1
|
Salman F, Bergsland N, Dwyer MG, Reeves JA, Ramesh A, Jakimovski D, Weinstock-Guttman B, Zivadinov R, Schweser F. Thalamic iron in multiple sclerosis: Waning support for the early-rise late-decline hypothesis. Neuroimage Clin 2025; 46:103771. [PMID: 40187193 PMCID: PMC12002950 DOI: 10.1016/j.nicl.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Studies of thalamic iron levels in multiple sclerosis (MS) have yielded variable findings, potentially due to differences in study cohorts. For example, studies in relatively young cohorts (average ages below 40 years) have reported elevated susceptibility in people with MS (pwMS), whereas studies in older cohorts (above 40 years) found decreased susceptibility. OBJECTIVE To test the "early-rise late-decline" hypothesis, which posits that age differences in study cohorts are responsible for conflicting findings regarding thalamic susceptibility in MS. METHODS We chose to replicate one of the previous studies that showed evidence of elevated thalamic iron concentrations in younger pwMS (Rudko et al., 2014). We also replicated a study involving older pwMS (Pudlac et al., 2020) to serve as a control. We assessed thalamic susceptibility using the QSM processing and analysis methodology outlined by Rudko et al. RESULTS: Although cohort characteristics, QSM processing, and analytical methods were closely matched, we found significantly lower thalamic susceptibility in the younger pwMS compared to controls (-1.1 ± 7.8 vs. 5.4 ± 6.1 ppb; effect sizes: -0.35 to -0.91). Study outcomes were robust across a wide range of regularization parameters, with effect size differences influenced by background field removal regularization. A similar pattern was observed in the older cohort, where thalamic susceptibility was again lower in pwMS compared to controls (4.0 ± 9.5 vs. 9.6 ± 10.7 ppb; effect size: -0.55). CONCLUSIONS Our findings contradict the "early rise" hypothesis of thalamic iron levels in pwMS. The consistency of our results across multiple analyses suggests that QSM processing artifacts are unlikely to explain previous reports of increased thalamic iron. Instead, these variations may stem from demographic or clinical differences, such as geographical factors and treatment regimens.
Collapse
Affiliation(s)
- Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Abhisri Ramesh
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Wynn Hospital, Mohawk Valley Health System, Utica, NY, United States
| | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
2
|
Manasseh G, Hilbert T, Fartaria MJ, Deverdun J, Cuadra MB, Maréchal B, Kober T, Dunet V. Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis. Diagnostics (Basel) 2024; 14:2669. [PMID: 39682577 DOI: 10.3390/diagnostics14232669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Lesion load (LL), deep gray matter (DGM) and normal-appearing white matter (NAWM) susceptibility and morphometry may help in monitoring brain changes in multiple sclerosis (MS) patients. We aimed at evaluating the feasibility of a fully automated segmentation and the potential interrelation between these biomarkers and clinical disability. METHODS Sixty-six patients with brain MRIs and clinical evaluations (Expanded Disability Status Scale [EDSS]) were retrospectively included. Automated prototypes were used for the segmentation and morphometry of brain regions (MorphoBox) and MS lesions (LeManPV). Susceptibility maps were estimated using standard post-processing (RESHARP and TVSB). Spearman's rho was computed to evaluate the interrelation between biomarkers and EDSS. RESULTS We found (i) anticorrelations between the LL and right thalamus susceptibility (rho = -0.46, p < 0.001) and between the LL and NAWM susceptibility (rho = [-0.68 to -0.25], p ≤ 0.05); (ii) an anticorrelation between LL and DGM (rho = [-0.71 to -0.36], p < 0.04) and WM morphometry (rho = [-0.64 to -0.28], p ≤ 0.01); and (iii) a positive correlation between EDSS and LL (rho = [0.28 to 0.5], p ≤ 0.03) and anticorrelation between EDSS and NAWM susceptibility (rho = [-0.29 to -0.38], p < 0.014). CONCLUSIONS Fully automated brain morphometry and susceptibility monitoring is feasible in MS patients. The lesion load, thalamus and NAWM susceptibility values and trophicity are interrelated and correlate with disability.
Collapse
Affiliation(s)
- Gibran Manasseh
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Tom Hilbert
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mário João Fartaria
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jeremy Deverdun
- I2FH, Institut d'Imagerie Fonctionnelle Humaine, Montpellier University Hospital Center, Gui de Chauliac Hospital, 34295 Montpellier, France
| | - Meritxell Bach Cuadra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- CIBM Center of Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tobias Kober
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Filippi M, Preziosa P, Barkhof F, Ciccarelli O, Cossarizza A, De Stefano N, Gasperini C, Geraldes R, Granziera C, Haider L, Lassmann H, Margoni M, Pontillo G, Ropele S, Rovira À, Sastre-Garriga J, Yousry TA, Rocca MA. The ageing central nervous system in multiple sclerosis: the imaging perspective. Brain 2024; 147:3665-3680. [PMID: 39045667 PMCID: PMC11531849 DOI: 10.1093/brain/awae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation. When combined with multiple sclerosis pathology, these age-related alterations may worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to therapies and/or their side effects, highlighting the importance of adjusted treatment considerations. MRI is highly sensitive to age- and multiple sclerosis-related processes. Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, enabling a better understanding of their pathophysiological interplay and informing treatment selection. This review summarizes current knowledge on the immunopathological and MRI aspects of ageing in the CNS in the context of multiple sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms and specific features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics and myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients, are also discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, UCL, London WC1N 3BG, UK
- NIHR (National Institute for Health and Care Research) UCLH (University College London Hospitals) BRC (Biomedical Research Centre), London WC1N 3BG, UK
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, 00152 Rome, Italy
| | - Ruth Geraldes
- Clinical Neurology, John Radcliffe Hospital, Oxford University Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lukas Haider
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Pontillo
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Advanced Biomedical Sciences, University “Federico II”, 80138 Naples, Italy
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Jaume Sastre-Garriga
- Neurology Department and Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Tarek A Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
4
|
Mohammadi S, Ghaderi S, Fatehi F. Quantitative Susceptibility Mapping Values Quantification in Deep Gray Matter Structures for Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis. Brain Behav 2024; 14:e70093. [PMID: 39415615 PMCID: PMC11483550 DOI: 10.1002/brb3.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND/OBJECTIVES This systematic review and meta-analysis aimed to investigate the role of magnetic susceptibility (χ) in deep gray matter (DGM) structures, including the putamen (PUT), globus pallidus (GP), caudate nucleus (CN), and thalamus, in the most common types of multiple sclerosis (MS) and relapsing-remitting MS (RRMS), using quantitative susceptibility mapping (QSM). METHODS The literature was systematically reviewed up to November 2023, adhering to PRISMA guidelines. This study was conducted using a random-effects model to calculate the standardized mean difference (SMD) in QSM values between patients with RRMS and healthy controls (HCs). Publication bias and risk of bias were also assessed. RESULTS Nine studies involving 1074 RRMS patients with RRMS and 640 HCs were included in the meta-analysis. The results showed significantly higher QSM (χ) values in the PUT (SMD = 0.40, 95% confidence interval [CI] = 0.22-0.59, p = .000), GP (SMD = 0.60, 95% CI = 0.50-0.70, p = .00), and CN (SMD = 0.40, 95% CI = 0.15-0.66, p = .005) of RRMS patients compared to HCs. However, there were no significant differences in the QSM values in the thalamus between patients with RRMS and HCs (SMD = -0.33, 95% CI -0.67-0.01, p = .026). Age- and sex-based subgroup analysis demonstrated that younger patients (< 40 years) in the PUT, GP, and CN groups and larger male populations (> 25%) in the PUT and GP groups had more significant χ. Interestingly, thalamic QSM values were found to decrease in RRMS patients over 40 years of age and in higher male populations. Sex-based subgroup analysis indicated higher iron levels in the PUT and GP of RRMS patients regardless of sex. QSM values were higher in certain brain regions (PUT, GP, and CN) during the early stages (disease duration < 9.6 years) of RRMS, but lower in the thalamus during the later stages (disease duration > 9.6 years) than HCs. DISCUSSION/CONCLUSION QSM may serve as a biomarker for understanding χ value alterations such as iron dysregulation and its contribution to neurodegeneration in RRMS, especially in the basal ganglia nuclei including PUT, GP, and CN.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
5
|
Rubin M, Pagani E, Preziosa P, Meani A, Storelli L, Margoni M, Filippi M, Rocca MA. Cerebrospinal Fluid-In Gradient of Cortical and Deep Gray Matter Damage in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200271. [PMID: 38896808 PMCID: PMC11197989 DOI: 10.1212/nxi.0000000000200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES A CSF-in gradient in cortical and thalamic gray matter (GM) damage has been found in multiple sclerosis (MS). We concomitantly explored the patterns of cortical, thalamic, and caudate microstructural abnormalities at progressive distances from CSF using a multiparametric MRI approach. METHODS For this cross-sectional study, from 3T 3D T1-weighted scans, we sampled cortical layers at 25%-50%-75% depths from pial surface and thalamic and caudate bands at 2-3-4 voxels from the ventricular-GM interface. Using linear mixed models, we tested between-group comparisons of magnetization transfer ratio (MTR) and R2* layer-specific z-scores, CSF-in across-layer z-score changes, and their correlations with clinical (disease duration and disability) and structural (focal lesions, brain, and choroid plexus volume) MRI measures. RESULTS We enrolled 52 patients with MS (33 relapsing-remitting [RRMS], 19 progressive [PMS], mean age: 46.4 years, median disease duration: 15.1 years, median: EDSS 2.0) and 70 controls (mean age 41.5 ± 12.8). Compared with controls, RRMS showed lower MTR values in the outer and middle cortical layers (false-discovery rate [FDR]-p ≤ 0.025) and lower R2* values in all 3 cortical layers (FDR-p ≤ 0.016). PMS had lower MTR values in the outer and middle cortical (FDR-p ≤ 0.016) and thalamic (FDR-p ≤ 0.048) layers, and in the outer caudate layer (FDR-p = 0.024). They showed lower R2* values in the outer cortical layer (FDR-p = 0.003) and in the outer thalamic layer (FDR-p = 0.046) and higher R2* values in all 3 caudate layers (FDR-p ≤ 0.031). Both RRMS and PMS had a gradient of damage, with lower values closer to the CSF, for cortical (FDR-p ≤ 0.002) and thalamic (FDR-p ≤ 0.042) MTR. PMS showed a gradient of damage for cortical R2* (FDR-p = 0.005), thalamic R2* (FDR-p = 0.004), and caudate MTR (FDR-p ≤ 0.013). Lower MTR and R2* of outer cortical, thalamic, and caudate layers and steeper gradient of damage toward the CSF were significantly associated with older age, higher T2-hyperintense white matter lesion volume, higher thalamic lesion volume, and lower brain volume (β ≥ 0.08, all FDR-p ≤ 0.040). Lower MTR of outer caudate layer was associated with more severe disability (β = -0.26, FDR-p = 0.040). No correlations with choroid plexus volume were found. DISCUSSION CSF-in damage gradients are heterogeneous among different GM regions and through MS course, possibly reflecting different dynamics of demyelination and iron loss/accumulation.
Collapse
Affiliation(s)
- Martina Rubin
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Niehaus P, Gonzalez de Vega R, Haindl MT, Birkl C, Leoni M, Birkl-Toeglhofer AM, Haybaeck J, Ropele S, Seeba M, Goessler W, Karst U, Langkammer C, Clases D. Multimodal analytical tools for the molecular and elemental characterisation of lesions in brain tissue of multiple sclerosis patients. Talanta 2024; 270:125518. [PMID: 38128277 DOI: 10.1016/j.talanta.2023.125518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Multiple sclerosis (MS) is a prevalent immune-mediated inflammatory disease of the central nervous system inducing a widespread degradation of myelin and resulting in neurological deficits. Recent advances in molecular and atomic imaging provide the means to probe the microenvironment in affected brain tissues at an unprecedented level of detail and may provide new insights. This study showcases state-of-the-art spectroscopic and mass spectrometric techniques to compare distributions of molecular and atomic entities in MS lesions and surrounding brain tissues. MS brains underwent post-mortem magnetic resonance imaging (MRI) to locate and subsequently dissect MS lesions and surrounding white matter. Digests of lesions and unaffected white matter were analysed via ICP-MS/MS revealing significant differences in concentrations of Li, Mg, P, K, Mn, V, Rb, Ag, Gd and Bi. Micro x-ray fluorescence spectroscopy (μXRF) and laser ablation - inductively coupled plasma - time of flight - mass spectrometry (LA-ICP-ToF-MS) were used as micro-analytical imaging techniques to study distributions of both endogenous and xenobiotic elements. The essential trace elements Fe, Cu and Zn were subsequently calibrated using in-house manufactured gelatine standards. Lipid distributions were studied using IR-micro spectroscopy and matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). MALDI-MSI was complemented with high-resolution tandem mass spectrometry and trapped ion mobility spectroscopy for the annotation of specified phospho- and sphingolipids, revealing specific lipid species decreased in MS lesions compared to surrounding white matter. This explorative study demonstrated that modern molecular and atomic mapping techniques provide high-resolution imaging for relevant bio-indicative entities which may complement our current understanding of the underlying pathophysiological processes.
Collapse
Affiliation(s)
- Peter Niehaus
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | | | | | - Christoph Birkl
- Department of Radiology, Medical University of Innsbruck, Austria
| | - Marlene Leoni
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Anna Maria Birkl-Toeglhofer
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria
| | - Johannes Haybaeck
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | | | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | | | - David Clases
- Institute of Chemistry, University of Graz, Austria.
| |
Collapse
|
7
|
Voon CC, Wiltgen T, Wiestler B, Schlaeger S, Mühlau M. Quantitative susceptibility mapping in multiple sclerosis: A systematic review and meta-analysis. Neuroimage Clin 2024; 42:103598. [PMID: 38582068 PMCID: PMC11002889 DOI: 10.1016/j.nicl.2024.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a quantitative measure based on magnetic resonance imaging sensitive to iron and myelin content. This makes QSM a promising non-invasive tool for multiple sclerosis (MS) in research and clinical practice. OBJECTIVE We performed a systematic review and meta-analysis on the use of QSM in MS. METHODS Our review was prospectively registered on PROSPERO (CRD42022309563). We searched five databases for studies published between inception and 30th April 2023. We identified 83 English peer-reviewed studies that applied QSM images on MS cohorts. Fifty-five included studies had at least one of the following outcome measures: deep grey matter QSM values in MS, either compared to healthy controls (HC) (k = 13) or correlated with the score on the Expanded Disability Status Scale (EDSS) (k = 7), QSM lesion characteristics (k = 22) and their clinical correlates (k = 17), longitudinal correlates (k = 11), histological correlates (k = 7), or correlates with other imaging techniques (k = 12). Two meta-analyses on deep grey matter (DGM) susceptibility data were performed, while the remaining findings could only be analyzed descriptively. RESULTS After outlier removal, meta-analyses demonstrated a significant increase in the basal ganglia susceptibility (QSM values) in MS compared to HC, caudate (k = 9, standardized mean difference (SDM) = 0.54, 95 % CI = 0.39-0.70, I2 = 46 %), putamen (k = 9, SDM = 0.38, 95 % CI = 0.19-0.57, I2 = 59 %), and globus pallidus (k = 9, SDM = 0.48, 95 % CI = 0.28-0.67, I2 = 60 %), whereas thalamic QSM values exhibited a significant reduction (k = 12, SDM = -0.39, 95 % CI = -0.66--0.12, I2 = 84 %); these susceptibility differences in MS were independent of age. Further, putamen QSM values positively correlated with EDSS (k = 4, r = 0.36, 95 % CI = 0.16-0.53, I2 = 0 %). Regarding rim lesions, four out of seven studies, representing 73 % of all patients, reported rim lesions to be associated with more severe disability. Moreover, lesion development from initial detection to the inactive stage is paralleled by increasing, plateauing (after about two years), and gradually decreasing QSM values, respectively. Only one longitudinal study provided clinical outcome measures and found no association. Histological data suggest iron content to be the primary source of QSM values in DGM and at the edges of rim lesions; further, when also considering data from myelin water imaging, the decrease of myelin is likely to drive the increase of QSM values within WM lesions. CONCLUSIONS We could provide meta-analytic evidence for DGM susceptibility changes in MS compared to HC; basal ganglia susceptibility is increased and, in the putamen, associated with disability, while thalamic susceptibility is decreased. Beyond these findings, further investigations are necessary to establish the role of QSM in MS for research or even clinical routine.
Collapse
Affiliation(s)
- Cui Ci Voon
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tun Wiltgen
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
De Lury AD, Bisulca JA, Lee JS, Altaf MD, Coyle PK, Duong TQ. Magnetic resonance imaging detection of deep gray matter iron deposition in multiple sclerosis: A systematic review. J Neurol Sci 2023; 453:120816. [PMID: 37827008 DOI: 10.1016/j.jns.2023.120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease involving immune-mediated damage. Iron deposition in deep gray matter (DGM) structures like the thalamus and basal ganglia have been suggested to play a role in MS pathogenesis. Magnetic Resonance Imaging (MRI) imaging methods like T2 and T2* imaging, susceptibility-weighted imaging, and quantitative susceptibility mapping can track iron deposition storage in the brain primarily from ferritin and hemosiderin (paramagnetic iron storage proteins) with varying levels of tissue contrast and sensitivity. In this systematic review, we evaluated the role of DGM iron deposition as detected by MRI techniques in relation to MS-related neuroinflammation and its potential as a novel therapeutic target. We searched through PubMed, Embase, and Web of Science databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, against predetermined inclusion and exclusion criteria. We included 89 articles (n = 6630 patients), and then grouped them into different categories: i) methodological techniques to measure DGM iron, ii) cross-sectional and group comparison of DGM iron content, iii) longitudinal comparisons of DGM iron, iv) associations between DGM iron and other imaging and neurobiological markers, v) associations with disability, and vi) associations with cognitive impairment. The review revealed that iron deposition in DGM is independent yet concurrent with demyelination, and that these iron deposits contribute to MS-related cognitive impairment and disability. Variability in iron distributions appears to rely on a positive feedback loop between inflammation, and release of iron by oligodendrocytes. DGM iron seems to be a promising prognostic biomarker for MS pathophysiology.
Collapse
Affiliation(s)
- Amy D De Lury
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Joseph A Bisulca
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Jimmy S Lee
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Muhammad D Altaf
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Patricia K Coyle
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| |
Collapse
|
9
|
Wang M, Liu C, Zou M, Niu Z, Zhu J, Jin T. Recent progress in epidemiology, clinical features, and therapy of multiple sclerosis in China. Ther Adv Neurol Disord 2023; 16:17562864231193816. [PMID: 37719665 PMCID: PMC10504852 DOI: 10.1177/17562864231193816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system characterized by inflammation, demyelination, and neurodegeneration. It mainly affects young adults, imposing a heavy burden on families and society. The epidemiology, clinical features, and management of MS are distinct among different countries. Although MS is a rare disease in China, there are 1.4 billion people in China, so the total number of MS patients is not small. Because of the lack of specific diagnostic biomarkers for MS, there is a high misdiagnosis rate in China, as in other regions. Due to different genetic backgrounds, the clinical manifestations of MS in Chinese are different from those in the West. Herein, this review aims to summarize the disease comprehensively, including clinical profile and the status of disease-modifying therapies in China based on published population-based observation and cohort studies, and also to compare with data from other countries and regions, thus providing help to develop diagnostic guideline and the novel therapeutic drugs. Meanwhile, we also discuss the problems and challenges we face, specifically for the diagnosis and treatment of MS in the middle- and low-income countries.
Collapse
Affiliation(s)
- Meng Wang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zixuan Niu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm 171 64, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
| |
Collapse
|
10
|
Burgetova A, Dusek P, Uher T, Vaneckova M, Vejrazka M, Burgetova R, Horakova D, Srpova B, Kalousova M, Noskova L, Levova K, Krasensky J, Lambert L. CSF Markers of Oxidative Stress Are Associated with Brain Atrophy and Iron Accumulation in a 2-Year Longitudinal Cohort of Early MS. Int J Mol Sci 2023; 24:10048. [PMID: 37373196 DOI: 10.3390/ijms241210048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this prospective longitudinal study, we quantified regional brain volume and susceptibility changes during the first two years after the diagnosis of multiple sclerosis (MS) and identified their association with cerebrospinal fluid (CSF) markers at baseline. Seventy patients underwent MRI (T1 and susceptibility weighted images processed to quantitative susceptibility maps, QSM) with neurological examination at the diagnosis and after two years. In CSF obtained at baseline, the levels of oxidative stress, products of lipid peroxidation, and neurofilaments light chain (NfL) were determined. Brain volumetry and QSM were compared with a group of 58 healthy controls. In MS patients, regional atrophy was identified in the striatum, thalamus, and substantia nigra. Magnetic susceptibility increased in the striatum, globus pallidus, and dentate and decreased in the thalamus. Compared to controls, MS patients developed greater atrophy of the thalamus, and a greater increase in susceptibility in the caudate, putamen, globus pallidus and a decrease in the thalamus. Of the multiple calculated correlations, only the decrease in brain parenchymal fraction, total white matter, and thalamic volume in MS patients negatively correlated with increased NfL in CSF. Additionally, negative correlation was found between QSM value in the substantia nigra and peroxiredoxin-2, and QSM value in the dentate and lipid peroxidation levels.
Collapse
Affiliation(s)
- Andrea Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Petr Dusek
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Martin Vejrazka
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Romana Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
- Department of Radiology, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Barbora Srpova
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Katerina Levova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| |
Collapse
|
11
|
Khan AF, Haynes G, Mohammadi E, Muhammad F, Hameed S, Smith ZA. Utility of MRI in Quantifying Tissue Injury in Cervical Spondylotic Myelopathy. J Clin Med 2023; 12:jcm12093337. [PMID: 37176777 PMCID: PMC10179707 DOI: 10.3390/jcm12093337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a progressive disease that worsens over time if untreated. However, the rate of progression can vary among individuals and may be influenced by various factors, such as the age of the patients, underlying conditions, and the severity and location of the spinal cord compression. Early diagnosis and prompt treatment can help slow the progression of CSM and improve symptoms. There has been an increased use of magnetic resonance imaging (MRI) methods in diagnosing and managing CSM. MRI methods provide detailed images and quantitative structural and functional data of the cervical spinal cord and brain, allowing for an accurate evaluation of the extent and location of tissue injury. This review aims to provide an understanding of the use of MRI methods in interrogating functional and structural changes in the central nervous system in CSM. Further, we identified several challenges hindering the clinical utility of these neuroimaging methods.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
12
|
Tranfa M, Pontillo G, Petracca M, Brunetti A, Tedeschi E, Palma G, Cocozza S. Quantitative MRI in Multiple Sclerosis: From Theory to Application. AJNR Am J Neuroradiol 2022; 43:1688-1695. [PMID: 35680161 DOI: 10.3174/ajnr.a7536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023]
Abstract
Quantitative MR imaging techniques allow evaluating different aspects of brain microstructure, providing meaningful information about the pathophysiology of damage in CNS disorders. In the study of patients with MS, quantitative MR imaging techniques represent an invaluable tool for studying changes in myelin and iron content occurring in the context of inflammatory and neurodegenerative processes. In the first section of this review, we summarize the physics behind quantitative MR imaging, here defined as relaxometry and quantitative susceptibility mapping, and describe the neurobiological correlates of quantitative MR imaging findings. In the second section, we focus on quantitative MR imaging application in MS, reporting the main findings in both the gray and white matter compartments, separately addressing macroscopically damaged and normal-appearing parenchyma.
Collapse
Affiliation(s)
- M Tranfa
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| | - G Pontillo
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.) .,Electrical Engineering and Information Technology (G. Pontillo), University of Naples "Federico II," Naples, Italy
| | - M Petracca
- Department of Human Neurosciences (M.P.), Sapienza University of Rome, Rome, Italy
| | - A Brunetti
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| | - E Tedeschi
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| | - G Palma
- Institute of Nanotechnology (G. Palma), National Research Council, Lecce, Italy
| | - S Cocozza
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| |
Collapse
|
13
|
Reeves JA, Bergsland N, Dwyer MG, Wilding GE, Jakimovski D, Salman F, Sule B, Meineke N, Weinstock-Guttman B, Zivadinov R, Schweser F. Susceptibility networks reveal independent patterns of brain iron abnormalities in multiple sclerosis. Neuroimage 2022; 261:119503. [PMID: 35878723 PMCID: PMC10097440 DOI: 10.1016/j.neuroimage.2022.119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain iron homeostasis is necessary for healthy brain function. MRI and histological studies have shown altered brain iron levels in the brains of patients with multiple sclerosis (MS), particularly in the deep gray matter (DGM). Previous studies were able to only partially separate iron-modifying effects because of incomplete knowledge of iron-modifying processes and influencing factors. It is therefore unclear to what extent and at which stages of the disease different processes contribute to brain iron changes. We postulate that spatially covarying magnetic susceptibility networks determined with Independent Component Analysis (ICA) reflect, and allow for the study of, independent processes regulating iron levels. We applied ICA to quantitative susceptibility maps for 170 individuals aged 9-81 years without neurological disease ("Healthy Aging" (HA) cohort), and for a cohort of 120 patients with MS and 120 age- and sex-matched healthy controls (HC; together the "MS/HC" cohort). Two DGM-associated "susceptibility networks" identified in the HA cohort (the Dorsal Striatum and Globus Pallidus Interna Networks) were highly internally reproducible (i.e. "robust") across multiple ICA repetitions on cohort subsets. DGM areas overlapping both robust networks had higher susceptibility levels than DGM areas overlapping only a single robust network, suggesting that these networks were caused by independent processes of increasing iron concentration. Because MS is thought to accelerate brain aging, we hypothesized that associations between age and the two robust DGM-associated networks would be enhanced in patients with MS. However, only one of these networks was altered in patients with MS, and it had a null age association in patients with MS rather than a stronger association. Further analysis of the MS/HC cohort revealed three additional disease-related networks (the Pulvinar, Mesencephalon, and Caudate Networks) that were differentially altered between patients with MS and HCs and between MS subtypes. Exploratory regression analyses of the disease-related networks revealed differential associations with disease duration and T2 lesion volume. Finally, analysis of ROI-based disease effects in the MS/HC cohort revealed an effect of disease status only in the putamen ROI and exploratory regression analysis did not show associations between the caudate and pulvinar ROIs and disease duration or T2 lesion volume, showing the ICA-based approach was more sensitive to disease effects. These results suggest that the ICA network framework increases sensitivity for studying patterns of brain iron change, opening a new avenue for understanding brain iron physiology under normal and disease conditions.
Collapse
Affiliation(s)
- Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; MR Research Laboratory, IRCCS, Don Gnocchi Foundation ONLUS, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, Clinical and Translational Research Center, State University of New York at Buffalo, 6045C, 875 Ellicott Street, Buffalo, NY 14203, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gregory E Wilding
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fahad Salman
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Balint Sule
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicklas Meineke
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Jacobs Neurological Institute, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, Clinical and Translational Research Center, State University of New York at Buffalo, 6045C, 875 Ellicott Street, Buffalo, NY 14203, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, Clinical and Translational Research Center, State University of New York at Buffalo, 6045C, 875 Ellicott Street, Buffalo, NY 14203, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
14
|
He B, Sheldrick K, Das A, Diwan A. Clinical and Research MRI Techniques for Assessing Spinal Cord Integrity in Degenerative Cervical Myelopathy-A Scoping Review. Biomedicines 2022; 10:2621. [PMID: 36289883 PMCID: PMC9599413 DOI: 10.3390/biomedicines10102621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) manifests as the primary cause of spinal cord dysfunction and is non-traumatic, chronic and progressive in nature. Decompressive surgery is typically utilised to halt further disability and neurological dysfunction. The limitations of current diagnostic options surrounding assessment and prognostic potential render DCM still largely a clinical diagnosis. AIMS To outline the limitations of current diagnostic techniques, present evidence behind novel quantitative MRI (qMRI) techniques for assessing spinal cord integrity in DCM and suggest future directions. METHOD Articles published up to November 2021 were retrieved from Medline, EMBASE and EBM using key search terms: spinal cord, spine, neck, MRI, magnetic resonance imaging, qMRI, T1, T2, T2*, R2*, DTI, diffusion tensor imaging, MT, magnetisation transfer, SWI, susceptibility weighted imaging, BOLD, blood oxygen level dependent, fMRI, functional magnetic resonance imaging, functional MRI, MRS, magnetic resonance spectroscopy. RESULTS A total of 2057 articles were retrieved with 68 articles included for analysis. The search yielded 2 articles on Quantitative T1 mapping which suggested higher T1 values in spinal cord of moderate-severe DCM; 43 articles on DTI which indicated a strong correlation of fractional anisotropy and modified Japanese Orthopaedic Association scores; 15 articles on fMRI (BOLD) which demonstrated positive correlation of functional connectivity and volume of activation of various connections in the brain with post-surgical recovery; 6 articles on MRS which suggested that Choline/N-acetylaspartate (Cho/NAA) ratio presents the best correlation with DCM severity; and 4 articles on MT which revealed a preliminary negative correlation of magnetisation transfer ratio with DCM severity. Notably, most studies were of low sample size with short timeframes within 6 months. CONCLUSIONS Further longitudinal studies with higher sample sizes and longer time horizons are necessary to determine the full prognostic capacity of qMRI in DCM.
Collapse
Affiliation(s)
- Brandon He
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Kyle Sheldrick
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Ashish Diwan
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Spine Service, Department of Orthopaedic Surgery, St. George Hospital Campus, Kogarah, NSW 2217, Australia
| |
Collapse
|
15
|
Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy. Diagnostics (Basel) 2022; 12:diagnostics12061365. [PMID: 35741175 PMCID: PMC9221788 DOI: 10.3390/diagnostics12061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been implied in cellular injury even in the early phases of multiple sclerosis (MS). In this study, we quantified levels of biomarkers of oxidative stress and antioxidant capacity in cerebrospinal fluid (CSF) in newly diagnosed MS patients and their associations with brain atrophy and iron deposits in the brain tissue. Consecutive treatment-naive adult MS patients (n = 103) underwent brain MRI and CSF sampling. Healthy controls (HC, n = 99) had brain MRI. CSF controls (n = 45) consisted of patients with non-neuroinflammatory conditions. 3T MR included isotropic T1 weighted (MPRAGE) and gradient echo (GRE) images that were processed to quantitative susceptibility maps. The volume and magnetic susceptibility of deep gray matter (DGM) structures were calculated. The levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-iso prostaglandin F2α (8-isoPG), neutrophil gelatinase-associated lipocalin (NGAL), peroxiredoxin-2 (PRDX2), and malondialdehyde and hydroxyalkenals (MDA + HAE) were measured in CSF. Compared to controls, MS patients had lower volumes of thalamus, pulvinar, and putamen, higher susceptibility in caudate nucleus and globus pallidus, and higher levels of 8-OHdG, PRDX2, and MDA + HAE. In MS patients, the level of NGAL correlated negatively with volume and susceptibility in the dentate nucleus. The level of 8-OHdG correlated negatively with susceptibility in the caudate, putamen, and the red nucleus. The level of PRDX2 correlated negatively with the volume of the thalamus and both with volume and susceptibility of the dentate nucleus. From MRI parameters with significant differences between MS and HC groups, only caudate susceptibility and thalamic volume were significantly associated with CSF parameters. Our study shows that increased oxidative stress in CSF detected in newly diagnosed MS patients suggests its role in the pathogenesis of MS.
Collapse
|
16
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
17
|
Meng Q, Liu M, Chen Z. Voxel-Based Intraclass Correlation Coefficient to Evaluate the Inter-Scanner Reproducibility of Quantitative Susceptibility Mapping over the Deep Gray Matter Structure at 3.0T MR. Curr Med Imaging 2022; 18:924-930. [PMID: 35170418 DOI: 10.2174/1573405618666220216120729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/04/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Quantitative susceptibility mapping (QSM) technique can be used to quantitatively evaluate the cerebral iron deposition of the deep gray matter structure (DGM) in clinical practice. However, it could be significantly important to assess the reproducibility of the susceptibility values at different magnetic resonance (MR) scanners before the QSM technique can be widely used in clinical applications. OBJECTIVE To assess the reproducibility of susceptibility value of the deep gray matter structure (DGM) at two different MR systems with the same magnetic strength. METHODS Raw data of 21 normal subjects (M/F = 7/14, median age 29 (21, 63) years) were acquired from a 3D multi-echo enhanced gradient recalled echo sequence at two different 3.0T MR systems, and STI software was used to reconstruct the magnetic susceptibility images. Brain structural images were used to be coregistered with magnitude images to generate normalized parameters and normalized susceptibility images. Voxel-based intraclass correlation coefficient (VB-ICC) was used to evaluate the reproducibility of susceptibility value of DGM at different 3.0T MR systems. RESULTS DGM with ICC > 0.75 located in the bilateral posterior putamen and globus pallidus, bilateral red nuclei and left dental nucleus. DGM with 0.6 < ICC < 0.75 mainly located in the bilateral anterior putamen and globus pallidus, the margin of the bilateral red nuclei, right dental nucleus and the margin of the left dental nucleus. DGM with 0.4 < ICC < 0.6 located in anterior parts of the bilateral putamen, bilateral globus pallidus and substantia nigra, the margin of the bilateral dental nuclei and the inferior part of right dental nucleus. CONCLUSION DGM presented regional dependent reproducibility of susceptibility value at two different 3.0T MR system based on VB-ICC analysis.
Collapse
Affiliation(s)
- Qinglin Meng
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Mengqi Liu
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiye Chen
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou China
| |
Collapse
|
18
|
Ontaneda D, Raza PC, Mahajan KR, Arnold DL, Dwyer MG, Gauthier SA, Greve DN, Harrison DM, Henry RG, Li DKB, Mainero C, Moore W, Narayanan S, Oh J, Patel R, Pelletier D, Rauscher A, Rooney WD, Sicotte NL, Tam R, Reich DS, Azevedo CJ. Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain 2021; 144:1974-1984. [PMID: 33757115 PMCID: PMC8370433 DOI: 10.1093/brain/awab132] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although multiple sclerosis has traditionally been considered a white matter disease, extensive research documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been associated with clinical and cognitive disability. Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey matter. Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging perspective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey matter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities towards better methods, analysis, and interpretation of results.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Praneeta C Raza
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Kedar R Mahajan
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Roland G Henry
- Department of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
- The UC San Francisco and Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA
| | - David K B Li
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Alexander Rauscher
- Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roger Tam
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
19
|
Vinayagamani S, Sabarish S, Nair SS, Tandon V, Kesavadas C, Thomas B. Quantitative susceptibility-weighted imaging in predicting disease activity in multiple sclerosis. Neuroradiology 2021; 63:1061-1069. [PMID: 33403447 DOI: 10.1007/s00234-020-02605-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Repeated use of Gadolinium (Gd) contrast for multiple sclerosis (MS) imaging leads to Gd deposition in brain. We aimed to study the utility of phase values by susceptibility weighted imaging (SWI) to assess the iron content in MS lesions to differentiate active and inactive lesions. METHODS MS persons who underwent MRI were grouped into group 1 with active lesions and group 2 with inactive lesions based on the presence or absence of contrast enhancing lesions. Phase values of lesions (PL) and contralateral normal white matter (PN) were calculated using the SPIN software by drawing ROI. Subtracted phase values (PS = PL - PN) and iron content (PS/3) of the lesions were calculated in both groups. RESULTS We analyzed 69 enhancing lesions from 22 patients (group 1) and 84 non-enhancing lesions from 29 patients (group 2). Mean-subtracted phase values and iron content corrected for voxels in ROI were significantly lower in enhancing lesions compared to non-enhancing lesions (p < 0.001). A cut-off value 2.8 μg/g for iron content showed area under the curve of 0.909 with good sensitivity. CONCLUSION Quantification of iron content using SWI phase values holds promise as a biomarker to differentiate active from inactive lesions of MS.
Collapse
Affiliation(s)
- Selvadasan Vinayagamani
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Sekar Sabarish
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Sruthi S Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Vaibhav Tandon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India.
| |
Collapse
|
20
|
Schweser F, Hagemeier J, Dwyer MG, Bergsland N, Hametner S, Weinstock-Guttman B, Zivadinov R. Decreasing brain iron in multiple sclerosis: The difference between concentration and content in iron MRI. Hum Brain Mapp 2020; 42:1463-1474. [PMID: 33378095 PMCID: PMC7927296 DOI: 10.1002/hbm.25306] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Increased brain iron concentration is often reported concurrently with disease development in multiple sclerosis (MS) and other neurodegenerative diseases. However, it is unclear whether the higher iron concentration in patients stems from an influx of iron into the tissue or a relative reduction in tissue compartments without much iron. By taking into account structural volume, we investigated tissue iron content in the deep gray matter (DGM) over 2 years, and compared findings to previously reported changes in iron concentration. 120 MS patients and 40 age‐ and sex‐matched healthy controls were included. Clinical testing and MRI were performed both at baseline and after 2 years. Overall, iron content was calculated from structural MRI and quantitative susceptibility mapping in the thalamus, caudate, putamen, and globus pallidus. MS patients had significantly lower iron content than controls in the thalamus, with progressive MS patients demonstrating lower iron content than relapsing–remitting patients. Over 2 years, iron content decreased in the DGM of patients with MS, while it tended to increase or remain stable among controls. In the thalamus, decreasing iron content over 2 years was associated with disability progression. Our study showed that temporally increasing magnetic susceptibility in MS should not be considered as evidence for iron influx because it may be explained, at least partially, by disease‐related atrophy. Declining DGM iron content suggests that, contrary to the current understanding, iron is being removed from the DGM in patients with MS.
Collapse
Affiliation(s)
- Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
21
|
Dales JP, Desplat-Jégo S. Metal Imbalance in Neurodegenerative Diseases with a Specific Concern to the Brain of Multiple Sclerosis Patients. Int J Mol Sci 2020; 21:E9105. [PMID: 33266021 PMCID: PMC7730295 DOI: 10.3390/ijms21239105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.
Collapse
Affiliation(s)
- Jean-Philippe Dales
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Pavillon Etoile, Pôle de Biologie, Service d’anatomie-pathologie, CEDEX 20, 13915 Marseille, France
| | - Sophie Desplat-Jégo
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d’Immunologie, 13005 Marseille, France
| |
Collapse
|
22
|
Kumar R, Uppal S, Kaur K, Mehta S. Curcumin nanoemulsion as a biocompatible medium to study the metal ion imbalance in a biological system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Magon S, Tsagkas C, Gaetano L, Patel R, Naegelin Y, Amann M, Parmar K, Papadopoulou A, Wuerfel J, Stippich C, Kappos L, Chakravarty MM, Sprenger T. Volume loss in the deep gray matter and thalamic subnuclei: a longitudinal study on disability progression in multiple sclerosis. J Neurol 2020; 267:1536-1546. [PMID: 32040710 DOI: 10.1007/s00415-020-09740-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Volume loss in the deep gray matter (DGM) has been reported in patients with multiple sclerosis (MS) already at early stages of the disease and is thought to progress throughout the disease course. OBJECTIVE To investigate the impact and predictive value of volume loss in DGM and thalamic subnuclei on disability worsening in patients MS over a 6-year follow-up period. METHODS Hundred and seventy-nine patients with RRMS (132 women; median Expanded Disability Status Scale, EDSS: 2.5) and 50 with SPMS (27 women; median EDSS: 4.5) were included in the study. Patients underwent annual EDSS assessments and annual MRI at 1.5 T. DGM/thalamic subnuclei volumes were identified on high-resolution T1-weighted. A hierarchical linear mixed model for each anatomical DGM area and each thalamic subnucleus was performed to investigate the associations with disability scores. Cox regression was used to estimate the predictive properties of volume loss in DGM and thalamic subnuclei on disease worsening. RESULTS In the whole sample and in RRMS, volumes of the thalamus and the striatum were associated with the EDSS; however, only thalamic volume loss was associated with EDSS change at follow-up. Regarding thalamic subnuclei, volume loss in the anterior nucleus, the pulvinar and the ventral anterior nucleus was associated with EDSS change in the whole cohort. A trend was observed for the ventral lateral nucleus. Volume loss in the anterior and ventral anterior nuclei was associated with EDSS change over time in patients with RRMS. Moreover, MS phenotype and annual rates of volume loss in the thalamus and ventral lateral nucleus were predictive of disability worsening. CONCLUSION These results highlight the relevance of volume loss in the thalamus as a key metric for predicting disability worsening as assessed by EDSS (in RRMS). Moreover, the volume loss in specific nuclei such as the ventral lateral nucleus seems to play a role in disability worsening.
Collapse
Affiliation(s)
- Stefano Magon
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Medical Image Analysis Center AG, Basel, Switzerland.
| | - Charidimos Tsagkas
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland
| | - Laura Gaetano
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland
| | - Raihaan Patel
- Cerebral Imaging Centre-Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Yvonne Naegelin
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Amann
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland
| | - Athina Papadopoulou
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Wuerfel
- Medical Image Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Christoph Stippich
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - M Mallar Chakravarty
- Cerebral Imaging Centre-Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Till Sprenger
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| |
Collapse
|
24
|
Cassiano MT, Lanzillo R, Alfano B, Costabile T, Comerci M, Prinster A, Moccia M, Megna R, Morra VB, Quarantelli M, Brunetti A. Voxel-based analysis of gray matter relaxation rates shows different correlation patterns for cognitive impairment and physical disability in relapsing-remitting multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 26:102201. [PMID: 32062567 PMCID: PMC7025083 DOI: 10.1016/j.nicl.2020.102201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regional analyses of markers of microstructural gray matter (GM) changes, including relaxation rates, have shown inconsistent correlations with physical and cognitive impairment in MS. OBJECTIVE To assess voxelwise the correlation of the R1 and R2 relaxation rates with the physical and cognitive impairment in MS. METHODS GM R1 and R2 relaxation rate maps were obtained in 241 relapsing-remitting MS patients by relaxometric segmentation of MRI studies. Correlations with the Expanded Disability Status Scale (EDSS) and the percentage of impaired cognitive test (Brief Repeatable Battery and Stroop Test, available in 186 patients) were assessed voxelwise, including voxel GM content as nuisance covariate to remove the effect of atrophy on the correlations. RESULTS Extensive clusters of inverse correlation between EDSS and R2 were detected throughout the brain, while inverse correlations with R1 were mostly limited to perirolandic and supramarginal cortices. Cognitive impairment correlated negatively with R1, and to a lesser extent with R2, in the middle frontal, mesial temporal, midcingulate and medial parieto-occipital cortices. CONCLUSION In relapsing-remitting MS patients, GM microstructural changes correlate diffusely with physical disability, independent of atrophy, with a preferential role of the sensorimotor cortices. Neuronal damage in the limbic system and dorsolateral prefrontal cortices correlates with cognitive dysfunction.
Collapse
Affiliation(s)
- Maria Teresa Cassiano
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini, 5, 80131 Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Bruno Alfano
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Teresa Costabile
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Marco Comerci
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Rosario Megna
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy.
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
25
|
Bergsland N, Tavazzi E, Schweser F, Jakimovski D, Hagemeier J, Dwyer MG, Zivadinov R. Targeting Iron Dyshomeostasis for Treatment of Neurodegenerative Disorders. CNS Drugs 2019; 33:1073-1086. [PMID: 31556017 PMCID: PMC6854324 DOI: 10.1007/s40263-019-00668-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While iron has an important role in the normal functioning of the brain owing to its involvement in several physiological processes, dyshomeostasis has been found in many neurodegenerative disorders, as evidenced by both histopathological and imaging studies. Although the exact causes have remained elusive, the fact that altered iron levels have been found in disparate diseases suggests that iron may contribute to their development and/or progression. As such, the processes involved in iron dyshomeostasis may represent novel therapeutic targets. There are, however, many questions about the exact interplay between neurodegeneration and altered iron homeostasis. Some insight can be gained by considering the parallels with respect to what occurs in healthy aging, which is also characterized by increased iron throughout many regions in the brain along with progressive neurodegeneration. Nevertheless, the exact mechanisms of iron-mediated damage are likely disease specific to a certain degree, given that iron plays a crucial role in many disparate biological processes, which are not always affected in the same way across different neurodegenerative disorders. Moreover, it is not even entirely clear yet whether iron actually has a causative role in all of the diseases where altered iron levels have been noted. For example, there is strong evidence of iron dyshomeostasis leading to neurodegeneration in Parkinson's disease, but there is still some question as to whether changes in iron levels are merely an epiphenomenon in multiple sclerosis. Recent advances in neuroimaging now offer the possibility to detect and monitor iron levels in vivo, which allows for an improved understanding of both the temporal and spatial dynamics of iron changes and associated neurodegeneration compared to post-mortem studies. In this regard, iron-based imaging will likely play an important role in the development of therapeutic approaches aimed at addressing altered iron dynamics in neurodegenerative diseases. Currently, the bulk of such therapies have focused on chelating excess iron. Although there is some evidence that these treatment options may yield some benefit, they are not without their own limitations. They are generally effective at reducing brain iron levels, as assessed by imaging, but clinical benefits are more modest. New drugs that specifically target iron-related pathological processes may offer the possibility to prevent, or at the least, slow down irreversible neurodegeneration, which represents an unmet therapeutic target.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
26
|
Five year iron changes in relapsing-remitting multiple sclerosis deep gray matter compared to healthy controls. Mult Scler Relat Disord 2019; 33:107-115. [DOI: 10.1016/j.msard.2019.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
|
27
|
Kor D, Birkl C, Ropele S, Doucette J, Xu T, Wiggermann V, Hernández-Torres E, Hametner S, Rauscher A. The role of iron and myelin in orientation dependent R 2* of white matter. NMR IN BIOMEDICINE 2019; 32:e4092. [PMID: 31038240 DOI: 10.1002/nbm.4092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/05/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Brain myelin and iron content are important parameters in neurodegenerative diseases such as multiple sclerosis (MS). Both myelin and iron content influence the brain's R2* relaxation rate. However, their quantification based on R2* maps requires a realistic tissue model that can be fitted to the measured data. In structures with low myelin content, such as deep gray matter, R2* shows a linear increase with increasing iron content. In white matter, R2* is not only affected by iron and myelin but also by the orientation of the myelinated axons with respect to the external magnetic field. Here, we propose a numerical model which incorporates iron and myelin, as well as fibre orientation, to simulate R2* decay in white matter. Applying our model to fibre orientation-dependent in vivo R2* data, we are able to determine a unique solution of myelin and iron content in global white matter. We determine an averaged myelin volume fraction of 16.02 ± 2.07% in non-lesional white matter of patients with MS, 17.32 ± 2.20% in matched healthy controls, and 18.19 ± 2.98% in healthy siblings of patients with MS. Averaged iron content was 35.6 ± 8.9 mg/kg tissue in patients, 43.1 ± 8.3 mg/kg in controls, and 47.8 ± 8.2 mg/kg in siblings. All differences in iron content between groups were significant, while the difference in myelin content between MS patients and the siblings of MS patients was significant. In conclusion, we demonstrate that a model that combines myelin-induced orientation-dependent and iron-induced orientation-independent components is able to fit in vivo R2* data.
Collapse
Affiliation(s)
- Daniel Kor
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Christoph Birkl
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Jonathan Doucette
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Tianyou Xu
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Vanessa Wiggermann
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Enedino Hernández-Torres
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Simon Hametner
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Rauscher
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Hu XY, Rajendran L, Lapointe E, Tam R, Li D, Traboulsee A, Rauscher A. Three-dimensional MRI sequences in MS diagnosis and research. Mult Scler 2019; 25:1700-1709. [DOI: 10.1177/1352458519848100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The most recent guidelines for magnetic resonance imaging (MRI) in multiple sclerosis (MS) recommend three-dimensional (3D) MRI sequences over their two-dimensional (2D) counterparts. This development has been made possible by advances in MRI scanner hardware and software. In this article, we review the 3D versions of conventional sequences, including T1-weighted, T2-weighted and fluid-attenuated inversion recovery (FLAIR), as well as more advanced scans, including double inversion recovery (DIR), FLAIR2, FLAIR*, phase-sensitive inversion recovery, and susceptibility weighted imaging (SWI).
Collapse
Affiliation(s)
- Xun Yang Hu
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Emmanuelle Lapointe
- Department of Medicine, Division of Neurology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Roger Tam
- Department of Radiology, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - David Li
- Department of Radiology, UBC Hospital, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Division of Neurology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Alexander Rauscher
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Hametner S, Dal Bianco A, Trattnig S, Lassmann H. Iron related changes in MS lesions and their validity to characterize MS lesion types and dynamics with Ultra-high field magnetic resonance imaging. Brain Pathol 2019; 28:743-749. [PMID: 30020556 PMCID: PMC8028547 DOI: 10.1111/bpa.12643] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Iron accumulates with age in the normal human brain. This process is altered at several levels in the brain of multiple sclerosis (MS) patients. Since iron is mainly stored in oligodendrocytes and myelin in the normal brain, its liberation in demyelinating lesions may amplify tissue damage in demyelinating lesions and its uptake in macrophages and microglia may help to more precisely define activity stages of the lesions. In addition, glia cells change their iron import, export and storage properties in MS lesions, which is reflected by alterations in the expression of iron transport molecules. Changes of iron distribution in the brain can be reliably detected by MRI, particularly upon application of Ultra‐high magnetic field (7 Tesla). Iron‐sensitive MRI allows to more accurately distinguish the lesions in MS from those in other inflammatory brain diseases, to visualize a subset of slowly expanding lesions in the progressive stage of MS and to increase the sensitivity for lesion detection in the gray matter, such as the cerebral cortex or deep gray matter nuclei.
Collapse
Affiliation(s)
- Simon Hametner
- Center for Brain Research, Medical University of Vienna, Austria.,Institute of Neuropathology, University of Göttingen, Germany
| | - Assunta Dal Bianco
- Center for Brain Research, Medical University of Vienna, Austria.,Department of Neurology, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Center, Medical University of Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
30
|
Filippi M, Brück W, Chard D, Fazekas F, Geurts JJG, Enzinger C, Hametner S, Kuhlmann T, Preziosa P, Rovira À, Schmierer K, Stadelmann C, Rocca MA. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2019; 18:198-210. [DOI: 10.1016/s1474-4422(18)30451-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
|
31
|
Hernández‐Torres E, Wiggermann V, Machan L, Sadovnick AD, Li DK, Traboulsee A, Hametner S, Rauscher A. Increased mean R2* in the deep gray matter of multiple sclerosis patients: Have we been measuring atrophy? J Magn Reson Imaging 2018; 50:201-208. [DOI: 10.1002/jmri.26561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Enedino Hernández‐Torres
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of PediatricsUniversity of British Columbia Vancouver Canada
| | - Vanessa Wiggermann
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of PediatricsUniversity of British Columbia Vancouver Canada
- Department of Physics and AstronomyUniversity of British Columbia Vancouver Canada
| | - Lindsay Machan
- Department of RadiologyUniversity of British Columbia Vancouver Canada
| | - A. Dessa Sadovnick
- Department of Medicine (Neurology)University of British Columbia Vancouver Canada
- Centre for Brain HealthUniversity of British Columbia Vancouver Canada
- Department of Medical GeneticsUniversity of British Columbia Vancouver Canada
| | - David K.B. Li
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of RadiologyUniversity of British Columbia Vancouver Canada
- Department of Medicine (Neurology)University of British Columbia Vancouver Canada
| | - Anthony Traboulsee
- Department of Medicine (Neurology)University of British Columbia Vancouver Canada
- Centre for Brain HealthUniversity of British Columbia Vancouver Canada
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain ResearchMedical University of Vienna Vienna Austria
- Institute of NeuropathologyUniversity Medical Center Göttingen Germany
| | - Alexander Rauscher
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of PediatricsUniversity of British Columbia Vancouver Canada
- Department of Physics and AstronomyUniversity of British Columbia Vancouver Canada
- Department of RadiologyUniversity of British Columbia Vancouver Canada
- BC Children's Hospital Research InstituteUniversity of British Columbia Vancouver Canada
| |
Collapse
|
32
|
Zivadinov R, Tavazzi E, Bergsland N, Hagemeier J, Lin F, Dwyer MG, Carl E, Kolb C, Hojnacki D, Ramasamy D, Durfee J, Weinstock-Guttman B, Schweser F. Brain Iron at Quantitative MRI Is Associated with Disability in Multiple Sclerosis. Radiology 2018; 289:487-496. [PMID: 30015589 PMCID: PMC6219694 DOI: 10.1148/radiol.2018180136] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/11/2022]
Abstract
Purpose To study deep gray matter susceptibility in multiple sclerosis (MS) by using quantitative susceptibility mapping (QSM) and to assess the relationship between susceptibility and clinical disability. Materials and Methods For this prospective study between March 2009 and November 2013, 600 participants with MS (452 with relapsing-remitting MS and 148 with secondary progressive MS) and 250 age- and sex-matched healthy control participants were imaged with 3.0-T MRI to measure magnetic susceptibility. Deep gray matter susceptibility (in parts per billion) was analyzed by using region of interest and voxelwise methods. QSM and MRI volumetric differences between study groups and associations with clinical outcomes were assessed. Analysis of covariance, multivariable linear regression, and voxelwise analyses, controlling for age and sex, were used to compare study groups and to explore associations between MRI and clinical outcomes. Results Compared with control participants, participants with MS presented with lower thalamic susceptibility (-7.5 ppb vs -1.1 ppb; P < .001) and higher susceptibility of basal ganglia (62 ppb vs 54.8 ppb; P < .001). Lower thalamic susceptibility was associated with longer disease duration (β = -0.42; P = .002), higher degree of disability (β = -0.64; P = .03), and secondary-progressive course (β = -4.3; P = .009). Higher susceptibility of the globus pallidus was associated with higher disability (β = 2; P = .03). After correcting for each individual structural volume in voxelwise analysis, lower thalamic susceptibility and higher susceptibility of the globus pallidus remained associated with clinical disability (P < .05). Conclusion Quantitative susceptibility mapping (QSM) suggests that altered deep gray matter iron is associated with the evolution of multiple sclerosis (MS) and on disability accrual, independent of tissue atrophy. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Robert Zivadinov
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Eleonora Tavazzi
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Niels Bergsland
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Jesper Hagemeier
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Fuchun Lin
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Michael G. Dwyer
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Ellen Carl
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Channa Kolb
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - David Hojnacki
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Deepa Ramasamy
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Jacqueline Durfee
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Bianca Weinstock-Guttman
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| | - Ferdinand Schweser
- From the Buffalo Neuroimaging Analysis Center, Department of
Neurology, Jacobs School of Medicine and Biomedical Sciences (R.Z., E.T., N.B.,
J.H., F.L., M.G.D., E.C., D.R., J.D., F.S.), Center for Biomedical Imaging,
Clinical Translational Science Institute (R.Z.), and Jacobs Multiple Sclerosis
Center, Department of Neurology, School of Medicine and Biomedical Sciences
(C.K., D.H., B.W.G.), University at Buffalo, State University of New York, 100
High St, Buffalo, NY 14203
| |
Collapse
|
33
|
The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neuroimage 2018; 179:117-133. [DOI: 10.1016/j.neuroimage.2018.06.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
|
34
|
Yan F, He N, Lin H, Li R. Iron deposition quantification: Applications in the brain and liver. J Magn Reson Imaging 2018; 48:301-317. [PMID: 29897645 DOI: 10.1002/jmri.26161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
Iron has long been implicated in many neurological and other organ diseases. It is known that over and above the normal increases in iron with age, in certain diseases there is an excessive iron accumulation in the brain and liver. MRI is a noninvasive means by which to image the various structures in the brain in three dimensions and quantify iron over the volume of the object of interest. The quantification of iron can provide information about the severity of iron-related diseases as well as quantify changes in iron for patient follow-up and treatment monitoring. This article provides an overview of current MRI-based methods for iron quantification, specifically for the brain and liver, including: signal intensity ratio, R2 , R2*, R2', phase, susceptibility weighted imaging and quantitative susceptibility mapping (QSM). Although there are numerous approaches to measuring iron, R2 and R2* are currently preferred methods in imaging the liver and QSM has become the preferred approach for imaging iron in the brain. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:301-317.
Collapse
Affiliation(s)
- Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Abstract
Since its technical development in the early 1980s, magnetic resonance imaging (MRI) has quickly been adopted as an essential tool in supporting the diagnosis, longitudinal monitoring, evaluation of therapeutic response, and scientific investigations in multiple sclerosis (MS). The clinical usage of MRI has increased in parallel with technical innovations in the technique itself; the widespread adoption of clinically routine MRI at 1.5T has allowed sensitive qualitative and quantitative assessments of macroscopic central nervous system (CNS) inflammatory demyelinating lesions and tissue atrophy. However, conventional MRI lesion measures lack specificity for the underlying MS pathology and only weakly correlate with clinical status. Higher field strength units and newer, advanced MRI techniques offer increased sensitivity and specificity in the detection of disease activity and disease severity. This review summarizes the current status and future prospects regarding the role of MRI in the characterization of MS-related brain and spinal cord involvement.
Collapse
Affiliation(s)
- Christopher C Hemond
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rohit Bakshi
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
36
|
Zeng C, Du S, Han Y, Fu J, Luo Q, Xiang Y, Chen X, Luo T, Li Y, Zheng Y. Optic radiations are thinner and show signs of iron deposition in patients with long-standing remitting-relapsing multiple sclerosis: an enhanced T 2*-weighted angiography imaging study. Eur Radiol 2018; 28:4447-4454. [PMID: 29713769 PMCID: PMC6132724 DOI: 10.1007/s00330-018-5461-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
Abstract
Objective This study aimed to investigate iron deposition and thickness and signal changes in optic radiation (OR) by enhanced T2*-weighted angiography imaging (ESWAN) in patients with relapsing-remitting multiple sclerosis (RRMS) with unilateral and bilateral lesions or no lesions. Methods Fifty-one RRMS patients (42 patients with a disease duration [DD] ≥ 2 years [group Mor], nine patients with a DD < 2 years [group Les]) and 51 healthy controls (group Con) underwent conventional magnetic resonance imaging (MRI) and ESWAN at 3.0 T. The mean phase value (MPV) of the OR was measured on the phase image, and thickness and signal changes of the OR were observed on the magnitude image. Results The average MPVs for the OR were 1,981.55 ± 7.75 in group Mor, 1,998.45 ± 2.01 in group Les, and 2,000.48 ± 5.53 in group Con. In group Mor, 28 patients with bilateral OR lesions showed bilateral OR thinning with a heterogeneous signal, and 14 patients with unilateral OR lesions showed ipsilateral OR thinning with a heterogeneous signal. In the remaining nine patients without OR lesions and in group Con, the bilateral OR had a normal appearance. In the patients, a negative correlation was found between DD and OR thickness and a positive correlation was found between MPV and OR thickness. Conclusions We confirmed iron deposition in the OR in the RRMS patients, and the OR thickness was lower in the patients than in the controls. Key Points • Enhanced T2*-weighted magnetic resonance angiography (ESWAN) provides new insights into multiple sclerosis (MS). • Focal destruction of the optic radiation (OR) is detectable by ESWAN. • Iron deposition in OR can be measured on ESWAN phase image in MS patients. • OR thickness was lower in the patients than in the controls. • Iron deposition and thickness changes of the OR are associated with disease duration. Electronic supplementary material The online version of this article (10.1007/s00330-018-5461-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jialiang Fu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yayun Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoya Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
37
|
Herbert E, Engel-Hills P, Hattingh C, Fouche JP, Kidd M, Lochner C, Kotze MJ, van Rensburg SJ. Fractional anisotropy of white matter, disability and blood iron parameters in multiple sclerosis. Metab Brain Dis 2018; 33:545-557. [PMID: 29396631 DOI: 10.1007/s11011-017-0171-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Multiple sclerosis (MS) is a disorder related to myelin damage, which can be investigated by neuroimaging techniques such as fractional anisotropy (FA), a measure of microstructural white matter properties. The objectives of this study were to investigate (1) the relationship between FA and disability using an extremes of outcome approach, and (2) whether blood iron parameters were associated with FA and/or disability. Patients diagnosed with MS (n = 107; 14 males and 93 females) had iron parameter tests and disability determinations using the Expanded Disability Status Scale (EDSS). FA was recorded in 48 white matter tracts in 11 of the female patients with MS and 12 female controls. RESULTS In patients with high disability scores the mean FA was significantly lower (0.34 ± 0.067) than in the control group (0.45 ± 0.036; p = 0.04), while patients with low disability had mean FA values (0.44 ± 0.014) similar to controls (p = 0.5). Positive associations were found between FA and the iron parameters serum iron, ferritin and percentage transferrin saturation (%Tfsat) in all the white matter tracts. For % Tfsat, the associations were highly significant in 14 tracts (p < 0.01; r-values 0.74-0.84) and p < 0.001 (r = 0.83) in the superior fronto occipital fasciculus (LH). In the whole patient group a trend was found towards an inverse association between the EDSS and the %Tfsat (r = -0.26, p = 0.05) after excluding male gender and smoking as confounders, suggesting reduced disability in the presence of higher blood iron parameters. Additionally, significant inverse associations between disease duration and haemoglobin (p = 0.04) as well as %Tfsat (p = 0.02) suggested that patients with MS may experience a decrease in blood iron concentrations over time.
Collapse
Affiliation(s)
- Estelle Herbert
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Penelope Engel-Hills
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Coenraad Hattingh
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service (NHLS) and Stellenbosch University, Cape Town, South Africa
| | - Jean-Paul Fouche
- MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, Cape Town, South Africa
| | - Christine Lochner
- MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service (NHLS) and Stellenbosch University, Cape Town, South Africa
| | - Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service (NHLS) and Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
38
|
Chiang GC, Hu J, Morris E, Wang Y, Gauthier SA. Quantitative Susceptibility Mapping of the Thalamus: Relationships with Thalamic Volume, Total Gray Matter Volume, and T2 Lesion Burden. AJNR Am J Neuroradiol 2018; 39:467-472. [PMID: 29371258 DOI: 10.3174/ajnr.a5537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/15/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Both thalamic iron deposition and atrophy have been reported in patients with multiple sclerosis compared with healthy controls, but how they are related is unclear. The purpose of this study was to understand the pathophysiologic basis for this iron deposition. MATERIALS AND METHODS Ninety-five patients with relapsing-remitting multiple sclerosis underwent 3T MR imaging with a standardized protocol that included quantitative susceptibility mapping to measure iron concentration and a 3D T1 echo-spoiled gradient-echo sequence to obtain thalamic volumes. Volumes of interest were manually delineated on the quantitative susceptibility map to encompass both thalami. Multivariate regression analyses were performed to identify the association between thalamic susceptibility and volume. Associations between thalamic susceptibility and total gray matter volume, cortical thickness, and T2 lesion volume were also assessed. RESULTS The relative susceptibility of the thalamus was associated with T2 lesion volume (P = .015) and was higher in the presence of enhancing lesions (P = .013). The relative susceptibility of the thalami was not associated with thalamic volumes, total gray matter volumes, or cortical thickness (P > .05). CONCLUSIONS Iron levels in the thalami are associated with T2 lesion burden and the presence of enhancing lesions, but not with thalamic or gray matter volumes, suggesting that iron accumulation is associated with white matter inflammation rather than gray matter neurodegeneration.
Collapse
Affiliation(s)
- G C Chiang
- From the Departments of Radiology (G.C.C., J.H., Y.W.)
| | - J Hu
- From the Departments of Radiology (G.C.C., J.H., Y.W.)
| | - E Morris
- Neurology (E.M., S.A.G.), Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - Y Wang
- From the Departments of Radiology (G.C.C., J.H., Y.W.)
| | - S A Gauthier
- Neurology (E.M., S.A.G.), Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
39
|
Schweser F, Raffaini Duarte Martins AL, Hagemeier J, Lin F, Hanspach J, Weinstock-Guttman B, Hametner S, Bergsland N, Dwyer MG, Zivadinov R. Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: A proposed mechanistic relationship between inflammation and oligodendrocyte vitality. Neuroimage 2018; 167:438-452. [PMID: 29097315 PMCID: PMC5845810 DOI: 10.1016/j.neuroimage.2017.10.063] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Recent advances in susceptibility MRI have dramatically improved the visualization of deep gray matter brain regions and the quantification of their magnetic properties in vivo, providing a novel tool to study the poorly understood iron homeostasis in the human brain. In this study, we used an advanced combination of the recent quantitative susceptibility mapping technique with dedicated analysis methods to study intra-thalamic tissue alterations in patients with clinically isolated syndrome (CIS) and multiple sclerosis (MS). Thalamic pathology is one of the earliest hallmarks of MS and has been shown to correlate with cognitive dysfunction and fatigue, but the mechanisms underlying the thalamic pathology are poorly understood. We enrolled a total of 120 patients, 40 with CIS, 40 with Relapsing Remitting MS (RRMS), and 40 with Secondary Progressive MS (SPMS). For each of the three patient groups, we recruited 40 controls, group matched for age- and sex (120 total). We acquired quantitative susceptibility maps using a single-echo gradient echo MRI pulse sequence at 3 T. Group differences were studied by voxel-based analysis as well as with a custom thalamus atlas. We used threshold-free cluster enhancement (TFCE) and multiple regression analyses, respectively. We found significantly reduced magnetic susceptibility compared to controls in focal thalamic subregions of patients with RRMS (whole thalamus excluding the pulvinar nucleus) and SPMS (primarily pulvinar nucleus), but not in patients with CIS. Susceptibility reduction was significantly associated with disease duration in the pulvinar, the left lateral nuclear region, and the global thalamus. Susceptibility reduction indicates a decrease in tissue iron concentration suggesting an involvement of chronic microglia activation in the depletion of iron from oligodendrocytes in this central and integrative brain region. Not necessarily specific to MS, inflammation-mediated iron release may lead to a vicious circle that reduces the protection of axons and neuronal repair.
Collapse
Affiliation(s)
- Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Ana Luiza Raffaini Duarte Martins
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Fuchun Lin
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jannis Hanspach
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
40
|
Bonnier G, Maréchal B, Fartaria MJ, Falkowskiy P, Marques JP, Simioni S, Schluep M, Du Pasquier R, Thiran JP, Krueger G, Granziera C. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients. Front Neurol 2017; 8:506. [PMID: 29021778 PMCID: PMC5623825 DOI: 10.3389/fneur.2017.00506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022] Open
Abstract
Objective Quantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI) metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients. Methods Thirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA) tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue. Results In patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter (p = 0.005) and a decrease of T1 relaxation times in the pallidum (p < 0.05), which are compatible with edema reabsorption and/or iron deposition. No longitudinal changes in qMRI metrics were observed in controls. In MS lesions, we measured a decrease in T1 relaxation time (p-value < 2.2e−16) and a significant increase in MTR (p-value < 1e−6), suggesting repair mechanisms, such as remyelination, increased axonal density, and/or a gliosis. Last, the evolution of advanced MRI metrics—and not changes in lesions or brain volume—were correlated to motor and cognitive tests scores evolution (Adj-R2 > 0.4, p < 0.05). In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at early MS stages as suggested by histopathological studies.
Collapse
Affiliation(s)
- Guillaume Bonnier
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Benedicte Maréchal
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare, Lausanne, Switzerland.,Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mário João Fartaria
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare, Lausanne, Switzerland.,Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pavel Falkowskiy
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare, Lausanne, Switzerland.,Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - José P Marques
- Donders Centre for Cognitive Neuroimaging, Radbound University, Nijmegen, Netherlands
| | - Samanta Simioni
- Neuropsychology, Institution de Lavigny, Denens, Switzerland
| | - Myriam Schluep
- Neurology Service and Neuroimmunology Laboratory, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Neurology Service and Neuroimmunology Laboratory, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gunnar Krueger
- Siemens Medical Solutions USA IM MR COL NEZ, Burlington, MA, United States
| | - Cristina Granziera
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Neurology Service and Neuroimmunology Laboratory, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Louapre C, Govindarajan ST, Giannì C, Madigan N, Sloane JA, Treaba CA, Herranz E, Kinkel RP, Mainero C. Heterogeneous pathological processes account for thalamic degeneration in multiple sclerosis: Insights from 7 T imaging. Mult Scler 2017; 24:1433-1444. [PMID: 28803512 DOI: 10.1177/1352458517726382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thalamic degeneration impacts multiple sclerosis (MS) prognosis. OBJECTIVE To investigate heterogeneous thalamic pathology, its correlation with white matter (WM), cortical lesions and thickness, and as function of distance from cerebrospinal fluid (CSF). METHODS In 41 MS subjects and 17 controls, using 3 and 7 T imaging, we tested for (1) differences in thalamic volume and quantitative T2* (q-T2*) (2) globally and (3) within concentric bands originating from the CSF/thalamus interface; (4) the relation between thalamic, cortical, and WM metrics; and (5) the contribution of magnetic resonance imaging (MRI) metrics to clinical scores. We also assessed MS thalamic lesion distribution as a function of distance from CSF. RESULTS Thalamic lesions were mainly located next to the ventricles. Thalamic volume was decreased in MS versus controls ( p < 10-2); global q-T2* was longer in secondary progressive multiple sclerosis (SPMS) only ( p < 10-2), indicating myelin and/or iron loss. Thalamic atrophy and longer q-T2* correlated with WM lesion volume ( p < 0.01). In relapsing-remitting MS, q-T2* thalamic abnormalities were located next to the WM ( p < 0.01 (uncorrected), p = 0.09 (corrected)), while they were homogeneously distributed in SPMS. Cortical MRI metrics were the strongest predictors of clinical outcome. CONCLUSION Heterogeneous pathological processes affect the thalamus in MS. While focal lesions are likely mainly driven by CSF-mediated factors, overall thalamic degeneration develops in association with WM lesions.
Collapse
Affiliation(s)
- Céline Louapre
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Sindhuja T Govindarajan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Costanza Giannì
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Nancy Madigan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jacob A Sloane
- Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Constantina A Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Revere P Kinkel
- Department of Neuroscience, University of California San Diego, San Diego, CA, USA
| | - Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Genetically encoded iron-associated proteins as MRI reporters for molecular and cellular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
|
43
|
Burgetova A, Dusek P, Vaneckova M, Horakova D, Langkammer C, Krasensky J, Sobisek L, Matras P, Masek M, Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1079-1086. [PMID: 28450431 DOI: 10.3174/ajnr.a5166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/26/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Potential differences between primary progressive and relapsing remitting multiple sclerosis are the subject of ongoing controversial discussions. The aim of this work was to determine whether and how primary-progressive and relapsing-remitting multiple sclerosis subtypes differ regarding conventional MR imaging parameters, cerebral iron deposits, and their association with clinical status. MATERIALS AND METHODS We analyzed 24 patients with primary-progressive MS, 80 with relapsing-remitting MS, and 20 healthy controls with 1.5T MR imaging for assessment of the conventional quantitative parameters: T2 lesion load, T1 lesion load, brain parenchymal fraction, and corpus callosum volume. Quantitative susceptibility mapping was performed to estimate iron concentration in the deep gray matter. RESULTS Decreased susceptibility within the thalamus in relapsing-remitting MS compared with primary-progressive MS was the only significant MR imaging difference between these MS subtypes. In the relapsing-remitting MS subgroup, the Expanded Disability Status Scale score was positively associated with conventional parameters reflecting white matter lesions and brain atrophy and with iron in the putamen and caudate nucleus. A positive association with putaminal iron and the Expanded Disability Status Scale score was found in primary-progressive MS. CONCLUSIONS Susceptibility in the thalamus might provide additional support for the differentiation between primary-progressive and relapsing-remitting MS. That the Expanded Disability Status Scale score was associated with conventional MR imaging parameters and iron concentrations in several deep gray matter regions in relapsing-remitting MS, while only a weak association with putaminal iron was observed in primary-progressive MS suggests different driving forces of disability in these MS subtypes.
Collapse
Affiliation(s)
- A Burgetova
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - P Dusek
- Neurology (P.D., D.H.), Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Neuroradiology (P.D.), University Medicine Göttingen, Göttingen, Germany
| | - M Vaneckova
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - D Horakova
- Neurology (P.D., D.H.), Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - C Langkammer
- Department of Neurology (C.L.), Medical University of Graz, Graz, Austria
| | - J Krasensky
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - L Sobisek
- Department of Statistics and Probability (L.S.), University of Economics, Prague, Czech Republic
| | - P Matras
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - M Masek
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - Z Seidl
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| |
Collapse
|
44
|
Castellaro M, Magliozzi R, Palombit A, Pitteri M, Silvestri E, Camera V, Montemezzi S, Pizzini FB, Bertoldo A, Reynolds R, Monaco S, Calabrese M. Heterogeneity of Cortical Lesion Susceptibility Mapping in Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1087-1095. [PMID: 28408633 DOI: 10.3174/ajnr.a5150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/21/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping has been used to characterize iron and myelin content in the deep gray matter of patients with multiple sclerosis. Our aim was to characterize the susceptibility mapping of cortical lesions in patients with MS and compare it with neuropathologic observations. MATERIALS AND METHODS The pattern of microglial activation was studied in postmortem brain tissues from 16 patients with secondary-progressive MS and 5 age-matched controls. Thirty-six patients with MS underwent 3T MR imaging, including 3D double inversion recovery and 3D-echo-planar SWI. RESULTS Neuropathologic analysis revealed the presence of an intense band of microglia activation close to the pial membrane in subpial cortical lesions or to the WM border of leukocortical cortical lesions. The quantitative susceptibility mapping analysis revealed 131 cortical lesions classified as hyperintense; 33, as isointense; and 84, as hypointense. Quantitative susceptibility mapping hyperintensity edge found in the proximity of the pial surface or at the white matter/gray matter interface in some of the quantitative susceptibility mapping-hyperintense cortical lesions accurately mirrors the microglia activation observed in the neuropathology analysis. CONCLUSIONS Cortical lesion susceptibility maps are highly heterogeneous, even at individual levels. Quantitative susceptibility mapping hyperintensity edge found in proximity to the pial surface might be due to the subpial gradient of microglial activation.
Collapse
Affiliation(s)
- M Castellaro
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - R Magliozzi
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
- Division of Brain Sciences (R.M., R.R.), Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - A Palombit
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - M Pitteri
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - E Silvestri
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - V Camera
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - S Montemezzi
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
- Neuroradiology and Radiology Units (S.M., F.B.P.), Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - F B Pizzini
- Neuroradiology and Radiology Units (S.M., F.B.P.), Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - A Bertoldo
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - R Reynolds
- Division of Brain Sciences (R.M., R.R.), Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - S Monaco
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - M Calabrese
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Hagemeier J, Zivadinov R, Dwyer MG, Polak P, Bergsland N, Weinstock-Guttman B, Zalis J, Deistung A, Reichenbach JR, Schweser F. Changes of deep gray matter magnetic susceptibility over 2 years in multiple sclerosis and healthy control brain. NEUROIMAGE-CLINICAL 2017; 18:1007-1016. [PMID: 29868452 PMCID: PMC5984575 DOI: 10.1016/j.nicl.2017.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 01/21/2023]
Abstract
In multiple sclerosis, pathological changes of both tissue iron and myelin occur, yet these factors have not been characterized in a longitudinal fashion using the novel iron- and myelin-sensitive quantitative susceptibility mapping (QSM) MRI technique. We investigated disease-relevant tissue changes associated with myelin loss and iron accumulation in multiple sclerosis deep gray matter (DGM) over two years. One-hundred twenty (120) multiple sclerosis patients and 40 age- and sex-matched healthy controls were included in this prospective study. Written informed consent and local IRB approval were obtained from all participants. Clinical testing and QSM were performed both at baseline and at follow-up. Brain magnetic susceptibility was measured in major DGM structures. Temporal (baseline vs. follow-up) and cross-sectional (multiple sclerosis vs. controls) differences were studied using mixed factorial ANOVA analysis and appropriate t-tests. At either time-point, multiple sclerosis patients had significantly higher susceptibility in the caudate and globus pallidus and lower susceptibility in the thalamus. Over two years, susceptibility increased significantly in the caudate of both controls and multiple sclerosis patients. Inverse thalamic findings among MS patients suggest a multi-phase pathology explained by simultaneous myelin loss and/or iron accumulation followed by iron depletion and/or calcium deposition at later stages.
Collapse
Affiliation(s)
- Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Paul Polak
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; IRCCS Don Gnocchi Foundation, Milan, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Joshua Zalis
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany; Section of Experimental Neurology, Department of Neurology, Essen University Hospital, Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany; Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Germany
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
46
|
Uddin MN, McPhee KC, Blevins G, Wilman AH. Recovery of accurate T 2 from historical 1.5 tesla proton density and T 2 -weighted images: Application to 7-year T 2 changes in multiple sclerosis brain. Magn Reson Imaging 2017; 37:21-26. [DOI: 10.1016/j.mri.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 01/12/2023]
|
47
|
Elkady AM, Cobzas D, Sun H, Blevins G, Wilman AH. Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter. J Magn Reson Imaging 2017; 46:1464-1473. [DOI: 10.1002/jmri.25682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ahmed M. Elkady
- Department of Biomedical Engineering; University of Alberta; Edmonton AB Canada
| | - Dana Cobzas
- Department of Biomedical Engineering; University of Alberta; Edmonton AB Canada
| | - Hongfu Sun
- Department of Biomedical Engineering; University of Alberta; Edmonton AB Canada
| | - Gregg Blevins
- Division of Neurology; University of Alberta; Edmonton AB Canada
| | - Alan H. Wilman
- Department of Biomedical Engineering; University of Alberta; Edmonton AB Canada
| |
Collapse
|
48
|
Fujiwara E, Kmech JA, Cobzas D, Sun H, Seres P, Blevins G, Wilman AH. Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:942-948. [PMID: 28232497 DOI: 10.3174/ajnr.a5109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/18/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR imaging-based iron-susceptibility measures. MATERIALS AND METHODS Forty patients with multiple sclerosis (relapsing-remitting, n = 16; progressive, n = 24) and 27 healthy controls were imaged at 4.7T by using the transverse relaxation rate and quantitative susceptibility mapping. The transverse relaxation rate and quantitative susceptibility mapping values and volumes (atrophy) of the caudate, putamen, globus pallidus, and thalamus were determined by multiatlas segmentation. Cognition was assessed with the Brief Repeatable Battery of Neuropsychological Tests. Relationships between cognition and deep gray matter iron were examined by hierarchic regressions. RESULTS Compared with controls, patients showed reduced memory (P < .001) and processing speed (P = .02) and smaller putamen (P < .001), globus pallidus (P = .002), and thalamic volumes (P < .001). Quantitative susceptibility mapping values were increased in patients compared with controls in the putamen (P = .003) and globus pallidus (P = .003). In patients only, thalamus (P < .001) and putamen (P = .04) volumes were related to cognitive performance. After we controlled for volume effects, quantitative susceptibility mapping values in the globus pallidus (P = .03; trend for transverse relaxation rate, P = .10) were still related to cognition. CONCLUSIONS Quantitative susceptibility mapping was more sensitive compared with the transverse relaxation rate in detecting deep gray matter iron accumulation in the current multiple sclerosis cohort. Atrophy and iron accumulation in deep gray matter both have negative but separable relationships to cognition in multiple sclerosis.
Collapse
Affiliation(s)
- E Fujiwara
- From the Departments of Psychiatry (E.F., J.A.K.)
| | - J A Kmech
- From the Departments of Psychiatry (E.F., J.A.K.)
| | | | - H Sun
- Biomedical Engineering (H.S., P.S., A.H.W.)
| | - P Seres
- Biomedical Engineering (H.S., P.S., A.H.W.)
| | - G Blevins
- Medicine (G.B.), Division of Neurology, University of Alberta, Edmonton, Alberta, Canada.,Northern Alberta Multiple Sclerosis Clinic (G.B.), Edmonton, Alberta, Canada
| | - A H Wilman
- Biomedical Engineering (H.S., P.S., A.H.W.)
| |
Collapse
|
49
|
Abstract
Increased iron deposition in cerebral deep gray matter has been considered a global marker for neurodegeneration in multiple sclerosis (MS); it scales with disease duration and severity. Iron accumulation in white matter and MS lesions might be more directly related to disease activity and has been discussed as a contributor to the inflammatory and neurodegenerative cascade. New insights into iron and MS are expected from MR imaging. We discuss findings from MR iron mapping proposed. Because of the confounding magnetic properties of myelin, iron mapping in white matter remains an unresolved issue.
Collapse
|
50
|
Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, Bangham CR. Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Res 2016; 1:10. [PMID: 27996064 PMCID: PMC5159626 DOI: 10.12688/wellcomeopenres.9967.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background A major cause of disability in secondary progressive multiple sclerosis (SPMS) is progressive brain atrophy, whose pathogenesis is not fully understood. The objective of this study was to identify protein biomarkers of brain atrophy in SPMS. Methods We used surface-enhanced laser desorption-ionization time-of-flight mass spectrometry to carry out an unbiased search for serum proteins whose concentration correlated with the rate of brain atrophy, measured by serial MRI scans over a 2-year period in a well-characterized cohort of 140 patients with SPMS. Protein species were identified by liquid chromatography-electrospray ionization tandem mass spectrometry. Results There was a significant (p<0.004) correlation between the rate of brain atrophy and a rise in the concentration of proteins at 15.1 kDa and 15.9 kDa in the serum. Tandem mass spectrometry identified these proteins as alpha-haemoglobin and beta-haemoglobin, respectively. The abnormal concentration of free serum haemoglobin was confirmed by ELISA (p<0.001). The serum lactate dehydrogenase activity was also highly significantly raised (p<10-12) in patients with secondary progressive multiple sclerosis. Conclusions An underlying low-grade chronic intravascular haemolysis is a potential source of the iron whose deposition along blood vessels in multiple sclerosis plaques contributes to the neurodegeneration and consequent brain atrophy seen in progressive disease. Chelators of free serum iron will be ineffective in preventing this neurodegeneration, because the iron (Fe2+) is chelated by haemoglobin.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK,Present address: Department of Mathematics, Brunel University, London, UK,
| | - Shea Hamilton
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK,
| | - Aviva Witkover
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Paul Langford
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jeremy Chataway
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust and Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, UK
| | - Charles R.M. Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK,
| |
Collapse
|