the neurobiological systems that connect them. Starting with an overview of neuroanatomy and physiology of stress and sleep, with a further detailed breakdown of sleep stages and key neuroanatomical centers that are responsible for sleep and wakefulness. Starting with suprachiasmatic nuclei (SCN) in circadian rhythm and sleep regulation overview, with a center point on the molecular systems including the CLOCK/CRY and BMAL1/2/PER1/2 feedback loops. Following this is the neurobiological of stress, specifically the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic-adrenal (SPA) axis and influence on sleep. Vital neural circuits connecting stress and sleep are examined with the attention of the ventral tegmental area (VTA) GABA-somatostatin neurons and the locus coerules in sleep regulation in response to stress. In addition, neuroinflammation's role occurs through the cytokines IL-1β and TNF-α are investigated as a mediator of sleep disturbances caused by stress. It concludes by summarizing the implications of neuroinflammatory modulation in stress-related psychopathologies, emphasizing the opening this provides for interventions that target this inflammation helping to lighten sleep disorder.
Collapse
Affiliation(s)
| | - Qadir Khan
- Faculty of Medicine and Stomatology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia.
| |
Collapse
|
8
|
Tripathi A, Bartosh A, Mata J, Jacks C, Madeshiya AK, Hussein U, Hong LE, Zhao Z, Pillai A. Microglial type I interferon signaling mediates chronic stress-induced synapse loss and social behavior deficits. Mol Psychiatry 2025; 30:423-434. [PMID: 39095477 DOI: 10.1038/s41380-024-02675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Inflammation and synapse loss have been associated with deficits in social behavior and are involved in pathophysiology of many neuropsychiatric disorders. Synapse loss, characterized by reduction in dendritic spines can significantly disrupt synaptic connectivity and neural circuitry underlying social behavior. Chronic stress is known to induce loss of spines and dendrites in the prefrontal cortex (PFC), a brain region implicated in social behavior. However, the underlying mechanisms are not well understood. In the present study, we investigated the role of type I Interferon (IFN-I) signaling in chronic unpredictable stress (CUS)-induced synapse loss and behavior deficits in mice. We found increased expression of type I IFN receptor (IFNAR) in microglia following CUS. Conditional knockout of microglial IFNAR in adult mice rescued CUS-induced social behavior deficits and synapse loss. Bulk RNA sequencing data show that microglial IFNAR deletion attenuated CUS-mediated changes in the expression of genes such as Keratin 20 (Krt20), Claudin-5 (Cldn5) and Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) in the PFC. Cldn5 and Nr4a1 are known for their roles in synaptic plasticity. Krt20 is an intermediate filament protein responsible for the structural integrity of epithelial cells. The reduction in Krt20 following CUS presents a novel insight into the potential contribution of cytokeratin in stress-induced alterations in neuroplasticity. Overall, these results suggest that microglial IFNAR plays a critical role in regulating synaptic plasticity and social behavior deficits associated with chronic stress conditions.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alona Bartosh
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jocelyn Mata
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chale Jacks
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amit Kumar Madeshiya
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Usama Hussein
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Elliot Hong
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
9
|
Belliveau C, Rahimian R, Fakhfouri G, Hosdey C, Simard S, Davoli MA, Mirault D, Giros B, Turecki G, Mechawar N. Evidence of microglial involvement in the childhood abuse-associated increase in perineuronal nets in the ventromedial prefrontal cortex. Brain Behav Immun 2025; 124:321-334. [PMID: 39672240 DOI: 10.1016/j.bbi.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Microglia, known for their diverse roles in the central nervous system, have recently been recognized for their involvement in degrading the extracellular matrix. Perineuronal nets (PNNs), a specialized form of this matrix, are crucial for stabilizing neuronal connections and constraining plasticity. Our group recently reported increased PNN densities in the ventromedial prefrontal cortex (vmPFC) of depressed individuals that died by suicide in adulthood after experiencing childhood abuse (DS-CA) compared to matched controls. To explore potential underlying mechanisms, we employed a comprehensive approach in similar postmortem vmPFC samples, combining a human matrix metalloproteinase and chemokine array, isolation of CD11b-positive microglia and enzyme-linked immunosorbent assays (ELISA). Our findings indicate a significant downregulation of matrix metalloproteinase (MMP)-9 and tissue inhibitors of metalloproteinases (TIMP)-2 in both whole vmPFC grey matter and isolated microglial cells from DS-CA samples. Furthermore, our experiments reveal that a history of child abuse is associated with diminished levels of microglial CX3CR1 and IL33R in both vmPFC whole lysate and CD11b+ isolated cells. However, levels of the CX3CR1 ligand, CX3CL1 (Fractalkine), did not differ between groups. While these data suggest potential long-lasting alterations in microglial markers in the vmPFC of individuals exposed to severe childhood adversity, direct functional assessments were not conducted. Nonetheless, these findings offer insight into how childhood abuse may contribute to PNN alterations via microglial-related mechanisms.
Collapse
Affiliation(s)
- Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Clémentine Hosdey
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Dominique Mirault
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Bruno Giros
- Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada; Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada; Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada; Department of Psychiatry, McGill University, Montreal, Qc, Canada.
| |
Collapse
|
10
|
Tizabi Y, Antonelli MC, Tizabi D, Aschner M. Role of Glial Cells and Receptors in Schizophrenia Pathogenesis. Neurochem Res 2025; 50:85. [PMID: 39869278 DOI: 10.1007/s11064-025-04336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr. Arne Schousboe's passion) and two of their most implicated receptors, toll-like receptors (TLRs), and nicotinic cholinergic receptors, in SCZ pathology with suggestions as potential targets in this devastating neuropsychiatric condition.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| | - Marta C Antonelli
- Facultad de Medicina, UBA, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Buenos Aires, Argentina
| | - Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Kolesnikova TO, Prokhorenko NO, Amikishiev SV, Nikitin VS, Shevlyakov AD, Ikrin AN, Mukhamadeev RR, Buglinina AD, Apukhtin KV, Moskalenko AM, Ilyin NP, de Abreu MS, Demin KA, Kalueff AV. Differential effects of chronic unpredictable stress on behavioral and molecular (cortisol and microglia-related neurotranscriptomic) responses in adult leopard (leo) zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:30. [PMID: 39812898 DOI: 10.1007/s10695-024-01446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Stress plays a key role in mental, neurological, endocrine, and immune disorders. The zebrafish (Danio rerio) is rapidly gaining popularity as s model organism in stress physiology and neuroscience research. Although the leopard (leo) fish are a common outbred zebrafish strain, their behavioral phenotypes and stress responses remain poorly characterized. Here, we examined the effects of a 5-week chronic unpredictable stress (CUS) exposure on adult leo zebrafish behavior, cortisol levels, and brain gene expression. Compared to their unstressed control leo counterparts, CUS-exposed fish showed paradoxically lower anxiety-like, but higher whole-body cortisol levels and altered expression of multiple pro- and anti-inflammatory brain genes. Taken together, these findings suggest that behavioral and physiological (endocrine and genomic) responses to CUS do differ across zebrafish strains. These findings add further complexity to systemic effects of chronic stress in vivo and also underscore the importance of considering the genetic background of zebrafish in stress research.
Collapse
Affiliation(s)
| | - Nikita O Prokhorenko
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Sahil V Amikishiev
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Vadim S Nikitin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Anton D Shevlyakov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Aleksey N Ikrin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Radmir R Mukhamadeev
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | - Kirill V Apukhtin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | - Nikita P Ilyin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
12
|
Lin YW, Cheng SW, Liu WC, Zailani H, Wu SK, Hung MC, Su KP. Chemogenetic targeting TRPV1 in obesity-induced depression: Unveiling therapeutic potential of eicosapentaenoic acid and acupuncture. Brain Behav Immun 2025; 123:771-783. [PMID: 39454693 DOI: 10.1016/j.bbi.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
The comorbidity of obesity and depression has major public health impacts, highlighting the need to understand their shared mechanisms. This study explored the connection between obesity and depression through the transient receptor potential V1 (TRPV1) signaling pathway, using obese/depressed murine models and clinical data. Mice fed a high-fat diet showed altered TRPV1 pathway expression in brain regions of the mice: downregulated in the medial prefrontal cortex (mPFC) and hippocampus, and upregulated in the hypothalamus and amygdala, influencing depression-like behaviors and inflammation. Treatments like eicosapentaenoic acid (EPA) and acupoint catgut embedding (ACE) reversed these effects, similar to observations in Trpv1-/- mice. Furthermore, chemogenetic activation in the ventral mPFC also alleviated depression via TRPV1. In our clinical validation, single nucleotide polymorphisms (SNPs) in TRPV1-related genes (PIK3C2A and PRKCA) were linked to interferon-induced depression. These findings underscore the potential of targeting TRPV1 as a therapeutic approach for obesity-related depression.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| | - Szu-Wei Cheng
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Suet-Kei Wu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
13
|
DeVeaux SA, Vyshnya S, Propsom K, Gbotosho OT, Singh AS, Horning RZ, Sharma M, Jegga AG, Niu L, Botchwey EA, Hyacinth HI. Neuroinflammation underlies the development of social stress induced cognitive deficit in male sickle cell mice. Exp Biol Med (Maywood) 2024; 249:10361. [PMID: 39629138 PMCID: PMC11612828 DOI: 10.3389/ebm.2024.10361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
Cognitive deficit is a debilitating complication of sickle cell disease (SCD), with a multifactorial etiopathogenesis. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Male Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition and fear conditioning tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that social stress induces cognitive deficit in SS mice, concurrently with neuroinflammation and lipid dysregulation.
Collapse
Affiliation(s)
- S’Dravious A. DeVeaux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Katherine Propsom
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Asem S. Singh
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert Z. Horning
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mihika Sharma
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, OH, United States
| | - Anil G. Jegga
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, OH, United States
| | - Liang Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
14
|
Burke MR, Sotiropoulos I, Waites CL. The multiple roles of chronic stress and glucocorticoids in Alzheimer's disease pathogenesis. Trends Neurosci 2024; 47:933-948. [PMID: 39307629 PMCID: PMC11563862 DOI: 10.1016/j.tins.2024.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 11/15/2024]
Abstract
Chronic stress and the accompanying long-term elevation of glucocorticoids (GCs), the stress hormones of the body, increase the risk and accelerate the progression of Alzheimer's disease (AD). Signatures of AD include intracellular tau (MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A growing body of work indicates that stress and GCs initiate cellular processes underlying these pathologies through dysregulation of protein homeostasis and trafficking, mitochondrial bioenergetics, and response to damage-associated stimuli. In this review, we integrate findings from mechanistic studies in rodent and cellular models, wherein defined chronic stress protocols or GC administration have been shown to elicit AD-related pathology. We specifically discuss the effects of chronic stress and GCs on tau pathogenesis, including hyperphosphorylation, aggregation, and spreading, amyloid precursor protein (APP) processing and trafficking culminating in Aβ production, immune priming by proinflammatory cytokines and disease-associated molecular patterns, and alterations to glial cell and blood-brain barrier (BBB) function.
Collapse
Affiliation(s)
- Mia R Burke
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Pathobiology and Mechanisms of Disease Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Zhang LL, Cheng P, Chu YQ, Zhou ZM, Hua R, Zhang YM. The microglial innate immune receptor TREM2 participates in fear memory formation through excessive prelimbic cortical synaptic pruning. Front Immunol 2024; 15:1412699. [PMID: 39544929 PMCID: PMC11560470 DOI: 10.3389/fimmu.2024.1412699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Fear memory formation has been implicated in fear- and stress-related psychiatric disorders, including post-traumatic stress disorder (PTSD) and phobias. Synapse deficiency and microglial activation are common among patients with PTSD, and induced in animal models of fear conditioning. Increasing studies now focus on explaining the specific mechanisms between microglia and synapse deficiency. Though newly-identified microglia regulator triggering receptor expressed on myeloid cells 2 (TREM2) plays a role in microglial phagocytic activity, its role in fear-formation remains unknown. Methods We successfully constructed a fear- formation model by foot-shock. Four days after foot-shock, microglial capacity of synaptic pruning was investigated via western blotting, immunofluorescence and Golgi-Cox staining. Prelimbic chemical deletion or microglia inhibition was performed to detect the role of microglia in synaptic loss and neuron activity. Finally, Trem2 knockout mice or wild-type mice with Trem2 siRNA injection were exposed to foot-shock to identify the involvement of TREM2 in fear memory formation. Results The results herein indicate that the foot-shock protocol in male mice resulted in a fear formation model. Mechanistically, fear conditioning enhanced the microglial capacity for engulfing synapse materials, and led to glutamatergic neuron activation in the prelimbic cortex. Prelimbic chemical deletion or microglia inhibition improved fear memory formation. Further investigation demonstrated that TREM2 regulates microglial phagocytosis, enhancing synaptic pruning. Trem2 knockout mice showed remarkable reductions in prelimbic synaptic pruning and reduced neuron activation, with decreased fear memory formation. Discussion Our cumulative results suggest that prelimbic TREM2-mediated excessive microglial synaptic pruning is involved in the fear memory formation process, leading to development of abnormal stress-related behavior.
Collapse
Affiliation(s)
- Le-le Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-qing Chu
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zi-ming Zhou
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong-mei Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Malau IA, Chang JPC, Lin YW, Chang CC, Chiu WC, Su KP. Omega-3 Fatty Acids and Neuroinflammation in Depression: Targeting Damage-Associated Molecular Patterns and Neural Biomarkers. Cells 2024; 13:1791. [PMID: 39513898 PMCID: PMC11544853 DOI: 10.3390/cells13211791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.
Collapse
Grants
- NSTC 109-2320-B-038-057-MY3 the National Science and Technology Council (NSTC), Taiwan
- NSTC 110-2321-B-006-004 the National Science and Technology Council (NSTC), Taiwan
- NSTC 110-2811-B-039-507 the National Science and Technology Council (NSTC), Taiwan
- NSTC 110-2320-B-039-048-MY2 the National Science and Technology Council (NSTC), Taiwan
- 110-2320-B-039-047-MY3 the National Science and Technology Council (NSTC), Taiwan
- 110-2813-C-039-327-B the National Science and Technology Council (NSTC), Taiwan
- 110-2314-B-039-029-MY3 the National Science and Technology Council (NSTC), Taiwan
- 111-2321-B-006-008 the National Science and Technology Council (NSTC), Taiwan
- 111-2314-B-039-041-MY3 the National Science and Technology Council (NSTC), Taiwan
- 113-2314-B-039-046 the National Science and Technology Council (NSTC), Taiwan
- 113-2923-B-039-001-MY3 the National Science and Technology Council (NSTC), Taiwan
- ANHRF 111-52 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 110-13 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 112-24 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 112-47 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 113-24 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 113-38 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 113-40 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02 the China Medical University, Taichung, Taiwan
- CMU 110-N-17 the China Medical University, Taichung, Taiwan
- CMU 111-SR-73 the China Medical University, Taichung, Taiwan
- DMR-110-124 the China Medical University Hospital, Taichung, Taiwan
- 111-245 the China Medical University Hospital, Taichung, Taiwan
- 112-097 the China Medical University Hospital, Taichung, Taiwan
- 112-086 the China Medical University Hospital, Taichung, Taiwan
- 112-109 the China Medical University Hospital, Taichung, Taiwan
- 112-232 the China Medical University Hospital, Taichung, Taiwan
- DMR-HHC-109-11 the China Medical University Hospital, Taichung, Taiwan
- HHC-109-12 the China Medical University Hospital, Taichung, Taiwan
- HHC-110-10 the China Medical University Hospital, Taichung, Taiwan
- HHC-111-8 the China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Ikbal Andrian Malau
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (I.A.M.); (J.P.-C.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (I.A.M.); (J.P.-C.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
- Child Psychiatry Division, Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science and Chinese Medicine Research Center, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Chen Chang
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (I.A.M.); (J.P.-C.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| |
Collapse
|
17
|
Goodman EJ, DiSabato DJ, Sheridan JF, Godbout JP. Novel microglial transcriptional signatures promote social and cognitive deficits following repeated social defeat. Commun Biol 2024; 7:1199. [PMID: 39341879 PMCID: PMC11438916 DOI: 10.1038/s42003-024-06898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Chronic stress is associated with anxiety and cognitive impairment. Repeated social defeat (RSD) in mice induces anxiety-like behavior driven by microglia and the recruitment of inflammatory monocytes to the brain. Nonetheless, it is unclear how microglia communicate with other cells to modulate the physiological and behavioral responses to stress. Using single-cell (sc)RNAseq, we identify novel, to the best of our knowledge, stress-associated microglia in the hippocampus defined by RNA profiles of cytokine/chemokine signaling, cellular stress, and phagocytosis. Microglia depletion with a CSF1R antagonist (PLX5622) attenuates the stress-associated profile of leukocytes, endothelia, and astrocytes. Furthermore, RSD-induced social withdrawal and cognitive impairment are microglia-dependent, but social avoidance is microglia-independent. Furthermore, single-nuclei (sn)RNAseq shows robust responses to RSD in hippocampal neurons that are both microglia-dependent and independent. Notably, stress-induced CREB, oxytocin, and glutamatergic signaling in neurons are microglia-dependent. Collectively, these stress-associated microglia influence transcriptional profiles in the hippocampus related to social and cognitive deficits.
Collapse
Affiliation(s)
- Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Damon J DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
18
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
19
|
Smiley CE, Pate BS, Bouknight SJ, Harrington EN, Jasnow AM, Wood SK. The functional role of locus coeruleus microglia in the female stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575076. [PMID: 38260568 PMCID: PMC10802589 DOI: 10.1101/2024.01.10.575076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuropsychiatric disorders that result from stress exposure are highly associated with central inflammation. Our previous work established that females selectively exhibit heightened proinflammatory cytokine production within the noradrenergic locus coeruleus (LC) along with a hypervigilant behavioral phenotype in response to witnessing social stress, and ablation of microglia using pharmacological techniques prevents this behavioral response. These studies were designed to further investigate the impact of stress-induced neuroimmune signaling on the long-term behavioral and neuronal consequences of social stress exposure in females using chemogenetics. We first characterized the use of an AAV-CD68-Gi-DREADD virus targeted to microglia within the LC and confirmed viral transduction, selectivity, and efficacy. Clozapine-n-oxide (CNO) was used for the suppression of microglial reactivity during acute and chronic exposure to vicarious/witness social defeat in female rats. Chemogenetic-mediated inhibition of microglial reactivity during stress blunted the neuroimmune response to stress and prevented both acute and long-term hypervigilant behavioral responses. Further, a history of microglial suppression during stress prevented the heightened LC activity typically observed in response to stress cues. These studies are among the first to use a chemogenetic approach to inhibit microglia within the female brain in vivo and establish LC inflammation as a key mechanism underlying the behavioral and neuronal responses to social stress in females.
Collapse
Affiliation(s)
- Cora E. Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Brittany S. Pate
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- University of South Carolina, Department of Exercise Science, Columbia, SC 29209
| | - Samantha J. Bouknight
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Evelynn N. Harrington
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Aaron M. Jasnow
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Susan K. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| |
Collapse
|
20
|
Anwar MM, Pérez-Martínez L, Pedraza-Alva G. Exploring the Significance of Microglial Phenotypes and Morphological Diversity in Neuroinflammation and Neurodegenerative Diseases: From Mechanisms to Potential Therapeutic Targets. Immunol Invest 2024; 53:891-946. [PMID: 38836373 DOI: 10.1080/08820139.2024.2358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Studying various microglial phenotypes and their functions in neurodegenerative diseases is crucial due to the intricate nature of their phenomics and their vital immunological role. Microglia undergo substantial phenomic changes, encompassing morphological, transcriptional, and functional aspects, resulting in distinct cell types with diverse structures, functions, properties, and implications. The traditional classification of microglia as ramified, M1 (proinflammatory), or M2 (anti-inflammatory) phenotypes is overly simplistic, failing to capture the wide range of recently identified microglial phenotypes in various brain regions affected by neurodegenerative diseases. Altered and activated microglial phenotypes deviating from the typical ramified structure are significant features of many neurodegenerative conditions. Understanding the precise role of each microglial phenotype is intricate and sometimes contradictory. This review specifically focuses on elucidating recent modifications in microglial phenotypes within neurodegenerative diseases. Recognizing the heterogeneity of microglial phenotypes in diseased states can unveil novel therapeutic strategies for targeting microglia in neurodegenerative diseases. Moreover, the exploration of the use of healthy isolated microglia to mitigate disease progression has provided an innovative perspective. In conclusion, this review discusses the dynamic landscape of mysterious microglial phenotypes, emphasizing the need for a nuanced understanding to pave the way for innovative therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Leonor Pérez-Martínez
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| |
Collapse
|
21
|
Charoensaensuk V, Yeh WL, Huang BR, Hsu TC, Xie SY, Chen CW, Wang YW, Yang LY, Tsai CF, Lu DY. Repetitive Administration of Low-Dose Lipopolysaccharide Improves Repeated Social Defeat Stress-Induced Behavioral Abnormalities and Aberrant Immune Response. J Neuroimmune Pharmacol 2024; 19:38. [PMID: 39066908 DOI: 10.1007/s11481-024-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Repetitive exposure of innate immune cells to a subthreshold dosage of endotoxin components may modulate inflammatory responses. However, the regulatory mechanisms in the interactions between the central nervous system (CNS) and the immune system remain unclear. This study aimed to investigate the effects of lipopolysaccharide (LPS) preconditioning in repeated social defeat stress (RSDS)-induced abnormal immune responses and behavioral impairments. This study aimed to elucidate the mechanisms that underlie the protective effects of repeated administration of a subthreshold dose LPS on behavioral impairments using the RSDS paradigm. LPS preconditioning improved abnormal behaviors in RSDS-defeated mice, accompanied by decreased monoamine oxidases and increased glucocorticoid receptor expression in the hippocampus. In addition, pre-treated with LPS significantly decreased the recruited peripheral myeloid cells (CD11b+CD45hi), mainly circulating inflammatory monocytes (CD11b+CD45hiLy6ChiCCR2+) into the brain in response to RSDS challenge. Importantly, we found that LPS preconditioning exerts its protective properties by regulating lipocalin-2 (LCN2) expression in microglia, which subsequently induces expressions of chemokine CCL2 and pro-inflammatory cytokine. Subsequently, LPS-preconditioning lessened the resident microglia population (CD11b+CD45intCCL2+) in the brains of the RSDS-defeated mice. Moreover, RSDS-associated expressions of leukocytes (CD11b+CD45+CCR2+) and neutrophils (CD11b+CD45+Ly6G+) in the bone marrow, spleen, and blood were also attenuated by LPS-preconditioning. In particular, LPS preconditioning also promoted the expression of endogenous antioxidants and anti-inflammatory proteins in the hippocampus. Our results demonstrate that LPS preconditioning ameliorates lipocalin 2-associated microglial activation and aberrant immune response and promotes the expression of endogenous antioxidants and anti-inflammatory protein, thereby maintaining the homeostasis of pro-inflammation/anti-inflammation in both the brain and immune system, ultimately protecting the mice from RSDS-induced aberrant immune response and behavioral changes.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Che Hsu
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
22
|
Zhou Y, Wang X, Yin W, Li Y, Guo Y, Chen C, Boltze J, Liesz A, Sparwasser T, Wen D, Yu W, Li P. Perioperative stroke deteriorates white matter integrity by enhancing cytotoxic CD8 + T-cell activation. CNS Neurosci Ther 2024; 30:e14747. [PMID: 38973085 PMCID: PMC11227991 DOI: 10.1111/cns.14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 07/09/2024] Open
Abstract
AIM To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8+ T-cell infiltration in the white matter injury of perioperative stroke (PIS). METHODS Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis. RESULTS We found surgery aggravated white matter injury and deteriorated sensorimotor deficits up to 28 days following PIS. The PIS mice exhibited significantly increased activation of peripheral and central CD8+ T cells, while significantly reduced numbers of mature oligodendrocytes compared to IS mice. Neutralizing CD8+ T cells partly reversed the aggravated demyelination following PIS. Pharmacological blockage or genetic deletion of receptor-interacting protein kinase 1 (RIPK1) activity could alleviate CD8+ T-cell infiltration and demyelination in PIS mice. CONCLUSION Surgery exacerbates demyelination and worsens neurological function by promoting infiltration of CD8+ T cells and microglia necroptosis, suggesting that modulating interactions of CD8+ T cells and microglia could be a novel therapeutic target of long-term neurological deficits of PIS.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Xin Wang
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Wen Yin
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Yan Li
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Chen Chen
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Tim Sparwasser
- Institute of Medical Microbiology and HygieneUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
- Research Center for Immunotherapy (FZI)University Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Daxiang Wen
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Weifeng Yu
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Peiying Li
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
- Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Outcomes Research ConsortiumClevelandOhioUSA
| |
Collapse
|
23
|
Chan SY, Fitzgerald E, Ngoh ZM, Lee J, Chuah J, Chia JSM, Fortier MV, Tham EH, Zhou JH, Silveira PP, Meaney MJ, Tan AP. Examining the associations between microglia genetic capacity, early life exposures and white matter development at the level of the individual. Brain Behav Immun 2024; 119:781-791. [PMID: 38677627 DOI: 10.1016/j.bbi.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
There are inter-individual differences in susceptibility to the influence of early life experiences for which the underlying neurobiological mechanisms are poorly understood. Microglia play a role in environmental surveillance and may influence individual susceptibility to environmental factors. As an index of neurodevelopment, we estimated individual slopes of mean white matter fractional anisotropy (WM-FA) across three time-points (age 4.5, 6.0, and 7.5 years) for 351 participants. Individual variation in microglia reactivity was derived from an expression-based polygenic score(ePGS) comprised of Single Nucleotide Polymorphisms (SNPs) functionally related to the expression of microglia-enriched genes.A higher ePGS denotes an increased genetic capacity for the expression of microglia-related genes, and thus may confer a greater capacity to respond to the early environment and to influence brain development. We hypothesized that this ePGS would associate with the WM-FA index of neurodevelopment and moderate the influence of early environmental factors.Our findings show sex dependency, where a significant association between WM-FA and microglia ePGS was only obtained for females.We then examined associations with perinatal factors known to decrease (optimal birth outcomes and familial conditions) or increase (systemic inflammation) the risk for later mental health problems.In females, individuals with high microglia ePGS showed a negative association between systemic inflammation and WM-FA and a positive association between more advantageous environmental conditions and WM-FA. The microglia ePGS in females thus accounted for variations in the influence of the quality of the early environment on WM-FA.Finally, WM-FA slopes mediated the association of microglia ePGS with interpersonal problems and social hostility in females. Our findings suggest the genetic capacity for microglia function as a potential factor underlying differential susceptibility to early life exposuresthrough influences on neurodevelopment.
Collapse
Affiliation(s)
- Shi Yu Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada
| | - Zhen Ming Ngoh
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Janice Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Jasmine Chuah
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Joanne S M Chia
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore 229899, Singapore; Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Elizabeth H Tham
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Juan H Zhou
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore; Department of Diagnostic Imaging, National University Health System, 1E Kent Ridge Rd, Singapore 119228, Singapore.
| |
Collapse
|
24
|
Valenza M, Facchinetti R, Torazza C, Ciarla C, Bronzuoli MR, Balbi M, Bonanno G, Popoli M, Steardo L, Milanese M, Musazzi L, Bonifacino T, Scuderi C. Molecular signatures of astrocytes and microglia maladaptive responses to acute stress are rescued by a single administration of ketamine in a rodent model of PTSD. Transl Psychiatry 2024; 14:209. [PMID: 38796504 PMCID: PMC11127980 DOI: 10.1038/s41398-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors. Here, we used a recently validated rodent model of post-traumatic stress disorder in which rats can be categorized as resilient or vulnerable after acute inescapable footshock stress. We then investigated the functional, molecular, and morphological determinants of stress resilience and vulnerability in the prefrontal cortex, focusing on glial and neuronal cells. In addition, we examined the effects of a single subanesthetic dose of ketamine, a fast-acting antidepressant recently approved for the treatment of resistant depression and proposed for other stress-related psychiatric disorders. The present results suggest a prompt glial cell response and activation of the NF-κB pathway after acute stress, leading to an increase in specific cytokines such as IL-18 and TNF-α. This response persists in vulnerable individuals and is accompanied by a significant change in the levels of critical glial proteins such as S100B, CD11b, and CX43, brain trophic factors such as BDNF and FGF2, and proteins related to dendritic arborization and synaptic architecture such as MAP2 and PSD95. Administration of ketamine 24 h after the acute stress event rescued many of the changes observed in vulnerable rats, possibly contributing to support brain homeostasis. Overall, our results suggest that pivotal events, including reactive astrogliosis, changes in brain trophic factors, and neuronal damage are critical determinants of vulnerability to acute traumatic stress and confirm the therapeutic effect of acute ketamine against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Claudia Ciarla
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Warren A, Nyavor Y, Beguelin A, Frame LA. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: a narrative review. Front Immunol 2024; 15:1365871. [PMID: 38756771 PMCID: PMC11096445 DOI: 10.3389/fimmu.2024.1365871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Aaron Beguelin
- The Department of Biotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
26
|
He H, He H, Mo L, Yuan Q, Xiao C, Ma Q, Yi S, Zhou T, You Z, Zhang J. Gut microbiota regulate stress resistance by influencing microglia-neuron interactions in the hippocampus. Brain Behav Immun Health 2024; 36:100729. [PMID: 38317780 PMCID: PMC10840119 DOI: 10.1016/j.bbih.2024.100729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Communication among the brain, gut and microbiota in the gut is known to affect the susceptibility to stress, but the mechanisms involved are unclear. Here we demonstrated that stress resistance in mice was associated with more abundant Lactobacillus and Akkermansia in the gut, but less abundant Bacteroides, Alloprevotella, Helicobacter, Lachnoclostridium, Blautia, Roseburia, Colidextibacter and Lachnospiraceae NK4A136. Stress-sensitive animals showed higher permeability and stronger immune responses in their colon, as well as higher levels of pro-inflammatory cytokines in serum. Their hippocampus also showed more extensive microglial activation, abnormal interactions between microglia and neurons, and lower synaptic plasticity. Transplanting fecal microbiota from stress-sensitive mice into naïve ones perturbed microglia-neuron interactions and impaired synaptic plasticity in the hippocampus, translating to more depression-like behavior after stress exposure. Conversely, transplanting fecal microbiota from stress-resistant mice into naïve ones protected microglia from activation and preserved synaptic plasticity in the hippocampus, leading to less depression-like behavior after stress exposure. These results suggested that gut microbiota may influence resilience to chronic psychological stress by regulating microglia-neuron interactions in the hippocampus.
Collapse
Affiliation(s)
- Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hui He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Li Mo
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qiman Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Saini Yi
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
27
|
Magalhães DM, Mampay M, Sebastião AM, Sheridan GK, Valente CA. Age-related impact of social isolation in mice: Young vs middle-aged. Neurochem Int 2024; 174:105678. [PMID: 38266657 DOI: 10.1016/j.neuint.2024.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1β, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; School of Applied Sciences, University of Brighton, Brighton, UK
| | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
28
|
Yi L, Lin X, She X, Gao W, Wu M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin Med J (Engl) 2024; 137:394-407. [PMID: 38238191 PMCID: PMC10876262 DOI: 10.1097/cm9.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 02/21/2024] Open
Abstract
ABSTRACT Gliomas tend to have a poor prognosis and are the most common primary malignant tumors of the central nervous system. Compared with patients with other cancers, glioma patients often suffer from increased levels of psychological stress, such as anxiety and fear. Chronic stress (CS) is thought to impact glioma profoundly. However, because of the complex mechanisms underlying CS and variability in individual tolerance, the role of CS in glioma remains unclear. This review suggests a new proposal to redivide the stress system into two parts. Neuronal activity is dominant upstream. Stress-signaling molecules produced by the neuroendocrine system are dominant downstream. We discuss the underlying molecular mechanisms by which CS impacts glioma. Potential pharmacological treatments are also summarized from the therapeutic perspective of CS.
Collapse
Affiliation(s)
- Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
29
|
He H, Zhao Z, Xiao C, Li L, Liu YE, Fu J, Liao H, Zhou T, Zhang J. Gut microbiome promotes mice recovery from stress-induced depression by rescuing hippocampal neurogenesis. Neurobiol Dis 2024; 191:106396. [PMID: 38176570 DOI: 10.1016/j.nbd.2023.106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
Studies from rodents to primates and humans indicate that individuals vary in how resilient they are to stress, and understanding the basis of these variations may help improve treatments for depression. Here we explored the potential contribution of the gut microbiome to such variation. Mice were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks then allowed to recover for 3 weeks, after which they were subjected to behavioral tests and categorized as showing low or high stress resilience. The two types of mouse were compared in terms of hippocampal gene expression using RNA sequencing, fecal microbiomes using 16S RNA sequencing, and extent of neurogenesis in the hippocampus using immunostaining of brain sections. Fecal microbiota were transplanted from either type of mouse into previously stress-exposed and stress-naïve animals, and the effects of the transplantation on stress-induced behaviors and neurogenesis in the hippocampus were examined. Finally, we blocked neurogenesis using temozolomide to explore the role of neurogenesis promoted by fecal microbiota transplantation in enhancing resilience to stress. Results showed that highly stress-resilient mice, but not those with low resilience, improved significantly on measures of anhedonia, behavioral despair, and anxiety after 3-week recovery from CUMS. Their feces showed greater abundance of Lactobacillus, Bifidobacterium and Romboutsia than feces from mice with low stress resilience, as well as lower abundance of Staphylococcus, Psychrobacter and Corynebacterium. Similarly, highly stress-resilient mice showed greater neurogenesis in hippocampus than animals with low stress resilience. Transplanting fecal microbiota from mice with high stress resilience into previously CUMS-exposed recipients rescued neurogenesis in hippocampus, facilitating recovery from stress-induced depression and cognitive decline. Blockade of neurogenesis with temozolomide abolished recovery of recipients from CUMS-induced depression and cognitive decline in mice transplanted with fecal microbiota from mice with high stress resilience. In conclusion, our results suggested that remodeling of the gut microbiome after stress may reverse stress-induced impairment of hippocampal neurogenesis and thereby promote recovery from stress-induced depression.
Collapse
Affiliation(s)
- Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liangyuan Li
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yu-E Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Juan Fu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Hongyu Liao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
30
|
DeVeaux SA, Vyshnya S, Propsom K, Gbotosho OT, Singh AS, Horning RZ, Sharma M, Jegga AG, Niu L, Botchwey EA, Hyacinth HI. Neuroinflammation underlies the development of social stress induced cognitive deficit in sickle cell disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577074. [PMID: 38328164 PMCID: PMC10849745 DOI: 10.1101/2024.01.24.577074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cognitive deficit is a debilitating complication of SCD with multifactorial pathobiology. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition (NOR) and fear conditioning (FC) tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that neuroinflammation and lipid dysregulation are potential underlying mechanisms of social stress-related cognitive deficit in SS mice.
Collapse
Affiliation(s)
- S’Dravious A. DeVeaux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katherine Propsom
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Asem S. Singh
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert Z. Horning
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mihika Sharma
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Liang Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
31
|
Chen K, Qi X, Zhu LL, Li ML, Cong B, Li YM. Quantitative analysis of microglia morphological changes in the hypothalamus of chronically stressed rats. Brain Res Bull 2024; 206:110861. [PMID: 38141789 DOI: 10.1016/j.brainresbull.2023.110861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Based on the successful establishment of a rat model of chronic restraint stress, we used multiple algorithms to quantify the morphological changes of rat hypothalamic microglia from various perspectives, providing a pathomorphological basis for the subsequent study of molecular mechanisms of hypothalamic stress injury, such as neuroinflammation. To verify the successful establishment of the chronic stress model, an enzyme-linked immunosorbent assay was performed to detect serum glucocorticoid levels. Microglia labeled with Iba1 in frozen sections of rat hypothalamus were scanned and photographed at multiple levels using confocal microscopy. Subsequently, images were processed for external contouring and skeletonization, and morphological indices of microglia were calculated and analyzed using fractal, skeleton, and Sholl analysis. In addition, the co-expression of CD68 (a marker that can reflect phagocytic activity) and Iba1 was observed by immunofluorescence technique. Compared with the control group, microglia in the chronic stress group displayed reduced fractal dimension and lacunarity, increased density and circularity, enlarged soma areas, and shortened and reduced branches. Sholl analysis confirmed the reduced complexity of microglia following chronic stress. Meanwhile, microglia CD68 increased significantly, indicating that the microglia in the chronic stress group have greater phagocytosis activity. In summary, chronic restraint stress promoted the conversion of microglia in the rat hypothalamus to a less complex form, manifested as larger soma, shorter and fewer branches, more uniform and dense texture, and increased circularity; indeed, the shape of these microglia resembled that of amoeba and they displayed strong phagocytosis activity.
Collapse
Affiliation(s)
- Ke Chen
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Xin Qi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Lin-Lin Zhu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Mei-Li Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China.
| | - Ying-Min Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, 050017 Shijiazhuang, China.
| |
Collapse
|
32
|
Gorthy AS, Balleste AF, Placeres-Uray F, Atkins CM. Chronic Stress in Early Development and Effects on Traumatic Brain Injury Outcome. ADVANCES IN NEUROBIOLOGY 2024; 42:179-204. [PMID: 39432043 PMCID: PMC11556197 DOI: 10.1007/978-3-031-69832-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
In recent years, significant advances have been made in the study of mild traumatic brain injury (mTBI). Complete recovery from mTBI normally requires days to weeks, yet a subset of the population suffers from symptoms for weeks to months after injury. The risk factors for these prolonged symptoms have not yet been fully understood. In this chapter, we address one proposed risk factor, early life stress (ELS) and its influence on mTBI recovery. To study the effects of ELS on mTBI recovery, accepted animal models of ELS, including maternal separation, limited bedding and nesting, and chronic unpredictable stress, have been implemented. Combining these ELS models with standardized mTBI models, such as fluid percussion injury or controlled cortical impact, has allowed for a deeper understanding of the neuronal, hormonal, and cognitive changes that occur after mTBI following ELS. These preclinical findings are being used to understand how adverse childhood experiences may predispose a subset of individuals to poorer recovery after mTBI.
Collapse
Affiliation(s)
- Aditi S Gorthy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa F Balleste
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fabiola Placeres-Uray
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
33
|
Yang EJ, Frolinger T, Iqbal U, Estill M, Shen L, Trageser KJ, Pasinetti GM. The role of the Toll like receptor 4 signaling in sex-specific persistency of depression-like behavior in response to chronic stress. Brain Behav Immun 2024; 115:169-178. [PMID: 37838079 PMCID: PMC11146676 DOI: 10.1016/j.bbi.2023.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023] Open
Abstract
Chronic stress is a major risk factor for Major Depressive Disorder (MDD), and it has been shown to impact the immune system and cause microglia activation in the medial prefrontal cortex (mPFC) involved in the pathogenesis of depression. The aim of this study is to further investigate cellular and molecular mechanisms underlying persistent depression behavior in sex specific manner, which is observed clinically. Here, we report that both male and female mice exhibited depression-like behavior following exposure to chronic stress. However, only female mice showed persistent depression-like behavior, which was associated with microglia activation in mPFC, characterized by distinctive alterations in the phenotype of microglia. Given these findings, to further investigate the underlying molecular mechanisms associated with persistent depression-like behavior and microglia activation in female mice, we used translating-ribosome affinity purification (TRAP). We find that Toll like receptor 4 (TLR4) signaling is casually related to persistent depression-like behavior in female mice. This is supported by the evidence that the fact that genetic ablation of TLR4 expression in microglia significantly reduced the persistent depression-like behavior to baseline levels in female mice. This study tentatively supports the hypothesis that the TLR4 signaling in microglia may be responsible for the sex differences in persistent depression-like behavior in female.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Umar Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468, United States.
| |
Collapse
|
34
|
Yang EJ, Frolinger T, Iqbal UH, Murrough J, Pasinetti GM. The Bioactive Dietary Polyphenol Preparation Alleviates Depression and Anxiety-Like Behaviors by Modulating the Regional Heterogeneity of Microglia Morphology. Mol Nutr Food Res 2023; 67:e2300156. [PMID: 37439457 PMCID: PMC10787035 DOI: 10.1002/mnfr.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Indexed: 07/14/2023]
Abstract
SCOPE The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. METHODS AND RESULTS The study finds that treatment with BDPP significantly decreases depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. The study also finds that BDPP treatment reverses microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. CONCLUSION The findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway may provide a new avenue for preventing the manifestation of psychiatric impairments including stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Umar Haris Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| |
Collapse
|
35
|
Zhang F, Liu M, Tuo J, Zhang L, Zhang J, Yu C, Xu Z. Levodopa-induced dyskinesia: interplay between the N-methyl-D-aspartic acid receptor and neuroinflammation. Front Immunol 2023; 14:1253273. [PMID: 37860013 PMCID: PMC10582719 DOI: 10.3389/fimmu.2023.1253273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of middle-aged and elderly people, clinically characterized by resting tremor, myotonia, reduced movement, and impaired postural balance. Clinically, patients with PD are often administered levodopa (L-DOPA) to improve their symptoms. However, after years of L-DOPA treatment, most patients experience complications of varying severity, including the "on-off phenomenon", decreased efficacy, and levodopa-induced dyskinesia (LID). The development of LID can seriously affect the quality of life of patients, but its pathogenesis is unclear and effective treatments are lacking. Glutamic acid (Glu)-mediated changes in synaptic plasticity play a major role in LID. The N-methyl-D-aspartic acid receptor (NMDAR), an ionotropic glutamate receptor, is closely associated with synaptic plasticity, and neuroinflammation can modulate NMDAR activation or expression; in addition, neuroinflammation may be involved in the development of LID. However, it is not clear whether NMDA receptors are co-regulated with neuroinflammation during LID formation. Here we review how neuroinflammation mediates the development of LID through the regulation of NMDA receptors, and assess whether common anti-inflammatory drugs and NMDA receptor antagonists may be able to mitigate the development of LID through the regulation of central neuroinflammation, thereby providing a new theoretical basis for finding new therapeutic targets for LID.
Collapse
Affiliation(s)
- Fanshi Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
36
|
Monsour M, Lee JY, Borlongan CV. An Understated Comorbidity: The Impact of Homelessness on Traumatic Brain Injury. Neurotherapeutics 2023; 20:1446-1456. [PMID: 37639189 PMCID: PMC10684446 DOI: 10.1007/s13311-023-01419-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Traumatic brain injury (TBI), a neurovascular injury caused by external force, is a common diagnosis among veterans and those experiencing homelessness (HL). There is a significant overlap in the veteran and homeless population, possibly accounting for the two to seven times greater incidence of TBI among those experiencing HL than the general population. Despite these statistics, individuals experiencing HL are often underdiagnosed and ineffectively treated for TBI. We introduced a novel model of HL. Over 5 weeks, adult Sprague-Dawley rats were randomly assigned to one of the following conditions: TBI only, HL only, TBI + HL, or control (n = 9 per group). To emulate HL, animals (2 animals per cage) were exposed to soiled beddings for 5 weeks. Subsequently, animals were introduced to TBI by using the moderate controlled cortical impact model, then underwent 4 consecutive days of behavioral testing (beam walk (BW), elevated body swing test (EBST), forelimb akinesia (FA), paw grasp (PG), Rotorod, and elevated T-maze). Nissl staining was performed to determine the peri-impact cell survival and the integrity of corpus callosum area. Motor function was significantly impaired by TBI, regardless of housing (beam walk or BW 85.0%, forelimb akinesia or FA 104.7%, and paw grasp or PG 100% greater deficit compared to control). Deficits were worsened by HL in TBI rats (BW 93.3%, FA 40.5%, and PG 50% greater deficit). Two-way ANOVA revealed BW (F(4, 160) = 31.69, p < 0.0001), FA (F(4, 160) = 13.71, p < 0.0001), PG (F(4, 160) = 3.873, p = 0.005), Rotorod (F(4, 160), p = 1.116), and EBST (F(4, 160) = 6.929, p < 0.0001) showed significant differences between groups. The Rotorod and EBST tests showed TBI-induced functional deficits when analyzed by day, but these deficits were not exacerbated by HL. TBI only and TBI + HL rats exhibited typical cortical impact damage (F(3,95) = 51.75, p < 0.0001) and peri-impact cell loss compared to control group (F(3,238) = 47.34, p < 0.0001). Most notably, TBI + HL rats showed significant alterations in WM area measured via the corpus callosum (F(3, 95) = 3.764, p = 0.0133). Worsened behavioral outcomes displayed by TBI + HL rats compared to TBI alone suggest HL contributes to TBI functional deficits. While an intact white matter, such as the corpus callosum, may lessen the consequent functional deficits associated with TBI by enhancing hemispheric communications, there are likely alternative cellular and molecular pathways mitigating TBI-associated inflammatory or oxidative stress responses. Here, we showed that the environmental condition of the patient, i.e., HL, participates in white matter integrity and behavioral outcomes, suggesting its key role in the disease diagnosis to aptly treat TBI patients.
Collapse
Affiliation(s)
- M Monsour
- University of South Florida Morsani College of Medicine, 560 Channelside Dr., Tampa, FL, 33606, USA
| | - J-Y Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - C V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
37
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
38
|
Borgonetti V, Galeotti N. Novel Combination of Choline with Withania somnifera (L.) Dunal, and Bacopa monnieri (L.) Wetts Reduced Oxidative Stress in Microglia Cells, Promoting Neuroprotection. Int J Mol Sci 2023; 24:14038. [PMID: 37762339 PMCID: PMC10531461 DOI: 10.3390/ijms241814038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Memory deficit is one of the major negative outcomes of chronic stress. Cholinergic system modulates memory not only through the neuronal cells, but also via interactions with non-neuronal cells, suggesting that microglia can influence synaptic function and plasticity, contributing to cognition and memory function. Withania somnifera (L.) Dunal (WS) and Bacopa monnieri (L.) Wettst (BM), are traditional herbal medicinal products used for the temporary relief of symptoms of stress. The aim of this study was to investigate whether choline (CLN) activity could be enhanced via an association with adaptogens: WS and BM extracts. First, we optimized an in vitro model of corticotropin-releasing hormone (CRH)-induced oxidative stress on microglial BV2 cells. CRH 100 nM reduced BV2 cell viability and induced morphological changes and neurotoxicity after 24 h of microglia stimulation. Moreover, it induced an increase in the production of reactive oxygen species (ROS) and dysregulated antioxidant protein (i.e., SIRT-1 and NRF-2). The association between choline and adaptogens (CBW) 10 μg/mL counteracted the effect of CRH on BV2 cells and reduced the neurotoxicity produced by BV2 CRH-conditioned medium in the SH-SY5Y cell lines. CBW 200 mg/kg produced an ameliorative effect on recognition memory in the novel object recognition test (NORT) test in mice. In conclusion, combining choline with adaptogen plant extracts might represent a promising intervention in chronic stress associated with memory disturbances through the attenuation of microglia-induced oxidative stress.
Collapse
Affiliation(s)
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| |
Collapse
|
39
|
Favoretto CA, Pagliusi M, Morais-Silva G. Involvement of brain cell phenotypes in stress-vulnerability and resilience. Front Neurosci 2023; 17:1175514. [PMID: 37476833 PMCID: PMC10354562 DOI: 10.3389/fnins.2023.1175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Stress-related disorders' prevalence is epidemically increasing in modern society, leading to a severe impact on individuals' well-being and a great economic burden on public resources. Based on this, it is critical to understand the mechanisms by which stress induces these disorders. The study of stress made great progress in the past decades, from deeper into the hypothalamic-pituitary-adrenal axis to the understanding of the involvement of a single cell subtype on stress outcomes. In fact, many studies have used state-of-the-art tools such as chemogenetic, optogenetic, genetic manipulation, electrophysiology, pharmacology, and immunohistochemistry to investigate the role of specific cell subtypes in the stress response. In this review, we aim to gather studies addressing the involvement of specific brain cell subtypes in stress-related responses, exploring possible mechanisms associated with stress vulnerability versus resilience in preclinical models. We particularly focus on the involvement of the astrocytes, microglia, medium spiny neurons, parvalbumin neurons, pyramidal neurons, serotonergic neurons, and interneurons of different brain areas in stress-induced outcomes, resilience, and vulnerability to stress. We believe that this review can shed light on how diverse molecular mechanisms, involving specific receptors, neurotrophic factors, epigenetic enzymes, and miRNAs, among others, within these brain cell subtypes, are associated with the expression of a stress-susceptible or resilient phenotype, advancing the understanding/knowledge on the specific machinery implicate in those events.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
40
|
Sequeira MK, Bolton JL. Stressed Microglia: Neuroendocrine-Neuroimmune Interactions in the Stress Response. Endocrinology 2023; 164:bqad088. [PMID: 37279575 PMCID: PMC11491833 DOI: 10.1210/endocr/bqad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Stressful life experiences are associated with the development of neuropsychiatric disorders like depression. Emerging evidence indicates that microglia, the specialized resident macrophages of the brain, may be a key mediator of the relationship between psychosocial stressor exposure and adaptive or maladaptive responses at the level of synaptic, circuit, and neuroimmune alterations. Here, we review current literature regarding how psychosocial stressor exposure changes microglial structure and function, thereby altering behavioral and brain outcomes, with a particular focus on age- and sex-dependent effects. We argue that additional emphasis should be placed in future research on investigating sex differences and the impacts of stressor exposure during sensitive periods of development, as well as going beyond traditional morphological measurements to interrogate microglial function. The bidirectional relationship between microglia and the stress response, particularly the role of microglia in the neuroendocrine control of stress-related circuits, is also an important area for future investigation. Finally, we discuss emerging themes and future directions that point to the possibility of the development of novel therapeutics for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
41
|
Orso R, Creutzberg KC, Lumertz FS, Kestering-Ferreira E, Stocchero BA, Perrone MK, Begni V, Grassi-Oliveira R, Riva MA, Viola TW. A systematic review and multilevel meta-analysis of the prenatal and early life stress effects on rodent microglia, astrocyte, and oligodendrocyte density and morphology. Neurosci Biobehav Rev 2023; 150:105202. [PMID: 37116770 DOI: 10.1016/j.neubiorev.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Exposure to stress during early development may lead to altered neurobiological functions, thus increasing the risk for psychiatric illnesses later in life. One potential mechanism associated with those outcomes is the disruption of glial density and morphology, despite results from rodent studies have been conflicting. To address that we performed a systematic review and meta-analysis of rodent studies that investigated the effects of prenatal stress (PNS) and early life stress (ELS) on microglia, astrocyte, and oligodendrocyte density and morphology within the offspring. Our meta-analysis demonstrates that animals exposed to PNS or ELS showed significant increase in microglia density, as well as decreased oligodendrocyte density. Moreover, ELS exposure induced an increase in microglia soma size. However, we were unable to identify significant effects on astrocytes. Meta-regression indicated that experimental stress protocol, sex, age, and type of tissue analyzed are important covariates that impact those results. Importantly, PNS microglia showed higher estimates in young animals, while the ELS effects were stronger in adult animals. This set of data reinforces that alterations in glial cells could play a role in stress-induced dysfunctions throughout development.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Francisco Sindermann Lumertz
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Erika Kestering-Ferreira
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Bruna Alvim Stocchero
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Mariana Kude Perrone
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Aarhus University - Entrance A, Palle Juul-Jenses Blvd. 11, 6(th) floor, 8200 - Aarhus (Denmark).
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy); Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli - Via Pilastroni 4, 25125- Brescia (Italy).
| | - Thiago Wendt Viola
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| |
Collapse
|
42
|
Giannelli R, Canale P, Del Carratore R, Falleni A, Bernardeschi M, Forini F, Biagi E, Curzio O, Bongioanni P. Ultrastructural and Molecular Investigation on Peripheral Leukocytes in Alzheimer's Disease Patients. Int J Mol Sci 2023; 24:ijms24097909. [PMID: 37175616 PMCID: PMC10178539 DOI: 10.3390/ijms24097909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Thriving literature underlines white blood cell involvement in the inflammatory processes of Alzheimer's Disease (AD). Among leukocytes, lymphocytes have been considered sentinels of neuroinflammation for years, but recent findings highlighted the pivotal role of neutrophils. Since neutrophils that infiltrate the brain through the brain vascular vessels may affect the immune function of microglia in the brain, a close investigation of the interaction between these cells is important in understanding neuroinflammatory phenomena and the immunological aftermaths that follow. This study aimed to observe how peripheral leukocyte features change at different stages of AD to identify potential molecular markers when the first features of pathological neurodegeneration arise. For this purpose, the examined patients were divided into Mild Cognitive Impairment (MCI) and severely impaired patients (DAT) based on their Cognitive Dementia Rating (CDR). The evaluation of the neutrophil-to-lymphocytes ratio and the morphology and function of leukocytes showed a close relationship between the ultrastructural and the molecular features in AD progression and suggested putative markers for the early stages of the disease.
Collapse
Affiliation(s)
- Roberta Giannelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Alessandra Falleni
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | - Margherita Bernardeschi
- Italian Institute of Technology, Center for Materials Interfaces, Smart Bio-Interfaces, 56025 Pontedera, Italy
| | - Francesca Forini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elisa Biagi
- BMS Multispecialistic Biobank-Biobank Unit, AOUP-Pisa University Hospital, 56126 Pisa, Italy
| | - Olivia Curzio
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paolo Bongioanni
- Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| |
Collapse
|
43
|
Yang EJ, Frolinger T, Westfall S, Iqbal UH, Murrough J, Pasinetti GM. The bioactive dietary polyphenol preparation alleviates depression and anxiety-like behaviors by modulating the regional heterogeneity of microglia morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534961. [PMID: 37034623 PMCID: PMC10081276 DOI: 10.1101/2023.03.30.534961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Scope The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. Methods and results We find that treatment with BDPP significantly decreased depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. We also find that BDPP treatment reversed microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. Conclusion Our findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway might provide a new avenue for therapeutic intervention in stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.
Collapse
|
44
|
Watling SE, Gill T, Gaudette EV, Richardson JD, McCluskey T, Tong J, Meyer JH, Warsh J, Jetly R, Hutchison MG, Rhind SG, Houle S, Kish SJ, Boileau I. Investigating TSPO levels in occupation-related posttraumatic stress disorder. Sci Rep 2023; 13:4970. [PMID: 36973385 PMCID: PMC10041517 DOI: 10.1038/s41598-023-31327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are immune brain cells implicated in stress-related mental illnesses including posttraumatic stress disorder (PTSD). Their role in the pathophysiology of PTSD, and on neurobiological systems that regulate stress, is not completely understood. We tested the hypothesis that microglia activation, in fronto-limbic brain regions involved in PTSD, would be elevated in participants with occupation-related PTSD. We also explored the relationship between cortisol and microglia activation. Twenty participants with PTSD and 23 healthy controls (HC) completed positron emission tomography (PET) scanning of the 18-kDa translocator protein (TSPO), a putative biomarker of microglia activation using the probe [18F]FEPPA, and blood samples for measurement of cortisol. [18F]FEPPA VT was non-significantly elevated (6.5-30%) in fronto-limbic regions in PTSD participants. [18F]FEPPA VT was significantly higher in PTSD participants reporting frequent cannabis use compared to PTSD non-users (44%, p = 0.047). Male participants with PTSD (21%, p = 0.094) and a history of early childhood trauma (33%, p = 0.116) had non-significantly higher [18F]FEPPA VT. Average fronto-limbic [18F]FEPPA VT was positively related to cortisol (r = 0.530, p = 0.028) in the PTSD group only. Although we did not find a significant abnormality in TSPO binding in PTSD, findings suggest microglial activation might have occurred in a subgroup who reported frequent cannabis use. The relationship between cortisol and TSPO binding suggests a potential link between hypothalamic-pituitary-adrenal-axis dysregulation and central immune response to trauma which warrants further study.
Collapse
Affiliation(s)
- Sarah E Watling
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Talwinder Gill
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Erin V Gaudette
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - J Don Richardson
- The MacDonald Franklin OSI Research Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- St Joseph's, London OSI, Parkwood Institute, St. Joseph's Health Care, London, ON, Canada
| | - Tina McCluskey
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jerry Warsh
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Shawn G Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen J Kish
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Vignjević Petrinović S, Milošević MS, Marković D, Momčilović S. Interplay between stress and cancer-A focus on inflammation. Front Physiol 2023; 14:1119095. [PMID: 37020461 PMCID: PMC10067747 DOI: 10.3389/fphys.2023.1119095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Stress is an integral part of life. While acute responses to stress are generally regarded as beneficial in dealing with immediate threats, chronic exposure to threatening stimuli exerts deleterious effects and can be either a contributing or an aggravating factor for many chronic diseases including cancer. Chronic psychological stress has been identified as a significant factor contributing to the development and progression of cancer, but the mechanisms that link chronic stress to cancer remain incompletely understood. Psychological stressors initiate multiple physiological responses that result in the activation of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic nervous system, and the subsequent changes in immune function. Chronic stress exposure disrupts the homeostatic communication between the neuroendocrine and immune systems, shifting immune signaling toward a proinflammatory state. Stress-induced chronic low-grade inflammation and a decline in immune surveillance are both implicated in cancer development and progression. Conversely, tumor-induced inflammatory cytokines, apart from driving a tumor-supportive inflammatory microenvironment, can also exert their biological actions distantly via circulation and therefore adversely affect the stress response. In this minireview, we summarize the current findings on the relationship between stress and cancer, focusing on the role of inflammation in stress-induced neuroendocrine-immune crosstalk. We also discuss the underlying mechanisms and their potential for cancer treatment and prevention.
Collapse
Affiliation(s)
- Sanja Vignjević Petrinović
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja S. Milošević
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragana Marković
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Momčilović
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
46
|
Li X, Peng Z, Jiang L, Zhang P, Yang P, Yuan Z, Cheng J. Dlg1 deletion in microglia ameliorates chronic restraint stress induced mice depression-like behavior. Front Pharmacol 2023; 14:1124845. [PMID: 36909184 PMCID: PMC9992737 DOI: 10.3389/fphar.2023.1124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Major depression is one of the most common psychiatric disorders worldwide, inflicting suffering, significant reduction in life span, and financial burdens on families and society. Mounting evidence implicates that exposure to chronic stress can induce the dysregulation of the immune system, and the activation of brain-resident innate immune cells, microglia, leading to depression-like symptoms. However, the specific mechanisms need to be further elucidated. Method: Animal models of depression were established by chronic restraint stress (CRS), and depression-like behavior was assessed by sucrose preference test (SPT), open field test (OFT), tail suspension test (TST) and forced swimming test (FST). Microglial activation was visualized by immunofluorescent and immunohistochemical staining, and microglial morphological changes were further analyzed by skeleton analysis. The levels of inflammatory cytokines were detected by western blotting and qPCR. Result: Microglial Dlg1 knockout ameliorates CRS-induced mice depression-like behavior. In contrast to the effect of Dlg1 in the LPS-induced mouse model, Dlg1 knockout had little effect on microglial density, but significantly decreased the number of activated microglia and reversed microglia morphological changes in mice challenged with CRS. Moreover, the upregulation of inflammatory cytokines following CRS exposure was partially reversed by Dlg1 deletion. Conclusion: Our study provides the evidence that Dlg1 ablation in microglia remarkedly reverses microglial activation and depression-like behavior in mice exposed to CRS, implicating a potential target for the treatment of clinical depression.
Collapse
Affiliation(s)
- Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhixin Peng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Jiang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Ping Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Pin Yang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|