1
|
Fu W, Bai Y, Wang X. Galvanic vestibular stimulation for postural rehabilitation in neurological disorders: a systematic review. Front Neurosci 2025; 19:1580078. [PMID: 40309657 PMCID: PMC12040823 DOI: 10.3389/fnins.2025.1580078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Background Galvanic vestibular stimulation (GVS) may potentially improve postural rehabilitation. However, the postural control role of GVS in the neurological disorders has not been systematically reviewed. Methods We conducted a systematic review on PubMed, EMBASE, and Web of Science to synthesize key findings of the effectiveness of single and multiple sessions of GVS alone and combined with other interventions on balance in adults with neurological disorders. Diagnosis of neurological disorders, sample size, age and gender of participants, GVS parameters, postural assessments, and study findings were extracted following the PRISMA guidelines. Newcastle-Ottawa scale was used to assess study quality. Results Twenty-five studies were included in the systematic review. Clinical application of GVS for postural control included Parkinson's disease, bilateral vestibulopathy, stroke-induced hemiplegia, multiple sclerosis, progressive supranuclear palsy, persistent postural-perceptual dizziness, and unilateral vestibulopathy. GVS effectively improves postural control in most neurological disorders. Risk of bias assessment showed that most studies had a low risk of bias. Conclusion GVS is a promising complementary therapy to improve postural control and balance in adults with neurological disorders. Future high quality studies should be performed to confirm these findings.
Collapse
Affiliation(s)
- Wei Fu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ya Bai
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
2
|
Boutabla A, Revol R, Carvalho MF, Grouvel G, Corre J, Cugnot JF, Cavuscens S, Ranieri M, Zhu M, McCrum C, van de Berg R, Armand S, Fornos AP, Guinand N. Gait impairments in patients with bilateral vestibulopathy and chronic unilateral vestibulopathy. Front Neurol 2025; 16:1547444. [PMID: 40083452 PMCID: PMC11903280 DOI: 10.3389/fneur.2025.1547444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Vestibular deficits often lead to unsteady gait, affecting quality of life and increasing fall risk. This study aimed to identify gait impairments in chronic vestibulopathy. Ten patients with bilateral vestibulopathy (BV), 10 patients with chronic unilateral vestibulopathy (UV), and 10 healthy participants (HS) participated. Spatio-temporal parameters were computed during walking at various self-selected walking speeds (slow, comfortable, and fast) using motion capture system with additional assessment usingclinical gait tests [functional gait assessment (FGA), tandem walk (TW), Timed Up and Go test (TUG)], and symptom severity [Dizziness Handicap Inventory (DHI)] were assessed and compared between the three groups. BV and UV patients showed significantly slower walking speeds, shorter step lengths, and broader step widths compared to HS, but similar cadence. Significant differences were also seen in stance phase, double and single support phases at comfortable and slow speeds, but not at fast speed. BV patients, but not UV patients, had worse FGA scores than HS, reflecting their reported difficulties in specific tasks requiring greater postural control. Tandem walk performance was lower in BV patients compared to the other groups, whereas there was no significant differences in TUG scores. Cluster analysis revealed two distinct clusters: one with all HS and most UV patients (70%), and another with most BV patients and 30% of UV. Overall, this study highlights how altered vestibular function impacts gait outcomes. These findings can aid clinicians in evaluating gait in patients with vestibular deficits and monitoring rehabilitation interventions.
Collapse
Affiliation(s)
- Anissa Boutabla
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Rebecca Revol
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marys Franco Carvalho
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Gautier Grouvel
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Julie Corre
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jean-François Cugnot
- Division of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Samuel Cavuscens
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Maurizio Ranieri
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Meichan Zhu
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Nils Guinand
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Li W, Zhang Y, Chien JH. Applying bilateral mastoid vibration changes the margin of stability in the anterior-posterior and medial-lateral directions while walking on different inclines. Eur J Med Res 2025; 30:108. [PMID: 39962621 PMCID: PMC11834209 DOI: 10.1186/s40001-025-02364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Walking on an incline demands specific neuronal control because the vestibular system may alter gait patterns to maintain balance with respect to self-orientation to gravity. A previous study confirms the aforementioned hypothesis that walking on inclines with bilateral vestibular disruptions altered spatial-temporal gait parameters in anterior-posterior and vertical directions. This study extended the current knowledge to investigate bilateral mastoid vibration's effect on the Margin of Stability (MoS) while walking on inclines. METHODS Eighteen healthy young adults participated in this study. Participants were randomly assigned to eight treadmill trials, encompassing walking at their preferred walking speed on inclines of 0%, 3%, 6%, and 9% with and without bilateral mastoid vibrations. The dependent variables were MoS in both the anterior-posterior (MoSap) and medial-lateral (MoSml) directions, the variability of MoS in both AP (MoSVap) and ML (MoSVml) directions, step length, step length variability, step width, and step width variability. RESULTS We found the significantly greater MoSap (3%: p = 0.005, 6%: p = 0.002, 9%: p < 0.001) and the significantly larger step length (3%: p = 0.008, 6%: p = 0.025, 9%: p < 0.001) while walking on different inclines with bilateral mastoid vibration than without vestibular stimulation. We also noticed MoSml (F1, 17 = 14.24, p = 0.002) was significantly smaller while walking with bilateral mastoid vibration than walking without vestibular stimulation. DISCUSSION These results revealed that bilateral mastoid vibrations impact the margin of stability in both directions, and walking on inclines requires adjustment of MoS. This result may facilitate future clinical implications for patients with compromised vestibular functions.
Collapse
Affiliation(s)
- Weihua Li
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital Tianjin University, Tianjin, China
| | - Yue Zhang
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital Tianjin University, Tianjin, China.
| | | |
Collapse
|
4
|
Valter Y, Vataksi L, Allred AR, Hebert JR, Brunyé TT, Clark TK, Serrador J, Datta A. A review of parameter settings for galvanic vestibular stimulation in clinical applications. Front Hum Neurosci 2025; 19:1518727. [PMID: 39981130 PMCID: PMC11841469 DOI: 10.3389/fnhum.2025.1518727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Galvanic Vestibular Stimulation (GVS) is a method of manipulating the vestibular system through non-invasive electrical current. Depending on how GVS is applied, it produces specific sensations related to vestibular mediated central pathways. The method has been tested for decades for both medical and non-medical applications and has demonstrated promise in treating a variety of disorders including peripheral vestibular conditions, central vestibular pathology due to neurodegenerative diseases, and post-stroke motor rehabilitation. As GVS continues to grow in popularity and applications, the field lacks clarity on appropriate stimulation parameters, despite their importance for safe and efficacious neuromodulation. This study aims to review the parameters used in various treatment applications while also providing a concise overview of the mechanisms underlying GVS thereby offering essential context and justification for the chosen parameters. We performed a literature search on the PubMed and Embase databases for clinical trials including the term "galvanic vestibular stimulation." After removing duplicates, secondary analyses, and studies that did not use GVS for therapeutic purposes, we were left with 53 independent studies. We extracted the stimulation parameters used in each study and report them here. The results of this review suggest that while some stimulation parameters are relatively standardized for specific treatment indications, others lack universally accepted guidelines as the field of GVS continues to evolve. Based on our findings, we recommend that future GVS research include at least one sham condition, the use of individualized current intensity, and the comparison of multiple GVS parameters within the same trial.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development Soterix Medical Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York City, NY, United States
| | - Linda Vataksi
- Research and Development Soterix Medical Inc., Woodbridge, NJ, United States
| | | | - Jeffrey R. Hebert
- Marcus Institute for the Brain Health, Department of Physical Medicine and Rehabilitation School of Medicine, University of Colorado, Aurora, CO, United States
| | - Tad T. Brunyé
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Torin K. Clark
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
| | - Jorge Serrador
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
| | - Abhishek Datta
- Research and Development Soterix Medical Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York City, NY, United States
| |
Collapse
|
5
|
Fujimoto C, Kawahara T, Kikkawa YS, Kinoshita M, Kamogashira T, Oka M, Uranaka T, Egami N, Ichijo K, Kabaya K, Katsumi S, Takashima I, Yamamoto Y, Yagi M, Yamasoba T, Iwasaki S. Multicenter randomized double-blind placebo-controlled crossover study of the effect of prolonged noisy galvanic vestibular stimulation on posture or gait in vestibulopathy. PLoS One 2025; 20:e0317822. [PMID: 39854562 PMCID: PMC11760040 DOI: 10.1371/journal.pone.0317822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
OBJECTIVE This multicenter, randomized, double-blind, placebo-controlled, crossover trial aimed to evaluate whether prolonged noisy galvanic vestibular stimulation improves body balance in patients with vestibulopathy. MATERIALS AND METHODS This trial was registered in the Japan Pharmaceutical Information Center Clinical Trials Information registry (jRCT1080224083). Subjects were 20- to 85-year-old patients who had been unsteady for more than one year and whose symptoms had persisted despite more than six months of rehabilitation. Enrolled subjects were randomly assigned to one of two groups; one group received the optimal intensity of noisy galvanic vestibular stimulation first and then the placebo 14 days later, the other was evaluated in the reverse order. The primary outcome was the difference of the mean percent change from the baseline in the velocity of center of pressure during 3 h of stimulation between the noisy galvanic vestibular stimulation and placebo periods. This was analyzed with the mixed effects model. RESULTS Forty-two subjects were enrolled. The mean percent change in the velocity during stimulation for 3 h was -9.3% (SD 19.9%) for noisy galvanic vestibular stimulation and -12.6% (SD 15.0%) for placebo. No significant effects of noisy galvanic vestibular stimulation over placebo were found for velocity in the least-squares means of the difference [3.1% (95% CI -0.2 to 6.4, p = 0.066)]. CONCLUSION Prolonged noisy galvanic vestibular stimulation did not significantly improve body balance in patients with poorly-compensated vestibulopathy.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Otolaryngology, Tokyo Teishin Hospital, Chiyoda-ku, Tokyo
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yayoi S. Kikkawa
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Otolaryngology, Tokyo Teishin Hospital, Chiyoda-ku, Tokyo
| | - Makoto Kinoshita
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mineko Oka
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsukasa Uranaka
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoya Egami
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kentaro Ichijo
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kayoko Kabaya
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Sachiyo Katsumi
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Ikumi Takashima
- Clinical Research Promotion Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yoshiharu Yamamoto
- Educational Physiology Laboratory, Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masato Yagi
- Department of Otolaryngology, Tokyo Teishin Hospital, Chiyoda-ku, Tokyo
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinichi Iwasaki
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
6
|
Stone T, Clark TK, Temple DR. Noisy galvanic vestibular stimulation induces stochastic resonance in vestibular perceptual thresholds assessed efficiently using confidence reports. Exp Brain Res 2024; 243:34. [PMID: 39718639 DOI: 10.1007/s00221-024-06984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
In sensory perception, stochastic resonance (SR) refers to the application of noise to enhance information transfer, allowing for the sensing of lower-level stimuli. Previously, subjective-assessments identified SR in vestibular perceptual thresholds, assessed using a standard two alternative (i.e., binary), forced-choice task, when applying noisy Galvanic Vestibular Stimulation (nGVS). However, this required extensive testing of at least 100 binary trials to yield sufficiently precise thresholds at each of several nGVS amplitudes, leading to confounds of fatigue, sleepiness, learning, etc. stalling the study of vestibular SR. To mitigate this, we explore confidence reporting, which via a confidence signal detection (CSD) model may much more efficiently identify SR (i.e., with fewer trials), if SR exists in CSD thresholds. To test this, Y-translation thresholds were tested with 100 trials at each nGVS amplitude (0 or sham, 0.1, 0.2, 0.3 and 0.4 mA peak-to-peak). To objectively identify SR, we applied a machine learning classification algorithm trained on simulated datasets. We found significant evidence of SR exhibition using CSD thresholds (p = 0.0025), with six of 10 subjects classified as exhibiting SR. Next, we considered fewer trials, finding the false positive rate of SR identification to be better using CSD thresholds with as few as 50 trials, when compared to 100 binary trials. Applying the CSD model to our subject's data with a subset of their trials found similar classifications of SR exhibition as with 100 binary trials. We demonstrate CSD thresholds exhibit SR, proving a means of better and much more efficiently identifying SR.
Collapse
Affiliation(s)
- Talie Stone
- University of Colorado Boulder (Molecular, Cellular, and Developmental Biology), Boulder, CO, USA
| | - Torin K Clark
- University of Colorado Boulder (Smead Aerospace Engineering Sciences), Boulder, CO, USA
| | - David R Temple
- University of Colorado Boulder (Smead Aerospace Engineering Sciences), Boulder, CO, USA.
| |
Collapse
|
7
|
Mitsutake T, Nakazono H, Shiozaki T, Taniguchi T, Yoshizuka H, Sakamoto M. Neural interference effects on lateral vestibulospinal tract excitability by noisy galvanic vestibular stimulation. Clin Neurophysiol 2024; 168:153-160. [PMID: 39571329 DOI: 10.1016/j.clinph.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE Noisy galvanic vestibular stimulation (GVS) using weak random noise waveforms enhances postural stability by modulating vestibular-related neural networks. This study aimed to investigate the neural interference mechanisms of noisy GVS on lateral vestibulospinal tract (LVST) excitability. METHODS Twenty-six healthy volunteers were randomly divided into two groups: balance training combined with noisy GVS and sham GVS. Participants performed 10-minute balance training while standing on a soft foam surface with their eyes closed while adapting to each electrical stimulus. LVST excitability was assessed by measuring the soleus H-reflex following square-wave pulse GVS. Postural stability was measured by assessing the center of foot pressure sway while standing on a foam surface with eyes closed. RESULTS The noisy GVS group showed significantly increased post-intervention H-reflex amplitude. The sham GVS group showed no significant difference in H-reflex amplitude pre- and post-intervention. The average sway velocity in the noisy and sham GVS groups significantly decreased in the medial-lateral direction of the center of foot pressure. CONCLUSIONS Noisy GVS may enhance LVST excitability and decrease body sway via vestibular system interference during holding upright, which relies heavily on vestibular sensations. SIGNIFICANCE These findings may help understand the neural mechanisms of noisy GVS in neurorehabilitation.
Collapse
Affiliation(s)
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Tomoyuki Shiozaki
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Hisayoshi Yoshizuka
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Maiko Sakamoto
- Education and Research Centre for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
8
|
Kollmansperger S, Decker J, Berkes S, Jahn K, Wuehr M. A mobile electrical stimulator for therapeutic modulation of the vestibular system - design, safety, and functionality. Front Neurol 2024; 15:1502204. [PMID: 39606706 PMCID: PMC11598921 DOI: 10.3389/fneur.2024.1502204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Low-intensity noisy galvanic vestibular stimulation (nGVS) is a promising non-invasive treatment for enhancing vestibular perceptual performance and postural control in patients with chronic vestibular hypofunction. However, this approach has so far been studied mainly under laboratory conditions. Evidence indicates that continuous application of nGVS in daily life is necessary for it to be effective. To address this need, we have developed a mobile nGVS stimulator and conducted a series of pilot studies to evaluate its safety, tolerability, functionality, and therapeutic effects. The device is a lightweight, compact, and portable AC stimulator featuring a user-friendly interface for the individualized adjustment of nGVS parameters. It includes an integrated motion sensor that automatically activates stimulation during body movement and deactivates it during inactivity, optimizing its practical use in real-world settings. The stimulator adheres to strict safety standards and, in initial long-term use, has exhibited only mild side effects (e.g., skin irritation and headaches), likely attributable to the current electrode placement, which requires further optimization. As expected, the device consistently elicits known vestibular sensorimotor reflex responses in healthy individuals. Importantly, further pilot studies in healthy participants demonstrate that the device can reliably replicate known facilitating effects on vestibular perception and postural control. Together, these findings suggest that this mobile stimulation device can facilitate the translation of nGVS into therapeutic everyday use.
Collapse
Affiliation(s)
- Sandra Kollmansperger
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julian Decker
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | | | - Klaus Jahn
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
9
|
Peto D, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Wuehr M, Zwergal A. No evidence for effects of low-intensity vestibular noise stimulation on mild-to-moderate gait impairments in patients with Parkinson's disease. J Neurol 2024; 271:5489-5497. [PMID: 38884790 PMCID: PMC11319499 DOI: 10.1007/s00415-024-12504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Gait impairment is a key feature in later stages of Parkinson's disease (PD), which often responds poorly to pharmacological therapies. Neuromodulatory treatment by low-intensity noisy galvanic vestibular stimulation (nGVS) has indicated positive effects on postural instability in PD, which may possibly be conveyed to improvement of dynamic gait dysfunction. OBJECTIVE To investigate the effects of individually tuned nGVS on normal and cognitively challenged walking in PD patients with mild-to-moderate gait dysfunction. METHODS Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 32 patients with PD (ON medication state, Hoehn and Yahr: 2.3 ± 0.5), who were standing with eyes closed on a posturographic force plate. Treatment response and optimal nGVS stimulation intensity were determined on an individual patient level. In a second step, the effects of optimal nGVS vs. sham treatment on walking with preferred speed and with a cognitive dual task were investigated by assessment of spatiotemporal gait parameters on a pressure-sensitive gait carpet. RESULTS Evaluation of individual balance responses yielded that 59% of patients displayed a beneficial balance response to nGVS treatment with an average optimal improvement of 23%. However, optimal nGVS had no effects on gait parameters neither for the normal nor the cognitively challenged walking condition compared to sham stimulation irrespective of the nGVS responder status. CONCLUSIONS Low-intensity nGVS seems to have differential treatment effects on static postural imbalance and continuous gait dysfunction in PD, which could be explained by a selective modulation of midbrain-thalamic circuits of balance control.
Collapse
Affiliation(s)
- Daniela Peto
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Schmidmeier
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Schön Klinik München Schwabing, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Wuehr M, Peto D, Fietzek UM, Katzdobler S, Nübling G, Zaganjori M, Brendel M, Levin J, Höglinger GU, Zwergal A. Low-intensity vestibular noise stimulation improves postural symptoms in progressive supranuclear palsy. J Neurol 2024; 271:4577-4586. [PMID: 38722328 PMCID: PMC11233287 DOI: 10.1007/s00415-024-12419-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Postural imbalance and falls are an early disabling symptom in patients with progressive supranuclear palsy (PSP) of multifactorial origin that may involve abnormal vestibulospinal reflexes. Low-intensity noisy galvanic vestibular stimulation (nGVS) is a non-invasive treatment to normalize deficient vestibular function and attenuate imbalance in Parkinson's disease. The presumed therapeutic mode of nGVS is stochastic resonance (SR), a mechanism by which weak sensory noise stimulation can enhance sensory information processing. OBJECTIVE To examine potential treatment effects of nGVS on postural instability in 16 patients with PSP with a clinically probable and [18F]PI-2620 tau-PET-positive PSP. METHODS Effects of nGVS of varying intensity (0-0.7 mA) on body sway were examined, while patients were standing with eyes closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal sway reductions at intermediate nGVS intensities to be indicative of SR. An established SR-curve model was fitted on individual patient outcomes and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR. RESULTS We found nGVS-induced reductions of body sway compatible with SR in 9 patients (56%) with optimal improvements of 31 ± 10%. In eight patients (50%), nGVS-induced sway reductions exceeded the minimal clinically important difference (improvement: 34 ± 5%), indicative of strong SR. CONCLUSION nGVS yielded clinically relevant reductions in body sway compatible with the exhibition of SR in vestibular sensorimotor pathways in at least half of the assessed patients. Non-invasive vestibular noise stimulation may be thus a well-tolerated treatment strategy to ameliorate postural symptoms in PSP.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Daniela Peto
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Schön Klinik München Schwabing, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Georg Nübling
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Wuehr M, Eder J, Kellerer S, Amberger T, Jahn K. Mechanisms underlying treatment effects of vestibular noise stimulation on postural instability in patients with bilateral vestibulopathy. J Neurol 2024; 271:1408-1415. [PMID: 37973635 PMCID: PMC10896912 DOI: 10.1007/s00415-023-12085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Previous studies indicate that imbalance in patients with bilateral vestibulopathy (BVP) may be reduced by treatment with low-intensity noisy galvanic vestibular stimulation (nGVS). OBJECTIVE To elucidate the potential mechanisms underlying this therapeutic effect. In particular, we determined whether nGVS-induced balance improvements in patients are compatible with stochastic resonance (SR)-a mechanism by which weak noise stimulation can paradoxically enhance sensory signal processing. METHODS Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 19 patients with BVP standing with eye closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal sway reductions at intermediate nGVS intensities to be indicative of SR. An established SR curve model was fitted on individual patient outcomes, and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR. RESULTS nGVS-induced reductions of body sway compatible with SR were found in 12 patients (63%) with optimal improvements of 31 ± 21%. In 10 patients (53%), nGVS-induced sway reductions exceeded the minimally important clinical difference (optimal improvement: 35 ± 21%), indicative of strong SR. This beneficial effect was more likely in patients with severe vestibular loss (i.e. lower video head impulse test gain; R = 0.663; p = 0.002) and considerable postural imbalance (baseline body sway; R = 0.616; p = 0.005). CONCLUSIONS More than half of the assessed patients showed robust improvements in postural balance compatible with SR when treated with nGVS. In particular, patients with a higher burden of disease may benefit from the non-invasive and well-tolerated treatment with nGVS.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Josefine Eder
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
| | - Silvy Kellerer
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
| | - Tamara Amberger
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| |
Collapse
|
12
|
Smith LJ, Wilkinson D, Bodani M, Surenthiran SS. Cognition in vestibular disorders: state of the field, challenges, and priorities for the future. Front Neurol 2024; 15:1159174. [PMID: 38304077 PMCID: PMC10830645 DOI: 10.3389/fneur.2024.1159174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Vestibular disorders are prevalent and debilitating conditions of the inner ear and brain which affect balance, coordination, and the integration of multisensory inputs. A growing body of research has linked vestibular disorders to cognitive problems, most notably attention, visuospatial perception, spatial memory, and executive function. However, the mechanistic bases of these cognitive sequelae remain poorly defined, and there is a gap between our theoretical understanding of vestibular cognitive dysfunction, and how best to identify and manage this within clinical practice. This article takes stock of these shortcomings and provides recommendations and priorities for healthcare professionals who assess and treat vestibular disorders, and for researchers developing cognitive models and rehabilitation interventions. We highlight the importance of multidisciplinary collaboration for developing and evaluating clinically relevant theoretical models of vestibular cognition, to advance research and treatment.
Collapse
Affiliation(s)
- Laura J. Smith
- Centre for Preventative Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - David Wilkinson
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - Mayur Bodani
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
13
|
Kunelskaya NL, Baybakova EV, Zaoeva ZO, Chugunova MA, Manaenkova EA, Vinogradova MV. [Electrical vestibular stimulation as a tool for treatment of bilateral vestibular loss. Literature review]. Vestn Otorinolaringol 2024; 89:51-57. [PMID: 39545761 DOI: 10.17116/otorino20248905151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The review of the literature on RSCI and PubMed databases presents methods of electrical vestibular stimulation to improve vestibular function in patients with bilateral vestibulopathy. The variants of stimulation of peripheral vestibular structures, such as vestibular implantation, noise galvanic vestibular stimulation are described. The perspectives of development of this direction, advantages of application of electrical stimulation in the future, as well as current limitations that do not currently allow to use these methods in clinical practice are shown.
Collapse
Affiliation(s)
- N L Kunelskaya
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E V Baybakova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - Z O Zaoeva
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - M A Chugunova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - E A Manaenkova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - M V Vinogradova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Mitsutake T, Nakazono H, Shiozaki T, Fujita D, Sakamoto M. Changes in vestibular-related responses to combined noisy galvanic vestibular stimulation and cerebellar transcranial direct current stimulation. Exp Brain Res 2024; 242:99-108. [PMID: 37966504 DOI: 10.1007/s00221-023-06731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Vestibular nuclei and cerebellar function comprise vestibular neural networks that control vestibular-related responses. However, the vestibular-related responses to simultaneous stimulation of these regions are unclear. This study aimed to examine whether the combination of noisy galvanic vestibular stimulation (nGVS) and cerebellar transcranial direct current stimulation (ctDCS) using a complex transcranial electrical stimulation device alters vestibular-dominant standing stability and vestibulo-ocular reflex (VOR) function. The center of foot pressure (COP) sway and VOR of participants (28 healthy, young adults) were assessed under four conditions of transcranial electrical stimulation using nGVS and ctDCS. The COP was calculated with the participant standing on a soft-foam surface with eyes closed using a force plate to evaluate body sway. VOR measurements were collected via passive head movements and fixation on a target projected onto the front wall using a video head impulse test (vHIT). VOR gain was calculated in six directions using a semicircular canal structure based on the ratio of eye movement to head movement. The nGVS + ctDCS and nGVS + sham ctDCS conditions decreased COP sway compared to the sham nGVS + ctDCS and sham nGVS + sham ctDCS conditions. No significant differences were observed in the main effect of stimulation or the interaction of stimulation and direction on the vHIT parameters. The results of this study suggest that postural stability may be independently affected by nGVS. Our findings contribute to the basic neurological foundation for the clinical application of neurorehabilitation using transcranial electrical stimulation of the vestibular system.
Collapse
Affiliation(s)
- Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, 3-6-40 Momochihama, Sawara-Ku, Fukuoka, 814-0001, Japan.
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Tomoyuki Shiozaki
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Daisuke Fujita
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, 3-6-40 Momochihama, Sawara-Ku, Fukuoka, 814-0001, Japan
| | - Maiko Sakamoto
- Education and Research Centre for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
15
|
Wuehr M, Eilles E, Lindner M, Grosch M, Beck R, Ziegler S, Zwergal A. Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats. Biomolecules 2023; 13:1580. [PMID: 38002261 PMCID: PMC10669117 DOI: 10.3390/biom13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Low-intensity noisy galvanic vestibular stimulation (nGVS) can improve static and dynamic postural deficits in patients with bilateral vestibular loss (BVL). In this study, we aimed to explore the neurophysiological and neuroanatomical substrates underlying nGVS treatment effects in a rat model of BVL. Regional brain activation patterns and behavioral responses to a repeated 30 min nGVS treatment in comparison to sham stimulation were investigated by serial whole-brain 18F-FDG-PET measurements and quantitative locomotor assessments before and at nine consecutive time points up to 60 days after the chemical bilateral labyrinthectomy (BL). The 18F-FDG-PET revealed a broad nGVS-induced modulation on regional brain activation patterns encompassing biologically plausible brain networks in the brainstem, cerebellum, multisensory cortex, and basal ganglia during the entire observation period post-BL. nGVS broadly reversed brain activity adaptions occurring in the natural course post-BL. The parallel behavioral locomotor assessment demonstrated a beneficial treatment effect of nGVS on sensory-ataxic gait alterations, particularly in the early stage of post-BL recovery. Stimulation-induced locomotor improvements were finally linked to nGVS brain activity responses in the brainstem, hemispheric motor, and limbic networks. In conclusion, combined 18F-FDG-PET and locomotor analysis discloses the potential neurophysiological and neuroanatomical substrates that mediate previously observed therapeutic nGVS effects on postural deficits in patients with BVL.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Eva Eilles
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Pharmaceutical Radiochemistry, TUM School of Natural Sciences, TU Munich, 85748 Garching, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
16
|
Lacquaniti F, La Scaleia B, Zago M. Noise and vestibular perception of passive self-motion. Front Neurol 2023; 14:1159242. [PMID: 37181550 PMCID: PMC10169592 DOI: 10.3389/fneur.2023.1159242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Noise defined as random disturbances is ubiquitous in both the external environment and the nervous system. Depending on the context, noise can degrade or improve information processing and performance. In all cases, it contributes to neural systems dynamics. We review some effects of various sources of noise on the neural processing of self-motion signals at different stages of the vestibular pathways and the resulting perceptual responses. Hair cells in the inner ear reduce the impact of noise by means of mechanical and neural filtering. Hair cells synapse on regular and irregular afferents. Variability of discharge (noise) is low in regular afferents and high in irregular units. The high variability of irregular units provides information about the envelope of naturalistic head motion stimuli. A subset of neurons in the vestibular nuclei and thalamus are optimally tuned to noisy motion stimuli that reproduce the statistics of naturalistic head movements. In the thalamus, variability of neural discharge increases with increasing motion amplitude but saturates at high amplitudes, accounting for behavioral violation of Weber's law. In general, the precision of individual vestibular neurons in encoding head motion is worse than the perceptual precision measured behaviorally. However, the global precision predicted by neural population codes matches the high behavioral precision. The latter is estimated by means of psychometric functions for detection or discrimination of whole-body displacements. Vestibular motion thresholds (inverse of precision) reflect the contribution of intrinsic and extrinsic noise to perception. Vestibular motion thresholds tend to deteriorate progressively after the age of 40 years, possibly due to oxidative stress resulting from high discharge rates and metabolic loads of vestibular afferents. In the elderly, vestibular thresholds correlate with postural stability: the higher the threshold, the greater is the postural imbalance and risk of falling. Experimental application of optimal levels of either galvanic noise or whole-body oscillations can ameliorate vestibular function with a mechanism reminiscent of stochastic resonance. Assessment of vestibular thresholds is diagnostic in several types of vestibulopathies, and vestibular stimulation might be useful in vestibular rehabilitation.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Civil Engineering and Computer Science Engineering, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Abbariki F, Mikhail Y, Hamadjida A, Charron J, Mac-Thiong JM, Barthélemy D. Effect of galvanic vestibular stimulation applied at the onset of stance on muscular activity and gait cycle duration in healthy individuals. Front Neural Circuits 2023; 16:1065647. [PMID: 36845254 PMCID: PMC9946991 DOI: 10.3389/fncir.2022.1065647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Locomotion requires the complex involvement of the spinal and supraspinal systems. So far, the role of vestibular input in gait has been assessed mainly with respect to gait stability. The noninvasive technique of galvanic vestibular stimulation (GVS) has been reported to decrease gait variability and increase gait speed, but the extent of its effect on spatiotemporal gait parameters is not fully known. Objective: Characterize vestibular responses during gait and determine the influence of GVS on cycle duration in healthy young participants. Methods: Fifteen right-handed individuals participated in the study. Electromyography (EMG) recordings of the bilateral soleus (SOL) and tibialis anterior muscles (TA) were performed. First, to determine stimulation intensity, an accelerometer placed on the vertex recorded the amplitude of the head tilts evoked by the GVS (1-4 mA, 200 ms) to establish a motor threshold (T). Second, while participants walked on a treadmill, GVS was applied at the onset of the stance phase during the treadmill gait with an intensity of 1 and 1.5 T with the cathode behind the right (RCathode) or left ear (LCathode). EMG traces were rectified, averaged (n = 30 stimuli), and analyzed. Latency, duration, and amplitude of vestibular responses as well as the mean duration of the gait cycles were measured. Results: GVS mainly induced long-latency responses in the right SOL, right TA and left TA. Only short-latency responses were triggered in the left SOL. Responses in the right SOL, left SOL and left TA were polarity dependent, being facilitatory with RCathode and inhibitory with LCathode, whereas responses in the right TA remained facilitatory regardless of the polarity. With the RCathode configuration, the stimulated cycle was prolonged compared with the control cycle at both 1 and 1.5 T, due to prolonged left SOL and TA EMG bursts, but no change was observed in right SOL and TA. With LCathode, GVS did not modify the cycle duration. Conclusion: During gait, a brief, low-intensity GVS pulse delivered at the right stance onset induced mainly long-latency polarity-dependent responses. Furthermore, a RCathode configuration increased the duration of the stimulated gait cycle by prolonging EMG activity on the anodic side. A similar approach could be explored to influence gait symmetry in individuals with neurological impairment.
Collapse
Affiliation(s)
- Faezeh Abbariki
- School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) and Centre Intégré Universitaire en Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC, Canada
| | - Youstina Mikhail
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Adjia Hamadjida
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Live Science, Higher Teacher Training College of Bertoua, University of Bertoua, Bertoua, Cameroon
| | - Jonathan Charron
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Mac-Thiong
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Centre Intégré Universitaire en Santé et Services Sociaux du nord de l’île de Montréal (CIUSSS NIM), Hôpital du Sacré-coeur de Montréal (HSCM), Montréal, QC, Canada
| | - Dorothy Barthélemy
- School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) and Centre Intégré Universitaire en Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC, Canada
- Centre Intégré Universitaire en Santé et Services Sociaux du nord de l’île de Montréal (CIUSSS NIM), Hôpital du Sacré-coeur de Montréal (HSCM), Montréal, QC, Canada
| |
Collapse
|
18
|
Noisy galvanic vestibular stimulation improves vestibular perception in bilateral vestibulopathy. J Neurol 2023; 270:938-943. [PMID: 36324034 PMCID: PMC9886588 DOI: 10.1007/s00415-022-11438-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Patients with bilateral vestibulopathy (BVP) suffer from impaired vestibular motion perception that is linked to deficits in spatial memory and navigation. OBJECTIVE To examine the potential therapeutic effect of imperceptible noisy galvanic vestibular stimulation (nGVS) on impaired vestibular perceptual performance in BVP. METHODS In 11 patients with BVP (mean age: 54.0 ± 8.3 years, 7 females), we initially determined the nGVS intensity that optimally stabilizes balance during a static posturographic assessment. Subsequently, effects of optimal nGVS vs. sham stimulation on vestibular motion perception were examined in randomized order. Vestibular perceptual performance was determined as direction recognition thresholds for head-centered roll tilt motion on a 6DOF motion platform in the absence of any visual or auditory motion cues. RESULTS For each patient, an nGVS intensity that optimally stabilized static balance compared to sham stimulation could be identified (mean 0.36 ± 0.16 mA). nGVS at optimal intensity resulted in lowered vestibular perceptual thresholds (0.94 ± 0.30 deg/s) compared to sham stimulation (1.67 ± 1.11 deg/s; p = 0.040). nGVS-induced improvements in vestibular perception were observed in 8 of 11 patients (73%) and were greater in patients with poorer perceptual performance during sham stimulation (R = - 0.791; p = 0.007). CONCLUSIONS nGVS is effective in improving impaired vestibular motion perception in patients with BVP, in particular in those patients with poor baseline perceptual performance. Imperceptible vestibular noise stimulation might thus offer a non-invasive approach to target BVP-related impairments in spatial memory, orientation, and navigation.
Collapse
|
19
|
Fujimoto C, Kawahara T, Kinoshita M, Kamogashira T, Oka M, Ichijo K, Koda K, Yamasoba T, Iwasaki S. Inter-day and intra-day variations in effective intensity of noisy galvanic vestibular stimulation to improve postural stability in bilateral vestibulopathy. J Vestib Res 2023; 33:423-429. [PMID: 37840520 DOI: 10.3233/ves-230060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND The reproducibility of the effective intensity of noisy galvanic vestibular stimulation (nGVS) to improve postural stability is not well known. OBJECTIVE We aimed to investigate inter-day and intra-day variations in effective intensity in patients with bilateral vestibulopathy (BVP). METHODS Thirteen BVP patients were measured for center-of-pressure movements in the standing posture at five time points: morning of the first test day, morning and evening of the second test day, and morning and evening of the third test day. The mean velocity, the envelopment area, and the root mean square were measured in the eyes-closed condition for 30 s during nGVS application ranging from 0 to 1000μA. The effective intensity was defined as the intensity at which all the three parameters measured during the stimulation were simultaneously smaller than the values at baseline (0μA). RESULTS Seven of the 13 patients had a common effective intensity throughout the three test days. Six patients on the second test day and five patients on the third test day had no common effective intensity between morning and evening. CONCLUSIONS The effective intensity of nGVS changes depending on the time during the day as well as between the days.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kinoshita
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mineko Oka
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kentaro Ichijo
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kento Koda
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinichi Iwasaki
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
20
|
McLaren R, Smith PF, Taylor RL, Niazi IK, Taylor D. Scoping out noisy galvanic vestibular stimulation: a review of the parameters used to improve postural control. Front Neurosci 2023; 17:1156796. [PMID: 37205050 PMCID: PMC10187481 DOI: 10.3389/fnins.2023.1156796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) has been used to facilitate vestibular function and improve gait and balance in people with poor postural control. The aim of this scoping review is to collate, summarize and report on the nGVS parameters that have been used to augment postural control. Method A systematic scoping review was conducted up to December 2022. Data were extracted and synthesized from 31 eligible studies. Key nGVS parameters were identified, and the importance of these parameters and their influence on postural control evaluated. Results A range of nGVS parameters have been used to augment postural control, including; noise waveform, amplitude, frequency band, duration of stimulation, method of amplitude optimization, size and composition of electrodes and the electrode skin interface. Conclusion Systematic evaluation of the individual parameters that can be manipulated in the nGVS waveform identified that a broad array of settings have been utilized in each parameter across the studies. Choices made around the electrode and electrode-skin interface, as well as the amplitude, frequency band, duration and timing of the waveform are likely to influence the efficacy of nGVS. The ability to draw robust conclusions about the selection of optimal nGVS parameters to improve postural control, is hindered by a lack of studies that directly compare parameter settings or consider the variability in individuals' response to nGVS. We propose a guideline for the accurate reporting of nGVS parameters, as a first step toward establishing standardized stimulation protocols.
Collapse
Affiliation(s)
- Ruth McLaren
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- *Correspondence: Ruth McLaren,
| | - Paul F. Smith
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Rachael L. Taylor
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Imran Khan Niazi
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Centre of Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Centre for Sensory-Motor Interactions, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Denise Taylor
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Nakazono H, Taniguchi T, Mitsutake T, Takeda A, Yamada E, Ogata K. Phase-dependent modulation of the vestibular-cerebellar network via combined alternating current stimulation influences human locomotion and posture. Front Neurosci 2022; 16:1057021. [PMID: 36590300 PMCID: PMC9795064 DOI: 10.3389/fnins.2022.1057021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Human locomotion induces rhythmic movements of the trunk and head. Vestibular signaling is relayed to multiple regions in the brainstem and cerebellum, and plays an essential role in maintaining head stability. However, how the vestibular-cerebellar network contributes to the rhythmic locomotor pattern in humans is unclear. Transcranial alternating current stimulation (tACS) has been used to investigate the effects of the task-related network between stimulation regions in a phase-dependent manner. Here, we investigated the relationship between the vestibular system and the cerebellum during walking imagery using combined tACS over the left cerebellum and alternating current galvanic vestibular stimulation (AC-GVS). Methods In Experiment 1, we tested the effects of AC-GVS alone at around individual gait stride frequencies. In Experiment 2, we then determined the phase-specificity of combined stimulation at the gait frequency. Combined stimulation was applied at in-phase (0° phase lag) or anti-phase (180° phase lag) between the left vestibular and left cerebellar stimulation, and the sham stimulation. We evaluated the AC-GVS-induced periodic postural response during walking imagery or no-imagery using the peak oscillatory power on the angular velocity signals of the head in both experiments. In Experiment 2, we also examined the phase-locking value (PLV) between the periodic postural responses and the left AC-GVS signals to estimate entrainment of the postural response by AC-GVS. Results AC-GVS alone induced the periodic postural response in the yaw and roll axes, but no interactions with imagery walking were observed in Experiment 1 (p > 0.05). By contrast, combined in-phase stimulation increased yaw motion (0.345 ± 0.23) compared with sham (-0.044 ± 0.19) and anti-phase stimulation (-0.066 ± 0.18) during imaginary walking (in-phase vs. other conditions, imagery: p < 0.05; no-imagery: p ≥ 0.125). Furthermore, there was a positive correlation between the yaw peak power of actual locomotion and in-phase stimulation in the imagery session (imagery: p = 0.041; no-imagery: p = 0.177). Meanwhile, we found no imagery-dependent effects in roll peak power or PLV, although in-phase stimulation enhanced roll motion and PLV in Experiment 2. Conclusion These findings suggest that combined stimulation can influence vestibular-cerebellar network activity, and modulate postural control and locomotion systems in a temporally sensitive manner. This novel combined tACS/AC-GVS stimulation approach may advance development of therapeutic applications.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,*Correspondence: Hisato Nakazono,
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Akinori Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
22
|
Eder J, Kellerer S, Amberger T, Keywan A, Dlugaiczyk J, Wuehr M, Jahn K. Combining vestibular rehabilitation with noisy galvanic vestibular stimulation for treatment of bilateral vestibulopathy. J Neurol 2022; 269:5731-5737. [PMID: 35212789 PMCID: PMC9553809 DOI: 10.1007/s00415-022-11033-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Noisy galvanic vestibular stimulation (nGVS) has been shown to partly restore vestibular function and to stabilize stance and gait in patients with incomplete bilateral vestibulopathy (BVP). Here, we examined potential synergistic effects of nGVS when combined with standardized vestibular rehabilitation training (VRT). METHODS 23 patients with confirmed BVP received a 30-min vestibular rehabilitation training (VRT) program three times a week for 2 weeks. The intervention group (n = 12) was stimulated with nGVS (at individually determined optimal amplitudes) during training, whereas the control group (n = 11) received zero-amplitude nGVS (sham stimulation) during training. Outcome measurements assessed at baseline, after 2 weeks of training, and at 2-week follow-up included quantitative posturography, instrumented gait analysis, Timed Up and Go Test (TUG), Functional Gait Assessment (FGA), and clinical scores related to quality of life and balance confidence. RESULTS After 2 weeks of VRT, all patients showed moderate improvement in balance. Irrespective of nGVS treatment, performance improved in the TUG (p < 0.013), and in the FGA (p < 0.040). Furthermore, base of support when walking with closed eyes was reduced after 2-week training (p < 0.003). Postural sway did not change. There was no difference between groups and thereby no evidence for an additional influence of nGVS on the VRT treatment effects. CONCLUSION nGVS does not induce synergistic treatment effects in combination with VRT in patients with BVP when applied during treatment sessions. Hence, rather than being applied in parallel, nGVS and VRT might be complementary therapeutic options with nGVS being used during postural activities in daily life, e.g., walking.
Collapse
Affiliation(s)
- Josefine Eder
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Silvy Kellerer
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Tamara Amberger
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Aram Keywan
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Julia Dlugaiczyk
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
- Clinic for Ear, Nose, Throat and Facial Surgery, Interdisciplinary Center for Vertigo and Neurological Disorders, University of Zurich, Zurich, Switzerland
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany.
- Department of Neurology, Schoen Clinic Bad Aibling, Bad Aibling, Germany.
| |
Collapse
|
23
|
Wuehr M, Decker J, Schenkel F, Jahn K, Schniepp R. Impact on daily mobility and risk of falling in bilateral vestibulopathy. J Neurol 2022; 269:5746-5754. [PMID: 35286481 PMCID: PMC9553788 DOI: 10.1007/s00415-022-11043-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To study the behavioral relevance of postural and ocular-motor deficits on daily activity and risk of falling in patients with bilateral vestibular hypofunction (BVH). METHODS Thirty patients with BVH and 30 age- and gender-matched healthy controls participated in a continuous 2-week assessment of daily activities and mobility using a body-worn inertial sensor and a 6-month prospective fall risk assessment. At inclusion, patients and controls further underwent a multi-modal clinical, score- and instrument-based assessment of general health and balance status. We analyzed the relationship between clinical, lab-, and sensor-based measures and their validity to identify those patients at a risk of general, frequent, and severe falling. RESULTS Patients exhibited impairments in daily activity in particular in terms of reduced ambulatory activity (p = 0.009). 43% of patients experienced falls (13% in controls, p = 0.008) and 70% of these patients reported recurrent falling (0% in controls, p = 0.001) during prospective assessment. Severe fall-related injuries that would require medical attention neither occurred in patients nor in controls. Classificatory models based on multi-modal clinical, lab-, and sensor-based measures of balance and mobility identified patients who fell with an accuracy of 93% and patients who recurrently fell with an accuracy of 89%. CONCLUSION BVH is linked to particular impairments of patients' daily activities which in turn are related to patients' fall risk. Hence, off-laboratory measures of daily mobility may supplement standard clinical assessment in BVH to more adequately capture the burden of disease and to reliably identify those patients at a specific risk of falling.
Collapse
Affiliation(s)
- M Wuehr
- German Center for Vertigo and Balance Disorders, University of Munich, Munich, Germany
| | - J Decker
- German Center for Vertigo and Balance Disorders, University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - F Schenkel
- German Center for Vertigo and Balance Disorders, University of Munich, Munich, Germany
| | - K Jahn
- German Center for Vertigo and Balance Disorders, University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - R Schniepp
- German Center for Vertigo and Balance Disorders, University of Munich, Munich, Germany.
- Department of Neurology, University of Munich, Munich, Germany.
| |
Collapse
|
24
|
McLaren R, Smith PF, Taylor RL, Ravindran S, Rashid U, Taylor D. Efficacy of nGVS to improve postural stability in people with bilateral vestibulopathy: A systematic review and meta-analysis. Front Neurosci 2022; 16:1010239. [PMID: 36248647 PMCID: PMC9553993 DOI: 10.3389/fnins.2022.1010239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) has been used to boost vestibular afferent information to the central nervous system. This has the potential to improve postural control for people for whom vestibular signals are weak, such as in bilateral vestibulopathy (BVP). The aim of this systematic review and meta-analysis is to investigate the evidence for nGVS as a modality to improve postural control in people with BVP. Methods A comprehensive systematic search was conducted of five databases up to July 2022 to find studies applying nGVS to people with BVP, with the aim of improving postural control. Two independent reviewers screened and identified eligible studies, completed a risk of bias evaluation (Cochrane) and extracted relevant data. The standardized mean difference (SMD) based on Hedges' g was calculated as a measure of effect size for the primary outcome measure that best identified postural control, and a forest plot generated. Results Seven studies met the eligibility criteria, with five being suitable for meta-analysis. Meta-analysis revealed a moderate effect in favor of nGVS improving postural control during standing and walking [pooled SMD = 0.47 95% CI (0.25, 0.7)]. nGVS-mediated improvements in postural control were most evident in observations of reduced sway velocity when standing on a firm surface with eyes closed, and in the reduced variability of gait parameters, particularly those measuring lateral stability. Conclusions Coincident nGVS in people with BVP improves postural control during standing and walking. This improvement appears to be context specific, in that vestibular augmentation is most effective in situations where visual inputs are limited, and where reliable context specific proprioceptive cues are available. Further research is warranted investigating additional circumstances in which nGVS improves postural control, including investigating the residual, and sustained effects of nGVS. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=342147, identifier: 342147.
Collapse
Affiliation(s)
- Ruth McLaren
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
- *Correspondence: Ruth McLaren
| | - Paul F. Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Rachael L. Taylor
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Shobika Ravindran
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
| | - Usman Rashid
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Lu J, Xie H, Chien JH. Different Types of Mastoid Process Vibrations Affect Dynamic Margin of Stability Differently. Front Hum Neurosci 2022; 16:896221. [PMID: 35832875 PMCID: PMC9271872 DOI: 10.3389/fnhum.2022.896221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The vestibular system is critical for human locomotion. Any deteriorated vestibular system leads to gait instability. In the past decades, these alternations in gait patterns have been majorly measured by the spatial-temporal gait parameters and respective variabilities. However, measuring gait characteristics cannot capture the full aspect of motor controls. Thus, to further understand the effects of deteriorated vestibular system on gait performance, additional measurement needs to be taken into consideration. This study proposed using the margin of stability (MOS) to identify the patterns of dynamic control under different types of mastoid vibrations in walking. This study hypothesized that (1) using the MOS method could facilitate the understanding of another aspect of motor control induced by different types of mastoid vibrations, and (2) applying the mastoid vibrations could induce the asymmetric MOS. Twenty healthy young adults were recruited. Two electromechanical vibrotactile transducers were placed on the bilateral mastoid process to apply different types of vestibular vibrations (bilateral, unilateral, and no vibration). A motion capture system with eight cameras was used to measure the MOSap (margin of stability in the anterior-posterior direction), MOSml (margin of stability in the medial-lateral direction), and respective variabilities. The results were in line with the hypotheses that both bilateral and unilateral mastoid vibrations significantly increased MOSap (p = 0.036, p < 0.001), MOSml (p = 0.012, p < 0.001), and respective variabilities p = 0.001, p < 0.001; p = 0.001, p < 0.01 when compared to the no vibration condition. Also, significantly larger MOSml (p = 0.001), MOSml variability (p < 0.023), MOSap (p < 0.001), and MOSap variability (p = 0.002) were observed under the unilateral vibration condition than that observed under the bilateral vibration condition. The above-mentioned result found that different types of mastoid vibrations affected the MOS differently, suggesting different patterns of control mechanisms under different sensory-conflicted situations. Besides, a significant difference between the dominant and non-dominant legs was observed in MOSml. Moreover, applying the unilateral mastoid vibrations induced a greater symmetric index of MOSml, suggesting that more active control in balance was needed in the medial-lateral than in the anterior-posterior direction.
Collapse
Affiliation(s)
- Jiani Lu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Xie
- Department of Health and Rehabilitation Science, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, United States
| | | |
Collapse
|
26
|
Nam GS, Nguyen TT, Kang JJ, Han GC, Oh SY. Effects of Galvanic Vestibular Stimulation on Vestibular Compensation in Unilaterally Labyrinthectomized Mice. Front Neurol 2021; 12:736849. [PMID: 34539564 PMCID: PMC8446527 DOI: 10.3389/fneur.2021.736849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Objectives: To investigate the ameliorating effects of sinusoidal galvanic vestibular stimulation (GVS) on vestibular compensation from unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL). Methods: Sixteen male C57BL/6 mice were allocated into two groups that comprise UL groups with GVS (GVS group, n = 9) and without GVS intervention (non-GVS group, n = 7). In the experimental groups, we assessed vestibulo-ocular reflex (VOR) recovery before (baseline) and at 3, 7, and 14 days after surgical unilateral labyrinthectomy. In the GVS group, stimulation was applied for 30 min daily from postoperative days (PODs) 0–4 via electrodes inserted subcutaneously next to both bony labyrinths. Results: Locomotion and VOR were significantly impaired in the non-GVS group compared to baseline. The mean VOR gain of the non-GVS group was attenuated to 0.23 at POD 3 and recovered continuously to the value of 0.54 at POD 14, but did not reach the baseline values at any frequency. GVS intervention significantly accelerated recovery of locomotion, as assessed by the amount of circling and total path length in the open field tasks compared to the non-GVS groups on PODs 3 (p < 0.001 in both amount of circling and total path length) and 7 (p < 0.01 in amount of circling and p < 0.001 in total path length, Mann–Whitney U-test). GVS also significantly improved VOR gain compared to the non-GVS groups at PODs 3 (p < 0.001), 7 (p < 0.001), and 14 (p < 0.001, independent t-tests) during sinusoidal rotations. In addition, the recovery of the phase responses and asymmetry of the VOR was significantly better in the GVS group than in the non-GVS group until 2 weeks after UVD (phase, p = 0.001; symmetry, p < 0.001 at POD 14). Conclusion: Recoveries for UVD-induced locomotion and VOR deficits were accelerated by an early intervention with GVS, which implies that GVS has the potential to improve vestibular compensation in patients with acute unilateral vestibular failure.
Collapse
Affiliation(s)
- Gi-Sung Nam
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, South Korea
| | - Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Jin-Ju Kang
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gyu Cheol Han
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Gachon University of Medicine and Science, Incheon, South Korea
| | - Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
27
|
Grove CR, Whitney SL, Pyle GM, Heiderscheit BC. Instrumented Gait Analysis to Identify Persistent Deficits in Gait Stability in Adults With Chronic Vestibular Loss. JAMA Otolaryngol Head Neck Surg 2021; 147:729-738. [PMID: 34196673 DOI: 10.1001/jamaoto.2021.1276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Regaining the ability to walk safely is a high priority for adults with vestibular loss. Thus, practitioners need comprehensive knowledge of vestibulopathic gait to design, provide, and/or interpret outcomes of interventions. To date, few studies have characterized the effects of vestibular loss on gait. Objectives To investigate the use of an instrumented 2-minute walk test in adults with vestibular loss, to further characterize vestibulopathic gait, and to assess whether those with chronic vestibular loss have enduring gait deficits. Design, Setting, and Participants This cross-sectional study, conducted between April 3, 2018, and June 27, 2019, recruited adults 20 to 79 years of age from an academic, tertiary, hospital-based, ambulatory care setting who were healthy or had confirmed unilateral or bilateral vestibular hypofunction. Of the 43 adults who were screened from convenience and referred samples, 2 declined, and 7 were excluded because of health conditions. Exposures The main exposure was the instrumented 2-minute walk test, which was conducted with participants using wearable inertial measurement units while they walked a 10-m path at their self-selected speed and turned 180° in their self-selected direction at either end. Main Outcomes and Measures The primary measures were spatiotemporal gait metrics (eg, stride length [SL] and peak whole-body turning velocity). Multivariate analysis of variance was used to assess between-group differences. Validity was assessed using the area under the curve from receiver operator characteristic analyses. Results Data from 17 healthy adults (mean [SD] age, 39.27 [11.20] years; 13 [76%] female) and 13 adults with vestibular loss (mean [SD] age, 60.50 [10.81] years; 6 [46%] female) were analyzed. Very large between-group differences were found for SL (left) (estimated marginal mean [SE] for healthy vs vestibular groups, 1.47 [0.04] m vs 1.31 [0.04] m; Cohen d, 1.35; 95% CI, 0.18-2.52), SL (right) (estimated marginal mean [SE] for healthy vs vestibular groups, 1.46 [0.04] m vs 1.29 [0.04] m; Cohen d, 1.44; 95% CI, 0.25-2.62), and peak turn velocity (estimated marginal mean [SE] for healthy vs vestibular groups, 240.17 [12.78]°/s vs 189.74 [14.70]°/s; Cohen d, 1.23; 95% CI, 0.07-2.40). The area under the curve was 0.79 (95% CI, 0.62-0.95) for SL (left), 0.81 (95% CI, 0.64-0.97) for SL (right), and 0.86 (95% CI, 0.72-0.99) for peak turn velocity. Conclusions and Relevance In this cross-sectional study, instrumented gait analysis had good discriminative validity and revealed persistent deficits in gait stability in those with chronic vestibular loss. The findings of this study suggest that these clinically and functionally meaningful deficits could be targets for vestibular rehabilitation.
Collapse
Affiliation(s)
- Colin R Grove
- Department of Surgery, University of Wisconsin-Madison
| | - Susan L Whitney
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - G Mark Pyle
- Department of Surgery, University of Wisconsin-Madison
| | | |
Collapse
|
28
|
Carender WJ, Grzesiak M, Telian SA. Vestibular Physical Therapy and Fall Risk Assessment. Otolaryngol Clin North Am 2021; 54:1015-1036. [PMID: 34304897 DOI: 10.1016/j.otc.2021.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Vestibular physical therapy (VPT) is a specialized form of evidence-based therapy designed to alleviate primary (vertigo, dizziness, imbalance, gait instability, falls) and secondary (deconditioning, cervical muscle tension, anxiety, poor quality of life, fear of falling/fear avoidance behavior) symptoms related to vestibular disorders. This article provides an overview of VPT, highlighting various exercise modalities used to treat a variety of vestibular disorders. Patient safety and fall prevention are paramount; therefore, fall risk assessment and treatment are also addressed.
Collapse
Affiliation(s)
- Wendy J Carender
- Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Michigan Balance Vestibular Testing and Rehabilitation, Med Inn Building, Room C166A, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5816, USA.
| | - Melissa Grzesiak
- Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Michigan Balance Vestibular Testing and Rehabilitation, Med Inn Building, Room C166A, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5816, USA
| | - Steven A Telian
- Department of Otolaryngology-Head & Neck Surgery, University of Michigan, 1500 East Medical Center Drive, TC 1904L, Ann Arbor, MI 48109-5312, USA
| |
Collapse
|
29
|
van Stiphout L, Lucieer F, Pleshkov M, Van Rompaey V, Widdershoven J, Guinand N, Pérez Fornos A, Kingma H, van de Berg R. Bilateral vestibulopathy decreases self-motion perception. J Neurol 2021; 269:5216-5228. [PMID: 34263351 PMCID: PMC9467944 DOI: 10.1007/s00415-021-10695-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/19/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Objective Current diagnostic criteria for bilateral vestibulopathy (BV) primarily involve measurements of vestibular reflexes. Perceptual self-motion thresholds however, are not routinely measured and their clinical value in this specific population is not yet fully determined. Objectives of this study were (1) to compare perceptual self-motion thresholds between BV patients and control subjects, and (2) to explore patterns of self-motion perception performance and vestibular function in BV patients. Methods Thirty-seven BV patients and 34 control subjects were included in this study. Perceptual self-motion thresholds were measured in both groups using a CAREN platform (Motek Medical BV, Amsterdam, The Netherlands). Vestibular function was evaluated (only in BV patients) by the caloric test, torsion swing test, video head impulse test of all semicircular canals, and cervical- and ocular vestibular-evoked myogenic potentials. Differences in thresholds between both groups were analyzed. Hierarchical cluster analysis was performed to visualize patterns between self-motion perception and vestibular function within the group of BV patients. Results Perceptual self-motion thresholds were significantly higher in BV patients compared to control subjects, regarding nearly all rotations and translations (depending on the age group) (p ≤ 0.001). Cluster analysis showed that within the group of BV patients, higher perceptual self-motion thresholds were generally associated with lower vestibular test results (significant for yaw rotation, caloric test, torsion swing test, and video head impulse test (p ≤ 0.001)). Conclusion Self-motion perception is significantly decreased in BV patients compared to control subjects regarding nearly all rotations and translations. Furthermore, decreased self-motion perception is generally associated with lower residual vestibular function in BV patients. Trial registration Trial registration number NL52768.068.15/METC Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10695-3.
Collapse
Affiliation(s)
- Lisa van Stiphout
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Florence Lucieer
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Maksim Pleshkov
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Josine Widdershoven
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| |
Collapse
|
30
|
Rodriguez Montesdeoca I, Ramos de Miguel A, González JCF, Barreiro SB, Pérez Fernández N, Vanspauwen R, Ramos-Macias A. Differences in Vestibular-Evoked Myogenic Potential Responses by Using Cochlear Implant and Otolith Organ Direct Stimulation. Front Neurol 2021; 12:663803. [PMID: 34113311 PMCID: PMC8185293 DOI: 10.3389/fneur.2021.663803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Several studies have demonstrated the possibility to obtain vestibular potentials elicited with electrical stimulation from cochlear and vestibular implants. The objective of this study is to analyze the vestibular-evoked myogenic potentials (VEMPs) obtained from patients implanted with cochlear and vestibulo-cochlear implant. Material and Methods: We compared two groups: in the first group, four cochlear implant (CI) recipients with present acoustic cVEMPs before CI surgery were included. In the second group, three patients with bilaterally absent cVEMPs and bilateral vestibular dysfunction were selected. The latter group received a unilateral cochleo-vestibular implant. We analyze the electrically elicited cVEMPs in all patients after stimulation with cochlear and vestibular electrode array stimulation. Results: We present the results obtained post-operatively in both groups. All patients (100%) with direct electrical vestibular stimulation via the vestibular electrode array had present cVEMPs. The P1 and N1 latencies were 11.33-13.6 ms and 18.3-21 ms, respectively. In CI patients, electrical cVEMPs were present only in one of the four subjects (25%) with cochlear implant ("cross") stimulation, and P1 and N1 latencies were 9.67 and 16.33, respectively. In these patients, the responses present shorter latencies than those observed acoustically. Conclusions: Electrically evoked cVEMPs can be present after cochlear and vestibular stimulation and suggest stimulation of vestibular elements, although clinical effect must be further studied.
Collapse
Affiliation(s)
- Isaura Rodriguez Montesdeoca
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Angel Ramos de Miguel
- Hearing and Balance Laboratory, Las Palmas de Gran Canaria University (SIANI), Las Palmas, Spain
| | - Juan Carlos Falcon González
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Silvia Borkoski Barreiro
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | | | - Robby Vanspauwen
- European Institute for Otorhinolaryngology Head and Neck Surgery, Gasthuiszusters Antwerpen Hospitals Antwerp, Wilrijk, Belgium
| | - Angel Ramos-Macias
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain.,Hearing and Balance Laboratory, Las Palmas de Gran Canaria University (SIANI), Las Palmas, Spain
| |
Collapse
|
31
|
Wuehr M, Jooshani N, Schniepp R. [Concepts for diagnosis, course and fall risk assessment in neurological gait disorders]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2021; 89:233-242. [PMID: 33882582 DOI: 10.1055/a-1418-8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Quantitative gait assessment is increasingly applied in the diagnosis, disease monitoring, and risk stratification of neurological gait disorders. However, it is unclear, which measurement approaches, examination conditions, and gait characteristics are appropriate for answering specific clinical questions. The aim of this review was to provide generally applicable concepts and strategies for the measurement, analysis, and interpretation of gait function in the clinical context and to discuss their implementation in clinical practice. The first part of the article introduces currently available stationary and mobile measurement technologies that enable assessment of gait in clinical environments and to continuously track patients' mobility in the context of everyday life. Furthermore, the selection of adequate examination conditions and concepts that facilitate the parametrization of gait are discussed. The subsequent parts of the article address concrete clinical fields of application for quantitative gait analysis. With the help of exemplary cases from current research, the following issues are dicussed: (1) how specific patterns in gait assessments can guide differential diagnosis; (2) how quantitative gait measures can support the early diagnosis as well as the monitoring of disease progression and intervention outcomes in neurological gait disorders and finally, (3) the contribution of stationary gait and mobile mobility assessment for fall risk prognosis in patients with neurological gait impairments.
Collapse
Affiliation(s)
- Max Wuehr
- Deutsches Schwindel- und Gleichgewichtszentrum, Ludwig-Maximilians Universität, Klinikum der Universität München
| | - Nima Jooshani
- Deutsches Schwindel- und Gleichgewichtszentrum, Ludwig-Maximilians Universität, Klinikum der Universität München
| | - Roman Schniepp
- Deutsches Schwindel- und Gleichgewichtszentrum, Ludwig-Maximilians Universität, Klinikum der Universität München.,Neurologische Klinik, Ludwig-Maximilians Universität, Klinikum der Universität München
| |
Collapse
|
32
|
Herssens N, Saeys W, Vereeck L, Meijer K, van de Berg R, Van Rompaey V, McCrum C, Hallemans A. An exploratory investigation on spatiotemporal parameters, margins of stability, and their interaction in bilateral vestibulopathy. Sci Rep 2021; 11:6427. [PMID: 33742071 PMCID: PMC7979710 DOI: 10.1038/s41598-021-85870-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Integration of accurate vestibular, visual, and proprioceptive information is crucial in managing the centre of mass in relation to the base of support during gait. Therefore, bilateral loss of peripheral vestibular function can be highly debilitating when performing activities of daily life. To further investigate the influence of an impaired peripheral vestibular system on gait stability, spatiotemporal parameters, step-to-step variability, and mechanical stability parameters were examined in 20 patients with bilateral vestibulopathy and 20 matched healthy controls during preferred overground walking. Additionally, using a partial least squares analysis the relationship between spatiotemporal parameters of gait and the margins of stability was explored in both groups. Patients with bilateral vestibulopathy showed an increased cadence compared to healthy controls (121 ± 9 vs 115 ± 8 steps/min; p = 0.02; d = 0.77). In addition, although not significant (p = 0.07), a moderate effect size (d = 0.60) was found for step width variability (Coefficient of Variation (%); Bilateral vestibulopathy: 19 ± 11%; Healthy controls: 13 ± 5%). Results of the partial least squares analysis suggest that patients with peripheral vestibular failure implement a different balance control strategy. Instead of altering the step parameters, as is the case in healthy controls, they use the single and double support phases to control the state of the centre of mass to improve the mechanical stability.
Collapse
Affiliation(s)
- Nolan Herssens
- Department of Rehabilitation Sciences, Ghent University, Campus UZ Gent, Corneel Heymanslaan 10, Building B3, 9000, Ghent, Belgium. .,Department of Rehabilitation Sciences and Physiotherapy/Movant, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium. .,Multidisciplinary Motor Centre Antwerp (M2OCEAN), University of Antwerp, Antwerp, Belgium.
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy/Movant, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,RevArte Rehabilitation Hospital, Edegem, Belgium
| | - Luc Vereeck
- Department of Rehabilitation Sciences and Physiotherapy/Movant, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Multidisciplinary Motor Centre Antwerp (M2OCEAN), University of Antwerp, Antwerp, Belgium
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ann Hallemans
- Department of Rehabilitation Sciences and Physiotherapy/Movant, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Multidisciplinary Motor Centre Antwerp (M2OCEAN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Valdés BA, Lajoie K, Marigold DS, Menon C. Cortical Effects of Noisy Galvanic Vestibular Stimulation Using Functional Near-Infrared Spectroscopy. SENSORS 2021; 21:s21041476. [PMID: 33672519 PMCID: PMC7923808 DOI: 10.3390/s21041476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Noisy galvanic vestibular stimulation (nGVS) can improve different motor, sensory, and cognitive behaviors. However, it is unclear how this stimulation affects brain activity to facilitate these improvements. Functional near-infrared spectroscopy (fNIRS) is inexpensive, portable, and less prone to motion artifacts than other neuroimaging technology. Thus, fNIRS has the potential to provide insight into how nGVS affects cortical activity during a variety of natural behaviors. Here we sought to: (1) determine if fNIRS can detect cortical changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin with application of subthreshold nGVS, and (2) determine how subthreshold nGVS affects this fNIRS-derived hemodynamic response. A total of twelve healthy participants received nGVS and sham stimulation during a seated, resting-state paradigm. To determine whether nGVS altered activity in select cortical regions of interest (BA40, BA39), we compared differences between nGVS and sham HbO and HbR concentrations. We found a greater HbR response during nGVS compared to sham stimulation in left BA40, a region previously associated with vestibular processing, and with all left hemisphere channels combined (p < 0.05). We did not detect differences in HbO responses for any region during nGVS (p > 0.05). Our results suggest that fNIRS may be suitable for understanding the cortical effects of nGVS.
Collapse
Affiliation(s)
- Bulmaro A. Valdés
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
| | - Kim Lajoie
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
| | - Daniel S. Marigold
- Sensorimotor Neuroscience Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada;
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
34
|
Chen PY, Jheng YC, Wang CC, Huang SE, Yang TH, Hsu PC, Kuo CH, Lin YY, Lai WY, Kao CL. Effect of noisy galvanic vestibular stimulation on dynamic posture sway under visual deprivation in patients with bilateral vestibular hypofunction. Sci Rep 2021; 11:4229. [PMID: 33608568 PMCID: PMC7896086 DOI: 10.1038/s41598-021-83206-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
A single-blind study to investigate the effects of noisy galvanic vestibular stimulation (nGVS) in straight walking and 2 Hz head yaw walking for healthy and bilateral vestibular hypofunction (BVH) participants in light and dark conditions. The optimal stimulation intensity for each participant was determined by calculating standing stability on a force plate while randomly applying six graded nGVS intensities (0-1000 µA). The chest-pelvic (C/P) ratio and lateral deviation of the center of mass (COM) were measured by motion capture during straight and 2 Hz head yaw walking in light and dark conditions. Participants were blinded to nGVS served randomly and imperceivably. Ten BVH patients and 16 healthy participants completed all trials. In the light condition, the COM lateral deviation significantly decreased only in straight walking (p = 0.037) with nGVS for the BVH. In the dark condition, both healthy (p = 0.026) and BVH (p = 0.017) exhibited decreased lateral deviation during nGVS. The C/P ratio decreased significantly in BVH for 2 Hz head yaw walking with nGVS (p = 0.005) in light conditions. This study demonstrated that nGVS effectively reduced walking deviations, especially in visual deprived condition for the BVH. Applying nGVS with different head rotation frequencies and light exposure levels may accelerate the rehabilitation process for patients with BVH.Clinical Trial Registration This clinical trial was prospectively registered at www.clinicaltrials.gov with the Unique identifier: NCT03554941. Date of registration: (13/06/2018).
Collapse
Affiliation(s)
- Po-Yin Chen
- Department of Physical Therapy and Assistive Technology, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
| | - Ying-Chun Jheng
- Department of Physical Therapy and Assistive Technology, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
| | - Chien-Chih Wang
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital Yuli Branch, Hualien, 98142, Taiwan
| | - Shih-En Huang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, 106216, Taiwan
| | - Po-Cheng Hsu
- Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, 10845, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, 11153, Taiwan
| | - Yi-Ying Lin
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Wei-Yi Lai
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang-Ming Chiao-Tung University, Hsinchu, 30093, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
35
|
Fujimoto C, Kawahara T, Kinoshita M, Ichijo K, Oka M, Kamogashira T, Sugasawa K, Yamasoba T, Iwasaki S. Minimally important differences for subjective improvement in postural stability in patients with bilateral vestibulopathy. Neurosci Lett 2021; 747:135706. [PMID: 33548406 DOI: 10.1016/j.neulet.2021.135706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine minimally important differences (MIDs) for subjective improvement in postural stability after a therapeutic intervention in patients with bilateral vestibulopathy (BVP). METHODS Thirteen BVP patients received noisy galvanic vestibular stimulation (nGVS) for 30 min and their static posture with eyes closed was monitored after the stimuli. The velocity of the center of pressure (COP) movement, the area enclosed by the COP movement, and the root mean square (RMS) of the displacement of the COP were measured for 30 s. Subjective evaluation of postural stability after nGVS was graded as worsened, slightly worsened, unchanged, slightly improved and improved in comparison with postural stability measured without nGVS. Anchor-based methods were used to estimate MIDs for subjective improvement. Velocity, area and RMS for each anchor-response group were averaged (2 sessions, each with 5 measurement periods during 3 h after the stimuli). The mean changes between the slightly improved group and unchanged group were used as estimates for MID for improvement. RESULTS A total of 129 anchors were analyzed. Subjective evaluations numbered 83 (64%) for unchanged and 33 (26%) for slightly improved. Anchor-based methods yielded estimates for MIDs of -0.43 cm/s in velocity improvement (p < 0.01), -0.77 cm2 for area improvement (p < 0.01) and -0.23 cm for RMS improvement (p < 0.001). CONCLUSION The present study provides the estimation of MIDs for improving postural stability in BVP patients and may be useful for interpreting whether the results from clinical trials are meaningful in future studies.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Makoto Kinoshita
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kentaro Ichijo
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Mineko Oka
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Keiko Sugasawa
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shinichi Iwasaki
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan; Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
36
|
Lajoie K, Marigold DS, Valdés BA, Menon C. The potential of noisy galvanic vestibular stimulation for optimizing and assisting human performance. Neuropsychologia 2021; 152:107751. [PMID: 33434573 DOI: 10.1016/j.neuropsychologia.2021.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Noisy galvanic vestibular stimulation (nGVS) is an emerging non-invasive brain stimulation technique. It involves applying alternating currents of different frequencies and amplitudes presented in a random, or noisy, manner through electrodes on the mastoid bones behind the ears. Because it directly activates vestibular hair cells and afferents and has an indirect effect on a variety of brain regions, it has the potential to impact many different functions. The objective of this review is twofold: (1) to review how nGVS affects motor, sensory, and cognitive performance in healthy adults; and (2) to discuss potential clinical applications of nGVS. First, we introduce the technique. We then describe the regions receiving and processing vestibular information. Next, we discuss the effects of nGVS on motor, sensory, and cognitive function in healthy adults. Subsequently, we outline its potential clinical applications. Finally, we highlight other electrical stimulation technologies and discuss why nGVS offers an alternative or complementary approach. Overall, nGVS appears promising for optimizing human performance and as an assistive technology, though further research is required.
Collapse
Affiliation(s)
- Kim Lajoie
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Daniel S Marigold
- Sensorimotor Neuroscience Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Bulmaro A Valdés
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.
| |
Collapse
|
37
|
Chen H, Hu Z, Chai Y, Tao E, Chen K, Asakawa T. Galvanic vestibular stimulation with low intensity improves dynamic balance. Transl Neurosci 2021; 12:512-521. [PMID: 34950513 PMCID: PMC8651062 DOI: 10.1515/tnsci-2020-0197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background Dynamic balance is associated with fall risk. The aim of this study is to explore the effects of galvanic vestibular stimulation with very low intensity direct current (dcGVS) on dynamic balance. Methodology We used a rocker force platform for assessing the dynamic balance performance. Center-of-pressure (COP) coordinates were acquired and decomposed to rambling (RA) and trembling (TR). We measured sway parameters, including length, average speed, and average range, affected by dcGVS at 0.01 mA with eyes open (EO) and eyes closed (EC). Results We assessed 33 young healthy subjects and found that all sway parameters were shorter in the EO condition, indicating a better dynamic balance performance. dcGVS significantly improved the dynamic balance performance both in EO and EC conditions. All the sway parameters in COP in EO were significantly shorter than those in EC, indicating a better dynamic balance performance in EO. In EO, RA had greater improvement rates than TR. In EC, only average speed had a greater improvement rate in RA, whereas length and average range had greater improvement rates in TR. These results indicate a different modulation model between EO and EC. Conclusion These findings indicate that very low intensity dcGVS improved the sway parameters of dynamic balance in young healthy subjects. Moreover, our results suggest different dynamic balance control models between having EO and EC. The mechanisms of these phenomena caused by very low intensity dcGVS require further investigation.
Collapse
Affiliation(s)
- Hongmei Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, No. 1158, Xiasha 2nd Street, Jianggan District, Hangzhou, Zhejiang 310018, China
| | - Zhen Hu
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Yujuan Chai
- School of Medical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Enxiang Tao
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Kai Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, No. 1158, Xiasha 2nd Street, Jianggan District, Hangzhou, Zhejiang 310018, China
| | - Tetsuya Asakawa
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
38
|
Shapovalova MV, Zamergrad MV, Guseva AL, Baibakova EV. [Bilateral vestibulopathy in elderly patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:16-21. [PMID: 33205926 DOI: 10.17116/jnevro202012010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Balance disorders and recurring falls are the most frequent causes of medical treatment in old age. Chronic cerebral vascular insufficiency is considered to be the cause of instability in most of these cases, and its role in the development of postural instability in old age is likely to be greatly overrated. At the same time, the role of chronic peripheral vestibular disorders, by contrast, is underestimated. The emergence in recent years of sensitive, specific and, at the same time, relatively accessible methods of diagnosing peripheral vestibulopathies has led to a much more frequent diagnosis of peripheral vestibulopathies, and their role in the development of postural instability in elderly patients is being revisited. This review considers current approaches to the diagnosis and treatment of bilateral vestibulopathy.
Collapse
Affiliation(s)
- M V Shapovalova
- Russian Medical Academy of Postgraduate Education, Moscow, Russia.,Russian Gerontology Clinical Research Center of Pirogov Russian National Research Medical University, Moscow, Russian
| | - M V Zamergrad
- Russian Medical Academy of Postgraduate Education, Moscow, Russia.,Russian Gerontology Clinical Research Center of Pirogov Russian National Research Medical University, Moscow, Russian
| | - A L Guseva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E V Baibakova
- Sverzevsky Research Institute of Otorhinolaryngology, Moscow, Russia
| |
Collapse
|
39
|
Ko LW, Chikara RK, Chen PY, Jheng YC, Wang CC, Yang YC, Li LPH, Liao KK, Chou LW, Kao CL. Noisy Galvanic Vestibular Stimulation (Stochastic Resonance) Changes Electroencephalography Activities and Postural Control in Patients with Bilateral Vestibular Hypofunction. Brain Sci 2020; 10:740. [PMID: 33076417 PMCID: PMC7602631 DOI: 10.3390/brainsci10100740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Patients with bilateral vestibular hypofunction (BVH) often suffer from imbalance, gait problems, and oscillopsia. Noisy galvanic vestibular stimulation (GVS), a technique that non-invasively stimulates the vestibular afferents, has been shown to enhance postural and walking stability. However, no study has investigated how it affects stability and neural activities while standing and walking with a 2 Hz head yaw turning. Herein, we investigated this issue by comparing differences in neural activities during standing and walking with a 2 Hz head turning, before and after noisy GVS. We applied zero-mean gaussian white noise signal stimulations in the mastoid processes of 10 healthy individuals and seven patients with BVH, and simultaneously recorded electroencephalography (EEG) signals with 32 channels. We analyzed the root mean square (RMS) of the center of pressure (COP) sway during 30 s of standing, utilizing AMTI force plates (Advanced Mechanical Technology Inc., Watertown, MA, USA). Head rotation quality when walking with a 2 Hz head yaw, with and without GVS, was analyzed using a VICON system (Vicon Motion Systems Ltd., Oxford, UK) to evaluate GVS effects on static and dynamic postural control. The RMS of COP sway was significantly reduced during GVS while standing, for both patients and healthy subjects. During walking, 2 Hz head yaw movements was significantly improved by noisy GVS in both groups. Accordingly, the EEG power of theta, alpha, beta, and gamma bands significantly increased in the left parietal lobe after noisy GVS during walking and standing in both groups. GVS post-stimulation effect changed EEG activities in the left and right precentral gyrus, and the right parietal lobe. After stimulation, EEG activity changes were greater in healthy subjects than in patients. Our findings reveal noisy GVS as a non-invasive therapeutic alternative to improve postural stability in patients with BVH. This novel approach provides insight to clinicians and researchers on brain activities during noisy GVS in standing and walking conditions in both healthy and BVH patients.
Collapse
Affiliation(s)
- Li-Wei Ko
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan; (L.-W.K.); (R.K.C.)
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Rupesh Kumar Chikara
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan; (L.-W.K.); (R.K.C.)
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
| | - Po-Yin Chen
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei 112, Taiwan; (P.-Y.C.); (Y.-C.J.)
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Ying-Chun Jheng
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei 112, Taiwan; (P.-Y.C.); (Y.-C.J.)
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chien-Chih Wang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital Yuli Branch, Hualien 98142, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Lieber Po-Hung Li
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Otolaryngology, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Kwong-Kum Liao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Li-Wei Chou
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei 112, Taiwan; (P.-Y.C.); (Y.-C.J.)
| | - Chung-Lan Kao
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| |
Collapse
|
40
|
Keywan A, Dietrich H, Wuehr M. Subliminal Passive Motion Stimulation Improves Vestibular Perception. Neuroscience 2020; 441:1-7. [DOI: 10.1016/j.neuroscience.2020.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022]
|
41
|
Piccolo C, Bakkum A, Marigold DS. Subthreshold stochastic vestibular stimulation affects balance-challenged standing and walking. PLoS One 2020; 15:e0231334. [PMID: 32275736 PMCID: PMC7147773 DOI: 10.1371/journal.pone.0231334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
Subthreshold stochastic vestibular stimulation (SVS) is thought to enhance vestibular sensitivity and improve balance. However, it is unclear how SVS affects standing and walking when balance is challenged, particularly when the eyes are open. It is also unclear how different methods to determine stimulation intensity influence the effects. We aimed to determine (1) whether SVS affects stability when balance is challenged during eyes-open standing and overground walking tasks, and (2) how the effects differ based on whether optimal stimulation amplitude is derived from sinusoidal or cutaneous threshold techniques. Thirteen healthy adults performed balance-unchallenged and balance-challenged standing and walking tasks with SVS (0–30 Hz zero-mean, white noise electrical stimulus) or sham stimulation. For the balance-challenged condition, participants had inflatable rubber hemispheres attached to the bottom of their shoes to reduce the control provided by moving the center of pressure under their base of support. In different blocks of trials, we set SVS intensity to either 50% of participants’ sinusoidal (motion) threshold or 80% of participants’ cutaneous threshold. SVS reduced medial-lateral trunk velocity root mean square in the balance-challenged (p < 0.05) but not in the balance-unchallenged condition during standing. Regardless of condition, SVS decreased step-width variability and marginally increased gait speed when walking with the eyes open (p < 0.05). SVS intensity had minimal effect on the standing and walking measures. Taken together, our results provide insight into the effectiveness of SVS at improving balance-challenged, eyes-open standing and walking performance in healthy adults.
Collapse
Affiliation(s)
- Chiara Piccolo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amanda Bakkum
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel S. Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
42
|
Haxby F, Akrami M, Zamani R. Finding a Balance: A Systematic Review of the Biomechanical Effects of Vestibular Prostheses on Stability in Humans. J Funct Morphol Kinesiol 2020; 5:E23. [PMID: 33467239 PMCID: PMC7739312 DOI: 10.3390/jfmk5020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
The vestibular system is located in the inner ear and is responsible for maintaining balance in humans. Bilateral vestibular dysfunction (BVD) is a disorder that adversely affects vestibular function. This results in symptoms such as postural imbalance and vertigo, increasing the incidence of falls and worsening quality of life. Current therapeutic options are often ineffective, with a focus on symptom management. Artificial stimulation of the vestibular system, via a vestibular prosthesis, is a technique being explored to restore vestibular function. This review systematically searched for literature that reported the effect of artificial vestibular stimulation on human behaviours related to balance, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique. A total of 21 papers matched the inclusion criteria of the literature search conducted using the PubMed and Web of Science databases (February 2019). The populations for these studies included both healthy adults and patients with BVD. In every paper, artificial vestibular stimulation caused an improvement in certain behaviours related to balance, although the extent of the effect varied greatly. Various behaviours were measured such as the vestibulo-ocular reflex, postural sway and certain gait characteristics. Two classes of prosthesis were evaluated and both showed a significant improvement in at least one aspect of balance-related behaviour in every paper included. No adverse effects were reported for prostheses using noisy galvanic vestibular stimulation, however, prosthetic implantation sometimes caused hearing or vestibular loss. Significant heterogeneity in methodology, study population and disease aetiology were observed. The present study confirms the feasibility of vestibular implants in humans for restoring balance in controlled conditions, but more research needs to be conducted to determine their effects on balance in non-clinical settings.
Collapse
Affiliation(s)
- Felix Haxby
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (F.H.); (R.Z.)
| | - Mohammad Akrami
- Department of Engineering, College of Engineering, Mathematics, and Physical Sciences University of Exeter, Exeter EX4 4QF, UK
| | - Reza Zamani
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (F.H.); (R.Z.)
| |
Collapse
|
43
|
Keywan A, Badarna H, Jahn K, Wuehr M. No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception. Sci Rep 2020; 10:2545. [PMID: 32054910 PMCID: PMC7018946 DOI: 10.1038/s41598-020-59374-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
Noisy galvanic vestibular stimulation (nGVS) delivered at imperceptible intensities can improve vestibular function in health and disease. Here we evaluated whether nGVS effects on vestibular function are only present during active stimulation or may exhibit relevant post-stimulation after-effects. Initially, nGVS amplitudes that optimally improve posture were determined in 13 healthy subjects. Subsequently, effects of optimal nGVS amplitudes on vestibular roll-tilt direction recognition thresholds (DRT) were examined during active and sham nGVS. Ten of 13 subjects exhibited reduced DRTs during active nGVS compared to sham stimulation (p < 0.001). These 10 participants were then administered to 30 mins of active nGVS treatment while being allowed to move freely. Immediately post-treatment , DRTs were increased again (p = 0.044), reverting to baseline threshold levels (i.e. were comparable to the sham nGVS thresholds), and remained stable in a follow-up assessment after 30 min. After three weeks, participants returned for a follow-up experiment to control for learning effects, in which DRTs were measured during and immediately after 30 min application of sham nGVS. DRTs during both assessments did not differ from baseline level. These findings indicate that nGVS does not induce distinct post-stimulation effects on vestibular motion perception and favor the development of a wearable technology that continuously delivers nGVS to patients in order to enhance vestibular function.
Collapse
Affiliation(s)
- Aram Keywan
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany.
| | - Hiba Badarna
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany.,Schoen Clinic Bad Aibling, Department of Neurology, Bad Aibling, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany
| |
Collapse
|
44
|
Dietrich H, Heidger F, Schniepp R, MacNeilage PR, Glasauer S, Wuehr M. Head motion predictability explains activity-dependent suppression of vestibular balance control. Sci Rep 2020; 10:668. [PMID: 31959778 PMCID: PMC6971007 DOI: 10.1038/s41598-019-57400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/21/2019] [Indexed: 11/25/2022] Open
Abstract
Vestibular balance control is dynamically weighted during locomotion. This might result from a selective suppression of vestibular inputs in favor of a feed-forward balance regulation based on locomotor efference copies. The feasibility of such a feed-forward mechanism should however critically depend on the predictability of head movements (HMP) during locomotion. To test this, we studied in 10 healthy subjects the differential impact of a stochastic vestibular stimulation (SVS) on body sway (center-of-pressure, COP) during standing and walking at different speeds and compared it to activity-dependent changes in HMP. SVS-COP coupling was determined by correlation analysis in frequency and time domains. HMP was quantified as the proportion of head motion variance that can be explained by the average head trajectory across the locomotor cycle. SVS-COP coupling decreased from standing to walking and further dropped with faster locomotion. Correspondingly, HMP increased with faster locomotion. Furthermore, SVS-COP coupling depended on the gait-cycle-phase with peaks corresponding to periods of least HMP. These findings support the assumption that during stereotyped human self-motion, locomotor efference copies selectively replace vestibular cues, similar to what was previously observed in animal models.
Collapse
Affiliation(s)
- H Dietrich
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
| | - F Heidger
- Department of Neurology, University Hospital, LMU, Munich, Germany
| | - R Schniepp
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
- Department of Neurology, University Hospital, LMU, Munich, Germany
| | - P R MacNeilage
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
- Department of Psychology, Cognitive and Brain Sciences, University of Nevada, Nevada, USA
| | - S Glasauer
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
- Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - M Wuehr
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany.
| |
Collapse
|
45
|
McCrum C, Lucieer F, van de Berg R, Willems P, Pérez Fornos A, Guinand N, Karamanidis K, Kingma H, Meijer K. The walking speed-dependency of gait variability in bilateral vestibulopathy and its association with clinical tests of vestibular function. Sci Rep 2019; 9:18392. [PMID: 31804514 PMCID: PMC6895118 DOI: 10.1038/s41598-019-54605-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding balance and gait deficits in vestibulopathy may help improve clinical care and our knowledge of the vestibular contributions to balance. Here, we examined walking speed effects on gait variability in healthy adults and in adults with bilateral vestibulopathy (BVP). Forty-four people with BVP, 12 healthy young adults and 12 healthy older adults walked at 0.4 m/s to 1.6 m/s in 0.2 m/s increments on a dual belt, instrumented treadmill. Using motion capture and kinematic data, the means and coefficients of variation for step length, time, width and double support time were calculated. The BVP group also completed a video head impulse test and examinations of ocular and cervical vestibular evoked myogenic potentials and dynamic visual acuity. Walking speed significantly affected all gait parameters. Step length variability at slower speeds and step width variability at faster speeds were the most distinguishing parameters between the healthy participants and people with BVP, and among people with BVP with different locomotor capacities. Step width variability, specifically, indicated an apparent persistent importance of vestibular function at increasing speeds. Gait variability was not associated with the clinical vestibular tests. Our results indicate that gait variability at multiple walking speeds has potential as an assessment tool for vestibular interventions.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
- Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany.
| | - Florence Lucieer
- Division of Balance Disorders, Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Faculty of Physics, Tomsk State University, Tomsk, Russian Federation
| | - Paul Willems
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Herman Kingma
- Division of Balance Disorders, Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Faculty of Physics, Tomsk State University, Tomsk, Russian Federation
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
46
|
Noisy galvanic vestibular stimulation has a greater ameliorating effect on posture in unstable subjects: a feasibility study. Sci Rep 2019; 9:17189. [PMID: 31748596 PMCID: PMC6868214 DOI: 10.1038/s41598-019-53834-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/04/2019] [Indexed: 01/28/2023] Open
Abstract
Ameliorating effect of noisy galvanic vestibular stimulation (nGVS) on posture varies among subjects. In this feasibility study, we investigated the association between original postural instability and the ameliorating effect of nGVS on posture. Data were collected in a previously published study. Thirty healthy elderly were recruited. Two nGVS sessions (30 min or 3 h) were performed in a randomised order. The optimal intensity of nGVS, the most effective intensity for improving posture, was determined before each session. Posture was measured for 30 s during and after nGVS in the eyes-closed/foam rubber condition. The velocity, envelopment area, and root mean square of the centre of pressure movement without nGVS were significantly larger in the group with an optimal intensity than those in the group without an optimal intensity. There was a significant positive correlation between these values and the long-term ameliorating effects. The ratio of the values in the eyes-closed/foam rubber condition to those in the eyes-open condition was significantly larger in the group with an optimal intensity, and had a significant correlation with the long-term ameliorating effects. The ameliorating effects are greater in subjects who were originally unstable and in those whose postural stability was relatively independent of vestibular input.
Collapse
|
47
|
Starkov D, Guinand N, Lucieer F, Ranieri M, Cavuscens S, Pleshkov M, Guyot JP, Kingma H, Ramat S, Perez-Fornos A, van de Berg R. Restoring the High-Frequency Dynamic Visual Acuity with a Vestibular Implant Prototype in Humans. Audiol Neurootol 2019; 25:91-95. [PMID: 31661687 DOI: 10.1159/000503677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The vestibular implant could become a clinically useful device in the near future. This study investigated the feasibility of restoring the high-frequency dynamic visual acuity (DVA) with a vestibular implant, using the functional Head Impulse Test (fHIT). METHODS A 72-year-old female, with bilateral vestibulopathy and fitted with a modified cochlear implant incorporating three vestibular electrodes (MED-EL, Innsbruck, Austria), was available for this study. Electrical stimulation was delivered with the electrode close to the lateral ampullary nerve in the left ear. The high-frequency DVA in the horizontal plane was tested with the fHIT. After training, the patient underwent six trials of fHIT, each with a different setting of the vestibular implant: (1) System OFF before stimulation; (2) System ON, baseline stimulation; (3) System ON, reversed stimulation; (4) System ON, positive stimulation; (5) System OFF, without delay after stimulation offset; and (6) System OFF, 25 min delay after stimulation offset. The percentage of correct fHIT scores for right and left head impulses were compared between trials. RESULTS Vestibular implant stimulation improved the high-frequency DVA compared to no stimulation. This improvement was significant for "System ON, baseline stimulation" (p = 0.02) and "System ON, positive stimulation" (p < 0.001). fHIT scores changed from 19 to 44% (no stimulation) to maximum 75-94% (System ON, positive stimulation). CONCLUSION The vestibular implant seems capable of improving the high-frequency DVA. This functional benefit of the vestibular implant illustrates again the feasibility of this device for clinical use in the near future.
Collapse
Affiliation(s)
- Dmitrii Starkov
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, The Netherlands, .,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation,
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Florence Lucieer
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Maurizio Ranieri
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Samuel Cavuscens
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Maksim Pleshkov
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Herman Kingma
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| | - Stefano Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Angelica Perez-Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| |
Collapse
|
48
|
Fettrow T, Reimann H, Grenet D, Crenshaw J, Higginson J, Jeka J. Walking Cadence Affects the Recruitment of the Medial-Lateral Balance Mechanisms. Front Sports Act Living 2019; 1:40. [PMID: 33344963 PMCID: PMC7739695 DOI: 10.3389/fspor.2019.00040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/16/2019] [Indexed: 12/04/2022] Open
Abstract
We have previously identified three balance mechanisms that young healthy adults use to maintain balance while walking. The three mechanisms are: (1) The lateral ankle mechanism, an active modulation of ankle inversion/eversion in stance; (2) The foot placement mechanism, an active shift of the swing foot placement; and (3) The push-off mechanism, an active modulation of the ankle plantarflexion angle during double stance. Here we seek to determine whether there are changes in neural control of balance when walking at different cadences and speeds. Twenty-one healthy young adults walked on a self-paced treadmill while immersed in a 3D virtual reality cave, and periodically received balance perturbations (bipolar galvanic vestibular stimulation) eliciting a perceived fall to the side. Subjects were instructed to match two cadences specified by a metronome, 110 bpm (High) and 80 bpm (Low), which in this experiment, led to faster and slower gait speeds, respectively. The results indicate that subjects altered the use of the balance mechanisms at different cadences. The lateral ankle mechanism was used more in the Low condition, while the foot placement mechanism was used more in the High condition. There was no difference in the use of the push-off mechanism between cadence conditions. These results suggest that neural control of balance is altered when gait characteristics, such as cadence change, suggesting a flexible balance response that is sensitive to the constraints of the gait cycle. We speculate that the use of the balance mechanisms may be a factor resulting in well-known characteristics of gait in populations with compromised balance control, such as slower gait speed in older adults or higher cadence in people with Parkinson's disease.
Collapse
Affiliation(s)
- Tyler Fettrow
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - David Grenet
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Jeremy Crenshaw
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Jill Higginson
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - John Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
49
|
Sluydts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, Ramos de Miguel A, Borkoski Barreiro S, Barbara M, Manrique M, Zarowski A. Electrical Vestibular Stimulation in Humans: A Narrative Review. Audiol Neurootol 2019; 25:6-24. [PMID: 31533097 DOI: 10.1159/000502407] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. SUMMARY Vestibular co-stimulation with a CI is based on "spread of excitation," which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co-stimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies.
Collapse
Affiliation(s)
- Morgana Sluydts
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium,
| | - Ian Curthoys
- Vestibular Research Laboratory, University of Sydney, Sydney, New South Wales, Australia
| | - Robby Vanspauwen
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| | - Blake Croll Papsin
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Lynn Cushing
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel Ramos
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Angel Ramos de Miguel
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Silvia Borkoski Barreiro
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Andrzej Zarowski
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| |
Collapse
|
50
|
Coelho AR, Fontes RC, Moraes R, Barros CDGC, de Abreu DCC. Effects of the Use of Anchor Systems in the Rehabilitation of Dynamic Balance and Gait in Individuals With Chronic Dizziness of Peripheral Vestibular Origin: A Single-Blinded, Randomized, Controlled Clinical Trial. Arch Phys Med Rehabil 2019; 101:249-257. [PMID: 31465757 DOI: 10.1016/j.apmr.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the effectiveness of the anchors in the balance rehabilitation of participants with chronic peripheral vestibulopathy who failed to respond positively to conventional rehabilitation for dynamic balance and gait. DESIGN Assessor-blind, randomized controlled trial. SETTING Department of Otoneurology and Laboratory of Assessment and Rehabilitation of Equilibrium. PARTICIPANTS Women with chronic dizziness of peripheral vestibular origin (N=42), who continued to show otoneurologic symptoms for more than 6 months after starting classic vestibular rehabilitation, with no clinical improvement observed. INTERVENTIONS Participants were randomly assigned to receive a clinical intervention with the anchor system, a clinical intervention without the anchor system, or no intervention or anchor system. The intervention was based on multi-sensory exercises for 6 weeks, twice a week, totaling 12 sessions, in groups of up to 4 participants, with an average time of 40 minutes per session. MAIN OUTCOME MEASURES The primary outcome was functional balance as assessed by the short version of the Balance Evaluation Systems Test. The secondary outcomes were gait parameters of step width in meters, step length in meters, and gait speed in meters per second. The measures were assessed preintervention and postintervention, and after a 3-month follow-up period. RESULTS The proposed intervention was beneficial for dizziness, balance, and gait for both groups studied. At the 3-month follow-up, only the group that used anchors retained the benefits related to the physical aspects of dizziness, balance, and gait. CONCLUSIONS The present study found that the proposed intervention protocol, with or without the use of anchors, was beneficial for improving the dizziness, balance, and gait. However, retention of the benefits achieved through the exercise protocol was observed only for those using the anchor system, which promotes the use of haptic information. The use of anchors was effective, in short protocols (12wk), with maintenance of results after 3 months.
Collapse
Affiliation(s)
- Almir R Coelho
- Department of Health Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Physiotherapy, University of Franca, Franca, Brazil.
| | - Rafaela C Fontes
- Department of Physiotherapy, University of Franca, Franca, Brazil
| | - Renato Moraes
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila de G C Barros
- Department of Health Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela C C de Abreu
- Department of Health Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|