1
|
Schöll M, Vrillon A, Ikeuchi T, Quevenco FC, Iaccarino L, Vasileva-Metodiev SZ, Burnham SC, Hendrix J, Epelbaum S, Zetterberg H, Palmqvist S. Cutting through the noise: A narrative review of Alzheimer's disease plasma biomarkers for routine clinical use. J Prev Alzheimers Dis 2025; 12:100056. [PMID: 39814656 DOI: 10.1016/j.tjpad.2024.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
As novel, anti-amyloid therapies have become more widely available, access to timely and accurate diagnosis has become integral to ensuring optimal treatment of patients with early-stage Alzheimer's disease (AD). Plasma biomarkers are a promising tool for identifying AD pathology; however, several technical and clinical factors need to be considered prior to their implementation in routine clinical use. Given the rapid pace of advancements in the field and the wide array of available biomarkers and tests, this review aims to summarize these considerations, evaluate available platforms, and discuss the steps needed to bring plasma biomarker testing to the clinic. We focus on plasma phosphorylated(p)-tau, specifically plasma p-tau217, as a robust candidate across both primary and secondary care settings. Despite the high performance and robustness demonstrated in research, plasma p-tau217, like all plasma biomarkers, can be affected by analytical and pre-analytical variability as well as patient comorbidities, sex, ethnicity, and race. This review also discusses the advantages of the two-point cut-off approach to mitigating these factors, and the challenges raised by the resulting intermediate range measurements, where clinical guidance is still unclear. Further validation of plasma p-tau217 in heterogeneous, real-world cohorts will help to increase confidence in testing and support establishing a standardized approach. Plasma biomarkers are poised to become a more affordable and less invasive alternative to PET and CSF testing. However, understanding the factors that impact plasma biomarker measurement and interpretation is critical prior to their implementation in routine clinical use.
Collapse
Affiliation(s)
- M Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK; Department of Neuropsychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - A Vrillon
- French Institute of Health and Medical Research (Inserm), Paris, France
| | - T Ikeuchi
- Niigata University Brain Research Institute, Niigata, Japan
| | - F C Quevenco
- Eli Lilly and Company, Indianapolis, IN, United States
| | - L Iaccarino
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - S C Burnham
- Eli Lilly and Company, Indianapolis, IN, United States
| | - J Hendrix
- Eli Lilly and Company, Indianapolis, IN, United States
| | - S Epelbaum
- Eli Lilly and Company, Indianapolis, IN, United States
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - S Palmqvist
- Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Sweden.
| |
Collapse
|
2
|
Hu D, Chen M, Li X, Daley S, Morin P, Han Y, Hemberg M, Weiner HL, Xia W. ApoE ε4-dependent Alteration of CXCR3 + CD127 + CD4 + T cells associates with elevated plasma neurofilament light chain in Alzheimer's disease. J Alzheimers Dis 2025; 104:792-807. [PMID: 40112322 DOI: 10.1177/13872877251320123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundRecent findings indicate a correlation between the peripheral adaptive immune system and neuroinflammation in Alzheimer's disease (AD).ObjectiveTo characterize the composition of adaptive immune cells in the peripheral blood of AD patients.MethodsWe utilized single-cell mass cytometry (CyTOF) to profile peripheral blood mononuclear cells (PBMCs). Concurrently, we assessed the concentration of proteins associated with AD and neuroinflammation in the plasma of the same subjects.ResultsWe found that the abundance of proinflammatory CXCR3 + CD127+ Type 1 T helper (Th1) cells in AD patients was negatively correlated with the abundance of neurofilament light chain protein. This correlation is apolipoprotein E (ApoE) ε4-dependent. Analyzing public single-cell RNA-sequencing (scRNA-seq) data, we found that, contrary to the scenario in the peripheral blood, the cell frequency of CXCR3 + CD127+ Th1 cells in the cerebrospinal fluid (CSF) of AD patients was increased compared to healthy controls (HCs). Moreover, the proinflammatory capacity of CXCR3+ CD127+ Th1 cells in the CSF of AD patients was further increased compared to HCs.ConclusionsThese results reveal an association of a peripheral T-cell change with neuroinflammation in AD and suggest that dysregulation of peripheral adaptive immune responses, particularly involving CXCR3 + CD127+ Th1 cells, may potentially be mediated by factors such as ApoE ε4 genotype.
Collapse
Affiliation(s)
- Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Mei Chen
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Xuyang Li
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Daley
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Peter Morin
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuyang Han
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biological Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
3
|
Labonte J, Sugarman MA, Pettway E, Zetterberg H, Blennow K, Ashton NJ, Karikari TK, Aparicio HJ, Frank B, Tripodis Y, Martin B, Palmisano JN, Steinberg EG, Simkin I, Farrer LA, Jun GR, Turk KW, Budson AE, O'Connor MK, Au R, Goldstein LE, Stern RA, Stein TD, McKee AC, Qiu WQ, Mez J, Banks SJ, Alosco ML. Sex differences on tau, astrocytic, and neurodegenerative plasma biomarkers. J Alzheimers Dis 2025:13872877251329468. [PMID: 40151917 DOI: 10.1177/13872877251329468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundSex differences have consistently been identified on autopsy, neuroimaging, and cerebrospinal fluid outcomes related to Alzheimer's disease (AD), but the exact mechanisms for these associations are unclear. Blood-based biomarkers are practical alternatives for the investigation of mechanisms of AD, in addition to accurate disease detection and monitoring.ObjectiveThe objective of this study was to examine sex differences across a panel of blood-based plasma biomarkers in participants with and without cognitive impairment due to AD.MethodsPlasma samples were collected from 567 participants from across the AD diagnostic continuum (i.e., normal cognition (NC), mild cognitive impairment (MCI), and dementia) and analyzed for glial fibrillary acidic protein (GFAP), neurofilament light (NfL), phosphorylated tau at threonine 181 (p-tau181), and total tau (t-tau). Baseline and longitudinal analyses evaluated for any significant associations between sex and AD-related plasma biomarkers.ResultsFemales were found to have higher plasma GFAP compared to males at baseline regardless of cognitive diagnosis. Among those with AD dementia, females were also found to have higher NfL levels compared to males. Longitudinal analyses found that higher plasma NfL at baseline was associated with an increased risk of worsening AD dementia status only in females. No significant findings were observed for p-tau181 or t-tau.ConclusionsThis study found significant sex differences in plasma biomarkers of GFAP and NfL. Further research is needed to better understand the underlying mechanisms mediating these differences.
Collapse
Affiliation(s)
- Jacob Labonte
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael A Sugarman
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Erika Pettway
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Division of Life Sciences and Medicine, and Department of Neurology, Neurodegenerative Disorder Research Center, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Thomas K Karikari
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hugo J Aparicio
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Brandon Frank
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Eric G Steinberg
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Irene Simkin
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lindsay A Farrer
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gyungah R Jun
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Katherine W Turk
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Andrew E Budson
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Maureen K O'Connor
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neuropsychology, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Rhoda Au
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biomedical, Electrical, and Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- US Department of Veteran Affairs, VA Bedford Healthcare System, Bedford, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- US Department of Veteran Affairs, VA Bedford Healthcare System, Bedford, MA, USA
| | - Wei Qiao Qiu
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah J Banks
- Departments of Neuroscience and Psychiatry, University of California, San Diego, CA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Grande G, Valletta M, Rizzuto D, Xia X, Qiu C, Orsini N, Dale M, Andersson S, Fredolini C, Winblad B, Laukka EJ, Fratiglioni L, Vetrano DL. Blood-based biomarkers of Alzheimer's disease and incident dementia in the community. Nat Med 2025:10.1038/s41591-025-03605-x. [PMID: 40140622 DOI: 10.1038/s41591-025-03605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
Evidence regarding the clinical validity of blood biomarkers of Alzheimer's disease (AD) in the general population is limited. We estimated the hazard and predictive performance of six AD blood biomarkers for incident all-cause and AD dementia-the ratio of amyloid-β 42 to amyloid-β 40 and levels of tau phosphorylated at T217 (p-tau217), tau phosphorylated at T181 (p-tau181), total tau, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP)-in a cohort of 2,148 dementia-free older adults from Sweden, who were followed for up to 16 years. In multi-adjusted Cox regression models, elevated baseline levels of p-tau181, p-tau217, NfL, and GFAP were associated with a significantly increased hazard for all-cause and AD dementia, displaying a non-linear dose-response relationship. Elevated concentrations of p-tau181, p-tau217, NfL, and GFAP demonstrated strong predictive performance (area under the curve ranging from 70.9% to 82.6%) for 10-year all-cause and AD dementia, with negative predictive values exceeding 90% but low positive predictive values (PPVs). Combining p-tau217 with NfL or GFAP further improved prediction, with PPVs reaching 43%. Our findings suggest that these biomarkers have the potential to rule out impending dementia in community settings, but they might need to be combined with other biological or clinical markers to be used as screening tools.
Collapse
Affiliation(s)
- Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
- Stockholm Gerontology Research Center, Stockholm, Sweden.
| | - Martina Valletta
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Xin Xia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Chengxuan Qiu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Matilda Dale
- Affinity Proteomics Stockholm, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Royal Institute of Technology (KTH), Solna, Sweden
| | - Sarah Andersson
- Affinity Proteomics Stockholm, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Royal Institute of Technology (KTH), Solna, Sweden
| | - Claudia Fredolini
- Affinity Proteomics Stockholm, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Royal Institute of Technology (KTH), Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Davide L Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
5
|
Bangs MC, Gadhavi J, Carter EK, Ping L, Duong DM, Dammer EB, Wu F, Shantaraman A, Fox EJ, Johnson EC, Lah JJ, Levey AI, Seyfried NT. Proteomic Subtyping of Alzheimer's Disease CSF links Blood-Brain Barrier Dysfunction to Reduced levels of Tau and Synaptic Biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643332. [PMID: 40161719 PMCID: PMC11952530 DOI: 10.1101/2025.03.14.643332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by significant clinical and molecular heterogeneity, influenced by genetic and demographic factors. Using an unbiased, network-driven approach, we analyzed the cerebrospinal fluid (CSF) proteome from 431 individuals (483 samples), including 111 African American participants, to identify core protein modules associated with AD, race, sex, and age. Our analysis revealed ten co-expression modules linked to distinct biological pathways and cell types, many of which correlated with established AD biomarkers such as β-amyloid, tau, and phosphorylated tau. To further resolve disease heterogeneity, we applied a proteomic subtyping approach, identifying six distinct CSF subtypes spanning the clinical and pathological spectrum. These subtypes were validated across independent cohorts, with many aligning with previously defined AD subtypes, including those linked to neuronal hyperplasticity, immune activation, and blood-brain barrier (BBB) integrity. Notably, the BBB subtype, enriched with African Americans and men, was characterized by low CSF tau, high CSF/serum albumin ratios, and reduced synaptic protein levels. This subtype also exhibited increased levels of proteolytic enzymes, including thrombin and matrix metalloproteases, that cleave tau. Plasma dilution into the neuronal hyperplastic AD subtype CSF led to reduced tau and synaptic protein module levels, indicating that plasma protease activity contributes to tau and synaptic protein depletion independent of underlying brain pathology. These findings highlight the impact of BBB integrity on CSF tau levels, particularly in men and African Americans, and underscore the need for diversity-informed AD biomarker strategies to improve diagnostics and therapeutic targeting across populations.
Collapse
Affiliation(s)
- Madison C. Bangs
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshna Gadhavi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - E. Kathleen Carter
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lingyan Ping
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Duc M. Duong
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric B. Dammer
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fang Wu
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anantharaman Shantaraman
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edward J. Fox
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erik C.B. Johnson
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J. Lah
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I. Levey
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Lan G, Zhang L, Li A, Ran W, Lv J, Gonzalez‐Ortiz F, Cai Y, Sun P, Liu L, Yang J, He Z, Fang L, Zhou X, Zhu Y, Liu Z, Chen X, Fan X, Shi D, Ye C, Xu L, Wang Q, Blennow K, Cheng G, Ran P, Wang L, Guo T. Plasma N-terminal tau fragment is an amyloid-dependent biomarker in Alzheimer's disease. Alzheimers Dement 2025; 21:e14550. [PMID: 39821479 PMCID: PMC11881634 DOI: 10.1002/alz.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Novel fluid biomarkers for tracking neurodegeneration specific to Alzheimer's disease (AD) are greatly needed. METHODS Using two independent well-characterized cohorts (n = 881 in total), we investigated the group differences in plasma N-terminal tau (NT1-tau) fragments across different AD stages and their association with cross-sectional and longitudinal amyloid beta (Aβ) plaques, tau tangles, brain atrophy, and cognitive decline. RESULTS Plasma NT1-tau significantly increased in symptomatic AD and displayed positive associations with Aβ PET (positron emission tomography) and tau PET. Higher baseline NT1-tau levels predicted greater tau PET, with 2- to 10-year intervals and faster longitudinal Aβ PET increases, AD-typical neurodegeneration, and cognitive decline. Plasma NT1-tau showed negative correlations with baseline regional brain volume and thickness, superior to plasma brain-derived tau (BD-tau) and neurofilament light (NfL) in Aβ-positive participants. DISCUSSION This study suggests that plasma NT1-tau is an Aβ-dependent biomarker and outperforms BD-tau and NfL in detecting cross-sectional neurodegeneration in the AD continuum. HIGHLIGHTS Plasma N-terminal tau (NT1-tau) was specifically increased in the A+/T+ stage. Plasma NT1-tau was positively associated with greater amyloid beta (Aβ) and tau PET (positron emission tomography) accumulations. Higher plasma NT1-tau predicted greater tau burden and faster Aβ increases. Plasma NT1-tau was more related to neurodegeneration than plasma brain-derived tau (BD-tau) and neurofilament light (NfL).
Collapse
Affiliation(s)
- Guoyu Lan
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Laihong Zhang
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Anqi Li
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Wenqing Ran
- Department of Nuclear MedicineThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Jieqin Lv
- Department of Nuclear MedicineGuangdong Provincial Hospital of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Fernando Gonzalez‐Ortiz
- Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Yue Cai
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Pan Sun
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Lin Liu
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Jie Yang
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
- Department of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Zhengbo He
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Lili Fang
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Xin Zhou
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Yalin Zhu
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Zhen Liu
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Xuhui Chen
- Department of NeurologyPeking University Shenzhen HospitalShenzhenChina
| | - Xiang Fan
- Department of Medical ImagingPeking University Shenzhen HospitalShenzhenChina
| | - Dai Shi
- Neurology Medicine CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Chenghui Ye
- Neurology Medicine CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Linsen Xu
- Department of Medical ImagingShenzhen Guangming District People's HospitalShenzhenChina
| | - Qingyong Wang
- Department of NeurologyShenzhen Guangming District People's HospitalShenzhenChina
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and MedicineHefeiChina
- Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiChina
| | - Guanxun Cheng
- Department of Medical ImagingPeking University Shenzhen HospitalShenzhenChina
| | | | - Pengcheng Ran
- Department of Nuclear MedicineGuangdong Provincial Hospital of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Lu Wang
- Department of Nuclear MedicineThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Tengfei Guo
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
- Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| |
Collapse
|
8
|
Baek S, Lee JC, Byun BH, Park SY, Ha JH, Lee KC, Yang SH, Lee JS, Hong S, Han G, Lim SM, Kim Y, Kim HY. Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls. Exp Neurobiol 2025; 34:1-8. [PMID: 40091634 PMCID: PMC11919640 DOI: 10.5607/en25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
Collapse
Affiliation(s)
- Seungyeop Baek
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Jinny Claire Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Su Yeon Park
- Department of Neurology, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Jeong Ho Ha
- Department of Neurology, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Kyo Chul Lee
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, Dongguk University, Seoul 04620, Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University, Seoul 02841, Korea
| | - Seungpyo Hong
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Gyoonhee Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Amyloid Solution Inc., Seongnam 13486, Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
9
|
Wu JP. How Histone Sensing Drives Alzheimer's Disease. FRONT BIOSCI-LANDMRK 2025; 30:33444. [PMID: 40018942 DOI: 10.31083/fbl33444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
The human DNA double helix is wrapped around proteins known as histones, which play a critical role in regulating gene expression. The goal of this opinion piece is to provide an overview of how histone sensing drives Alzheimer's disease (AD). Histones are proteins enriched in basic amino acids. Histone acetylation plays an important role in the progression of AD as its dysregulation can lead to neuroinflammation and neurodegenerative diseases. Specifically, abnormal histone acetylation, a post-translation modification, is a key factor in AD as it contributes to brain cell inflammatory pathology. Thus, higher levels of histone acetylation could potentially serve as important biomarkers for the progression of AD. Here, we report that increased levels of acetylation of histones H2B, H3, and H4 in the promoter regions of Tip60 lysine acetyltransferase protein, p300/CREB-binding protein (CBP), GCN5-related N-acetyltransferases, p300/CBP-associated factor, elongator protein 3, brain-derived neurotrophic factor, and Tau genes in the hippocampus and temporal lobe are associated with the development of AD-associated learning and memory impairment.
Collapse
Affiliation(s)
- Jia-Ping Wu
- Department of Medical Technology, Shaoguan University, 512005 Shaoguan, Guangdong, China
| |
Collapse
|
10
|
Ashton NJ, Keshavan A, Brum WS, Andreasson U, Arslan B, Droescher M, Barghorn S, Vanbrabant J, Lambrechts C, Van Loo M, Stoops E, Iyengar S, Ji H, Xu X, Forrest‐Hay A, Zhang B, Luo Y, Jeromin A, Vandijck M, Bastard NL, Kolb H, Triana‐Baltzer G, Bali D, Janelidze S, Yang S, Demos C, Romero D, Sigal G, Wohlstadter J, Malyavantham K, Khare M, Jethwa A, Stoeckl L, Gobom J, Kac PR, Gonzalez‐Ortiz F, Montoliu‐Gaya L, Hansson O, Rissman RA, Carrillo MC, Shaw LM, Blennow K, Schott JM, Zetterberg H. The Alzheimer's Association Global Biomarker Standardization Consortium (GBSC) plasma phospho-tau Round Robin study. Alzheimers Dement 2025; 21:e14508. [PMID: 39907496 PMCID: PMC11851162 DOI: 10.1002/alz.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025]
Abstract
INTRODUCTION The Alzheimer's Association Global Biomarker Standardization Consortium conducted a blinded case-control study to learn which phosphorylated tau (p-tau) assays provide the largest fold-changes in Alzheimer's disease (AD) versus non-AD and show commutability in measuring patient samples and candidate certified reference materials (CRMs). METHODS Thirty-three different p-tau assays measured paired plasma and cerebrospinal fluid (CSF) from 40 participants (25 with "AD pathology" and 15 with "non-AD pathology" by CSF amyloid beta [Aβ]42/Aβ40 and p-tau181 criteria). Four CRMs were assessed. RESULTS Plasma p-tau217 demonstrated higher fold-changes between AD and non-AD than other p-tau epitopes. Fujirebio LUMIPULSE G, UGOT IPMS, and Lilly MSD p-tau217 provided the highest fold-changes. Plasma p-tau217 showed the strongest correlations between plasma assays (rho = 0.81-0.97). The CRMs were not commutable across assays. DISCUSSION Plasma p-tau217 showed larger fold-changes and better accuracy for detecting AD pathology in symptomatic individuals, with greater cross-platform agreement than other p-tau variants. Further work is needed to develop suitable CRMs facilitating cross-assay standardization. HIGHLIGHTS Paired plasma and cerebrospinal fluid (CSF) samples from twenty-five Alzheimer's disease (AD) and 15 non-AD patients were measured blind. Thirty-three plasma assays were compared, for phosphorylated tau-181 (p-tau181), 205, 212, 217 and 231. Plasma p-tau217 consistently had the highest fold-change and was best correlated between assays. Plasma-CSF correlations were weak to moderate. There was lack of commutability for four candidate reference materials.
Collapse
|
11
|
De Paoli LF, Kirkcaldie MTK, King AE, Collins JM. Neurofilament heavy phosphorylated epitopes as biomarkers in ageing and neurodegenerative disease. J Neurochem 2025; 169:e16261. [PMID: 39556118 DOI: 10.1111/jnc.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
From the day we are born, the nervous system is subject to insult, disease and degeneration. Aberrant phosphorylation states in neurofilaments, the major intermediate filaments of the neuronal cytoskeleton, accompany and mediate many pathological processes in degenerative disease. Neuronal damage, degeneration and death can release these internal components to the extracellular space and eventually the cerebrospinal fluid and blood. Sophisticated assay techniques are increasingly able to detect their presence and phosphorylation states at very low levels, increasing their utility as biomarkers and providing insights and differential diagnosis for the earliest stages of disease. Although a variety of studies focus on single or small clusters of neurofilament phosphorylated epitopes, this review offers a wider perspective of the phosphorylation landscape of the neurofilament heavy subunit, a major intermediate filament component in both ageing and disease.
Collapse
Affiliation(s)
- Laura F De Paoli
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
12
|
Chu CS, Lin YK, Tsai CL, Sung YF, Tsai CK, Lin GY, Ko CA, Liu Y, Liang CS, Yang FC. Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer's Disease. Psychiatry Investig 2025; 22:130-139. [PMID: 40017276 DOI: 10.30773/pi.2024.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) remains understudied. METHODS We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers. RESULTS After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%. CONCLUSION We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Kai Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-An Ko
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
14
|
Gómez-Tortosa E, Agüero-Rabes P, Ruiz-González A, Wagner-Reguero S, Téllez R, Mahillo I, Ruiz-Calvo A, Sainz MJ, Nystrom AL, del Ser T, Sánchez-Juan P. Plasma Biomarkers in the Distinction of Alzheimer's Disease and Frontotemporal Dementia. Int J Mol Sci 2025; 26:1231. [PMID: 39940998 PMCID: PMC11818795 DOI: 10.3390/ijms26031231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Plasma biomarkers are promising tools for the screening and diagnosis of dementia in clinical settings. We analyzed plasma levels of Alzheimer's core biomarkers, neurofilament light chain (NfL) and glial fibrillary acid protein (GFAP), through single-molecule Array in 108 patients with Alzheimer's (AD, cerebrospinal fluid with an amyloid+ tau+ neurodegeneration+ profile), 73 patients with frontotemporal dementia (FTD, 24 with genetic diagnosis), and 54 controls. The best area under the curve (AUC) was used to assess the discriminative power. Patients with AD had lower Aß42/40 ratios and NfL levels, along with higher levels of p-tau181 and GFAP, compared with FTD patients. Single biomarkers discriminated well between dementia patients and controls: the Aß42/40 ratio (AUC:0.86) or GFAP (AUC:0.83) was found for AD, and the NfL (AUC:0.84) was found for FTD patients. However, a combination of two (NfL with p-tau181, or the GFAP/NfL ratio, AUCs ~0.87) or three biomarkers (NfL, P-tau181, and Aß42/40 ratio, AUC: 0.90) was required to distinguish between AD and FTD. Biomarker profiles were similar across different FTD phenotypes, except for carriers of PGRN mutations, who had higher levels of NfL than C9orf72 expansion carriers. In our series, NfL alone provided the best distinction between FTD and controls, while a combination of two or three biomarkers was required to obtain good discrimination between AD and FTD.
Collapse
Affiliation(s)
- Estrella Gómez-Tortosa
- Department of Neurology, Fundación Jiménez Díaz, 28040 Madrid, Spain; (P.A.-R.); (M.J.S.); (A.L.N.)
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Pablo Agüero-Rabes
- Department of Neurology, Fundación Jiménez Díaz, 28040 Madrid, Spain; (P.A.-R.); (M.J.S.); (A.L.N.)
| | - Alicia Ruiz-González
- Alzheimer’s Centre Reina Sofía-CIEN Foundation, Instituto de Salud Carlos III, 28031 Madrid, Spain; (A.R.-G.); (S.W.-R.); andre (A.R.-C.); (T.d.S.); (P.S.-J.)
| | - Sonia Wagner-Reguero
- Alzheimer’s Centre Reina Sofía-CIEN Foundation, Instituto de Salud Carlos III, 28031 Madrid, Spain; (A.R.-G.); (S.W.-R.); andre (A.R.-C.); (T.d.S.); (P.S.-J.)
| | - Raquel Téllez
- Department of Immunology, Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Ignacio Mahillo
- Department of Biostatistics and Epidemiology, Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Andrea Ruiz-Calvo
- Alzheimer’s Centre Reina Sofía-CIEN Foundation, Instituto de Salud Carlos III, 28031 Madrid, Spain; (A.R.-G.); (S.W.-R.); andre (A.R.-C.); (T.d.S.); (P.S.-J.)
| | - María José Sainz
- Department of Neurology, Fundación Jiménez Díaz, 28040 Madrid, Spain; (P.A.-R.); (M.J.S.); (A.L.N.)
| | - Anna Lena Nystrom
- Department of Neurology, Fundación Jiménez Díaz, 28040 Madrid, Spain; (P.A.-R.); (M.J.S.); (A.L.N.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofía-CIEN Foundation, Instituto de Salud Carlos III, 28031 Madrid, Spain; (A.R.-G.); (S.W.-R.); andre (A.R.-C.); (T.d.S.); (P.S.-J.)
| | - Pascual Sánchez-Juan
- Alzheimer’s Centre Reina Sofía-CIEN Foundation, Instituto de Salud Carlos III, 28031 Madrid, Spain; (A.R.-G.); (S.W.-R.); andre (A.R.-C.); (T.d.S.); (P.S.-J.)
| |
Collapse
|
15
|
Bolsewig K, Willemse EAJ, Sánchez-Juan P, Rábano A, Martínez M, Doecke JD, Bellomo G, Vermunt L, Alcolea D, Halbgebauer S, In 't Veld S, Mattsson-Carlgren N, Veverova K, Fowler CJ, Boonkamp L, Koel-Simmelink M, Hussainali Z, Ruiters DN, Gaetani L, Toja A, Fortea J, Pijnenburg Y, Lemstra AW, van der Flier WM, Hort J, Otto M, Hansson O, Parnetti L, Masters CL, Lleó A, Teunissen CE, Del Campo Milán M. Increased plasma DOPA decarboxylase levels in Lewy body disorders are driven by dopaminergic treatment. Nat Commun 2025; 16:1139. [PMID: 39881147 PMCID: PMC11779843 DOI: 10.1038/s41467-025-56293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
DOPA Decarboxylase (DDC) has been proposed as a cerebrospinal fluid (CSF) biomarker with increased concentrations in Lewy body disorders (LBDs) and highest levels in patients receiving dopaminergic treatment. Here we evaluate plasma DDC, measured by proximity extension assay, and the effect of dopaminergic treatment in three independent LBD (with a focus on dementia with Lewy bodies (DLB) and Parkinson's disease (PD)) cohorts: an autopsy-confirmed cohort (n = 71), a large multicenter, cross-dementia cohort (n = 1498) and a longitudinal cohort with detailed treatment information (n = 66, median follow-up time[IQR] = 4[4, 4] years). Plasma DDC was not altered between different LBDs and other disease groups or controls in absence of treatment. DDC levels increased over time in PD, being significantly associated to higher dosages of dopaminergic treatment. This emphasizes the need to consider treatment effect when analyzing plasma DDC, and suggests that plasma DDC, in contrast to CSF DDC, is of limited use as a diagnostic biomarker for LBD, but could be valuable for treatment monitoring.
Collapse
Affiliation(s)
- Katharina Bolsewig
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Eline A J Willemse
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Department of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Pascual Sánchez-Juan
- Centro de Investigación Biomédica en Red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Alberto Rábano
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Minerva Martínez
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - James D Doecke
- Australian E-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Daniel Alcolea
- Centro de Investigación Biomédica en Red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Steffen Halbgebauer
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Sjors In 't Veld
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Neurology Clinic, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Katerina Veverova
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | | | - Lynn Boonkamp
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marleen Koel-Simmelink
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
| | - Zulaiga Hussainali
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
| | - Daimy N Ruiters
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Toja
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Juan Fortea
- Centro de Investigación Biomédica en Red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Yolande Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Colin L Masters
- Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration program, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marta Del Campo Milán
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
16
|
Bamford AR, Parkin GM, Corey-Bloom J, Thomas EA. Comparisons of neurodegenerative disease biomarkers across different biological fluids from patients with Huntington's disease. J Neurol 2025; 272:158. [PMID: 39849121 PMCID: PMC11759467 DOI: 10.1007/s00415-024-12785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays. In addition, salivary levels of NfL, t-tau, and GFAP were quantified from a larger cohort (n = 95). We found both positive and negative correlations in the levels of these biomarkers among different biofluids. Most notably, in contrast to the significant positive correlations observed between CSF and plasma levels for NfL and GFAP, we detected significant negative correlations between the CSF and saliva levels of NfL and GFAP. With regard to clinical measures, both plasma and CSF levels of NfL were significantly positively correlated with Total Motor Score and chorea, whereas saliva levels of NfL showed significant correlations in the opposite direction. Additional correlations between salivary biomarkers with clinical data, adjusting for age, sex and CAG repeat length, confirmed that salivary NfL was significantly negatively associated with chorea scores in manifest HD, but not premanifest (PM), individuals. In contrast, salivary t-tau was positively associated with measures of cognition in PM participants. These findings suggest that salivary levels of NfL and t-tau proteins may exemplify non-invasive biomarkers for disease symptoms at different stages of illness. Further, these findings highlight the notion that different forms of disease proteins exist in different biological fluids.
Collapse
Affiliation(s)
- Alison R Bamford
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
| | - Georgia M Parkin
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Elizabeth A Thomas
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA.
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
17
|
Jacob C, Tollenaere M, Kachar H, Potier MC, De Deyn PP, Van Dam D. Exploring peripheral fluid biomarkers for early detection of Alzheimer's disease in Down syndrome: A literature review. Heliyon 2025; 11:e41445. [PMID: 39850411 PMCID: PMC11755057 DOI: 10.1016/j.heliyon.2024.e41445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
People with Down Syndrome (DS) are at high risk of developing Alzheimer's disease dementia (AD) and cerebral amyloid angiopathy, which is a critical factor contributing to dementia in sporadic AD. Predicting and monitoring the decline and onset of dementia is a diagnostic challenge and of essence in daily care and support for people with DS. In this literature scoping review, we first summarize the different blood-based biomarkers for AD in DS. Next, we describe urine-based biomarkers for AD in DS and finally, we explore various blood-based biomarkers in the general AD population. Apart from the classic amyloid beta and Tau biomarkers, we also discuss more out-of-the-box biomarkers such as neurofilament light chain, Dual-specificity tyrosine-regulated kinase 1A, and monoaminergic biomarkers. These potential biomarkers could be a valuable addition to the established panel of fluid biomarkers.
Collapse
Affiliation(s)
- Charlotte Jacob
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marleen Tollenaere
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Hanane Kachar
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marie-Claude Potier
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Lehmann S, Gabelle A, Duchiron M, Busto G, Morchikh M, Delaby C, Hirtz C, Mondesert E, Cristol JP, Barnier-Figue G, Perrein F, Turpinat C, Jurici S, Bennys K. The ratio of plasma pTau217 to Aβ42 outperforms individual measurements in detecting brain amyloidosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.07.24318640. [PMID: 39830279 PMCID: PMC11741441 DOI: 10.1101/2024.12.07.24318640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
IMPORTANCE Early detection of brain amyloidosis (Aβ+) is pivotal for diagnosing Alzheimer's disease (AD) and optimizing patient management, especially in light of emerging treatments. While plasma biomarkers are promising, their combined diagnostic value through specific ratios remains underexplored. OBJECTIVE To evaluate the diagnostic accuracy of plasma pTau isoform (pTau181 and pTau217) to Aβ42 ratios in detecting Aβ+ status. DESIGN SETTING AND PARTICIPANTS This study included 423 participants from the multicenter prospective ALZAN cohort, recruited for cognitive complaints. Aβ+ status was determined using cerebrospinal fluid (CSF) biomarkers. Validation of the key findings was performed in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, where Aβ+ status was determined using PET imaging. EXPOSURES Plasma biomarkers (pTau181, pTau217, Aβ40, Aβ42) were measured using immunoassays and mass spectrometry, with specific ratios calculated. In the ALZAN cohort, the impact of confounding factors such as age, renal function, ApoE4 status, body mass index, and the delay between blood collection and processing was also evaluated to assess their influence on biomarker concentrations and diagnostic performance. MAIN OUTCOMES AND MEASURES The primary outcome was the diagnostic performance of plasma biomarkers and their ratios for detecting Aβ+ status. Secondary outcomes included the proportion of patients classified as low, intermediate, or high risk for Aβ+ using a two-cutoff approach. RESULTS The pTau181/Aβ42 ratio matched the diagnostic performance of pTau217 with AUC of 0.911 (0.880-0.936). The pTau217/Aβ42 ratio demonstrated the highest diagnostic accuracy in the ALZAN cohort, with an AUC of 0.927 (0.898-0.950), outperforming individual biomarkers. Both ratios effectively mitigated confounding factors, such as variations in renal function, and were particularly excellent in identifying Aβ+ status in individuals with early cognitive decline. Validation in the ADNI cohort confirmed these findings, with consistent performance across different measurement methods. The two-cutoff workflow using pTau217/Aβ42 reduced the intermediate-risk zone from 16% to 8%, enhancing stratification for clinical decision-making. CONCLUSIONS AND RELEVANCE The pTau217/Aβ42 ratio offers superior diagnostic accuracy for detecting Aβ+ compared to individual biomarkers and reduces diagnostic uncertainty. These findings highlight the clinical utility of plasma biomarker ratios for early AD detection, paving the way for broader implementation in clinical and research settings.
Collapse
|
19
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
He Y, Liu X, Liu F, Che P, Zhang Y, Fan R, Li Y, Qin W, Zhang N. Associations of plasma biomarkers with cerebral perfusion and structure in Alzheimer's disease. Transl Psychiatry 2025; 15:2. [PMID: 39762217 PMCID: PMC11704010 DOI: 10.1038/s41398-024-03220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity. Forty-eight AD patients whose diagnosis was supported by amyloid-β (Aβ) PET received measurement of plasma biomarkers with a single molecular array, including Aβ42, phosphorylated tau 181 (P-tau181), neurofilament light (NfL), total tau (T-tau), and glial fibrillary acidic protein (GFAP), and both baseline and one-year follow-up magnetic resonance imaging, including pseudo-continuous arterial spin labeling, T1-weighted imaging, and diffusion tensor imaging. Correlations were found between regional CBF and several plasma biomarkers, with Aβ42 showing the strongest correlation with CBF in the left inferior temporal gyrus (r = 0.507, p = 0.001). Plasma P-tau181 and GFAP levels were correlated with GM volume in the posterior cingulate gyrus and the bilateral hippocampus and right middle temporal gyrus, respectively. Decreased CBF and GM volume in regions vulnerable to AD, such as the posterior cingulate gyrus, inferior parietal lobule and hippocampus, could be predicted by the levels of specific plasma biomarkers. Most biomarkers, except Aβ42, showed extensive correlations with longitudinal WM disruption. Plasma biomarkers exhibited varied correlations with brain perfusion, GM volume, and WM integrity and predicted their longitudinal changes in AD patients, suggesting their potential to reflect functional and structural changes and to monitor pathophysiological progression in the brain.
Collapse
Affiliation(s)
- Yong He
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojiao Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Che
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxin Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruxue Fan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
21
|
Abughofah Y, Deardorff R, Vosmeier A, Hottle S, Dage JL, Dempsey D, Apostolova LG, Brosch J, Clark D, Farlow M, Foroud T, Gao S, Wang S, Zetterberg H, Blennow K, Saykin AJ, Risacher SL. Association between BrainAGE and Alzheimer's disease biomarkers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70094. [PMID: 40018325 PMCID: PMC11865712 DOI: 10.1002/dad2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 03/01/2025]
Abstract
INTRODUCTION The brain age gap estimation (BrainAGE) method uses a machine learning model to generate an age estimate from structural magnetic resonance imaging (MRI) scans. The goal was to study the association of brain age with Alzheimer's disease (AD) imaging and plasma biomarkers. METHODS One hundred twenty-three individuals from the Indiana Memory and Aging Study underwent structural MRI, amyloid and tau positron emission tomography (PET), and plasma sampling. The MRI scans were processed using the software program BrainAgeR to receive a "brain age" estimate. Plasma biomarker concentrations were measured, and partial Pearson correlation models were used to evaluate their relationship with brain age gap (BAG) estimation (BrainAGE = chronological age - MRI estimated brain age). RESULTS Significant associations between BAG and amyloid and tau levels on PET and in plasma were observed depending on diagnostic categories. DISCUSSION These findings suggest that BAG is potentially a biomarker of pathology in AD which can be applied to routine brain imaging. Highlights Novel research that uses an artificial intelligence learning tool to estimate brain age.Findings suggest that brain age gap is associated with plasma and positron emission tomography Alzheimer's disease (AD) biomarkers.Differential relationships are seen in different stages of disease (preclinical vs. clinical).Results could play a role in early AD diagnosis and treatment.
Collapse
Affiliation(s)
- Yousaf Abughofah
- Indiana Medical Student Program for Research and Scholarship, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Aaron Vosmeier
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Savannah Hottle
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Jeffrey L. Dage
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Neurology, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Desarae Dempsey
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Neurology, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Jared Brosch
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Neurology, Indiana University School of MedicineIndianapolisIndianaUSA
| | - David Clark
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Neurology, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Martin Farlow
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Neurology, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Tatiana Foroud
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Biostatistics, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistrythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyDementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistrythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Andrew J. Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Shannon L. Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
22
|
Leisgang Osse AM, Kinney JW, Cummings JL. The Common Alzheimer's Disease Research Ontology (CADRO) for biomarker categorization. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70050. [PMID: 39935614 PMCID: PMC11812129 DOI: 10.1002/trc2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/13/2025]
Abstract
Biomarkers are vital to Alzheimer's disease (AD) drug development and clinical trials, and will have an increasing role in clinical care. In this narrative review, we demonstrate the use of the National Institutes on Aging/Alzheimer's Association (NIA/AA) Common Alzheimer's Disease Research Ontology (CADRO) system for the categorization of biomarkers based on the primary mechanism on which they report. We show that biomarkers are available (in various levels of validation) for all CADRO processes. Application of the CADRO system demonstrates gaps in the field where novel biomarkers are needed for specific aspects of the disease, and assays to detect and measure biological changes, in individuals with symptomatic or preclinical AD. We demonstrate the CADRO system as a means of categorizing established and candidate AD biomarkers, showing the feasibility and practicality of the system. CADRO can assist with biomarker selection for AD clinical trials and drug development, and may eventually be applied to implementing biomarkers in patient care. Highlights The Common Alzheimer's Disease Research Ontology (CADRO) system can be used to categorize biomarkers for drug development.We demonstrate the use of CADRO with Alzheimer's disease (AD) biomarkers.We identified AD biomarkers in each of the CADRO categories.CADRO can be incorporated into current AD drug development and clinical trial systems.
Collapse
Affiliation(s)
- Amanda M. Leisgang Osse
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jefferson W. Kinney
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jeffrey L. Cummings
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
23
|
Cheng CF, Cheng E, Ku HC. Roles of endoplasmic reticulum stress and activating transcription factors in Alzheimer's disease and Parkinson's disease. Tzu Chi Med J 2025; 37:10-16. [PMID: 39850398 PMCID: PMC11753521 DOI: 10.4103/tcmj.tcmj_51_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 01/25/2025] Open
Abstract
Endoplasmic reticulum (ER) is a crucial organelle associated with cellular homeostasis. Accumulation of improperly folded proteins results in ER stress, accompanied by the reaction involving triggering unfolded protein response (UPR). The UPR is mediated through ER membrane-associated sensors, such as protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α, and activating transcription factor 6 (ATF6). Prolonged stress triggers cell apoptotic reaction, resulting in cell death. Neuronal cells are especially susceptible to protein misfolding. Notably, ER and UPR malfunctions are linked to many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), delineated by accumulation of misfolded proteins. Notably, ATF family members play key roles in AD and PD pathogenesis. However, the connection between ER stress, UPR, and neuropathology is not yet fully understood. Here, we discuss our present knowledge of the association between ER stress, the UPR, and neurodegeneration in AD and PD. We also discuss the roles of ATF family members in AD and PD pathogenesis. Moreover, we provide a mechanistic clarification of how disease-related molecules affect ER protein homeostasis and explore recent findings that connect the UPR to neuronal plasticity.
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Evelyn Cheng
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
24
|
Huang X, Jannu AJ, Song Z, Jury‐Garfe N, Lasagna‐Reeves CA, Johnson TS, Huang K, Zhang J. Predicting Alzheimer's disease subtypes and understanding their molecular characteristics in living patients with transcriptomic trajectory profiling. Alzheimers Dement 2025; 21:e14241. [PMID: 39812331 PMCID: PMC11772740 DOI: 10.1002/alz.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Deciphering the diverse molecular mechanisms in living Alzheimer's disease (AD) patients is a big challenge but is pivotal for disease prognosis and precision medicine development. METHODS Utilizing an optimal transport approach, we conducted graph-based mapping of transcriptomic profiles to transfer AD subtype labels from ROSMAP monocyte samples to ADNI and ANMerge peripheral blood mononuclear cells. Subsequently, differential expression followed by comparative pathway and diffusion pseudotime analysis were applied to each cohort to infer the progression trajectories. Survival analysis with real follow-up time was used to obtain potential biomarkers for AD prognosis. RESULTS AD subtype labels were accurately transferred onto the blood samples of ADNI and ANMerge living patients. Pathways and associated genes in neutrophil degranulation-like immune process, immune acute phase response, and IL-6 signaling were significantly associated with AD progression. DISCUSSION The work enhanced our understanding of AD progression in different subtypes, offering insights into potential biomarkers and personalized interventions for improved patient care. HIGHLIGHTS We applied an innovative optimal transport-based approach to map transcriptomic data from different Alzheimer's disease (AD) cohort studies and transfer known AD subtype labels from ROSMAP monocyte samples to peripheral blood mononuclear cell (PBMC) samples within ADNI and ANMerge cohorts. Through comprehensive trajectory and comparative analysis, we investigated the molecular mechanisms underlying different disease progression trajectories in AD. We validated the accuracy of our AD subtype label transfer and identified prognostic genetic markers associated with disease progression, facilitating personalized treatment strategies. By identifying and predicting distinctive AD subtypes and their associated pathways, our study contributes to a deeper understanding of AD heterogeneity.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Asha Jacob Jannu
- Department of Biohealth InformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ziyan Song
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Nur Jury‐Garfe
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Cristian A. Lasagna‐Reeves
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Travis S. Johnson
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kun Huang
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jie Zhang
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
25
|
An C, Cai H, Ren Z, Fu X, Quan S, Jia L. Biofluid biomarkers for Alzheimer's disease: past, present, and future. MEDICAL REVIEW (2021) 2024; 4:467-491. [PMID: 39664082 PMCID: PMC11629312 DOI: 10.1515/mr-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/04/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with tremendous social and economic burden. Therefore, early and accurate diagnosis is imperative for effective treatment or prevention of the disease. Cerebrospinal fluid and blood biomarkers emerge as favorable diagnostic tools due to their relative accessibility and potential for widespread clinical use. This review focuses on the AT(N) biomarker system, which includes biomarkers reflecting AD core pathologies, amyloid deposition, and pathological tau, as well as neurodegeneration. Novel biomarkers associated with inflammation/immunity, synaptic dysfunction, vascular pathology, and α-synucleinopathy, which might contribute to either the pathogenesis or the clinical progression of AD, have also been discussed. Other emerging candidates including non-coding RNAs, metabolites, and extracellular vesicle-based markers have also enriched the biofluid biomarker landscape for AD. Moreover, the review discusses the current challenges of biofluid biomarkers in AD diagnosis and offers insights into the prospective future development.
Collapse
Affiliation(s)
- Chengyu An
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
26
|
Pilotto A, Ashton NJ, Lupini A, Battaglio B, Zatti C, Trasciatti C, Gipponi S, Cottini E, Grossi I, Salvi A, de Petro G, Pizzi M, Canale A, Blennow K, Zetterberg H, Padovani A. Plasma NfL, GFAP, amyloid, and p-tau species as Prognostic biomarkers in Parkinson's disease. J Neurol 2024; 271:7537-7546. [PMID: 39249107 PMCID: PMC11588809 DOI: 10.1007/s00415-024-12669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION The prognostic role of plasma neurofilament light chain (NfL), phospho-tau, beta-amyloid, and GFAP is still debated in Parkinson's disease (PD). METHODS Plasma p-tau181, p-tau231, Aβ1-40, Aβ1-42, GFAP, and NfL were measured by SIMOA in 136 PD with 2.9 + 1.7 years of follow-up and 76 controls. Differences in plasma levels between controls and PD and their correlation with clinical severity and progression rates were evaluated using linear regression analyses. RESULTS Patients exhibited similar distribution of plasma biomarkers but higher P-tau181, P-tau231 and lower Aβ1-42 compared with controls. NfL and GFAP correlated with baseline motor and non-motor severity measures. At follow-up, NfL emerged as the best predictor of progression with marginal effect of GFAP and p-tau181 adjusting for age, sex, disease duration, and baseline motor severity. CONCLUSION The present findings confirmed plasma NfL as best predictor of progression in PD, with a marginal role of p-tau181 and GFAP.
Collapse
Affiliation(s)
- Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy.
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy.
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Beatrice Battaglio
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Cinzia Zatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Chiara Trasciatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
| | - Stefano Gipponi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Elisabetta Cottini
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina de Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Canale
- Department of Statistical Sciences, University of Padova, Padua, Italy
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
- Brain Health Center, University of Brescia, Brescia, Italy
| |
Collapse
|
27
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024; 123:1210-1217. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
El Abiad E, Al-Kuwari A, Al-Aani U, Al Jaidah Y, Chaari A. Navigating the Alzheimer's Biomarker Landscape: A Comprehensive Analysis of Fluid-Based Diagnostics. Cells 2024; 13:1901. [PMID: 39594648 PMCID: PMC11593284 DOI: 10.3390/cells13221901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects a significant portion of the aging population, presenting a serious challenge due to the limited availability of effective therapies during its progression. The disease advances rapidly, underscoring the need for early diagnosis and the application of preventative measures. Current diagnostic methods for AD are often expensive and invasive, restricting access for the general public. One potential solution is the use of biomarkers, which can facilitate early detection and treatment through objective, non-invasive, and cost-effective evaluations of AD. This review critically investigates the function and role of biofluid biomarkers in detecting AD, with a specific focus on cerebrospinal fluid (CSF), blood-based, and saliva biomarkers. RESULTS CSF biomarkers have demonstrated potential for accurate diagnosis and valuable prognostic insights, while blood biomarkers offer a minimally invasive and cost-effective approach for diagnosing cognitive issues. However, while current biomarkers for AD show significant potential, none have yet achieved the precision needed to replace expensive PET scans and CSF assays. The lack of a single accurate biomarker underscores the need for further research to identify novel or combined biomarkers to enhance the clinical efficacy of existing diagnostic tests. In this context, artificial intelligence (AI) and deep-learning (DL) tools present promising avenues for improving biomarker analysis and interpretation, enabling more precise and timely diagnoses. CONCLUSIONS Further research is essential to confirm the utility of all AD biomarkers in clinical settings. Combining biomarker data with AI tools offers a promising path toward revolutionizing the personalized characterization and early diagnosis of AD symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (E.E.A.); (A.A.-K.); (U.A.-A.); (Y.A.J.)
| |
Collapse
|
29
|
Dong Y, Song X, Wang X, Wang S, He Z. The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neurosci Ther 2024; 30:e70060. [PMID: 39572036 PMCID: PMC11581788 DOI: 10.1111/cns.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 11/25/2024] Open
Abstract
Diagnosis and prediction of Alzheimer's disease (AD) are increasingly pressing in the early stage of the disease because the biomarker-targeted therapies may be most effective. Diagnosis of AD largely depends on the clinical symptoms of AD. Currently, cerebrospinal fluid biomarkers and neuroimaging techniques are considered for clinical detection and diagnosis. However, these clinical diagnosis results could provide indications of the middle and/or late stages of AD rather than the early stage, and another limitation is the complexity attached to limited access, cost, and perceived invasiveness. Therefore, the prediction of AD still poses immense challenges, and the development of novel biomarkers is needed for early diagnosis and urgent intervention before the onset of obvious phenotypes of AD. Blood-based biomarkers may enable earlier diagnose and aid detection and prognosis for AD because various substances in the blood are vulnerable to AD pathophysiology. The application of a systematic biological paradigm based on high-throughput techniques has demonstrated accurate alterations of molecular levels during AD onset processes, such as protein levels and metabolite levels, which may facilitate the identification of AD at an early stage. Notably, proteomics and metabolomics have been used to identify candidate biomarkers in blood for AD diagnosis. This review summarizes data on potential blood-based biomarkers identified by proteomics and metabolomics that are closest to clinical implementation and discusses the current challenges and the future work of blood-based candidates to achieve the aim of early screening for AD. We also provide an overview of early diagnosis, drug target discovery and even promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Dong
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xun Song
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xiao Wang
- Department of PharmacyShenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology)ShenzhenChina
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science CenterShenzhen UniversityShenzhenChina
| | - Zhendan He
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
30
|
Mitolo M, Lombardi G, Manca R, Nacmias B, Venneri A. Association between blood-based protein biomarkers and brain MRI in the Alzheimer's disease continuum: a systematic review. J Neurol 2024; 271:7120-7140. [PMID: 39264441 PMCID: PMC11560990 DOI: 10.1007/s00415-024-12674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Blood-based biomarkers (BBM) are becoming easily detectable tools to reveal pathological changes in Alzheimer's disease (AD). A comprehensive and up-to-date overview of the association between BBM and brain MRI parameters is not available. This systematic review aimed to summarize the literature on the associations between the main BBM and MRI markers across the clinical AD continuum. A systematic literature search was carried out on PubMed and Web of Science and a total of 33 articles were included. Hippocampal volume was positively correlated with Aβ42 and Aβ42/Aβ40 and negatively with Aβ40 plasma levels. P-tau181 and p-tau217 concentrations were negatively correlated with temporal grey matter volume and cortical thickness. NfL levels were negatively correlated with white matter microstructural integrity, whereas GFAP levels were positively correlated with myo-inositol values in the posterior cingulate cortex/precuneus. These findings highlight consistent associations between various BBM and brain MRI markers even in the pre-clinical and prodromal stages of AD. This suggests a possible advantage in combining multiple AD-related markers to improve accuracy of early diagnosis, prognosis, progression monitoring and treatment response.
Collapse
Affiliation(s)
- Micaela Mitolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Riccardo Manca
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Annalena Venneri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
31
|
Blum D, Cailliau E, Béhal H, Vidal J, Delaby C, Buée L, Allinquant B, Gabelle A, Bombois S, Lehmann S, Schraen‐Maschke S, Hanon O. Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer's disease: A BALTAZAR cohort study. Alzheimers Dement 2024; 20:6948-6959. [PMID: 39099181 PMCID: PMC11485411 DOI: 10.1002/alz.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. METHODS MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aβ1-42], Aβ1-40) were analyzed using logistic and analysis of covariance models. RESULTS Adjusted on Apolipoprotein E (APOE ε4), age, sex, education level, and tobacco, lower caffeine consumption was associated with higher risk to be amnestic (OR: 2.49 [95% CI: 1.13 to 5.46]; p = 0.023) and lower CSF Aβ1-42 (p = 0.047), Aβ1-42/Aβ1-40 (p = 0.040), and Aβ1-42/p-tau181 (p = 0.020) in the whole cohort. DISCUSSION Data support the beneficial effect of caffeine consumption to memory impairments and CSF amyloid markers in MCI and AD patients. HIGHLIGHTS We studied the impact of caffeine consumption in the BALTAZAR cohort. Low caffeine intake is associated with higher risk of being amnestic in MCI/AD patients. Caffeine intake is associated with CSF biomarkers in AD patients.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | | | | | - Jean‐Sébastien Vidal
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Luc Buée
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Bernadette Allinquant
- Université Paris CitéInstitute of Psychiatry and Neuroscience, Inserm, UMR‐S 1266ParisFrance
| | - Audrey Gabelle
- Université de MontpellierCHU MontpellierMemory Research and Resources CenterDepartment of Neurology, Inserm INM NeuroPEPs TeamExcellence Center of Neurodegenerative DisordersMontpellierFrance
| | - Stéphanie Bombois
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié‐SalpêtrièreParisFrance
| | - Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
| | - Susanna Schraen‐Maschke
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Olivier Hanon
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| |
Collapse
|
32
|
Ahn JS, Jang CH. Real-time detection of Tau-381 protein using liquid crystal-based sensors for Alzheimer's disease diagnosis. Colloids Surf B Biointerfaces 2024; 245:114211. [PMID: 39260276 DOI: 10.1016/j.colsurfb.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Tau is a protein found in the central nervous system (CNS) and is involved in stabilizing microtubules in axons. Given the link between Tau levels in the body and Alzheimer's disease (AD), there is a demand for straightforward and precise strategies to detect Tau in body fluids. In this study, we report liquid crystal (LC)-based sensors for the real-time detection of Tau protein, a well-known AD biomarker. The sensor uses a detection method based on the orientation change of the LC because of the competitive biomolecular interaction between Tau and Tau aptamers with the cationic polymer poly-L-lysine (PLL). Tau and its aptamers form stable complexes through electrostatic interactions. Owing to the consumption of the aptamer, the positively charged PLL fails to interact with the aptamer but binds to the negatively charged 1.2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG). The PLL and DOPG complex alters the orientation of the LC to ensure a planar anchoring of the 4-cyano-4'-pentylbiphenyl (5CB)/aqueous interface; this anchoring intensifies with increasing Tau concentration, thus enabling the observation of a bright optical image. Our LC-based sensor demonstrated a low detection limit of 2.77 pg/mL in phosphate buffered saline (PBS) and 10.86 pg/mL and 19.31 pg/mL in human serum and plasma, respectively. Moreover, it is anticipated to be suitable for point-of-care diagnosis of AD because it does not require specialized analytical equipment and only requires microliters of sample.
Collapse
Affiliation(s)
- Jun-Seong Ahn
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
33
|
Sessa F, Polito R, Li Rosi G, Salerno M, Esposito M, Pisanelli D, Ministeri F, Messina A, Carotenuto M, Chieffi S, Messina G, Monda M. Neurobiology and medico-legal aspects of suicides among older adults: a narrative review. Front Psychiatry 2024; 15:1449526. [PMID: 39290301 PMCID: PMC11405742 DOI: 10.3389/fpsyt.2024.1449526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
The task of preventing suicide in older adults is an important social burden as older adults aged above 65 are exposed to singular psychological aspects that increase suicide risks. Moreover, when an older adult corpse is found, the medico-legal inspection represents a fundamental tool to identify the exact cause of death, classifying or excluding it as suicide. In this scenario, this review aims to explore the neurobiological factors that could be related to suicidal behavior in older adults. A further goal of this review is the exploration of the medico-legal aspects surrounding older adult suicides, clarifying the importance of forensic investigation. Particularly, this review examines issues such as neurotransmitter imbalances, cognitive impairment, neuroinflammation, psychosocial factors related to geriatric suicide, and neurodegenerative diseases. Additionally, medico-legal aspects such as policy considerations, legal frameworks, mental health assessments, ethical implications and forensic investigation were explored. Considering the importance of this phenomenon, especially in western countries, a need has emerged for focused screening tools on suicidal behavior among older adults, in order to contain it. Therefore, this review makes an exhaustive appraisal of the literature giving insights into the delicate interplay between neurobiology as well as mental health in relation to older adult suicide within a medico-legal context. The comprehension of different aspects about this complex phenomenon is fundamental to propose new and more effective interventions, supporting tailored initiatives such as family support and improving healthcare, specifically towards vulnerable ageing societies to reduce older adult suicide risks.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Li Rosi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Daniela Pisanelli
- Microbiology and Virology Unit, Ospedali Riuniti, Viale Luigi Pinto, Foggia, Italy
| | - Federica Ministeri
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sergio Chieffi
- Department of Clinical Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Giovanni Messina
- Department of Clinical Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Marcellino Monda
- Department of Clinical Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| |
Collapse
|
34
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
35
|
Sethi P, Bhaskar R, Singh KK, Gupta S, Han SS, Avinash D, Abomughaid MM, Koul A, Rani B, Ghosh S, Jha NK, Sinha JK. Exploring advancements in early detection of Alzheimer's disease with molecular assays and animal models. Ageing Res Rev 2024; 100:102411. [PMID: 38986845 DOI: 10.1016/j.arr.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's Disease (AD) is a challenging neurodegenerative condition, with overwhelming implications for affected individuals and healthcare systems worldwide. Animal models have played a crucial role in studying AD pathogenesis and testing therapeutic interventions. Remarkably, studies on the genetic factors affecting AD risk, such as APOE and TREM2, have provided valuable insights into disease mechanisms. Early diagnosis has emerged as a crucial factor in effective AD management, as demonstrated by clinical studies emphasizing the benefits of initiating treatment at early stages. Novel diagnostic technologies, including RNA sequencing of microglia, offer promising avenues for early detection and monitoring of AD progression. Therapeutic strategies remain to evolve, with a focus on targeting amyloid beta (Aβ) and tau pathology. Advances in animal models, such as APP-KI mice, and the advancement of anti-Aβ drugs signify progress towards more effective treatments. Therapeutically, the focus has shifted towards intricate approaches targeting multiple pathological pathways simultaneously. Strategies aimed at reducing Aβ plaque accumulation, inhibiting tau hyperphosphorylation, and modulating neuroinflammation are actively being explored, both in preclinical models and clinical trials. While challenges continue in developing validated animal models and translating preclinical findings to clinical success, the continuing efforts in understanding AD at molecular, cellular, and clinical levels offer hope for improved management and eventual prevention of this devastating disease.
Collapse
Affiliation(s)
- Paalki Sethi
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Apurva Koul
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Jaipur, Rajsthan, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India.
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140401, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
36
|
Ashton NJ, Keshavan A, Brum WS, Andreasson U, Arslan B, Droescher M, Barghorn S, Vanbrabant J, Lambrechts C, Van Loo M, Stoops E, Iyengar S, Ji H, Xu X, Forrest-Hay A, Zhang B, Luo Y, Jeromin A, Vandijck M, Bastard NL, Kolb H, Triana-Baltzer G, Bali D, Janelidze S, Yang SY, Demos C, Romero D, Sigal G, Wohlstadter J, Malyavantham K, Khare M, Jethwa A, Stoeckl L, Gobom J, Kac PR, Gonzalez-Ortiz F, Montoliu-Gaya L, Hansson O, Rissman RA, Carillo MC, Shaw LM, Blennow K, Schott JM, Zetterberg H. The Alzheimer's Association Global Biomarker Standardization Consortium (GBSC) plasma phospho-tau Round Robin study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.22.24312244. [PMID: 39228740 PMCID: PMC11370527 DOI: 10.1101/2024.08.22.24312244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer's disease (AD) pathology. Multiple p-tau biomarkers on several analytical platforms are poised for clinical use. The Alzheimer's Association Global Biomarker Standardisation Consortium plasma phospho-tau Round Robin study engaged assay developers in a blinded case-control study on plasma p-tau, aiming to learn which assays provide the largest fold-changes in AD compared to non-AD, have the strongest relationship between plasma and cerebrospinal fluid (CSF), and show the most consistent relationships between methods (commutability) in measuring both patient samples and candidate reference materials (CRM). METHODS Thirty-three different p-tau biomarker assays, built on eight different analytical platforms, were used to quantify paired plasma and CSF samples from 40 participants. AD biomarker status was categorised as "AD pathology" (n=25) and "non-AD pathology" (n=15) by CSF Aβ42/Aβ40 (US-FDA; CE-IVDR) and p-tau181 (CE-IVDR) methods. The commutability of four CRM, at three concentrations, was assessed across assays. FINDINGS Plasma p-tau217 consistently demonstrated higher fold-changes between AD and non-AD pathology groups, compared to other p-tau epitopes. Fujirebio LUMIPULSE G, UGOT IPMS, and Lilly MSD p-tau217 assays provided the highest median fold-changes. In CSF, p-tau217 assays also performed best, and exhibited substantially larger fold-changes than their plasma counterparts, despite similar diagnostic performance. P-tau217 showed the strongest correlations between plasma assays (rho=0.81 to 0.97). Plasma p-tau levels were weakly-to-moderately correlated with CSF p-tau, and correlations were non-significant within the AD group alone. The evaluated CRM were not commutable across assays. INTERPRETATION Plasma p-tau217 measures had larger fold-changes and discriminative accuracies for detecting AD pathology, and better agreement across platforms than other plasma p-tau variants. Plasma and CSF markers of p-tau, measured by immunoassays, are not substantially correlated, questioning the interchangeability of their continuous relationship. Further work is warranted to understand the pathophysiology underlying this dissociation, and to develop suitable reference materials facilitating cross-assay standardisation. FUNDING Alzheimer's Association (#ADSF-24-1284328-C).
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Stefan Barghorn
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | | | | | - Maxime Van Loo
- ADx NeuroSciences N.V., Technologiepark 6, 9052 Ghent, Belgium
| | - Erik Stoops
- ADx NeuroSciences N.V., Technologiepark 6, 9052 Ghent, Belgium
| | | | - HaYeun Ji
- Alamar Biosciences, Inc., Fremont, CA, USA
| | - Xiaomei Xu
- Alamar Biosciences, Inc., Fremont, CA, USA
| | | | | | - Yuling Luo
- Alamar Biosciences, Inc., Fremont, CA, USA
| | | | | | | | | | - Gallen Triana-Baltzer
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, California, USA
| | - Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
| | | | | | - Daniel Romero
- Meso Scale Diagnostics, LLC., Rockville, Maryland, USA
| | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, Maryland, USA
| | | | | | | | | | | | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
| | - Robert A Rissman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, USA
| | - Maria C Carillo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Leslie M Shaw
- Department of pathology & laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Science Park, Hong Kong, China
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Minguillón Pereiro AM, Quintáns Castro B, Ouro Villasante A, Aldrey Vázquez JM, Cortés Hernández J, Aramburu-Núñez M, Arias Gómez M, Jiménez Martín I, Sobrino T, Pías-Peleteiro JM. PSEN2 Mutations May Mimic Frontotemporal Dementia: Two New Case Reports and a Review. Biomedicines 2024; 12:1881. [PMID: 39200345 PMCID: PMC11351743 DOI: 10.3390/biomedicines12081881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Monogenic Alzheimer's disease (AD) has severe health and socioeconomic repercussions. Its rarest cause is presenilin 2 (PSEN2) gene mutations. We present two new cases with presumed PSEN2-AD with unusual clinical and neuroimaging findings in order to provide more information on the pathophysiology and semiology of these patients. METHODS Women aged 69 and 62 years at clinical onset, marked by prominent behavioral and language dysfunction, progressing to severe dementia within three years were included. The complete study is depicted. In addition, a systematic review of the PSEN2-AD was performed. RESULTS Neuroimaging revealed pronounced frontal white matter hyperintensities (WMH) and frontotemporal atrophy/hypometabolism. The genetic study unveiled PSEN2 variants: c.772G>A (p.Ala258Thr) and c.1073-2_1073-1del. Both cerebrospinal fluid (CSF) and experimental blood biomarkers shouldered AD etiology. CONCLUSIONS Prominent behavioral and language dysfunction suggesting frontotemporal dementia (FTD) may be underestimated in the literature as a clinical picture in PSEN2 mutations. Thus, it may be reasonable to include PSEN2 in genetic panels when suspecting FTDL. PSEN2 mutations may cause striking WMH, arguably related to myelin disruption induced by amyloid accumulation.
Collapse
Affiliation(s)
- Anxo Manuel Minguillón Pereiro
- Servicio de Neurología, Hospital Clínico Universitario Santiago de Compostela, Travesía de Choupana, 15706 Santiago de Compostela, Spain (J.M.P.-P.)
| | - Beatriz Quintáns Castro
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario Santiago de Compostela, Rúa da Choupana, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), 15706 Santiago de Compostela, Spain
| | - Alberto Ouro Villasante
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain; (A.O.V.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Aldrey Vázquez
- Servicio de Neurología, Hospital Clínico Universitario Santiago de Compostela, Travesía de Choupana, 15706 Santiago de Compostela, Spain (J.M.P.-P.)
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain; (A.O.V.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julia Cortés Hernández
- Servicio de Medicina Nuclear, Sección de Sistema Nervioso Central, Hospital Clínico Universitario Santiago de Compostela, Travesía de Choupana, 15706 Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain; (A.O.V.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Arias Gómez
- Servicio de Neurología, Hospital Clínico Universitario Santiago de Compostela, Travesía de Choupana, 15706 Santiago de Compostela, Spain (J.M.P.-P.)
| | - Isabel Jiménez Martín
- Unidad de Neuropsicologia Clínica, Hospital Clínico Universitario Santiago de Compostela, Travesía de Choupana, 15706 Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain; (A.O.V.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan Manuel Pías-Peleteiro
- Servicio de Neurología, Hospital Clínico Universitario Santiago de Compostela, Travesía de Choupana, 15706 Santiago de Compostela, Spain (J.M.P.-P.)
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain; (A.O.V.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
38
|
Usefi F, Rustamzadeh A, Ghobadi Z, Sadigh N, Mohebi N, Ariaei A, Moradi F. Rosuvastatin attenuates total-tau serum levels and increases expression of miR-124-3p in dyslipidemic Alzheimer's patients: a historic cohort study. Metab Brain Dis 2024; 39:1201-1211. [PMID: 38896205 DOI: 10.1007/s11011-024-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
microRNAs are candidate diagnostic biomarkers for Alzheimer's disease. This study aimed to compare Silymarin with Rosuvastatin and placebo on total-Tau protein level and expression levels of microRNAs and TGF-β and COX-2 in Alzheimer's patients with secondary dyslipidemia. 36 mild AD patients with dyslipidemia were divided into three groups of 12. The first group received silymarin (140mg), the second group received placebo (140mg), and the third group recieved Rosuvastatin (10mg). Tablets were administered three times a day for Six months. The blood samples of the patients were collected before and after the intervention and the serum was separated. Using the RT-qPCR method, the expression levels of miR-124-3p and miR-125b-5p were assessed, and the serum levels of total-Tau, TGF-β, and COX-2 enzyme were measured using the ELISA method. Data were analyzed with SPSS software. In this study, the level of Δtotal-Tau was significantly lower in the Rosuvastatin group compared to the placebo (P = 0.038). Also, a significant reduction in the level of ΔTGF-β was observed in the Silymarin to Rosuvastatin group (p = 0.046) and ΔmiR-124-3p was significantly increased in the Rosuvastatin compared to the placebo group (p = 0.044). Rosuvastatin outperformed silymarin in decreasing Δtotal-Tau serum levels and enhancing expression of ΔmiR-124-3p, attributed to Rosuvastatin's capacity to lower cholesterol levels and inflammation concurrently. Conversely, silymarin was more effective than Rosuvastatin in reducing levels of ΔTGF-β. Serum miR-124-3p could serve as a promising diagnostic biomarker and a new therapeutic focus in AD.
Collapse
Affiliation(s)
- Farnoosh Usefi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, School of Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Mohebi
- Department of Neurology, Rasool Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
39
|
Assfaw AD, Schindler SE, Morris JC. Advances in blood biomarkers for Alzheimer disease (AD): A review. Kaohsiung J Med Sci 2024; 40:692-698. [PMID: 38888066 DOI: 10.1002/kjm2.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Alzheimer disease (AD) and Alzheimer Disease and Related Dementias (AD/ADRD) are growing public health challenges globally affecting millions of older adults, necessitating concerted efforts to advance our understanding and management of these conditions. AD is a progressive neurodegenerative disorder characterized pathologically by amyloid plaques and tau neurofibrillary tangles that are the primary cause of dementia in older individuals. Early and accurate diagnosis of AD dementia is crucial for effective intervention and treatment but has proven challenging to accomplish. Although testing for AD brain pathology with cerebrospinal fluid (CSF) or positron emission tomography (PET) has been available for over 2 decades, most patients never underwent this testing because of inaccessibility, high out-of-pocket costs, perceived risks, and the lack of AD-specific treatments. However, in recent years, rapid progress has been made in developing blood biomarkers for AD/ADRD. Consequently, blood biomarkers have emerged as promising tools for non-invasive and cost-effective diagnosis, prognosis, and monitoring of AD progression. This review presents the evolving landscape of blood biomarkers in AD/ADRD and explores their potential applications in clinical practice for early detection, prognosis, and therapeutic interventions. It covers recent advances in blood biomarkers, including amyloid beta (Aβ) peptides, tau protein, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP). It also discusses their diagnostic and prognostic utility while addressing associated challenges and limitations. Future research directions in this rapidly evolving field are also proposed.
Collapse
Affiliation(s)
- Araya Dimtsu Assfaw
- Department of Neurology, Knight Alzheimer Disease Research Center (Knight ADRC), Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne E Schindler
- Department of Neurology, Knight Alzheimer Disease Research Center (Knight ADRC), Washington University School of Medicine, St. Louis, Missouri, USA
| | - John C Morris
- Department of Neurology, Knight Alzheimer Disease Research Center (Knight ADRC), Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Abramowitz A, Weber M. Management of MCI in the Outpatient Setting. Curr Psychiatry Rep 2024; 26:413-421. [PMID: 38856858 DOI: 10.1007/s11920-024-01514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE OF REVIEW We review current literature related to the clinical assessment of Mild Cognitive Impairment (MCI). We compile recommendations related to the evaluation of MCI and examine literature regarding the use of clinical biomarkers in this assessment, the role of non-pharmacologic therapy in the prevention of cognitive decline, and recent approval of anti-amyloid therapy in the treatment of MCI. RECENT FINDINGS The role of imaging and plasma biomarkers in the clinical assessment of MCI has expanded. There is data that non-pharmacologic therapy may have a role in the prevention of neurocognitive decline. Anti-amyloid therapies have recently been approved for clinical use. Clinical assessment of MCI remains multifactorial and includes screening and treating for underlying psychiatric and medical co-morbidities. The use of biomarkers in clinical settings is expanding with the rise of anti-amyloid therapies. These new diagnostics and therapeutics require nuanced discussion of risks and benefits. Psychiatrist's skillset is uniquely suited for these complex evaluations.
Collapse
Affiliation(s)
- Amy Abramowitz
- UNC School of Medicine and UNC Hospitals, Chapel Hill, NC, USA.
| | - Michael Weber
- UNC School of Medicine and UNC Hospitals, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Hu D, Chen M, Li X, Morin P, Daley S, Han Y, Hemberg M, Weiner HL, Xia W. ApoE ε4-dependent alteration of CXCR3 + CD127 + CD4 + T cells is associated with elevated plasma neurofilament light chain in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596276. [PMID: 38853824 PMCID: PMC11160665 DOI: 10.1101/2024.05.28.596276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Recent findings indicate a correlation between the peripheral adaptive immune system and neuroinflammation in Alzheimer's disease (AD). To characterize the composition of adaptive immune cells in the peripheral blood of AD patients, we utilized single-cell mass cytometry (CyTOF) to profile peripheral blood mononuclear cells (PBMCs). Concurrently, we assessed the concentration of proteins associated with AD and neuroinflammation in the plasma of the same subjects. We found that the abundance of proinflammatory CXCR3 + CD127 + Type 1 T helper (Th1) cells in AD patients was negatively correlated with the abundance of neurofilament light chain (NfL) protein. This correlation is apolipoprotein E (ApoE) ε4-dependent. Analyzing public single-cell RNA-sequencing (scRNA-seq) data, we found that, contrary to the scenario in the peripheral blood, the cell frequency of CXCR3 + CD127 + Th1 cells in the cerebrospinal fluid (CSF) of AD patients was increased compared to healthy controls (HCs). Moreover, the proinflammatory capacity of CXCR3 + CD127 + Th1 cells in the CSF of AD patients was further increased compared to HCs. These results reveal an association of a peripheral T-cell change with neuroinflammation in AD and suggest that dysregulation of peripheral adaptive immune responses, particularly involving CXCR3 + CD127 + Th1 cells, may potentially be mediated by factors such as ApoE ε4 genotype. One sentence summary An apolipoprotein E (ApoE) ε4-dependent alteration of CD4 T cell subpopulation in peripheral blood is associated with neuroinflammation in patients with Alzheimer's disease.
Collapse
|
42
|
Schmidt AF, Finan C, Chopade S, Ellmerich S, Rossor MN, Hingorani AD, Pepys M. Genetic evidence for serum amyloid P component as a drug target in neurodegenerative disorders. Open Biol 2024; 14:230419. [PMID: 39013416 PMCID: PMC11251762 DOI: 10.1098/rsob.230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
The mechanisms responsible for neuronal death causing cognitive loss in Alzheimer's disease (AD) and many other dementias are not known. Serum amyloid P component (SAP) is a constitutive plasma protein, which is cytotoxic for cerebral neurones and also promotes formation and persistence of cerebral Aβ amyloid and neurofibrillary tangles. Circulating SAP, which is produced exclusively by the liver, is normally almost completely excluded from the brain. Conditions increasing brain exposure to SAP increase dementia risk, consistent with a causative role in neurodegeneration. Furthermore, neocortex content of SAP is strongly and independently associated with dementia at death. Here, seeking genomic evidence for a causal link of SAP with neurodegeneration, we meta-analysed three genome-wide association studies of 44 288 participants, then conducted cis-Mendelian randomization assessment of associations with neurodegenerative diseases. Higher genetically instrumented plasma SAP concentrations were associated with AD (odds ratio 1.07, 95% confidence interval (CI) 1.02; 1.11, p = 1.8 × 10-3), Lewy body dementia (odds ratio 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10-5) and plasma tau concentration (0.06 log2(ng l-1) 95%CI 0.03; 0.08, p = 4.55 × 10-6). These genetic findings are consistent with neuropathogenicity of SAP. Depletion of SAP from the blood and the brain, by the safe, well tolerated, experimental drug miridesap may thus be neuroprotective.
Collapse
Affiliation(s)
- A. Floriaan Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam UMC, locatie AMC Postbus 22660, 1100 DD Amsterdam, Zuidoost, The Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Martin N. Rossor
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London WC1N 3BG, UK
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
| | - Mark B. Pepys
- Wolfson Drug Discovery Unit, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
43
|
Arslan B, Zetterberg H, Ashton NJ. Blood-based biomarkers in Alzheimer's disease - moving towards a new era of diagnostics. Clin Chem Lab Med 2024; 62:1063-1069. [PMID: 38253262 DOI: 10.1515/cclm-2023-1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD), a primary cause of dementia globally, is traditionally diagnosed via cerebrospinal fluid (CSF) measures and positron emission tomography (PET). The invasiveness, cost, and limited accessibility of these methods have led to exploring blood-based biomarkers as a promising alternative for AD diagnosis and monitoring. Recent advancements in sensitive immunoassays have identified potential blood-based biomarkers, such as Aβ42/Aβ40 ratios and phosphorylated tau (p-tau) species. This paper briefly evaluates the clinical utility and reliability of these biomarkers across various AD stages, highlighting challenges like refining plasma Aβ42/Aβ40 assays and enhancing the precision of p-tau, particularly p-tau181, p-tau217, and p-tau231. The discussion also covers other plasma biomarkers like neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and synaptic biomarkers, assessing their significance in AD diagnostics. The need for ongoing research and development of robust assays to match the performance of CSF and PET biomarkers is underscored. In summary, blood-based biomarkers are increasingly crucial in AD diagnosis, follow-up, prognostication, treatment response evaluation, and population screening, particularly in primary care settings. These developments are set to revolutionize AD diagnostics, offering earlier and more accessible detection and management options.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, P.R. China
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College London, Institute of Psychiatry, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley, NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
44
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
45
|
Koivumäki M, Ekblad L, Lantero-Rodriguez J, Ashton NJ, Karikari TK, Helin S, Parkkola R, Lötjönen J, Zetterberg H, Blennow K, Rinne JO, Snellman A. Blood biomarkers of neurodegeneration associate differently with amyloid deposition, medial temporal atrophy, and cerebrovascular changes in APOE ε4-enriched cognitively unimpaired elderly. Alzheimers Res Ther 2024; 16:112. [PMID: 38762725 PMCID: PMC11102270 DOI: 10.1186/s13195-024-01477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques, neurofibrillary tau tangles, and neurodegeneration in the brain parenchyma. Here, we aimed to (i) assess differences in blood and imaging biomarkers used to evaluate neurodegeneration among cognitively unimpaired APOE ε4 homozygotes, heterozygotes, and non-carriers with varying risk for sporadic AD, and (ii) to determine how different cerebral pathologies (i.e., Aβ deposition, medial temporal atrophy, and cerebrovascular pathology) contribute to blood biomarker concentrations in this sample. METHODS Sixty APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) ranging from 60 to 75 years, were recruited in collaboration with Auria biobank (Turku, Finland). Participants underwent Aβ-PET ([11C]PiB), structural brain MRI including T1-weighted and T2-FLAIR sequences, and blood sampling for measuring serum neurofilament light chain (NfL), plasma total tau (t-tau), plasma N-terminal tau fragments (NTA-tau) and plasma glial fibrillary acidic protein (GFAP). [11C]PiB standardized uptake value ratio was calculated for regions typical for Aβ accumulation in AD. MRI images were analysed for regional volumes, atrophy scores, and volumes of white matter hyperintensities. Differences in biomarker levels and associations between blood and imaging biomarkers were tested using uni- and multivariable linear models (unadjusted and adjusted for age and sex). RESULTS Serum NfL concentration was increased in APOE ε4 homozygotes compared with non-carriers (mean 21.4 pg/ml (SD 9.5) vs. 15.5 pg/ml (3.8), p = 0.013), whereas other blood biomarkers did not differ between the groups (p > 0.077 for all). From imaging biomarkers, hippocampal volume was significantly decreased in APOE ε4 homozygotes compared with non-carriers (6.71 ml (0.86) vs. 7.2 ml (0.7), p = 0.029). In the whole sample, blood biomarker levels were differently predicted by the three measured cerebral pathologies; serum NfL concentration was associated with cerebrovascular pathology and medial temporal atrophy, while plasma NTA-tau associated with medial temporal atrophy. Plasma GFAP showed significant association with both medial temporal atrophy and Aβ pathology. Plasma t-tau concentration did not associate with any of the measured pathologies. CONCLUSIONS Only increased serum NfL concentrations and decreased hippocampal volume was observed in cognitively unimpaired APOEε4 homozygotes compared to non-carriers. In the whole population the concentrations of blood biomarkers were affected in distinct ways by different pathologies.
Collapse
Affiliation(s)
- Mikko Koivumäki
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.
| | - Laura Ekblad
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Department of Geriatric Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Semi Helin
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
46
|
Zeng X, Chen Y, Sehrawat A, Lee J, Lafferty TK, Kofler J, Berman SB, Sweet RA, Tudorascu DL, Klunk WE, Ikonomovic MD, Pfister A, Zetterberg H, Snitz BE, Cohen AD, Villemagne VL, Pascoal TA, Kamboh ML, Lopez OI, Blennow K, Karikari TK. Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol Neurodegener 2024; 19:40. [PMID: 38750570 PMCID: PMC11095038 DOI: 10.1186/s13024-024-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 05/19/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aβ]40, Aβ42, Aβ42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Jihui Lee
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dana L Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Anna Pfister
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M. llyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar I Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
47
|
Mantellatto Grigoli M, Pelegrini LNC, Whelan R, Cominetti MR. Present and Future of Blood-Based Biomarkers of Alzheimer's Disease: Beyond the Classics. Brain Res 2024; 1830:148812. [PMID: 38369085 DOI: 10.1016/j.brainres.2024.148812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The field of blood-based biomarkers for Alzheimer's disease (AD) has advanced at an incredible pace, especially after the development of sensitive analytic platforms that can facilitate large-scale screening. Such screening will be important when more sophisticated diagnostic methods are scarce and expensive. Thus, blood-based biomarkers can potentially reduce diagnosis inequities among populations from different socioeconomic contexts. This large-scale screening can be performed so that older adults at risk of cognitive decline assessed using these methods can then undergo more complete assessments with classic biomarkers, increasing diagnosis efficiency and reducing costs to the health systems. Blood-based biomarkers can also aid in assessing the effect of new disease-modifying treatments. This paper reviews recent advances in the area, focusing on the following leading candidates for blood-based biomarkers: amyloid-beta (Aβ), phosphorylated tau isoforms (p-tau), neurofilament light (NfL), and glial fibrillary acidic (GFAP) proteins, as well as on new candidates, Neuron-Derived Exosomes contents (NDEs) and Transactive response DNA-binding protein-43 (TDP-43), based on data from longitudinal observational cohort studies. The underlying challenges of validating and incorporating these biomarkers into routine clinical practice and primary care settings are also discussed. Importantly, challenges related to the underrepresentation of ethnic minorities and socioeconomically disadvantaged persons must be considered. If these challenges are overcome, a new time of cost-effective blood-based biomarkers for AD could represent the future of clinical procedures in the field and, together with continued prevention strategies, the beginning of an era with a lower incidence of dementia worldwide.
Collapse
Affiliation(s)
| | | | - Robert Whelan
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
48
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
49
|
Andrés-Benito P, Vázquez-Costa JF, Ñungo Garzón NC, Colomina MJ, Marco C, González L, Terrafeta C, Domínguez R, Ferrer I, Povedano M. Neurodegeneration Biomarkers in Adult Spinal Muscular Atrophy (SMA) Patients Treated with Nusinersen. Int J Mol Sci 2024; 25:3810. [PMID: 38612621 PMCID: PMC11011665 DOI: 10.3390/ijms25073810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The objective of this study is to evaluate biomarkers for neurodegenerative disorders in adult SMA patients and their potential for monitoring the response to nusinersen. Biomarkers for neurodegenerative disorders were assessed in plasma and CSF samples obtained from a total of 30 healthy older adult controls and 31 patients with adult SMA type 2 and 3. The samples were collected before and during nusinersen treatment at various time points, approximately at 2, 6, 10, and 22 months. Using ELISA technology, the levels of total tau, pNF-H, NF-L, sAPPβ, Aβ40, Aβ42, and YKL-40 were evaluated in CSF samples. Additionally, plasma samples were used to measure NF-L and total tau levels using SIMOA technology. SMA patients showed improvements in clinical outcomes after nusinersen treatment, which were statistically significant only in walkers, in RULM (p = 0.04) and HFMSE (p = 0.05) at 24 months. A reduction in sAPPβ levels was found after nusinersen treatment, but these levels did not correlate with clinical outcomes. Other neurodegeneration biomarkers (NF-L, pNF-H, total tau, YKL-40, Aβ40, and Aβ42) were not found consistently changed with nusinersen treatment. The slow progression rate and mild treatment response of adult SMA types 2 and 3 may not lead to detectable changes in common markers of axonal degradation, inflammation, or neurodegeneration, since it does not involve large pools of damaged neurons as observed in pediatric forms. However, changes in biomarkers associated with the APP processing pathway might be linked to treatment administration. Further studies are warranted to better understand these findings.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe and IIS La Fe, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46026 Valencia, Spain
- Department of Medicine, University of Valencia, 46021 Valencia, Spain
| | - Nancy Carolina Ñungo Garzón
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe and IIS La Fe, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46026 Valencia, Spain
| | - María J. Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital-University of Barcelona, 08907 Barcelona, Spain
| | - Carla Marco
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Laura González
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Cristina Terrafeta
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Raúl Domínguez
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
| | - Mónica Povedano
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| |
Collapse
|
50
|
Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med 2024; 30:40. [PMID: 38509524 PMCID: PMC10956371 DOI: 10.1186/s10020-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Nan Deng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiayi Peng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|