1
|
Yang D, Jiang Z, Huang H, Wang L, Ying C, Chen Y, Lu Y, Zhang T, Zhu Y, Wang S, Wang Y, Guo Y, Wang H, Cen Z, Luo W. Genetic Mutations in Cell Junction Proteins Associated with Brain Calcification. Mov Disord 2025; 40:400-419. [PMID: 39620489 DOI: 10.1002/mds.30068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 03/22/2025] Open
Abstract
Intracerebral calcium deposition, classified into primary familial brain calcification (PFBC) and secondary brain calcification, occurs within the brain parenchyma and vasculature. PFBC manifests with progressive motor decline, dysarthria, and cognitive impairment, with limited treatment options available. Recent research has suggested a link between dysfunction of the blood-brain barrier (BBB) and PFBC, with certain genetic variants potentially affecting neurovascular unit (NVU) function, thereby contributing to BBB integrity disruption and brain calcification. Cell junctions play an indispensable role in maintaining the function of NVUs. The pathogenic mechanisms of PFBC-causative genes, such as PDGFRB, PDGFB, MYORG, and JAM2, involve NVU disruption. Cell junctions, such as tight junctions, gap junctions, adherens junctions, desmosomes, hemidesmosomes, and focal adhesions, are vital for cell-cell and cell-extracellular matrix connections, maintaining barrier function, cell adhesion, and facilitating ion and metabolite exchange. Several recent studies have highlighted the role of mutations in genes encoding cell junction proteins in the onset and progression of brain calcification and its related phenotypes. This emerging body of research offers a unique perspective for investigating the underlying mechanisms driving brain calcification. In this review, we conducted an examination of the literature reporting on genetic variants in cell junction proteins associated with brain calcification to delineate potential molecular pathways and investigate genotype-phenotype correlations. This approach not only reinforces the rationale for molecular subtyping of brain calcification but also lays the groundwork for the discovery of novel causative genes involved in pathogenesis. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Tingxuan Zhang
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Yusheng Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaoting Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Yuru Guo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Haoyu Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Gowda VK, Srinivasan VM, Nayyer A, Pandey H, Lal D. Clinical and neuroimaging variability in two siblings with a novel PCDH12 variant: a case report. Clin Dysmorphol 2025:00019605-990000000-00089. [PMID: 40073205 DOI: 10.1097/mcd.0000000000000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Affiliation(s)
- Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore
| | | | - Amena Nayyer
- Department of Radiology, Pediatric Radiology fellow, Indira Gandhi Institute of Child Health, Bangalore
| | - Himani Pandey
- Department of Molecular Genetics, Redcliffe labs, Noida, Uttar Pradesh
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Ürel-Demir G, Başer B, Göçmen R, Şimşek-Kiper PÖ, Utine GE, Haliloğlu G. Many Faces of Diencephalic-Mesencephalic Junction Dysplasia Syndrome with GSX2 and PCDH12 Variants. Mol Syndromol 2024; 15:275-283. [PMID: 39119454 PMCID: PMC11305698 DOI: 10.1159/000537831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Diencephalic-mesencephalic junction dysplasia syndrome is a rare neurogenetic disorder reported to be caused by variants in several genes. Phenotypic presentation is characterized by clinical findings including developmental delay, hypotonia, spasticity, and dyskinetic movements in combination with distinctive imaging features on brain magnetic resonance imaging (MRI). Methods Whole exome sequencing was conducted to unveil the molecular etiology of patients presenting with neurological manifestations from two unrelated families. Results To the best of our knowledge, here we report the third family affected with diencephalic-mesencephalic junction dysplasia caused by a novel variant in GSX2 and two siblings with a PCDH12 variant exhibiting a less severe phenotype. The siblings with a PCDH12 variant were positioned at the milder end of the phenotypic spectrum. Although both exhibited a clinical phenotype resembling cerebral palsy, one showed partial fusion of the hypothalamus and mesencephalon, whereas MRI was unremarkable in the other. Biallelic GSX2 variants have been implicated in basal ganglia agenesis, and similarly, our patients had basal ganglia hypoplasia along with hypothalamic-mesencephalic fusion. Conclusion Identifying variants associated with the syndrome in different genes will contribute to genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gizem Ürel-Demir
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burak Başer
- Department of Medical Genetics, Mersin City Training and Research Hospital, Mersin, Turkey
| | - Rahşan Göçmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Özlem Şimşek-Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Fairbanks-Santana M, Rozet JM, Guemez-Gamboa A. PCDH12 loss results in premature neuronal differentiation and impeded migration in a cortical organoid model. Cell Rep 2023; 42:112845. [PMID: 37480564 PMCID: PMC10521973 DOI: 10.1016/j.celrep.2023.112845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Biallelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs). Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development, with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit the cell cycle and differentiate earlier when compared with wild type. Furthermore, we show that PCDH12 regulates neuronal migration and suggest that this could be through a mechanism requiring ADAM10-mediated ectodomain shedding and/or membrane recruitment of cytoskeleton regulators. Our results demonstrate a critical involvement of PCDH12 in cortical organoid development, suggesting a potential cause for the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
Affiliation(s)
- Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Sean McDermott
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Devin Davies
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Yang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fikayo Fagbemi
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maya Epstein
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Martín Fairbanks-Santana
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Gomes BV, de Oliveira JRM. New Evidence Suggests a Much Complex Classification for the Genetic Pattern of Inheritance in Primary Brain Calcification. J Mol Neurosci 2023; 73:563-565. [PMID: 37420094 DOI: 10.1007/s12031-023-02141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Primary familial brain calcification (PFBC), often called Fahr's disease, is a condition in which calcium phosphate accumulates in the brain, mainly in the basal ganglia, thalamus, and cerebellum, and without the association of any metabolic or infectious cause. Patients present a variety of neurological and psychiatric disorders, usually during adulthood. The disease is caused by autosomal dominant pathogenic variants in genes such as SLC20A2, PDGFRB, PDGFB, and XPR1. MYORG and JAM2 are the other genes linked to homozygous patterns of inheritance. Here, we briefly discuss the recent cases reported by Ceylan et al. (2022) and Al-Kasbi et al. (2022), which challenge the current association with two previous genes and a clear pattern of inheritance. Ceylan et al. report a new biallelic variant related to a pathogenic variant in the SLC20A2 gene, which is typically associated with a heterozygous mutation pattern. The affected siblings displayed a severe and early onset of the disease, revealing a phenotype similar to that seen in CMV infections, often named as pseudo-TORCH. Furthermore, a study of genes related to intellectual disability conducted by Al-Kasbi et al. demonstrated that the biallelic manifestation of the XPR1 gene was associated with early symptoms, leading to the belief that the homozygous pattern of genes responsible for causing PFBC with an autosomal dominant pattern may also be linked to early-onset manifestations of PFBC. Further studies might explore the variety of clinical presentations linked to PFBC genes, especially if we pay attention to complex patterns of inheritance, reinforcing the need for a more detailed bioinformatic analysis.
Collapse
Affiliation(s)
- Bruno Vieira Gomes
- Medical Sciences Center - Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - João Ricardo Mendes de Oliveira
- Medical Sciences Center - Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
- Keizo Asami Institute (iLIKA) - Federal University of Pernambuco (UFPE), Av. Professor Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
6
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Guemez-Gamboa A. Impaired migration and premature differentiation underlie the neurological phenotype associated with PCDH12 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522934. [PMID: 36711630 PMCID: PMC9881913 DOI: 10.1101/2023.01.05.522934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Bi-allelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs) such as diencephalic-mesencephalic dysplasia syndrome, cerebral palsy, cerebellar ataxia, and microcephaly. Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit cell cycle and differentiate earlier when compared to wildtype. Furthermore, we show that PCDH12 regulates neuronal migration through a mechanism requiring ADAM10-mediated ectodomain shedding and membrane recruitment of cytoskeleton regulators. Our data demonstrate a critical and broad involvement of PCDH12 in cortical development, revealing the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
|
7
|
Expanding spectrum of PCDH12 related phenotype begs exploration of multipronged pathomechanisms. Eur J Paediatr Neurol 2022; 36:A2-A3. [PMID: 34998686 DOI: 10.1016/j.ejpn.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
The phenotypic spectrum of PCDH12 associated disorders - Five new cases and review of the literature. Eur J Paediatr Neurol 2022; 36:7-13. [PMID: 34773825 PMCID: PMC9939053 DOI: 10.1016/j.ejpn.2021.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023]
Abstract
PCDH12 is a member of the non-clustered protocadherin family of calcium-dependent cell adhesion proteins, which are involved in the regulation of brain development and endothelial adhesion. To date, only 15 families have been reported with PCDH12 associated disease. The main features previously associated with PCDH12 deficiency are developmental delay, movement disorder, epilepsy, microcephaly, visual impairment, midbrain malformations, and intracranial calcifications. Here, we report novel clinical features such as onset of epilepsy after infancy, episodes of transient developmental regression, and dysplasia of the medulla oblongata associated with three different novel truncating PCDH12 mutations in five cases (three children, two adults) from three unrelated families. Interestingly, our data suggests a clinical overlap with interferonopathies, and we show an elevated interferon score in two pediatric patients. This case series expands the genetic and phenotypic spectrum of PCDH12 associated diseases and highlights the broad clinical variability.
Collapse
|
9
|
Accogli A, El Kosseifi C, Saint-Martin C, Addour-Boudrahem N, Rivière JB, Toffoli D, Lopez I, Qian C, Koenekoop RK, Srour M. PCDH12 variants are associated with basal ganglia anomalies and exudative vitreoretinopathy. Eur J Med Genet 2021; 65:104405. [PMID: 34929393 DOI: 10.1016/j.ejmg.2021.104405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2022]
Abstract
PCDH12 is a member of the non-clustered protocadherins that mediate cell-cell adhesion, playing crucial roles in many biological processes. Among these, PCDH12 promotes cell-cell interactions at inter-endothelial junctions, exerting essential functions in vascular homeostasis and angiogenesis. However, its exact role in eye vascular and brain development is not completely understood. To date, biallelic loss of function variants in PCDH12 have been associated with a neurodevelopmental disorder characterized by the typical neuroradiological findings of diencephalic-mesencephalic junction dysplasia and intracranial calcifications, whereas heterozygous variants have been recently linked to isolated brain calcifications in absence of cognitive impairment or other brain malformations. Recently, the phenotypic spectrum associated with PCDH12 deficiency has been expanded including cerebellar and eye abnormalities. Here, we report two female siblings harboring a novel frameshift homozygous variant (c.2169delT, p.(Val724TyrfsTer8)) in PCDH12. In addition to the typical diencephalic-mesencephalic junction dysplasia, brain MRI showed dysmorphic basal ganglia and thalamus that were reminiscent of a tubulin-like phenotype, mild cerebellar vermis hypoplasia and extensive prominence of perivascular spaces in both siblings. The oldest sister developed profound and progressive monocular visual loss and the eye exam revealed exudative vitreoretinopathy. Similar but milder eye changes were also noted in her younger sister. In summary, our report expands the clinical (brain and ocular) spectrum of PCDH12-related disorders and adds a further line of evidence underscoring the important role of PCDH12 in retinal vascular and brain development.
Collapse
Affiliation(s)
- Andrea Accogli
- Department of Pediatrics, Division of Medical Genetics, McGill University Health Center, Montreal, Canada; Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada.
| | - Charbel El Kosseifi
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, QC, H4A 3J1, Montreal, Canada
| | - Christine Saint-Martin
- Department of Medical Imaging, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | | | - Jean-Baptiste Rivière
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medical Imaging, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Daniela Toffoli
- McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada; Departments of Paediatric Surgery, Human Genetics, and Adult Ophthalmology, McGill University Health Center, Montreal, Quebec, Canada
| | - Irma Lopez
- McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada; Departments of Paediatric Surgery, Human Genetics, and Adult Ophthalmology, McGill University Health Center, Montreal, Quebec, Canada
| | - Cynthia Qian
- Department of Ophthalmology, University of Montreal, Montreal, Canada
| | - Robert K Koenekoop
- McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada; Departments of Paediatric Surgery, Human Genetics, and Adult Ophthalmology, McGill University Health Center, Montreal, Quebec, Canada
| | - Myriam Srour
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medical Imaging, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada; McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada
| |
Collapse
|
10
|
Hudson JD, Tamilselvan E, Sotomayor M, Cooper SR. A complete Protocadherin-19 ectodomain model for evaluating epilepsy-causing mutations and potential protein interaction sites. Structure 2021; 29:1128-1143.e4. [PMID: 34520737 DOI: 10.1016/j.str.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/22/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022]
Abstract
Cadherin superfamily members play a critical role in differential adhesion during neurodevelopment, and their disruption has been linked to several neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19), a member of the δ-protocadherin subfamily of cadherins, cause a unique form of epilepsy called PCDH19 clustering epilepsy. While PCDH19 and other non-clustered δ-protocadherins form multimers with other members of the cadherin superfamily to alter adhesiveness, the specific protein surfaces responsible for these interactions are unknown. Only portions of the PCDH19 extracellular domain structure had been solved previously. Here, we present a structure of the missing segment from zebrafish Protocadherin-19 (Pcdh19) and create a complete ectodomain model. This model shows the structural environment for 97% of disease-causing missense mutations and reveals two potential surfaces for intermolecular interactions that could modify Pcdh19's adhesive strength and specificity.
Collapse
Affiliation(s)
- Jonathan D Hudson
- Department of Science and Mathematics, Cedarville University, 251 N. Main Street, Cedarville, OH 45314, USA
| | - Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | - Sharon R Cooper
- Department of Science and Mathematics, Cedarville University, 251 N. Main Street, Cedarville, OH 45314, USA.
| |
Collapse
|
11
|
Yechieli M, Gulsuner S, Ben-Pazi H, Fattal A, Aran A, Kuzminsky A, Sagi L, Guttman D, Schneebaum Sender N, Gross-Tsur V, Klopstock T, Walsh T, Renbaum P, Zeligson S, Shemer Meiri L, Lev D, Shmueli D, Blumkin L, Lahad A, King MC, Levy EL, Segel R. Diagnostic yield of chromosomal microarray and trio whole exome sequencing in cryptogenic cerebral palsy. J Med Genet 2021; 59:759-767. [PMID: 34321325 DOI: 10.1136/jmedgenet-2021-107884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/14/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine the yield of genetic diagnoses using chromosomal microarray (CMA) and trio whole exome sequencing (WES), separately and combined, among patients with cryptogenic cerebral palsy (CP). METHODS Trio WES of patients with prior CMA analysis for cryptogenic CP, defined as disabling, non-progressive motor symptoms beginning before the age of 3 years without known cause. RESULTS Given both CMA analysis and trio WES, clinically significant genetic findings were identified for 58% of patients (26 of 45). Diagnoses were eight large CNVs detected by CMA and 18 point mutations detected by trio WES. None had more than one severe mutation. Approximately half of events (14 of 26) were de novo. Yield was significantly higher in patients with CP with comorbidities (69%, 22 of 32) than in those with pure motor CP (31%, 4 of 13; p=0.02). Among patients with genetic diagnoses, CNVs were more frequent than point mutations among patients with congenital anomalies (OR 7.8, 95% CI 1.2 to 52.4) or major dysmorphic features (OR 10.5, 95% CI 1.4 to 73.7). Clinically significant mutations were identified in 18 different genes: 14 with known involvement in CP-related disorders and 4 responsible for other neurodevelopmental conditions. Three possible new candidate genes for CP were ARGEF10, RTF1 and TAOK3. CONCLUSIONS Cryptogenic CP is genetically highly heterogeneous. Genomic analysis has a high yield and is warranted in all these patients. Trio WES has higher yield than CMA, except in patients with congenital anomalies or major dysmorphic features, but these methods are complementary. Patients with negative results with one approach should also be tested by the other.
Collapse
Affiliation(s)
- Michal Yechieli
- Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Hilla Ben-Pazi
- Pediatric Neurology, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviva Fattal
- Pediatric Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Aran
- Pediatric Neurology, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alla Kuzminsky
- Pediatric Neurology Institute, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Liora Sagi
- Pediatric Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Guttman
- Pediatric Rehabilitation Department, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Nira Schneebaum Sender
- Pediatric Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Varda Gross-Tsur
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Pediatric Neurology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tehila Klopstock
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tom Walsh
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Dorit Lev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Medical Genetics, Edith Wolfson Medical Center, Holon, Israel
| | - Dorit Shmueli
- Child Development Services, Clalit Health Services, Tel Aviv, Israel
| | - Luba Blumkin
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Neurology, Edith Wolfson Hospital, Holon, Israel
| | - Amnon Lahad
- Braun School of Public Health, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Family Medicine, Clalit Health Services, Jerusalem, Israel
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ephrat Lahad Levy
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Reeval Segel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel .,Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
12
|
Borghi R, Magliocca V, Petrini S, Conti LA, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis. J Clin Med 2021; 10:jcm10132754. [PMID: 34201522 PMCID: PMC8268119 DOI: 10.3390/jcm10132754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Sandra Moreno
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Correspondence:
| |
Collapse
|
13
|
Genetic Neonatal-Onset Epilepsies and Developmental/Epileptic Encephalopathies with Movement Disorders: A Systematic Review. Int J Mol Sci 2021; 22:ijms22084202. [PMID: 33919646 PMCID: PMC8072943 DOI: 10.3390/ijms22084202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite expanding next generation sequencing technologies and increasing clinical interest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions.
Collapse
|
14
|
Reddy C, Paria P, Bhanudeep S, Bhatia V, Saini AG. PCDH12-Related Movement Disorder. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0040-1722619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractProtocadherin 12 (PCDH12) is a member of a nonclustered group of cell surface proteins. Mutations in the PCDH12 gene can cause varied phenotypes ranging from epilepsy and movement disorders to congenital malformations and calcifications in neuroimaging. We discussed here a 14-year-old male patient with a movement disorder that mimicked dyskinetic cerebral palsy in the outpatient department; however, exome sequencing revealed a homozygous premature stop codon in exon 1 of the PCDH12(−) gene. The case highlights the importance of careful clinical examination to look for the features that do not match an assigned neurological syndrome and the need for follow-up neuroimaging to look for any progressive changes in all cases of unexplained movement disorder and intellectual impairment.
Collapse
Affiliation(s)
- Chaithanya Reddy
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pradip Paria
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Singanamalla Bhanudeep
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Bhatia
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arushi G. Saini
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
16
|
Mattioli F, Voisin N, Preikšaitienė E, Kozlovskaja I, Kučinskas V, Reymond A. Ophthalmic phenotypes associated with biallelic loss-of-function PCDH12 variants. Am J Med Genet A 2021; 185:1275-1281. [PMID: 33527719 DOI: 10.1002/ajmg.a.62098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 01/03/2023]
Abstract
Individuals carrying biallelic loss-of-function mutations in PCDH12 have been reported with three different conditions: the diencephalic-mesencephalic junction dysplasia syndrome 1 (DMJDS1), a disorder characterized by global developmental delay, microcephaly, dystonia, and a midbrain malformation at the diencephalic-mesencephalic junction; cerebral palsy combined with a neurodevelopmental disorder; and cerebellar ataxia with retinopathy. We report an additional patient carrying a homozygous PCDH12 frameshift, whose anamnesis combines the most recurrent DMJDS1 clinical features, that is, global developmental delay, microcephaly, and ataxia, with exudative vitreoretinopathy. This case and previously published DMJDS1 patients presenting with nonspecific visual impairments and ophthalmic disorders suggest that ophthalmic alterations are an integral part of clinical features associated with PCDH12 loss-of-function.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Irina Kozlovskaja
- Center of Eyes Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Emond MR, Biswas S, Morrow ML, Jontes JD. Proximity-dependent Proteomics Reveals Extensive Interactions of Protocadherin-19 with Regulators of Rho GTPases and the Microtubule Cytoskeleton. Neuroscience 2020; 452:26-36. [PMID: 33010346 DOI: 10.1016/j.neuroscience.2020.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Protocadherin-19 belongs to the cadherin family of cell surface receptors and has been shown to play essential roles in the development of the vertebrate nervous system. Mutations in human Protocadherin-19 (PCDH19) lead to PCDH19 Female-limited epilepsy (PCDH19 FLE) in humans, characterized by the early onset of epileptic seizures in children and a range of cognitive and behavioral problems in adults. Despite being considered the second most prevalent gene in epilepsy, very little is known about the intercellular pathways in which it participates. In order to characterize the protein complexes within which Pcdh19 functions, we generated Pcdh19-BioID fusion proteins and utilized proximity-dependent biotinylation to identify neighboring proteins. Proteomic identification and analysis revealed that the Pcdh19 interactome is enriched in proteins that regulate Rho family GTPases, microtubule binding proteins and proteins that regulate cell divisions. We cloned the centrosomal protein Nedd1 and the RacGEF Dock7 and verified their interactions with Pcdh19 in vitro. Our findings provide the first comprehensive insights into the interactome of Pcdh19, and provide a platform for future investigations into the cellular and molecular biology of this protein critical to the proper development of the nervous system.
Collapse
Affiliation(s)
- Michelle R Emond
- Department of Neuroscience, Ohio State University, United States
| | | | - Matthew L Morrow
- Department of Neuroscience, Ohio State University, United States
| | - James D Jontes
- Department of Neuroscience, Ohio State University, United States.
| |
Collapse
|
18
|
Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Natl Acad Sci U S A 2019; 116:24100-24107. [PMID: 31712411 PMCID: PMC6883845 DOI: 10.1073/pnas.1914143116] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelium and the choroid are complex tissues whose dysfunction can lead to irreversible visual loss. In this study, single-cell RNA sequencing of both of these tissues was performed to characterize gene expression patterns specific to the retinal pigment epithelium and all major choroidal cell populations. Unique gene expression signatures of arterial, venous, and choriocapillaris vascular beds within the choroid were identified. RGCC, a gene that responds to complement and has been shown to induce endothelial apoptosis, was specifically expressed in choriocapillaris endothelial cells. This study provides potential insight into the molecular mechanisms of choroidal vascular disease and its contribution to age-related macular degeneration. The human retinal pigment epithelium (RPE) and choroid are complex tissues that provide crucial support to the retina. Disease affecting either of these supportive tissues can lead to irreversible blindness in the setting of age-related macular degeneration. In this study, single-cell RNA sequencing was performed on macular and peripheral regions of RPE-choroid from 7 human donor eyes in 2 independent experiments. In the first experiment, total RPE/choroid preparations were evaluated and expression profiles specific to RPE and major choroidal cell populations were identified. As choroidal endothelial cells represent a minority of the total RPE/choroidal cell population but are strongly implicated in age-related macular degeneration (AMD) pathogenesis, a second single-cell RNA-sequencing experiment was performed using endothelial cells enriched by magnetic separation. In this second study, we identified gene expression signatures along the choroidal vascular tree, classifying the transcriptome of human choriocapillaris, arterial, and venous endothelial cells. We found that the choriocapillaris highly and specifically expresses the regulator of cell cycle gene (RGCC), a gene that responds to complement activation and induces apoptosis in endothelial cells. In addition, RGCC was the most up-regulated choriocapillaris gene in a donor diagnosed with AMD. These results provide a characterization of the human RPE and choriocapillaris transcriptome, offering potential insight into the mechanisms of choriocapillaris response to complement injury and choroidal vascular disease in age-related macular degeneration.
Collapse
|
19
|
Multiplane Calcium Imaging Reveals Disrupted Development of Network Topology in Zebrafish pcdh19 Mutants. eNeuro 2019; 6:ENEURO.0420-18.2019. [PMID: 31061071 PMCID: PMC6525332 DOI: 10.1523/eneuro.0420-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Functional brain networks self-assemble during development, although the molecular basis of network assembly is poorly understood. Protocadherin-19 (pcdh19) is a homophilic cell adhesion molecule that is linked to neurodevelopmental disorders, and influences multiple cellular and developmental events in zebrafish. Although loss of PCDH19 in humans and model organisms leads to functional deficits, the underlying network defects remain unknown. Here, we employ multiplane, resonant-scanning in vivo two-photon calcium imaging of developing zebrafish, and use graph theory to characterize the development of resting state functional networks in both wild-type and pcdh19 mutant larvae. We find that the brain networks of pcdh19 mutants display enhanced clustering and an altered developmental trajectory of network assembly. Our results show that functional imaging and network analysis in zebrafish larvae is an effective approach for characterizing the developmental impact of lesions in genes of clinical interest.
Collapse
|
20
|
Bourgon N, Lefebvre M, Kuentz P, Thevenon J, Jouan T, Duffourd Y, Philippe C, Tran Mau-Them F, Durand C, Harizay F, Laurent N, Rousseau T, Faivre L, Thauvin-Robinet C. Prenatal presentation of Aicardi-Goutières syndrome: Nonspecific phenotype necessitates exome sequencing for definitive diagnosis. Prenat Diagn 2019; 39:806-810. [PMID: 30681164 DOI: 10.1002/pd.5424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/16/2018] [Accepted: 01/13/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolas Bourgon
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France
| | - Mathilde Lefebvre
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Service de Génétique Médicale, CHU Dijon Bourgogne, Dijon, France
| | - Paul Kuentz
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France.,Génétique Biologique Histologie, CHRU de Besançon, Besançon, France
| | - Julien Thevenon
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France
| | - Thibaud Jouan
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France
| | - Yannis Duffourd
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Service de Génétique Médicale, CHU Dijon Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France
| | - Christine Durand
- Radiologie et Imagerie médicale diagnostique et thérapeutique, CHU Dijon Bourgogne, Dijon, France
| | | | - Nicole Laurent
- Service d'Anatomopathologie, CHU Dijon Bourgogne, Dijon, France
| | - Thierry Rousseau
- Service de Gynécologie Obstétrique Médecine Foetale et Stérilité conjugale, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Service de Génétique Médicale, CHU Dijon Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231, Génétique des Anomalies du Développement, Dijon, France.,Service de Génétique Médicale, CHU Dijon Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement "TRANSLAD", CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
21
|
Homozygous PCDH12 variants result in phenotype of cerebellar ataxia, dystonia, retinopathy, and dysmorphism. J Hum Genet 2018; 64:183-189. [PMID: 30459466 DOI: 10.1038/s10038-018-0541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/26/2023]
Abstract
We report on a sib pair of Indian origin born of a consanguineous parentage with a novel phenotype of distinct facial dysmorphism, cerebellar ataxia, dystonia, and exudative retinopathy due to homozygous PCDH12 nonsense variations. cDNA studies showed >90% reduction in transcript levels in both patients, indicating nonsense-mediated decay and loss of function as the probable causative molecular mechanism of the phenotype.
Collapse
|
22
|
Guemez-Gamboa A, Çağlayan AO, Stanley V, Gregor A, Zaki MS, Saleem SN, Musaev D, McEvoy-Venneri J, Belandres D, Akizu N, Silhavy JL, Schroth J, Rosti RO, Copeland B, Lewis SM, Fang R, Issa MY, Per H, Gumus H, Bayram AK, Kumandas S, Akgumus GT, Erson-Omay EZ, Yasuno K, Bilguvar K, Heimer G, Pillar N, Shomron N, Weissglas-Volkov D, Porat Y, Einhorn Y, Gabriel S, Ben-Zeev B, Gunel M, Gleeson JG. Loss of Protocadherin-12 Leads to Diencephalic-Mesencephalic Junction Dysplasia Syndrome. Ann Neurol 2018; 84:638-647. [PMID: 30178464 PMCID: PMC6510237 DOI: 10.1002/ana.25327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.
Collapse
Affiliation(s)
- Alicia Guemez-Gamboa
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | | | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Anne Gregor
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Sahar N Saleem
- Radiology Department-Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Damir Musaev
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | | | - Denice Belandres
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Naiara Akizu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jennifer L Silhavy
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jana Schroth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Rasim Ozgur Rosti
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Brett Copeland
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Steven M Lewis
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Rebecca Fang
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Huseyin Per
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gumus
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayse Kacar Bayram
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sefer Kumandas
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Gozde Tugce Akgumus
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Emine Z Erson-Omay
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Katsuhito Yasuno
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Kaya Bilguvar
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Gali Heimer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Stacey Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Bruria Ben-Zeev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
23
|
Calhoun JD, Carvill GL. Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. J Neurogenet 2018; 32:295-312. [PMID: 30247086 DOI: 10.1080/01677063.2018.1513509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent with autosomal recessive (AR) inheritance. In this review, we touch on the classical AR epilepsy variants such as the inborn errors of metabolism and malformations of cortical development. However, we also highlight recently reported genes that are being identified by next-generation sequencing approaches and online 'matchmaking' platforms. Syndromes mainly characterized by seizures and complex neurodevelopmental disorders comorbid with epilepsy are discussed as an example of the wide phenotypic spectrum associated with the AR epilepsies. We conclude with a foray into the future, from the application of whole-genome sequencing to identify elusive epilepsy variants, to the promise of precision medicine initiatives to provide novel targeted therapeutics specific to the individual based on their clinical genetic testing.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Gemma L Carvill
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
24
|
dos Santos-Junior EF, de Oliveira JRM. A commentary on a case of new PCDH12 gene variants presented as dyskinetic cerebral palsy with epilepsy. J Hum Genet 2018; 63:863-864. [DOI: 10.1038/s10038-018-0475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
|
25
|
Langer Y, Aran A, Gulsuner S, Abu Libdeh B, Renbaum P, Brunetti D, Teixeira PF, Walsh T, Zeligson S, Ruotolo R, Beeri R, Dweikat I, Shahrour M, Weinberg-Shukron A, Zahdeh F, Baruffini E, Glaser E, King MC, Levy-Lahad E, Zeviani M, Segel R. Mitochondrial PITRM1 peptidase loss-of-function in childhood cerebellar atrophy. J Med Genet 2018; 55:599-606. [PMID: 29764912 DOI: 10.1136/jmedgenet-2018-105330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy. METHODS Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast. RESULTS Two brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10-65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids. CONCLUSION PITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity.
Collapse
Affiliation(s)
- Yeshaya Langer
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Adi Aran
- Department of Pediatrics, Neuropediatrics Unit, Shaare Zedek Medical Center and Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Suleyman Gulsuner
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Bassam Abu Libdeh
- Departments of Pediatrics and Genetics, Makassed Hospital, Al-Quds University, Jerusalem, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Dario Brunetti
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Pedro-Filipe Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Tom Walsh
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Roberta Ruotolo
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rachel Beeri
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Imad Dweikat
- Departments of Pediatrics and Genetics, Makassed Hospital, Al-Quds University, Jerusalem, Israel
| | - Maher Shahrour
- Departments of Pediatrics and Genetics, Makassed Hospital, Al-Quds University, Jerusalem, Israel
| | | | - Fouad Zahdeh
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Mary-Claire King
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Reeval Segel
- Department of Pediatrics, Medical Genetics Institute, Shaare Zedek Medical Center, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| |
Collapse
|
26
|
Suzuki-Muromoto S, Wakusawa K, Miyabayashi T, Sato R, Okubo Y, Endo W, Inui T, Togashi N, Kato A, Oba H, Nakashima M, Saitsu H, Matsumoto N, Haginoya K. A case of new PCDH12 gene variants presented as dyskinetic cerebral palsy with epilepsy. J Hum Genet 2018; 63:749-753. [DOI: 10.1038/s10038-018-0432-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/29/2023]
|
27
|
Fernández-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment. Curr Med Chem 2018; 25:404-432. [PMID: 28721829 PMCID: PMC5815091 DOI: 10.2174/0929867324666170718101946] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023]
Abstract
Approximately 25-50 million Americans, 30 million Europeans, and 8% of the Australian population have a rare disease. Rare diseases are thus a common problem for clinicians and account for enormous healthcare costs worldwide due to the difficulty of establishing a specific diagnosis. In this article, we review the milestones achieved in our understanding of rare diseases since the emergence of next-generation sequencing (NGS) technologies and analyze how these advances have influenced research and diagnosis. The first half of this review describes how NGS has changed diagnostic workflows and provided an unprecedented, simple way of discovering novel disease-associated genes. We focus particularly on metabolic and neurodevelopmental disorders. NGS has enabled cheap and rapid genetic diagnosis, highlighted the relevance of mosaic and de novo mutations, brought to light the wide phenotypic spectrum of most genes, detected digenic inheritance or the presence of more than one rare disease in the same patient, and paved the way for promising new therapies. In the second part of the review, we look at the limitations and challenges of NGS, including determination of variant causality, the loss of variants in coding and non-coding regions, and the detection of somatic mosaicism variants and epigenetic mutations, and discuss how these can be overcome in the near future.
Collapse
Affiliation(s)
- Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Nicolas G, Sanchez-Contreras M, Ramos EM, Lemos RR, Ferreira J, Moura D, Sobrido MJ, Richard AC, Lopez AR, Legati A, Deleuze JF, Boland A, Quenez O, Krystkowiak P, Favrole P, Geschwind DH, Aran A, Segel R, Levy-Lahad E, Dickson DW, Coppola G, Rademakers R, de Oliveira JRM. Brain calcifications and PCDH12 variants. NEUROLOGY-GENETICS 2017; 3:e166. [PMID: 28804758 PMCID: PMC5530423 DOI: 10.1212/nxg.0000000000000166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To assess the potential connection between PCDH12 and brain calcifications in a patient carrying a homozygous nonsense variant in PCDH12 and in adult patients with brain calcifications. METHODS We performed a CT scan in 1 child with a homozygous PCDH12 nonsense variant. We screened DNA samples from 53 patients with primary familial brain calcification (PFBC) and 26 patients with brain calcification of unknown cause (BCUC). RESULTS We identified brain calcifications in subcortical and perithalamic regions in the patient with a homozygous PCDH12 nonsense variant. The calcification pattern was different from what has been observed in PFBC and more similar to what is described in in utero infections. In patients with PFBC or BCUC, we found no protein-truncating variant and 3 rare (minor allele frequency <0.001) PCDH12 predicted damaging missense heterozygous variants in 3 unrelated patients, albeit with no segregation data available. CONCLUSIONS Brain calcifications should be added to the phenotypic spectrum associated with PCDH12 biallelic loss of function, in the context of severe cerebral developmental abnormalities. A putative role for PCDH12 variants remains to be determined in PFBC.
Collapse
Affiliation(s)
- Gaël Nicolas
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Monica Sanchez-Contreras
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Eliana Marisa Ramos
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Roberta R Lemos
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Joana Ferreira
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Denis Moura
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria J Sobrido
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Anne-Claire Richard
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Alma Rosa Lopez
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Andrea Legati
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Jean-François Deleuze
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Anne Boland
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Pierre Krystkowiak
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Pascal Favrole
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Daniel H Geschwind
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Adi Aran
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Reeval Segel
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Ephrat Levy-Lahad
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Dennis W Dickson
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovanni Coppola
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - Rosa Rademakers
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| | - João R M de Oliveira
- Department of Genetics and CNR-MAJ (G.N., A.-C.R., O.Q.), Normandie Univ, UNIROUEN, Inserm U1245, Rouen University Hospital, Normandy Center for Genomic and Personalized Medicine, France; Department of Human Genetics (G.N.), Genome Research, Radboud UMC, Nijmegen, The Netherlands; Department of Neuroscience (M.S.-C., D.W.D., R.R.), Mayo Clinic, Jacksonville, FL; Department of Psychiatry (E.M.R., A.R.L., A.L., G.C., D.H.G.), Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles; Keizo Asami Laboratory (R.R.L., J.F., D.M., J.R.M.d.O), Federal University of Pernambuco, Recife, Brazil; Fundación Pública Galega de Medicina Xenómica (M.J.S.), Clinical University Hospital of Santiago de Compostela-SERGAS, Spain; Centre National de Recherche en Génomique Humaine (CNRGH) (J.-F.D., A.B.), Institut de Biologie François Jacob, CEA, Evry; Department of Neurology (P.K.), Amiens University Hospital; Department of Neurology (P.F.), Tenon Hospital, AP-HP, Paris, France; Medical Genetics MRI Unit (R.S., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (R.S., E.L.-L.); and Neuropsychiatry Department (J.R.M.d.O), Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
29
|
Light SEW, Jontes JD. δ-Protocadherins: Organizers of neural circuit assembly. Semin Cell Dev Biol 2017; 69:83-90. [PMID: 28751249 DOI: 10.1016/j.semcdb.2017.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
Abstract
The δ-protocadherins comprise a small family of homophilic cell adhesion molecules within the larger cadherin superfamily. They are essential for neural development as mutations in these molecules give rise to human neurodevelopmental disorders, such as schizophrenia and epilepsy, and result in behavioral defects in animal models. Despite their importance to neural development, a detailed understanding of their mechanisms and the ways in which their loss leads to changes in neural function is lacking. However, recent results have begun to reveal roles for the δ-protocadherins in both regulation of neurogenesis and lineage-dependent circuit assembly, as well as in contact-dependent motility and selective axon fasciculation. These evolutionarily conserved mechanisms could have a profound impact on the robust assembly of the vertebrate nervous system. Future work should be focused on unraveling the molecular mechanisms of the δ-protocadherins and understanding how this family functions broadly to regulate neural development.
Collapse
Affiliation(s)
- Sarah E W Light
- Department of Neuroscience, Neuroscience Graduate Program, Ohio State University, 1060 Carmack Rd., 113 Rightmire Hall, Columbus, OH 43210, United States
| | - James D Jontes
- Department of Neuroscience, Neuroscience Graduate Program, Ohio State University, 1060 Carmack Rd., 113 Rightmire Hall, Columbus, OH 43210, United States.
| |
Collapse
|
30
|
Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. J Hum Genet 2017; 62:553-559. [PMID: 28179633 DOI: 10.1038/jhg.2017.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 01/15/2023]
Abstract
Band-like calcification with simplified gyration and polymicrogyria (BLC-PMG) is an extremely rare autosomal recessive disorder with distinctive clinical and neuroimaging findings. To date, only 17 patients from 9 unrelated families with BLC-PMG have been reported worldwide. Herein, we describe a series of 13 new patients derived from 10 unrelated Egyptian families. Patients presented at early life with the classic phenotype including severe microcephaly, failure to acquire developmental skills, growth failure and the distinguished calcification patterns involving the cortex, thalami, basal ganglia and pons. Additional features not reported before included calcification of the cerebellum (eight patients: 61.5%) and imperforate anus and undescended testis in a single patient. Molecular studies of the OCLN gene (NM_001205254) identified six distinct candidate mutations. Interestingly, the deletion mutation of the transmembrane domain in exons 3 and 4 (c.51-?_730-?del, p.Lys18_Glu243) was found in five unrelated families (50%), suggesting a founder mutation in our population. On the other hand, five novel truncating mutations (c.809delA (p.K270Rfs*62), c.858_861delTTAT (p.I286Mfs*45), c.1037+5G>C, c.1169C>G (p.S390*) and c.1180delG (p.E394Sfs*91)) were detected, each in one family. To our knowledge, this is the largest series of patients with BLC-PMG. Cerebellum calcification is an additional relevant finding in our series, thus expanding the neuroradiological phenotype of this syndrome.
Collapse
|
31
|
Cooper SR, Jontes JD, Sotomayor M. Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy. eLife 2016; 5. [PMID: 27787195 PMCID: PMC5115871 DOI: 10.7554/elife.18529] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/25/2016] [Indexed: 01/27/2023] Open
Abstract
Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of missense mutations are understood. Here we present a crystallographic structure of the minimal adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals the adhesive interface for Pcdh19, which is broadly relevant to both non-clustered δ and clustered protocadherin subfamilies. In addition, we show that several PCDH19-FE missense mutations localize to the adhesive interface and abolish Pcdh19 adhesion in in vitro assays, thus revealing the biochemical basis of their pathogenic effects during brain development. DOI:http://dx.doi.org/10.7554/eLife.18529.001 As the brain develops, its basic building blocks – cells called neurons – need to form the correct connections with one another in order to give rise to neural circuits. A mistake that leads to the formation of incorrect connections can result in a number of disorders or brain abnormalities. Proteins called cadherins that are present on the surface of neurons enable them to stick to their correct partners like Velcro. One of these proteins is called Protocadherin-19. However, it was not fully understood how this protein forms an adhesive bond with other Protocadherin-19 molecules, or how some of the proteins within the cadherin family are able to distinguish between one another. Cooper et al. used X-ray crystallography to visualize the molecular structure of Protocadherin-19 taken from zebrafish in order to better understand the adhesive bond that these proteins form with each other. In addition, the new structure showed the sites of the mutations that cause a form of epilepsy in infant females. From this, Cooper et al. could predict how the mutations would disrupt Protocadherin-19’s shape and function. The structures revealed that Protocadherin-19 molecules from adjacent cells engage in a “forearm handshake” to form the bond that connects neurons. Some of the mutations that cause epilepsy occur in the region responsible for this Protocadherin-19 forearm handshake. Laboratory experiments confirmed that these mutations impair the formation of the adhesive bond, revealing the molecular basis for some of the mutations that underlie Protocadherin-19-female-limited epilepsy. Other cadherin molecules may interact via a similar forearm handshake; this could be investigated in future experiments. It also remains to be discovered how brain wiring depends on Protocadherin-19 adhesion in animal development, and how altering these proteins can rewire developing brain circuits. DOI:http://dx.doi.org/10.7554/eLife.18529.002
Collapse
Affiliation(s)
- Sharon R Cooper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States.,Department of Neuroscience, The Ohio State University, Columbus, United States
| | - James D Jontes
- Department of Neuroscience, The Ohio State University, Columbus, United States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
| |
Collapse
|