1
|
Nishigaki A, Ishikawa H, Nishiguchi Y, Tachibana K, Kato N, Matsuda K, Mori Y, Matsuyama H, Matsuura K, Ii Y, Wakita H, Oikawa S, Tomimoto H, Shindo A. Alpha-1-acid glycoprotein as a potential serum biomarker for cerebral amyloid angiopathy. J Alzheimers Dis 2025:13872877251333802. [PMID: 40261388 DOI: 10.1177/13872877251333802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundCerebral amyloid angiopathy (CAA) is a form of cerebral small vessel disease (SVD) associated with Alzheimer's disease, intracerebral hemorrhage, and cognitive decline. Despite its clinical significance, no reliable serum biomarker exists for early diagnosis or monitoring of disease progression.ObjectiveThis study hypothesizes that α1-acid glycoprotein (α1-AGP) and other serum biomarkers can aid CAA diagnosis and assessment using gel-based mass spectrometry. A comparative analysis was performed to investigate associations between serum biomarkers and radiological scores.MethodsSerum proteins from individuals with probable or possible CAA (n = 10), classified using the modified Boston criteria, and age-matched controls (n = 10) were analyzed via two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS). Candidate proteins were validated using enzyme-linked immunosorbent assay (ELISA). Outcome measures included biomarker diagnostic accuracy, assessed by receiver operating characteristic (ROC) curve analysis, and correlations between α1-AGP levels and CAA-SVD scores.ResultsFour proteins-hemopexin, complement C3, complement C9, and α1-AGP-were significantly elevated, while apolipoprotein A-1 was reduced in the CAA group. ELISA confirmed higher α1-AGP levels in individuals with CAA (p < 0.0001). ROC analysis demonstrated that α1-AGP could indicate the presence of CAA with a sensitivity and specificity of 1.00 (95%CI: 1.000, 1.000). Additionally, α1-AGP levels correlated with the CAA-SVD score (R² = 0.783).Conclusionsα1-AGP may serve as a novel serum biomarker for CAA. Larger cohorts and external validation are required to substantiate these findings and determine their clinical relevance.
Collapse
Affiliation(s)
- Akisato Nishigaki
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yamato Nishiguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kei Tachibana
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Natsuko Kato
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kana Matsuda
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideaki Wakita
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
2
|
Alten B, Gokcal E, Warren A, van Veluw SJ, Kozberg M, Gurol ME, Viswanathan A, Greenberg SM. Cerebrospinal Fluid Beta-Amyloid Concentration and Clinical and Radiographic Manifestations of Cerebral Amyloid Angiopathy. J Am Heart Assoc 2025; 14:e040025. [PMID: 40028849 DOI: 10.1161/jaha.124.040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is driven by vascular Aβ (amyloid-beta) deposition, which can be detected as reduced Aβ species in cerebrospinal fluid (CSF). We sought to identify relationships between CSF Aβ and tau concentrations and various manifestations of CAA. METHODS This is a retrospective cross-sectional single-center study of patients diagnosed with CAA per Boston Criteria version 2.0, had magnetic resonance imaging brain scans, and underwent CSF testing for Aβ and tau concentrations between 2008 and 2022. Associations between clinical/magnetic resonance imaging features and CSF biomarker concentrations were investigated with univariate and multivariate models. RESULTS We identified 31 patients aged 69.6±8.4 years, of whom 20 presented with cognitive complaints, 9 with CAA-related macrohemorrhage (lobar intraparenchymal or convexity subarachnoid hemorrhage), and 2 with transient focal neurological episodes. Presence of macrohemorrhage (301.8±112 pg/mL versus 400.9±123 pg/mL, P=0.029), cortical superficial siderosis (309.6±131 mg/dL versus 412.3±100 pg/mL, P=0.021), and severe enlarged perivascular spaces in centrum semiovale (285.8±91 pg/mL versus 428.3±117 pg/mL, P<0.001) were associated with lower Aβ42 concentrations. Aβ42 concentrations inversely correlated with the number of these manifestations, being lowest in patients having all three. Patients with cognitive complaints had higher t-tau (total tau; 551±320 pg/mL versus 317.2±141 pg/mL, P=0.03) and trended toward having higher p-tau (phosphorylated tau at threonine 181) concentrations (75.69±39 pg/mL versus 49.24±22 pg/mL, P=0.05). CONCLUSIONS Lower CSF Aβ42, suggesting higher amyloid burden, is associated with CAA-related macrohemorrhages and severe enlarged perivascular spaces in centrum semiovale, suggesting potential mechanistic links and CSF Aβ42 as a potential biomarker for progression of CAA. CSF tau concentrations are linked to cognitive complaints, likely representing comorbid Alzheimer disease pathology.
Collapse
Affiliation(s)
- Baris Alten
- Mass General Brigham Neurology Residency Program Boston MA USA
- Department of Neurology Massachusetts General Hospital Boston MA USA
- Department of Neurology Brigham and Women's Hospital Boston MA USA
| | - Elif Gokcal
- Department of Neurology Massachusetts General Hospital Boston MA USA
| | - Andrew Warren
- Department of Neurology Massachusetts General Hospital Boston MA USA
| | | | - Mariel Kozberg
- Department of Neurology Massachusetts General Hospital Boston MA USA
| | - M Edip Gurol
- Department of Neurology Massachusetts General Hospital Boston MA USA
| | - Anand Viswanathan
- Department of Neurology Massachusetts General Hospital Boston MA USA
| | | |
Collapse
|
3
|
Theodorou A, Tsantzali I, Stefanou MI, Sacco S, Katsanos AH, Shoamanesh A, Karapanayiotides T, Koutroulou I, Stamati P, Werring DJ, Cordonnier C, Palaiodimou L, Zompola C, Boviatsis E, Stavrinou L, Frantzeskaki F, Steiner T, Alexandrov AV, Paraskevas GP, Tsivgoulis G. CSF and plasma biomarkers in cerebral amyloid angiopathy: A single-center study and a systematic review/meta-analysis. Eur Stroke J 2025; 10:278-288. [PMID: 38869035 PMCID: PMC11569450 DOI: 10.1177/23969873241260538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION There are limited data regarding cerebrospinal fluid (CSF) and plasma biomarkers among patients with Cerebral Amyloid Angiopathy (CAA). We sought to investigate the levels of four biomarkers [β-amyloids (Aβ42 and Aβ40), total tau (tau) and phosphorylated tau (p-tau)] in CAA patients compared to healthy controls (HC) and patients with Alzheimer Disease (AD). PATIENTS AND METHODS A systematic review and meta-analysis of published studies, including also a 5 year single-center cohort study, with available data on CSF and plasma biomarkers in symptomatic sporadic CAA versus HC and AD was conducted. Biomarkers' comparisons were investigated using random-effects models based on the ratio of mean (RoM) biomarker concentrations. RoM < 1 and RoM > 1 indicate lower and higher biomarker concentration in CAA compared to another population, respectively. RESULTS We identified nine cohorts, comprising 327 CAA patients (mean age: 71 ± 5 years; women: 45%) versus 336 HC (mean age: 65 ± 5 years; women: 45%) and 384 AD patients (mean age: 68 ± 3 years; women: 53%) with available data on CSF biomarkers. CSF Aβ42 levels [RoM: 0.47; 95% CI: 0.36-0.62; p < 0.0001], Aβ40 levels [RoM: 0.70; 95% CI: 0.63-0.79; p < 0.0001] and the ratio Aβ42/Aβ40 [RoM: 0.62; 95% CI: 0.39-0.98; p = 0.0438] differentiated CAA from HC. CSF Aβ40 levels [RoM: 0.73; 95% CI: 0.64-0.83; p = 0.0003] differentiated CAA from AD. CSF tau and p-tau levels differentiated CAA from HC [RoM: 1.71; 95% CI: 1.41-2.09; p = 0.0002 and RoM: 1.44; 95% CI: 1.20-1.73; p = 0.0014, respectively] and from AD [RoM: 0.65; 95% CI: 0.58-0.72; p < 0.0001 and RoM: 0.64; 95% CI: 0.57-0.71; p < 0.0001, respectively]. Plasma Aβ42 [RoM: 1.14; 95% CI: 0.89-1.45; p = 0.2079] and Aβ40 [RoM: 1.07; 95% CI: 0.91-1.25; p = 0.3306] levels were comparable between CAA and HC. CONCLUSIONS CAA is characterized by a distinct CSF biomarker pattern compared to HC and AD. CSF Aβ40 levels are lower in CAA compared to HC and AD, while tau and p-tau levels are higher in CAA compared to HC, but lower in comparison to AD patients.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Tsantzali
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Italy
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Ashkan Shoamanesh
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Theodoros Karapanayiotides
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Ioanna Koutroulou
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, Larissa, Greece
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Charlotte Cordonnier
- University Lille, Inserm, CHU Lille, U1172, LilNCog, Lille Neuroscience and Cognition, France
| | - Lina Palaiodimou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Zompola
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Lampis Stavrinou
- Second Department of Neurosurgery, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Frantzeska Frantzeskaki
- Second Critical Care Department, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Thorsten Steiner
- Departments of Neurology, Klinikum Frankfurt Höchst, Frankfurt and Heidelberg University Hospital, Heidelberg, Germany
| | - Andrei V Alexandrov
- Department of Neurology, University of Arizona, Banner University Medical Center, Phoenix
| | - Georgios P Paraskevas
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
4
|
Hsieh P, Tsai H, Liu C, Lee B, Tsai Y, Yen R, Jeng J, Tsai L. Plasma Phosphorylated Tau 217 as a Discriminative Biomarker for Cerebral Amyloid Angiopathy. Eur J Neurol 2025; 32:e70066. [PMID: 39907306 PMCID: PMC11795418 DOI: 10.1111/ene.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Blood-based biomarkers may offer a non-invasive approach to diagnose cerebral amyloid angiopathy (CAA), especially in early-stage. We evaluated the ability of plasma phosphorylated tau-217 (p-tau 217) to differentiate CAA from Alzheimer's disease (AD) and deep perforator arteriopathy (DPA). METHODS Patients with AD (age 73.7 ± 8.1 years), probable CAA (74.8 ± 6.9 years), or DPA (66.1 ± 10.4 years) were enrolled from memory and stroke clinics at a medical center in Taiwan. All participants received amyloid and tau PET scans. Plasma biomarkers were measured via a SIMOA immunoassay platform. The diagnostic utility of p-tau 217 was assessed using ROC analyses and the Youden cutoff. Associations between plasma p-tau 217 and neuroimaging variables in CAA were explored. RESULTS Patients with CAA had lower plasma p-tau 217 (0.69 ± 0.76 vs. 1.28 ± 0.97 pg/mL, p < 0.001) and a lower p-tau 217/Aβ40 ratio (0.003 ± 0.002 vs. 0.006 ± 0.003, p < 0.001) than the AD group but higher levels than the DPA group (p-tau 217, 0.27 ± 0.13 pg/mL, p = 0.001; p-tau 217/Aβ40, 0.001 ± 0.0005, p < 0.001), although adjustment attenuated the difference in p-tau 217 between CAA and DPA. Plasma Aβ40, Aβ42, and Aβ40/Aβ42 were not significantly different between groups. Plasma p-tau 217 had moderate to good diagnostic utility to differentiate CAA vs. AD (sensitivity, 64.4%; specificity, 89.5%; AUC, 0.809) and CAA vs. DPA (sensitivity, 67.8%; specificity, 100%; AUC, 0.855). In CAA, p-tau 217 significantly correlated with the severity of CAA, amyloid PET signal intensity, and lobar microbleed count (p < 0.001). CONCLUSIONS Plasma p-tau 217 may represent a non-invasive biomarker for distinguishing cerebral amyloid angiopathy (CAA) from other conditions, including AD and DPA.
Collapse
Affiliation(s)
- Pei‐Feng Hsieh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
- Department of NeurologyNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| | - Hsin‐Hsi Tsai
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Chia‐Ju Liu
- Department of Nuclear MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Bo‐Ching Lee
- Department of Medical ImagingNational Taiwan University HospitalTaipeiTaiwan
| | - Ya‐Chin Tsai
- Department of Nuclear MedicineNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Ruoh‐Fang Yen
- Department of Nuclear MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Jiann‐Shing Jeng
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Li‐Kai Tsai
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
5
|
Charidimou A, Boulouis G. Core CSF Biomarker Profile in Cerebral Amyloid Angiopathy: Updated Meta-Analysis. Neurology 2024; 103:e209795. [PMID: 39270153 DOI: 10.1212/wnl.0000000000209795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES There is a clear need to characterize and validate molecular biomarkers of cerebral amyloid angiopathy (CAA), in an effort to improve diagnostics, especially in the context of patients with Alzheimer disease (AD) receiving immunotherapies (for whom underlying CAA is the driver of amyloid-related imaging abnormalities). We performed an updated meta-analysis of 5 core CSF biomarkers (Aβ42, Aβ40, Aβ438, total tau [T-tau], and phosphorylated tau [P-tau]) to assess which of these are most altered in sporadic CAA. METHODS We systematically searched PubMed for eligible studies reporting data on CSF biomarkers reflecting APP metabolism (Aβ42, Aβ40, Aβ38), neurodegeneration (T-tau), and tangle pathology (P-tau), in symptomatic sporadic CAA cohorts (based on the Boston criteria) vs control groups and/or vs patients with AD. Biomarker performance was assessed in random-effects meta-analysis based on ratio of mean (RoM) biomarker concentrations in (1) patients with CAA to controls and (2) CAA to patients with AD. RoM >1 indicates higher biomarker concentration in CAA vs comparison population, and RoM <1 indicates higher concentration in comparison groups. RESULTS 8 studies met inclusion criteria: a total of 11 CAA cohorts (n = 289), 9 control cohorts (n = 310), and 8 AD cohorts (n = 339). Overall included studies were of medium quality based on our assessment tools. CAA to controls had lower mean level of all amyloid markers with CSF Aβ42, Aβ40, and Aβ38 RoMs of 0.46 (95% CI 0.38-0.55, p < 0.0001), 0.70 (95% CI 0.63-0.78, p < 0.0001), and 0.71 (95% CI 0.56-0.89, p = 0.003), respectively. CSF T-tau and P-tau RoMs of patients with CAA to controls were both greater than 1: 1.56 (95% CI 1.32-1.84, p < 0.0001) and 1.31 (95% CI 1.13-1.51, p < 0.0001), respectively. Differentiation between CAA and AD was strong for CSF Aβ40 (RoM 0.76, 95% CI 0.69-0.83, p < 0.0001) and Aβ38 (RoM 0.55, 95% CI 0.38-0.81, p < 0.0001), but not Aβ42 (RoM 1.00; 95% CI 0.81-1.23, p = 0.970). For T-tau and P-tau, average CSF ratios in patients with CAA vs AD were 0.64 (95% CI 0.58-0.71, p < 0.0001) and 0.64 (95% CI 0.58-0.71, p < 0.0001), respectively. DISCUSSION Specific CSF patterns of Aβ42, Aβ40, Aβ38, T-tau, and P-tau might serve as molecular biomarkers of CAA, in research and clinical settings, offering the potential to improve the clinical diagnostic approach pathway in specific scenarios.
Collapse
Affiliation(s)
- Andreas Charidimou
- From the Department of Neurology (A.C.), Boston University Medical Center, Boston University School of Medicine, MA; and Diagnostic and Interventional Neuroradiology (G.B.), University Hospital, Tours, France
| | - Gregoire Boulouis
- From the Department of Neurology (A.C.), Boston University Medical Center, Boston University School of Medicine, MA; and Diagnostic and Interventional Neuroradiology (G.B.), University Hospital, Tours, France
| |
Collapse
|
6
|
van den Berg E, Kersten I, Brinkmalm G, Johansson K, de Kort AM, Klijn CJ, Schreuder FH, Gobom J, Stoops E, Portelius E, Gkanatsiou E, Zetterberg H, Blennow K, Kuiperij HB, Verbeek MM. Profiling amyloid-β peptides as biomarkers for cerebral amyloid angiopathy. J Neurochem 2024; 168:1254-1264. [PMID: 38362804 PMCID: PMC11260253 DOI: 10.1111/jnc.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Brain amyloid-β (Aβ) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aβ40 peptide, whereas Aβ42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aβ isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aβ isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aβ1-34, Aβ1-37, Aβ1-38, Aβ1-39, Aβ1-40, and Aβ1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aβ peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aβ1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aβ1-42, none of the Aβ peptides were decreased in AD-like subjects compared with controls. All Aβ peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aβ1-42 in the model (since decreased Aβ1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aβ profiles. Peptides shorter than Aβ1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aβ accumulation. This study supports the potential use of this panel of CSF Aβ peptides to indicate presence of CAA pathology with high accuracy.
Collapse
Affiliation(s)
- Emma van den Berg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kjell Johansson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anna M. de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H. Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Munsterman D, Falcione S, Long R, Boghozian R, Joy T, Camicioli R, Smith EE, Jickling GC. Cerebral amyloid angiopathy and the immune system. Alzheimers Dement 2024; 20:4999-5008. [PMID: 38881491 PMCID: PMC11247707 DOI: 10.1002/alz.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/18/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of amyloid protein in the walls of cerebral blood vessels. This deposition of amyloid causes damage to the cerebral vasculature, resulting in blood-brain barrier disruption, cerebral hemorrhage, cognitive decline, and dementia. The role of the immune system in CAA is complex and not fully understood. While the immune system has a clear role in the rare inflammatory variants of CAA (CAA related inflammation and Abeta related angiitis), the more common variants of CAA also have immune system involvement. In a protective role, immune cells may facilitate the clearance of beta-amyloid from the cerebral vasculature. The immune system can also contribute to CAA pathology, promoting vascular injury, blood-brain barrier breakdown, inflammation, and progression of CAA. In this review, we summarize the role of the immune system in CAA, including the potential of immune based treatment strategies to slow vascular disease in CAA and associated cognitive impairment, white matter disease progression, and reduce the risk of cerebral hemorrhage. HIGHLIGHTS: The immune system has a role in cerebral amyloid angiopathy (CAA) which is summarized in this review. There is an inflammatory response to beta-amyloid that may contribute to brain injury and cognitive impairment. Immune cells may facilitate the clearance of beta-amyloid from the cerebral vasculature. Improved understanding of the immune system in CAA may afford novel treatment to improve outcomes in patients with CAA.
Collapse
Affiliation(s)
| | - Sarina Falcione
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Rebecca Long
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Twinkle Joy
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Eric E. Smith
- Clinical NeurosciencesHotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | | |
Collapse
|
8
|
van Veluw SJ, Benveniste H, Bakker ENTP, Carare RO, Greenberg SM, Iliff JJ, Lorthois S, Van Nostrand WE, Petzold GC, Shih AY, van Osch MJP. Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies. Cell Mol Life Sci 2024; 81:239. [PMID: 38801464 PMCID: PMC11130115 DOI: 10.1007/s00018-024-05277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The brain's network of perivascular channels for clearance of excess fluids and waste plays a critical role in the pathogenesis of several neurodegenerative diseases including cerebral amyloid angiopathy (CAA). CAA is the main cause of hemorrhagic stroke in the elderly, the most common vascular comorbidity in Alzheimer's disease and also implicated in adverse events related to anti-amyloid immunotherapy. Remarkably, the mechanisms governing perivascular clearance of soluble amyloid β-a key culprit in CAA-from the brain to draining lymphatics and systemic circulation remains poorly understood. This knowledge gap is critically important to bridge for understanding the pathophysiology of CAA and accelerate development of targeted therapeutics. The authors of this review recently converged their diverse expertise in the field of perivascular physiology to specifically address this problem within the framework of a Leducq Foundation Transatlantic Network of Excellence on Brain Clearance. This review discusses the overarching goal of the consortium and explores the evidence supporting or refuting the role of impaired perivascular clearance in the pathophysiology of CAA with a focus on translating observations from rodents to humans. We also discuss the anatomical features of perivascular channels as well as the biophysical characteristics of fluid and solute transport.
Collapse
Affiliation(s)
- Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Erik N T P Bakker
- Department of Biomedical Engineering, Amsterdam University Medical Center, Location AMC, Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| | - Roxana O Carare
- Clinical Neurosciences, University of Southampton, Southampton, UK
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Iliff
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Sylvie Lorthois
- Institut de Mécanique Des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS, Toulouse, France
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Science, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Gabor C Petzold
- German Center for Neurodegenerative Disease, Bonn, Germany
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
9
|
Kozberg MG, Munting LP, Maresco LH, Auger CA, van den Berg ML, Denis de Senneville B, Hirschler L, Warnking JM, Barbier EL, Farrar CT, Greenberg SM, Bacskai BJ, van Veluw SJ. Loss of spontaneous vasomotion precedes impaired cerebrovascular reactivity and microbleeds in a mouse model of cerebral amyloid angiopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591414. [PMID: 38746419 PMCID: PMC11092483 DOI: 10.1101/2024.04.26.591414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-β accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral hemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-β clearance, may be impaired in CAA. Methods To systematically study the progression of vascular dysfunction in CAA, we used the APP23 mouse model of amyloidosis, which is known to develop spontaneous cerebral microbleeds mimicking human CAA. Using in vivo 2-photon microscopy, we longitudinally imaged unanesthetized APP23 transgenic mice and wildtype littermates from 7 to 14 months of age, tracking amyloid-β accumulation and vasomotion in individual pial arterioles over time. MRI was used in separate groups of 12-, 18-, and 24-month-old APP23 transgenic mice and wildtype littermates to detect microbleeds and to assess cerebral blood flow and cerebrovascular reactivity with pseudo-continuous arterial spin labeling. Results We observed a significant decline in vasomotion with age in APP23 mice, while vasomotion remained unchanged in wildtype mice with age. This decline corresponded in timing to initial vascular amyloid-β deposition (∼8-10 months of age), although was more strongly correlated with age than with vascular amyloid-β burden in individual arterioles. Declines in vasomotion preceded the development of MRI-visible microbleeds and the loss of smooth muscle actin in arterioles, both of which were observed in APP23 mice by 18 months of age. Additionally, evoked cerebrovascular reactivity was intact in APP23 mice at 12 months of age, but significantly lower in APP23 mice by 24 months of age. Conclusions Our findings suggest that a decline in spontaneous vasomotion is an early, potentially pre-symptomatic, manifestation of CAA and vascular dysfunction, and a possible future treatment target.
Collapse
|
10
|
Koemans EA, Rasing I, Voigt S, van Harten TW, van der Zwet RG, Kaushik K, Schipper MR, van der Weerd N, van Zwet EW, van Etten ES, van Osch MJ, Kuiperij B, Verbeek MM, Terwindt GM, Greenberg SM, van Walderveen MA, Wermer MJ. Temporal Ordering of Biomarkers in Dutch-Type Hereditary Cerebral Amyloid Angiopathy. Stroke 2024; 55:954-962. [PMID: 38445479 PMCID: PMC10962436 DOI: 10.1161/strokeaha.123.044688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND The temporal ordering of biomarkers for cerebral amyloid angiopathy (CAA) is important for their use in trials and for the understanding of the pathological cascade of CAA. We investigated the presence and abnormality of the most common biomarkers in the largest (pre)symptomatic Dutch-type hereditary CAA (D-CAA) cohort to date. METHODS We included cross-sectional data from participants with (pre)symptomatic D-CAA and controls without CAA. We investigated CAA-related cerebral small vessel disease markers on 3T-MRI, cerebrovascular reactivity with functional 7T-MRI (fMRI) and amyloid-β40 and amyloid-β42 levels in cerebrospinal fluid. We calculated frequencies and plotted biomarker abnormality according to age to form scatterplots. RESULTS We included 68 participants with D-CAA (59% presymptomatic, mean age, 50 [range, 26-75] years; 53% women), 53 controls (mean age, 51 years; 42% women) for cerebrospinal fluid analysis and 36 controls (mean age, 53 years; 100% women) for fMRI analysis. Decreased cerebrospinal fluid amyloid-β40 and amyloid-β42 levels were the earliest biomarkers present: all D-CAA participants had lower levels of amyloid-β40 and amyloid-β42 compared with controls (youngest participant 30 years). Markers of nonhemorrhagic injury (>20 enlarged perivascular spaces in the centrum semiovale and white matter hyperintensities Fazekas score, ≥2, present in 83% [n=54]) and markers of impaired cerebrovascular reactivity (abnormal BOLD amplitude, time to peak and time to baseline, present in 56% [n=38]) were present from the age of 30 years. Finally, markers of hemorrhagic injury were present in 64% (n=41) and only appeared after the age of 41 years (first microbleeds and macrobleeds followed by cortical superficial siderosis). CONCLUSIONS Our results suggest that amyloid biomarkers in cerebrospinal fluid are the first to become abnormal in CAA, followed by MRI biomarkers for cerebrovascular reactivity and nonhemorrhagic injury and lastly hemorrhagic injury. This temporal ordering probably reflects the pathological stages of CAA and should be taken into account when future therapeutic trials targeting specific stages are designed.
Collapse
Affiliation(s)
- Emma A. Koemans
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Thijs W. van Harten
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Reinier G.J. van der Zwet
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Kanishk Kaushik
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Manon R. Schipper
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Nelleke van der Weerd
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Erik W. van Zwet
- Biostatistics (E.W.v.Z.), Leiden University Medical Center, the Netherlands
| | - Ellis S. van Etten
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Matthias J.P. van Osch
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Bea Kuiperij
- Department Neurology and Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen (B.K., M.M.V.)
| | - Marcel M. Verbeek
- Department Neurology and Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen (B.K., M.M.V.)
| | - Gisela M. Terwindt
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Steven M. Greenberg
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (S.M.G.)
| | | | - Marieke J.H. Wermer
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
- Department of Neurology, University Medical Center Groningen, the Netherlands (M.J.H.W.)
| |
Collapse
|
11
|
Abutarboush R, Reed E, Chen Y, Gu M, Watson C, Kawoos U, Statz JK, Tschiffely AE, Ciarlone S, Perez-Garcia G, Gama Sosa MA, de Gasperi R, Stone JR, Elder GA, Ahlers ST. Exposure to Low-Intensity Blast Increases Clearance of Brain Amyloid Beta. J Neurotrauma 2024; 41:685-704. [PMID: 38183627 DOI: 10.1089/neu.2023.0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
The long-term effects of exposure to blast overpressure are an important health concern in military personnel. Increase in amyloid beta (Aβ) has been documented after non-blast traumatic brain injury (TBI) and may contribute to neuropathology and an increased risk for Alzheimer's disease. We have shown that Aβ levels decrease following exposure to a low-intensity blast overpressure event. To further explore this observation, we examined the effects of a single 37 kPa (5.4 psi) blast exposure on brain Aβ levels, production, and clearance mechanisms in the acute (24 h) and delayed (28 days) phases post-blast exposure in an experimental rat model. Aβ and, notably, the highly neurotoxic detergent soluble Aβ42 form, was reduced at 24 h but not 28 days after blast exposure. This reduction was not associated with changes in the levels of Aβ oligomers, expression levels of amyloid precursor protein (APP), or increase in enzymes involved in the amyloidogenic cleavage of APP, the β- and ϒ-secretases BACE1 and presenilin-1, respectively. The levels of ADAM17 α-secretase (also known as tumor necrosis factor α-converting enzyme) decreased, concomitant with the reduction in brain Aβ. Additionally, significant increases in brain levels of the endothelial transporter, low-density related protein 1 (LRP1), and enhancement in co-localization of aquaporin-4 (AQP4) to perivascular astrocytic end-feet were observed 24 h after blast exposure. These findings suggest that exposure to low-intensity blast may enhance endothelial clearance of Aβ by LRP1-mediated transcytosis and alter AQP4-aided glymphatic clearance. Collectively, the data demonstrate that low-intensity blast alters enzymatic, transvascular, and perivascular clearance of Aβ.
Collapse
Affiliation(s)
- Rania Abutarboush
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eileen Reed
- Parsons Corporation, Centreville, Virginia, USA
| | - Ye Chen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ming Gu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Usmah Kawoos
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jonathan K Statz
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Anna E Tschiffely
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Stephanie Ciarlone
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Georgina Perez-Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita de Gasperi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
12
|
Dargvainiene J, Jensen-Kondering U, Bender B, Berg D, Brüggemann N, Flüh C, Markewitz R, Neumann A, Röben B, Röcken C, Royl G, Schulte C, Wandinger KP, Weiler C, Margraf NG, Kuhlenbäumer G. Aβ38 and Aβ43 do not differentiate between Alzheimer's disease and cerebral amyloid angiopathy. Ann Clin Transl Neurol 2024; 11:806-811. [PMID: 38186185 DOI: 10.1002/acn3.51987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Differential diagnosis between Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) using cerebrospinal fluid (CSF) biomarkers is challenging. A recent study suggested that the addition of Aβ38 and Aβ43 to a standard AD biomarker panel (Aβ40, Aβ42, t-tau, p-tau) to improve the differential diagnosis. We tested this hypothesis in an independent German cohort of CAA and AD patients and controls using the same analytical techniques. We found excellent discrimination between AD and controls and between CAA and controls, but not between AD and CAA. Adding Aβ38 and Aβ43 to the panel did not improve the discrimination between AD and CAA.
Collapse
Affiliation(s)
- Justina Dargvainiene
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf Jensen-Kondering
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Benjamin Bender
- Department of Radiology, Diagnostical and Interventional Neuroradiology, University Hospital of Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Benjamin Röben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Georg Royl
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Caroline Weiler
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Nils G Margraf
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| |
Collapse
|
13
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
14
|
Sin MK, Zamrini E, Ahmed A, Nho K, Hajjar I. Anti-Amyloid Therapy, AD, and ARIA: Untangling the Role of CAA. J Clin Med 2023; 12:6792. [PMID: 37959255 PMCID: PMC10647766 DOI: 10.3390/jcm12216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Anti-amyloid therapies (AATs), such as anti-amyloid monoclonal antibodies, are emerging treatments for people with early Alzheimer's disease (AD). AATs target amyloid β plaques in the brain. Amyloid-related imaging abnormalities (ARIA), abnormal signals seen on magnetic resonance imaging (MRI) of the brain in patients with AD, may occur spontaneously but occur more frequently as side effects of AATs. Cerebral amyloid angiopathy (CAA) is a major risk factor for ARIA. Amyloid β plays a key role in the pathogenesis of AD and of CAA. Amyloid β accumulation in the brain parenchyma as plaques is a pathological hallmark of AD, whereas amyloid β accumulation in cerebral vessels leads to CAA. A better understanding of the pathophysiology of ARIA is necessary for early detection of those at highest risk. This could lead to improved risk stratification and the ultimate reduction of symptomatic ARIA. Histopathological confirmation of CAA by brain biopsy or autopsy is the gold standard but is not clinically feasible. MRI is an available in vivo tool for detecting CAA. Cerebrospinal fluid amyloid β level testing and amyloid PET imaging are available but do not offer specificity for CAA vs amyloid plaques in AD. Thus, developing and testing biomarkers as reliable and sensitive screening tools for the presence and severity of CAA is a priority to minimize ARIA complications.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | | | - Ali Ahmed
- VA Medical Center, Washington, DC 20242, USA;
| | - Kwangsik Nho
- School of Medicine, Indianna University, Indianapolis, IN 46202, USA;
| | - Ihab Hajjar
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| |
Collapse
|
15
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
16
|
Martín-Jiménez P, Sánchez-Tornero M, Llamas-Velasco S, Guerrero-Molina MP, González-Sánchez M, Herrero-San Martín A, Blanco-Palmero V, Calleja-Castaño P, Francisco-Gonzalo J, Hilario A, Ramos A, Salvador E, Toldos Ó, Hernández-Lain A, Pérez-Martínez DA, Villarejo-Galende A. Cerebral amyloid angiopathy-related inflammation: clinical features and treatment response in a case series. Neurologia 2023; 38:550-559. [PMID: 37437655 DOI: 10.1016/j.nrleng.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 07/14/2023] Open
Abstract
INTRODUCTION Cerebral amyloid angiopathy-related inflammation (CAA-ri) is an entity characterised by an inflammatory response to β-amyloid deposition in the walls of cerebral microvessels. METHODS We conducted a retrospective review of a series of patients with a diagnosis of CAA-ri according to histopathological study findings or clinical-radiological diagnostic criteria. RESULTS The study included 7 patients (5 men) with a mean age of 79 years. Disease onset was acute or subacute in 6 patients. The most frequent symptoms were cognitive impairment (n = 6), behavioural alterations (n = 5), epileptic seizures (n = 5), focal neurological signs (n = 4), and headache (n = 2). Cerebrospinal fluid was abnormal in 3 patients (lymphocytic pleocytosis and high protein levels). The most frequent MRI findings were microbleeds (n = 7), subcortical white matter hyperintensities on T2-FLAIR sequences (n = 7), and leptomeningeal enhancement (n = 6). Lesions were bilateral in 3 patients and most frequently involved the parieto-occipital region (n = 5). Amyloid PET studies were performed in 2 patients, one of whom showed pathological findings. Two patients underwent brain biopsy, which confirmed diagnosis. All patients received immunosuppressive therapy. An initially favourable clinical-radiological response was observed in all cases, with 2 patients presenting radiological recurrence after treatment withdrawal, with a subsequent improvement after treatment was resumed. CONCLUSIONS Early diagnosis of CAA-ri is essential: early treatment has been shown to improve prognosis and reduce the risk of recurrence. Although a histopathological study is needed to confirm diagnosis, clinical-radiological criteria enable diagnosis without biopsy.
Collapse
Affiliation(s)
- P Martín-Jiménez
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - M Sánchez-Tornero
- Servicio de Neurofisiología, Hospital Universitario La Paz, Madrid, Spain
| | - S Llamas-Velasco
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - M González-Sánchez
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - A Herrero-San Martín
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - V Blanco-Palmero
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - P Calleja-Castaño
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - A Hilario
- Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Ramos
- Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - E Salvador
- Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ó Toldos
- Servicio de Anatomía Patológica, Sección de Neuropatología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Hernández-Lain
- Servicio de Anatomía Patológica, Sección de Neuropatología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - D A Pérez-Martínez
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - A Villarejo-Galende
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
17
|
Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, Sohrabi HR, Kozberg MG, Shirzadi Z, Terwindt GM, van Buchem MA, Smith EE, Werring DJ, Martins RN, Wermer MJH, Greenberg SM. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol 2023; 22:632-642. [PMID: 37236210 DOI: 10.1016/s1474-4422(23)00114-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 05/28/2023]
Abstract
Cerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid β, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions. This timeline of stages and the mechanistic processes that link them have substantial implications for identifying disease-modifying interventions for cerebral amyloid angiopathy and potentially for other cerebral small vessel diseases.
Collapse
Affiliation(s)
- Emma A Koemans
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jasmeer P Chhatwal
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mariel G Kozberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Gisela M Terwindt
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Ralph N Martins
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Marieke J H Wermer
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Steven M Greenberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Hernandez-Guillamon M. Implications of a pathophysiological framework for cerebral amyloid angiopathy. Lancet Neurol 2023; 22:550-551. [PMID: 37236208 DOI: 10.1016/s1474-4422(23)00196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.
| |
Collapse
|
19
|
Voigt S, Koemans EA, Rasing I, van Etten ES, Terwindt GM, Baas F, Kaushik K, van Es ACGM, van Buchem MA, van Osch MJP, van Walderveen MAA, Klijn CJM, Verbeek MM, van der Weerd L, Wermer MJH. Minocycline for sporadic and hereditary cerebral amyloid angiopathy (BATMAN): study protocol for a placebo-controlled randomized double-blind trial. Trials 2023; 24:378. [PMID: 37277877 DOI: 10.1186/s13063-023-07371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a disease caused by the accumulation of the amyloid-beta protein and is a major cause of intracerebral hemorrhage (ICH) and vascular dementia in the elderly. The presence of the amyloid-beta protein in the vessel wall may induce a chronic state of cerebral inflammation by activating astrocytes, microglia, and pro-inflammatory substances. Minocycline, an antibiotic of the tetracycline family, is known to modulate inflammation, gelatinase activity, and angiogenesis. These processes are suggested to be key mechanisms in CAA pathology. Our aim is to show the target engagement of minocycline and investigate in a double-blind placebo-controlled randomized clinical trial whether treatment with minocycline for 3 months can decrease markers of neuroinflammation and of the gelatinase pathway in cerebrospinal fluid (CSF) in CAA patients. METHODS The BATMAN study population consists of 60 persons: 30 persons with hereditary Dutch type CAA (D-CAA) and 30 persons with sporadic CAA. They will be randomized for either placebo or minocycline (15 sporadic CAA/15 D-CAA minocycline, 15 sporadic CAA/15 D-CAA placebo). At t = 0 and t = 3 months, we will collect CSF and blood samples, perform a 7-T MRI, and collect demographic characteristics. DISCUSSION The results of this proof-of-principle study will be used to assess the potential of target engagement of minocycline for CAA. Therefore, our primary outcome measures are markers of neuroinflammation (IL-6, MCP-1, and IBA-1) and of the gelatinase pathway (MMP2/9 and VEGF) in CSF. Secondly, we will look at the progression of hemorrhagic markers on 7-T MRI before and after treatment and investigate serum biomarkers. TRIAL REGISTRATION ClinicalTrials.gov NCT05680389. Registered on January 11, 2023.
Collapse
Affiliation(s)
- S Voigt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - E A Koemans
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - I Rasing
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - E S van Etten
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - G M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - F Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - K Kaushik
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - A C G M van Es
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M A van Buchem
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M J P van Osch
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M A A van Walderveen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - C J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L van der Weerd
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M J H Wermer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
20
|
de Kort AM, Kuiperij HB, Jäkel L, Kersten I, Rasing I, van Etten ES, van Rooden S, van Osch MJP, Wermer MJH, Terwindt GM, Schreuder FHBM, Klijn CJM, Verbeek MM. Plasma amyloid beta 42 is a biomarker for patients with hereditary, but not sporadic, cerebral amyloid angiopathy. Alzheimers Res Ther 2023; 15:102. [PMID: 37270536 PMCID: PMC10239174 DOI: 10.1186/s13195-023-01245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND The diagnosis of probable cerebral amyloid angiopathy (CAA) is currently mostly based on characteristics of brain MRI. Blood biomarkers would be a cost-effective, easily accessible diagnostic method that may complement diagnosis by MRI and aid in monitoring disease progression. We studied the diagnostic potential of plasma Aβ38, Aβ40, and Aβ42 in patients with hereditary Dutch-type CAA (D-CAA) and sporadic CAA (sCAA). METHODS All Aβ peptides were quantified in the plasma by immunoassays in a discovery cohort (11 patients with presymptomatic D-CAA and 24 patients with symptomatic D-CAA, and 16 and 24 matched controls, respectively) and an independent validation cohort (54 patients with D-CAA, 26 presymptomatic and 28 symptomatic, and 39 and 46 matched controls, respectively). In addition, peptides were quantified in the plasma in a group of 61 patients with sCAA and 42 matched controls. We compared Aβ peptide levels between patients and controls using linear regression adjusting for age and sex. RESULTS In the discovery cohort, we found significantly decreased levels of all Aβ peptides in patients with presymptomatic D-CAA (Aβ38: p < 0.001; Aβ40: p = 0.009; Aβ42: p < 0.001) and patients with symptomatic D-CAA (Aβ38: p < 0.001; Aβ40: p = 0.01; Aβ42: p < 0.001) compared with controls. In contrast, in the validation cohort, plasma Aβ38, Aβ40, and Aβ42 were similar in patients with presymptomatic D-CAA and controls (Aβ38: p = 0.18; Aβ40: p = 0.28; Aβ42: p = 0.63). In patients with symptomatic D-CAA and controls, plasma Aβ38 and Aβ40 were similar (Aβ38: p = 0.14; Aβ40: p = 0.38), whereas plasma Aβ42 was significantly decreased in patients with symptomatic D-CAA (p = 0.033). Plasma Aβ38, Aβ40, and Aβ42 levels were similar in patients with sCAA and controls (Aβ38: p = 0.092; Aβ40: p = 0.64. Aβ42: p = 0.68). CONCLUSIONS Plasma Aβ42 levels, but not plasma Aβ38 and Aβ40, may be used as a biomarker for patients with symptomatic D-CAA. In contrast, plasma Aβ38, Aβ40, and Aβ42 levels do not appear to be applicable as a biomarker in patients with sCAA.
Collapse
Affiliation(s)
- Anna M de Kort
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Iris Kersten
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
De Kort AM, Kuiperij HB, Marques TM, Jäkel L, van den Berg E, Kersten I, van Berckel-Smit HE, Duering M, Stoops E, Abdo WF, Rasing I, Voigt S, Koemans EA, Kaushik K, Warren AD, Greenberg SM, Brinkmalm G, Terwindt GM, Wermer MJ, Schreuder FH, Klijn CJ, Verbeek MM. Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Ann Neurol 2023; 93:1173-1186. [PMID: 36707720 PMCID: PMC10238617 DOI: 10.1002/ana.26610] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Vascular amyloid β (Aβ) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aβ38, Aβ40, Aβ42, and Aβ43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS Aβ peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS We found decreased levels of all Aβ peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aβ42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aβ43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aβ peptides except Aβ43 were also decreased in sCAA compared to AD (CSF Aβ38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aβ40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aβ42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION A combined biomarker panel of CSF Aβ38, Aβ40, Aβ42, and Aβ43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.
Collapse
Affiliation(s)
- Anna M. De Kort
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Tainá M. Marques
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Emma van den Berg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Hugo E.P. van Berckel-Smit
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Wilson F. Abdo
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Emma A. Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Andrew Davock Warren
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Floris H.B.M. Schreuder
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Greenberg SM, Charidimou A. Seed to Bleed: Iatrogenic Cerebral Amyloid Angiopathy. Stroke 2023; 54:1224-1226. [PMID: 37035915 PMCID: PMC10473030 DOI: 10.1161/strokeaha.123.042583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (S.M.G.)
| | - Andreas Charidimou
- Department of Neurology, Boston University Medical Center and Boston University School of Medicine, MA (A.C.)
| |
Collapse
|
23
|
Kaushik K, van Etten ES, Siegerink B, Kappelle LJ, Lemstra AW, Schreuder FH, Klijn CJ, Peul WC, Terwindt GM, van Walderveen MA, Wermer MJ. Iatrogenic Cerebral Amyloid Angiopathy Post Neurosurgery: Frequency, Clinical Profile, Radiological Features, and Outcome. Stroke 2023; 54:1214-1223. [PMID: 37035916 PMCID: PMC10121246 DOI: 10.1161/strokeaha.122.041690] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Prion-like transmission of amyloid-ß through cadaveric dura, decades after neurosurgical procedures, has been hypothesized as an iatrogenic cause of cerebral amyloid angiopathy (CAA). We investigated new and previously described patients to assess the clinical profile, radiological features, and outcome of this presumed iatrogenic CAA-subtype (iCAA). METHODS Patients were collected from our prospective lobar hemorrhage and CAA database (n=251) with patients presenting to our hospital between 2008 and 2022. In addition, we identified patients with iCAA from 2 other Dutch CAA-expertise hospitals and performed a systematic literature-search for previously described patients. We classified patients according to the previously proposed diagnostic criteria for iCAA, assessed clinical and radiological disease features, and calculated intracerebral hemorrhage (ICH)-recurrence rates. We evaluated the spatial colocalization of cadaveric dura placement and CAA-associated magnetic resonance imaging markers. RESULTS We included 49 patients (74% men, mean age 43 years [range, 27-84]); 15 from our database (6% [95% CI, 3%-10%]; 45% of patients <55 years), 3 from the 2 other CAA-expertise hospitals, and 31 from the literature. We classified 43% (n=21; 1 newly identified patient) as probable and 57% (n=28) as possible iCAA. Patients presented with lobar ICH (57%), transient focal neurological episodes (12%), or seizures (8%). ICH-recurrence rate in the new patients (16/100 person-years [95% CI, 7-32], median follow-up 18 months) was lower than in the previously described patients (77/100 person-years [95% CI, 59-99], median follow-up 18 months). One patient had a 10 year interlude without ICH-recurrence. We identified no clear spatial relationship between dura placement and CAA-associated magnetic resonance imaging markers. During follow-up (median, 18 months), 20% of the patients developed transient focal neurological episodes and 20% cognitively declined. CONCLUSIONS iCAA seems common in patients presenting with nonhereditary CAA under the age of 55. Clinical and radiological features are comparable with sCAA. After diagnosis, multiple ICH-recurrences but also long symptom-free intervals can occur. Harmonized registries are necessary to identify and understand this potentially underrecognized CAA-subtype.
Collapse
Affiliation(s)
- Kanishk Kaushik
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Ellis S. van Etten
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Bob Siegerink
- Department of Clinical Epidemiology (B.S.), Leiden University Medical Center, the Netherlands
| | - L. Jaap Kappelle
- Department of Neurology, University Medical Center Utrecht, the Netherlands (L.J.K.)
| | - Afina W. Lemstra
- Department of Neurology, Alzheimer center Amsterdam, Amsterdam University Medical Center, the Netherlands (A.W.L.)
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, the Netherlands (F.H.B.M.S., C.J.M.K.)
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, the Netherlands (F.H.B.M.S., C.J.M.K.)
| | - Wilco C. Peul
- University Neurosurgical Center Holland, LUMC|HMC|HAGA Leiden & The Hague, the Netherlands (W.C.P.)
| | - Gisela M. Terwindt
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | | | - Marieke J.H. Wermer
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
24
|
Koemans EA, Castello JP, Rasing I, Abramson JR, Voigt S, Perosa V, van Harten TW, van Zwet EW, Terwindt GM, Gurol ME, Rosand J, Greenberg SM, van Walderveen MA, Biffi A, Viswanathan A, Wermer MJ. Sex Differences in Onset and Progression of Cerebral Amyloid Angiopathy. Stroke 2023; 54:306-314. [PMID: 36689586 PMCID: PMC9855754 DOI: 10.1161/strokeaha.122.040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cerebral Amyloid Angiopathy (CAA) disease course is highly variable even in hereditary forms. Sex may be a possible modifying factor. We investigated biological sex differences in clinical disease course and magnetic resonance imaging-markers in sporadic (sCAA) and Dutch-type hereditary CAA (D-CAA). METHODS Patients with D-CAA and sCAA were included from hospital and research databases of the Leiden University Medical Center (2012-2020) and Massachusetts General Hospital (1994-2012). Key outcomes were: sex differences in symptomatic intracerebral hemorrhage (sICH) onset, recurrence and survival (analyzed using Kaplan Meier survival and regression analyses), and sex differences in magnetic resonance imaging-markers in D-CAA (explored using scatterplots), and in sCAA (investigated using regression analysis). RESULTS We included 136 patients with D-CAA (mean age 57 years, 56% women, 64% with previous sICH) and 370 patients with sCAA (mean age 76 years, 51% women, all with previous sICH). Men and women with D-CAA did not differ for sICH onset (median age 54 in men and 56 in women [P=0.13]). Men with D-CAA had a slightly higher number of sICH compared with women (median 2 versus 1; adjusted RR, 1.5 [95% CI, 1.1-1.9]) and a shorter interval between the first and second sICH (median 1.8 years for men and 3.1 years for women, P=0.02). Men with sCAA had their first sICH at an earlier age (median 75 versus 78 years, respectively, P=0.003) and more lobar microbleeds (median 1 versus 0, P=0.022) compared with women with sCAA. No substantial differences were found in the other magnetic resonance imaging markers. Survival after first sICH was comparable between sexes for D-CAA (P=0.12) and sCAA (P=0.23). CONCLUSIONS Men with CAA seem to have an earlier onset (sCAA) and more hemorrhagic disease course (sCAA and D-CAA) compared with women. Future studies are necessary to confirm these findings and determine the underlying role of sex-related factors.
Collapse
Affiliation(s)
- Emma A. Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| | - Juan Pablo Castello
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
- Department of Neurology, University of Miami Miller School of Medicine, FL (J.P.C.)
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| | - Jessica R. Abramson
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
- Department of Radiology, Leiden University Medical Center, the Netherlands (S.V., T.W.v.H., M.A.A.v.W.)
| | - Valentina Perosa
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany (V.P.)
| | - Thijs W. van Harten
- Department of Radiology, Leiden University Medical Center, the Netherlands (S.V., T.W.v.H., M.A.A.v.W.)
| | - Erik W. van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands (E.W.v.Z.)
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| | - M. Edip Gurol
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Jonathan Rosand
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Steven M. Greenberg
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | | | - Alessandro Biffi
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Anand Viswanathan
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Marieke J.H. Wermer
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| |
Collapse
|
25
|
Vervuurt M, Zhu X, Schrader J, de Kort AM, Marques TM, Kersten I, Peters van Ton AM, Abdo WF, Schreuder FHBM, Rasing I, Terwindt GM, Wermer MJH, Greenberg SM, Klijn CJM, Kuiperij HB, Van Nostrand WE, Verbeek MM. Elevated expression of urokinase plasminogen activator in rodent models and patients with cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2022; 48:e12804. [PMID: 35266166 DOI: 10.1111/nan.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this work is to study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA). MATERIALS AND METHODS We studied the expression of uPA mRNA by quantitative polymerase chain reaction (qPCR) and co-localisation of uPA with amyloid-β (Aβ) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared with wild-type (WT) rats and in a sporadic CAA (sCAA) patient and control subject using immunohistochemistry. Cerebrospinal fluid (CSF) uPA levels were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and Dutch-type hereditary CAA (D-CAA) patients and controls, using enzyme-linked immunosorbent assays (ELISA). RESULTS The presence of uPA was clearly detected in the cerebral vasculature of rTg-DI rats and an sCAA patient but not in WT rats or a non-CAA human control. uPA expression was highly co-localised with microvascular Aβ deposits. In rTg-DI rats, uPA mRNA expression was highly elevated at 3 months of age (coinciding with the emergence of microvascular Aβ deposition) and sustained up to 12 months of age (with severe microvascular CAA deposition) compared with WT rats. CSF uPA levels were elevated in rTg-DI rats compared with WT rats (p = 0.03), and in sCAA patients compared with controls (after adjustment for age of subjects, p = 0.05 and p = 0.03). No differences in CSF uPA levels were found between asymptomatic and symptomatic D-CAA patients and their respective controls (after age-adjustment, p = 0.09 and p = 0.44). Increased cerebrovascular expression of uPA in CAA correlates with increased quantities of CSF uPA in rTg-DI rats and human CAA patients, suggesting that uPA could serve as a biomarker for CAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xiaoyue Zhu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Joseph Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Anna M de Kort
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tainá M Marques
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catharina J M Klijn
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Marcel M Verbeek
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Bridel C, Somers C, Sieben A, Rozemuller A, Niemantsverdriet E, Struyfs H, Vermeiren Y, Van Broeckhoven C, De Deyn PP, Bjerke M, Nagels G, Teunissen CE, Engelborghs S. Associating Alzheimer’s disease pathology with its cerebrospinal fluid biomarkers. Brain 2022; 145:4056-4064. [DOI: 10.1093/brain/awac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Alzheimer’s disease cerebrospinal fluid (CSF) biomarkers 42 amino acid long amyloid-β peptide (Aβ1-42), total tau protein (T-tau), and tau protein phosphorylated at threonine 181 (P-tau181) are considered surrogate biomarkers of Alzheimer’s disease pathology, and significantly improve diagnostic accuracy. Their ability to reflect neuropathological changes later in the disease course is not well characterized. This study aimed to assess the potential of CSF biomarkers measured in mid- to late-stage Alzheimer’s disease to reflect post mortem neuropathological changes. Individuals were selected from 2 autopsy cohorts of Alzheimer’s disease patients in Antwerp and Amsterdam. Neuropathological diagnosis was performed according to the updated consensus National Institute on Aging-Alzheimer’s Association guidelines by Montine et al, which includes quantification of amyloid beta plaque, neurofibrillary tangle, and neuritic plaque load. CSF samples were analyzed for Aβ1-42, T-tau, and P-tau181 by ELISA. 114 cases of pure definite Alzheimer’s disease were included in the study (mean age 74 years, disease duration 6 years at CSF sampling, 50% females). Median interval between CSF sampling and death was one year. We found no association between Aβ1-42 and Alzheimer’s disease neuropathological change profile. In contrast, an association of P-tau181 and T-tau with Alzheimer’s disease neuropathological change profile was observed. P-tau181 was associated with all three individual Montine scores, and the associations became stronger and more significant as the interval between lumbar puncture and death increased. T-tau was also associated with all three Montine scores, but in individuals with longer intervals from lumbar puncture to death only. Stratification of the cohort according to APOE ε4 carrier status revealed that the associations applied mostly to APOE ε4 non-carriers. Our data suggest that similarly to what has been reported for Aβ1-42, plateau levels of P-tau181 and T-tau are reached during the disease course, albeit at later disease stages, reducing the potential of tau biomarkers to monitor Alzheimer’s disease pathology as the disease progresses. As a consequence, CSF biomarkers, which are performant for clinical diagnosis of early Alzheimer’s disease, may not be well suited for staging or monitoring Alzheimer’s disease pathology as it progresses through later stages.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Charisse Somers
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Anne Sieben
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Annemieke Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Ellis Niemantsverdriet
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Yannick Vermeiren
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Chair Group of Nutritional Biology, Division of Human Nutrition and Health, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter P. De Deyn
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Laboratory of Neurochemistry, Brussels, Belgium
| | - Guy Nagels
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| |
Collapse
|
27
|
Jang H, Kim JS, Lee HJ, Kim CH, Na DL, Kim HJ, Allué JA, Sarasa L, Castillo S, Pesini P, Gallacher J, Seo SW. Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. ALZHEIMERS RESEARCH & THERAPY 2021; 13:179. [PMID: 34686209 PMCID: PMC8540152 DOI: 10.1186/s13195-021-00911-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022]
Abstract
Background We assessed the feasibility of plasma Aβ42/Aβ40 determined using a novel liquid chromatography-mass spectrometry method (LC-MS) as a useful biomarker of PET status in a Korean cohort from the DPUK Study. Methods A total of 580 participants belonging to six groups, Alzheimer’s disease dementia (ADD, n = 134), amnestic mild cognitive impairment (aMCI, n = 212), old controls (OC, n = 149), young controls (YC, n = 15), subcortical vascular cognitive impairment (SVCI, n = 58), and cerebral amyloid angiopathy (CAA, n = 12), were included in this study. Plasma Aβ40 and Aβ42 were quantitated using a new antibody-free, LC-MS, which drastically reduced the sample preparation time and cost. We performed receiver operating characteristic (ROC) analysis to develop the cutoff of Aβ42/Aβ40 and investigated its performance predicting centiloid-based PET positivity (PET+). Results Plasma Aβ42/Aβ40 were lower for PET+ individuals in ADD, aMCI, OC, and SVCI (p < 0.001), but not in CAA (p = 0.133). In the group of YC, OC, aMCI, and ADD groups, plasma Aβ42/Aβ40 predicted PET+ with an area under the ROC curve (AUC) of 0.814 at a cutoff of 0.2576. When adding age, APOE4, and diagnosis, the AUC significantly improved to 0.912. Conclusion Plasma Aβ42/Aβ40, as measured by this novel LC-MS method, showed good discriminating performance based on PET positivity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00911-7.
Collapse
Affiliation(s)
- Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Hye Joo Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Chi-Hun Kim
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Health Sciences and Technology, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | | | - Leticia Sarasa
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - Sergio Castillo
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - Pedro Pesini
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | | |
Collapse
|
28
|
Bourbouli M, Paraskevas GP, Rentzos M, Mathioudakis L, Zouvelou V, Bougea A, Tychalas A, Kimiskidis VK, Constantinides V, Zafeiris S, Tzagournissakis M, Papadimas G, Karadima G, Koutsis G, Kroupis C, Kartanou C, Kapaki E, Zaganas I. Genotyping and Plasma/Cerebrospinal Fluid Profiling of a Cohort of Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Patients. Brain Sci 2021; 11:brainsci11091239. [PMID: 34573259 PMCID: PMC8472580 DOI: 10.3390/brainsci11091239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of the same pathophysiological spectrum and have common genetic and cerebrospinal fluid (CSF) biomarkers. Our aim here was to identify causative gene variants in a cohort of Greek patients with FTD, ALS and FTD-ALS, to measure levels of CSF biomarkers and to investigate genotype-phenotype/CSF biomarker associations. In this cohort of 130 patients (56 FTD, 58 ALS and 16 FTD-ALS), we performed C9orf72 hexanucleotide repeat expansion analysis, whole exome sequencing and measurement of “classical” (Aβ42, total tau and phospho-tau) and novel (TDP-43) CSF biomarkers and plasma progranulin. Through these analyses, we identified 14 patients with C9orf72 repeat expansion and 11 patients with causative variants in other genes (three in TARDBP, three in GRN, three in VCP, one in FUS, one in SOD1). In ALS patients, we found that levels of phospho-tau were lower in C9orf72 repeat expansion and MAPT c.855C>T (p.Asp285Asp) carriers compared to non-carriers. Additionally, carriers of rare C9orf72 and APP variants had lower levels of total tau and Aβ42, respectively. Plasma progranulin levels were decreased in patients carrying GRN pathogenic variants. This study expands the genotypic and phenotypic spectrum of FTD/ALS and offers insights in possible genotypic/CSF biomarker associations.
Collapse
Affiliation(s)
- Mara Bourbouli
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - George P. Paraskevas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
- 2nd Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| | - Mihail Rentzos
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Vasiliki Zouvelou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Anastasia Bougea
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Athanasios Tychalas
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- 1st Department of Neurology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Vasilios Constantinides
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Spiros Zafeiris
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Minas Tzagournissakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Georgios Papadimas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgia Karadima
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgios Koutsis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Chrisoula Kartanou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Elisabeth Kapaki
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Ioannis Zaganas
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- Correspondence: ; Tel.: +30-2810-394643
| |
Collapse
|
29
|
Chatterjee P, Fagan AM, Xiong C, McKay M, Bhatnagar A, Wu Y, Singh AK, Taddei K, Martins I, Gardener SL, Molloy MP, Multhaup G, Masters CL, Schofield PR, Benzinger TLS, Morris JC, Bateman RJ, Greenberg SM, Wermer MJH, van Buchem MA, Sohrabi HR, Martins RN. Presymptomatic Dutch-Type Hereditary Cerebral Amyloid Angiopathy-Related Blood Metabolite Alterations. J Alzheimers Dis 2021; 79:895-903. [PMID: 33361604 DOI: 10.3233/jad-201267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is one of the major causes of intracerebral hemorrhage and vascular dementia in older adults. Early diagnosis will provide clinicians with an opportunity to intervene early with suitable strategies, highlighting the importance of pre-symptomatic CAA biomarkers. OBJECTIVE Investigation of pre-symptomatic CAA related blood metabolite alterations in Dutch-type hereditary CAA mutation carriers (D-CAA MCs). METHODS Plasma metabolites were measured using mass-spectrometry (AbsoluteIDQ® p400 HR kit) and were compared between pre-symptomatic D-CAA MCs (n = 9) and non-carriers (D-CAA NCs, n = 8) from the same pedigree. Metabolites that survived correction for multiple comparisons were further compared between D-CAA MCs and additional control groups (cognitively unimpaired adults). RESULTS 275 metabolites were measured in the plasma, 22 of which were observed to be significantly lower in theD-CAAMCs compared to D-CAA NCs, following adjustment for potential confounding factors age, sex, and APOE ε4 (p < 00.05). After adjusting for multiple comparisons, only spermidine remained significantly lower in theD-CAAMCscompared to theD-CAA NCs (p < 0.00018). Plasma spermidine was also significantly lower in D-CAA MCs compared to the cognitively unimpaired young adult and older adult groups (p < 0.01). Spermidinewas also observed to correlate with CSF Aβ40 (rs = 0.621, p = 0.024), CSF Aβ42 (rs = 0.714, p = 0.006), and brain Aβ load (rs = -0.527, p = 0.030). CONCLUSION The current study provides pilot data on D-CAA linked metabolite signals, that also associated with Aβ neuropathology and are involved in several biological pathways that have previously been linked to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anne M Fagan
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - Matthew McKay
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Atul Bhatnagar
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Abhay K Singh
- Macquarie Business School, Macquarie University, North Ryde, NSW, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Ian Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha L Gardener
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia.,Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, St Leonards, NSW, Australia
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VA, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tammie L S Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marieke J H Wermer
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,Centre for Healthy Ageing, School of Psychology and Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
| | | |
Collapse
|
30
|
Ikeda M, Okamoto K, Suzuki K, Takai E, Kasahara H, Furuta N, Furuta M, Tashiro Y, Shimizu C, Takatama S, Naito I, Sato M, Sakai Y, Takahashi M, Amari M, Takatama M, Higuchi T, Tsushima Y, Yokoo H, Kurabayashi M, Ishibashi S, Ishii K, Ikeda Y. Recurrent Lobar Hemorrhages and Multiple Cortical Superficial Siderosis in a Patient of Alzheimer's Disease With Homozygous APOE ε2 Allele Presenting Hypobetalipoproteinemia and Pathological Findings of 18F-THK5351 Positron Emission Tomography: A Case Report. Front Neurol 2021; 12:645625. [PMID: 34305778 PMCID: PMC8294698 DOI: 10.3389/fneur.2021.645625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer's disease, the apolipoprotein E gene (APOE) ε2 allele is a protective genetic factor, whereas the APOE ε4 allele is a genetic risk factor. However, both the APOE ε2 and the APOE ε4 alleles are genetic risk factors for lobar intracerebral hemorrhage. The reasons for the high prevalence of lobar intracerebral hemorrhage and the low prevalence of Alzheimer's disease with the APOE ε2 allele remains unknown. Here, we describe the case of a 79-year-old Japanese female with Alzheimer's disease, homozygous for the APOE ε2 allele. This patient presented with recurrent lobar hemorrhages and multiple cortical superficial siderosis. The findings on the 11C-labeled Pittsburgh Compound B-positron emission tomography (PET) were characteristic of Alzheimer's disease. 18F-THK5351 PET revealed that the accumulation of 18F-THK 5351 in the right pyramidal tract at the pontine level, the cerebral peduncle of the midbrain, and the internal capsule, reflecting the lesions of the previous lobar intracerebral hemorrhage in the right frontal lobe. Moreover, 18F-THK5351 accumulated in the bilateral globus pallidum, amygdala, caudate nuclei, and the substantia nigra of the midbrain, which were probably off-target reaction, by binding to monoamine oxidase B (MAO-B). 18F-THK5351 were also detected in the periphery of prior lobar hemorrhages and a cortical subarachnoid hemorrhage, as well as in some, but not all, areas affected by cortical siderosis. Besides, 18F-THK5351 retentions were observed in the bilateral medial temporal cortices and several cortical areas without cerebral amyloid angiopathy or prior hemorrhages, possibly where tau might accumulate. This is the first report of a patient with Alzheimer's disease, carrying homozygous APOE ε2 allele and presenting with recurrent lobar hemorrhages, multiple cortical superficial siderosis, and immunohistochemically vascular amyloid β. The 18F-THK5351 PET findings suggested MAO-B concentrated regions, astroglial activation, Waller degeneration of the pyramidal tract, neuroinflammation due to CAA related hemorrhages, and possible tau accumulation.
Collapse
Affiliation(s)
- Masaki Ikeda
- Division of General Education (Neurology), Faculty of Health & Medical Care, Saitama Medical University, Saitama, Japan.,Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan.,Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Keiji Suzuki
- Department of Pathology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Eriko Takai
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Natsumi Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minori Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuichi Tashiro
- Department of Neurology, Mito Medical Center, Mito, Japan
| | - Chisato Shimizu
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Shin Takatama
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Isao Naito
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Mie Sato
- Department of Anesthesiology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Yasujiro Sakai
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Manabu Takahashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masakuni Amari
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Masahiko Kurabayashi
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenji Ishii
- Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
31
|
Mendes A, Noblet V, Mondino M, Loureiro de Sousa P, Manji S, Archenault A, Casanovas M, Bousiges O, Philippi N, Baloglu S, Rauch L, Cretin B, Demuynck C, Martin-Hunyadi C, Blanc F. Association of cerebral microbleeds with cerebrospinal fluid Alzheimer-biomarkers and clinical symptoms in early dementia with Lewy bodies. Int J Geriatr Psychiatry 2021; 36:851-857. [PMID: 33300151 DOI: 10.1002/gps.5485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To determine the prevalence, localization and associations of cerebral microbleeds (CMB) in dementia with Lewy bodies (DLB) with its core clinical symptoms and cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD). We hypothesize DLB patients with CMB have increased amyloid burden compared to those without CMB, which could also translate into clinical differences. METHODS Retrospective cross-sectional analysis from the AlphaLewyMA study (https://clinicaltrials.gov/ct2/show/NCT01876459). Patients underwent a standardized protocol of brain MRI including 3D T1, 3D FLAIR and T2* sequences, and CSF analysis of AD biomarkers. CMB and white matter hyperintensities (WMHs) were visually assessed in prodromal and mild demented (DLB, N = 91) and AD (AD, N = 67) patients. RESULTS CMB prevalence did not differ among DLB and AD (24.2% vs. 37.3%; p = 0.081). CMB were mainly distributed in lobar topographies in both DLB (74%) and AD (89%). CMB in DLB was not associated with global cognitive performance, executive functioning, speed of information processing, or AD CSF biomarkers. Similarly, there was no difference regarding specific clinical symptoms: fluctuations, psychotic phenomena, sleep behavior disorder and Parkinsonism between DLB patients with and without CMB. AD patients with CMB had increased burden of WMH compared to those without (2.1 ± 0.86 vs. 1.4 ± 0.89; p = 0.005), according to Fazekas scale, whereas no significant difference was observed in DLB patients (1.68 ± 0.95 vs. 1.42 ± 0.91; p = 0.25). CONCLUSION CMB were equally prevalent with similar topographic distribution in both DLB and AD patients. CMB was not associated with CSF AD biomarkers or core clinical symptoms in DLB.
Collapse
Affiliation(s)
- Aline Mendes
- Division of Geriatrics and Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Noblet
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Mary Mondino
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Sumayya Manji
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Anne Archenault
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Michel Casanovas
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Olivier Bousiges
- Laboratoire de Biochimie et Biologie Moléculaire, University Hospital of Strasbourg, Strasbourg, France.,Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Strasbourg, France.,Neuroradiology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France.,Memory Resources and Research Centre (CM2R), Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Seyyid Baloglu
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France.,Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Strasbourg, France
| | - Lucie Rauch
- Memory Resources and Research Centre (CM2R), Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France.,Memory Resources and Research Centre (CM2R), Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- Memory Resources and Research Centre (CM2R), Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Martin-Hunyadi
- Memory Resources and Research Centre (CM2R), Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Frederic Blanc
- IMIS Team and IRIS Plateform, ICube Laboratory, UMR 7357, French National Centre for Scientific Research (CNRS), Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France.,Memory Resources and Research Centre (CM2R), Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
32
|
Kozberg MG, Perosa V, Gurol ME, van Veluw SJ. A practical approach to the management of cerebral amyloid angiopathy. Int J Stroke 2021; 16:356-369. [PMID: 33252026 PMCID: PMC9097498 DOI: 10.1177/1747493020974464] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral amyloid angiopathy is a common small vessel disease in the elderly involving vascular amyloid-β deposition. Cerebral amyloid angiopathy is one of the leading causes of intracerebral hemorrhage and a significant contributor to age-related cognitive decline. The awareness of a diagnosis of cerebral amyloid angiopathy is important in clinical practice as it impacts decisions to use lifelong anticoagulation or nonpharmacological alternatives to anticoagulation such as left atrial appendage closure in patients who have concurrent atrial fibrillation, another common condition in older adults. This review summarizes the latest literature regarding the management of patients with sporadic cerebral amyloid angiopathy, including diagnostic criteria, imaging biomarkers for cerebral amyloid angiopathy severity, and management strategies to decrease intracerebral hemorrhage risk. In a minority of patients, the presence of cerebral amyloid angiopathy triggers an autoimmune inflammatory reaction, referred to as cerebral amyloid angiopathy-related inflammation, which is often responsive to immunosuppressive treatment in the acute phase. Diagnosis and management of cerebral amyloid angiopathy-related inflammation will be presented separately. While there are currently no effective therapeutics available to cure or halt the progression of cerebral amyloid angiopathy, we discuss emerging avenues for potential future interventions.
Collapse
Affiliation(s)
- Mariel G Kozberg
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Valentina Perosa
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - M Edip Gurol
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| |
Collapse
|
33
|
Banerjee G, Ambler G, Keshavan A, Paterson RW, Foiani MS, Toombs J, Heslegrave A, Dickson JC, Fraioli F, Groves AM, Lunn MP, Fox NC, Zetterberg H, Schott JM, Werring DJ. Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy. J Alzheimers Dis 2021; 74:1189-1201. [PMID: 32176643 PMCID: PMC7242825 DOI: 10.3233/jad-191254] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: There is limited data on cerebrospinal fluid (CSF) biomarkers in sporadic amyloid-β (Aβ) cerebral amyloid angiopathy (CAA). Objective: To determine the profile of biomarkers relevant to neurodegenerative disease in the CSF of patients with CAA. Methods: We performed a detailed comparison of CSF markers, comparing patients with CAA, Alzheimer’s disease (AD), and control (CS) participants, recruited from the Biomarkers and Outcomes in CAA (BOCAA) study, and a Specialist Cognitive Disorders Service. Results: We included 10 CAA, 20 AD, and 10 CS participants (mean age 68.6, 62.5, and 62.2 years, respectively). In unadjusted analyses, CAA patients had a distinctive CSF biomarker profile, with significantly lower (p < 0.01) median concentrations of Aβ38, Aβ40, Aβ42, sAβPPα, and sAβPPβ. CAA patients had higher levels of neurofilament light (NFL) than the CS group (p < 0.01), but there were no significant differences in CSF total tau, phospho-tau, soluble TREM2 (sTREM2), or neurogranin concentrations. AD patients had higher total tau, phospho-tau and neurogranin than CS and CAA groups. In age-adjusted analyses, differences for the CAA group remained for Aβ38, Aβ40, Aβ42, and sAβPPβ. Comparing CAA patients with amyloid-PET positive (n = 5) and negative (n = 5) scans, PET positive individuals had lower (p < 0.05) concentrations of CSF Aβ42, and higher total tau, phospho-tau, NFL, and neurogranin concentrations, consistent with an “AD-like” profile. Conclusion: CAA has a characteristic biomarker profile, suggestive of a global, rather than selective, accumulation of amyloid species; we also provide evidence of different phenotypes according to amyloid-PET positivity. Further replication and validation of these preliminary findings in larger cohorts is needed.
Collapse
Affiliation(s)
- Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Gareth Ambler
- Department of Statistical Science, University College London, Gower Street, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ross W Paterson
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martha S Foiani
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Jamie Toombs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, UCL and University College Hospital, London, UK
| | - Francesco Fraioli
- Institute of Nuclear Medicine, UCL and University College Hospital, London, UK
| | - Ashley M Groves
- Institute of Nuclear Medicine, UCL and University College Hospital, London, UK
| | - Michael P Lunn
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
34
|
Chatterjee P, Tegg M, Pedrini S, Fagan AM, Xiong C, Singh AK, Taddei K, Gardener S, Masters CL, Schofield PR, Multhaup G, Benzinger TLS, Morris JC, Bateman RJ, Greenberg SM, van Buchem MA, Stoops E, Vanderstichele H, Teunissen CE, Hankey GJ, Wermer MJH, Sohrabi HR, Martins RN. Plasma Amyloid-Beta Levels in a Pre-Symptomatic Dutch-Type Hereditary Cerebral Amyloid Angiopathy Pedigree: A Cross-Sectional and Longitudinal Investigation. Int J Mol Sci 2021; 22:ijms22062931. [PMID: 33805778 PMCID: PMC8000178 DOI: 10.3390/ijms22062931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 01/10/2023] Open
Abstract
Plasma amyloid-beta (Aβ) has long been investigated as a blood biomarker candidate for Cerebral Amyloid Angiopathy (CAA), however previous findings have been inconsistent which could be attributed to the use of less sensitive assays. This study investigates plasma Aβ alterations between pre-symptomatic Dutch-type hereditary CAA (D-CAA) mutation-carriers (MC) and non-carriers (NC) using two Aβ measurement platforms. Seventeen pre-symptomatic members of a D-CAA pedigree were assembled and followed up 3–4 years later (NC = 8; MC = 9). Plasma Aβ1-40 and Aβ1-42 were cross-sectionally and longitudinally analysed at baseline (T1) and follow-up (T2) and were found to be lower in MCs compared to NCs, cross-sectionally after adjusting for covariates, at both T1(Aβ1-40: p = 0.001; Aβ1-42: p = 0.0004) and T2 (Aβ1-40: p = 0.001; Aβ1-42: p = 0.016) employing the Single Molecule Array (Simoa) platform, however no significant differences were observed using the xMAP platform. Further, pairwise longitudinal analyses of plasma Aβ1-40 revealed decreased levels in MCs using data from the Simoa platform (p = 0.041) and pairwise longitudinal analyses of plasma Aβ1-42 revealed decreased levels in MCs using data from the xMAP platform (p = 0.041). Findings from the Simoa platform suggest that plasma Aβ may add value to a panel of biomarkers for the diagnosis of pre-symptomatic CAA, however, further validation studies in larger sample sets are required.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.C.); (H.R.S.)
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Michelle Tegg
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Anne M. Fagan
- Department of Neurology, Washington University, St. Louis, MO 63130, USA; (A.M.F.); (J.C.M.); (R.J.B.)
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
| | - Chengjie Xiong
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
- Division of Biostatistics, Washington University, St. Louis, MO 63130, USA
| | - Abhay K. Singh
- Macquarie Business School, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
- Australian Alzheimer’s Research Foundation, Nedlands, WA 6009, Australia
| | - Samantha Gardener
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada;
| | - Tammie L. S. Benzinger
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University, St. Louis, MO 63130, USA; (A.M.F.); (J.C.M.); (R.J.B.)
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
| | - Randall J. Bateman
- Department of Neurology, Washington University, St. Louis, MO 63130, USA; (A.M.F.); (J.C.M.); (R.J.B.)
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA 02114, USA;
| | - Mark A. van Buchem
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | | | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, 1007 MB Amsterdam, The Netherlands;
| | - Graeme J. Hankey
- Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Marieke J. H. Wermer
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.C.); (H.R.S.)
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
- Australian Alzheimer’s Research Foundation, Nedlands, WA 6009, Australia
- Centre for Healthy Ageing, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Ralph N. Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.C.); (H.R.S.)
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
- Australian Alzheimer’s Research Foundation, Nedlands, WA 6009, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- The KaRa Institute of Neurological Disease, Macquarie Park, NSW 2113, Australia
- Correspondence: ; Tel.: +61-8-6304-5456; Fax: +61-8-6304-5851
| | | |
Collapse
|
35
|
Martín-Jiménez P, Sánchez-Tornero M, Llamas-Velasco S, Guerrero-Molina MP, González-Sánchez M, Herrero-San Martín A, Blanco-Palmero V, Calleja-Castaño P, Francisco-Gonzalo J, Hilario A, Ramos A, Salvador E, Toldos Ó, Hernández-Lain A, Pérez-Martínez DA, Villarejo-Galende A. Cerebral amyloid angiopathy-related inflammation: clinical features and treatment response in a case series. Neurologia 2021; 38:S0213-4853(21)00033-5. [PMID: 33726968 DOI: 10.1016/j.nrl.2020.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Cerebral amyloid angiopathy-related inflammation (CAA-ri) is an entity characterised by an inflammatory response to β-amyloid deposition in the walls of cerebral microvessels. METHODS We conducted a retrospective review of a series of patients with a diagnosis of CAA-ri according to histopathological study findings or clinical-radiological diagnostic criteria. RESULTS The study included 7 patients (5 men) with a mean age of 79 years. Disease onset was acute or subacute in 6 patients. The most frequent symptoms were cognitive impairment (n = 6), behavioural alterations (n = 5), epileptic seizures (n = 5), focal neurological signs (n = 4), and headache (n = 2). Cerebrospinal fluid was abnormal in 3 patients (lymphocytic pleocytosis and high protein levels). The most frequent MRI findings were microbleeds (n = 7), subcortical white matter hyperintensities on T2-FLAIR sequences (n = 7), and leptomeningeal enhancement (n = 6). Lesions were bilateral in 3 patients and most frequently involved the parieto-occipital region (n = 5). Amyloid PET studies were performed in 2 patients, one of whom showed pathological findings. Two patients underwent brain biopsy, which confirmed diagnosis. All patients received immunosuppressive therapy. An initially favourable clinical-radiological response was observed in all cases, with 2 patients presenting radiological recurrence after treatment withdrawal, with a subsequent improvement after treatment was resumed. CONCLUSIONS Early diagnosis of CAA-ri is essential: early treatment has been shown to improve prognosis and reduce the risk of recurrence. Although a histopathological study is needed to confirm diagnosis, clinical-radiological criteria enable diagnosis without biopsy.
Collapse
Affiliation(s)
- P Martín-Jiménez
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España.
| | - M Sánchez-Tornero
- Servicio de Neurofisiología, Hospital Universitario La Paz, Madrid, España
| | - S Llamas-Velasco
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, España; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, España
| | - M P Guerrero-Molina
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España
| | - M González-Sánchez
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, España; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, España
| | - A Herrero-San Martín
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, España; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, España
| | - V Blanco-Palmero
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, España; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, España
| | - P Calleja-Castaño
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España
| | - J Francisco-Gonzalo
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España
| | - A Hilario
- Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, España
| | - A Ramos
- Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, España
| | - E Salvador
- Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, España
| | - Ó Toldos
- Servicio de Anatomía Patológica, Sección de Neuropatología, Hospital Universitario 12 de Octubre, Madrid, España
| | - A Hernández-Lain
- Servicio de Anatomía Patológica, Sección de Neuropatología, Hospital Universitario 12 de Octubre, Madrid, España
| | - D A Pérez-Martínez
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, España; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, España; Departamento de Medicina, Universidad Complutense, Madrid, España
| | - A Villarejo-Galende
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España; Grupo de Enfermedades Neurodegenerativas, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, España; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, España; Departamento de Medicina, Universidad Complutense, Madrid, España
| |
Collapse
|
36
|
Kelly J. New horizons: managing antithrombotic dilemmas in patients with cerebral amyloid angiopathy. Age Ageing 2021; 50:347-355. [PMID: 33480964 DOI: 10.1093/ageing/afaa275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 11/14/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) most commonly presents with lobar intracerebral haemorrhage, though also with transient focal neurological episodes, cognitive impairment, as an incidental finding and rarely acutely or subacutely in patients developing an immune response to amyloid. Convexity subarachnoid haemorrhage, cortical superficial siderosis and lobar cerebral microbleeds are the other signature imaging features. The main implications of a diagnosis are the risk of intracerebral haemorrhage and frequent co-existence of antithrombotic indications. The risk of intracerebral haemorrhage varies by phenotype, being highest in patients with transient focal neurological episodes and lowest in patients with isolated microbleeds. There is only one relevant randomised controlled trial to CAA patients with antithrombotic indications: RESTART showed that in patients presenting with intracerebral haemorrhage while taking antiplatelets, restarting treatment appeared to reduce recurrent intracerebral haemorrhage and improve outcomes. Observational and indirect data are reviewed relevant to other scenarios where there are antithrombotic indications. In patients with a microbleed-only phenotype, the risk of ischaemic stroke exceeds the risk of intracerebral haemorrhage at all cerebral microbleed burdens. In patients with atrial fibrillation (AF), left atrial appendage occlusion, where device closure excludes the left atrial appendage from the circulation, can be considered where the risk of anticoagulation seems prohibitive. Ongoing trials are testing the role of direct oral anticoagulant (DOACs) and left atrial appendage occlusion in patients with intracerebral haemorrhage/AF but in the interim, treatment decisions will need to be individualised and remain difficult.
Collapse
Affiliation(s)
- James Kelly
- Hampshire Hospital Foundation Trust, Department of Elderly Care, Royal Hampshire County Hospital, Winchester, Hampshire, UK
| |
Collapse
|
37
|
Saito S, Tanaka M, Satoh-Asahara N, Carare RO, Ihara M. Taxifolin: A Potential Therapeutic Agent for Cerebral Amyloid Angiopathy. Front Pharmacol 2021; 12:643357. [PMID: 33643053 PMCID: PMC7907591 DOI: 10.3389/fphar.2021.643357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of β-amyloid (Aβ) in the walls of cerebral vessels, leading to complications such as intracerebral hemorrhage, convexity subarachnoid hemorrhage and cerebral microinfarcts. Patients with CAA-related intracerebral hemorrhage are more likely to develop dementia and strokes. Several pathological investigations have demonstrated that more than 90% of Alzheimer's disease patients have concomitant CAA, suggesting common pathogenic mechanisms. Potential causes of CAA include impaired Aβ clearance from the brain through the intramural periarterial drainage (IPAD) system. Conversely, CAA causes restriction of IPAD, limiting clearance. Early intervention in CAA could thus prevent Alzheimer's disease progression. Growing evidence has suggested Taxifolin (dihydroquercetin) could be used as an effective therapy for CAA. Taxifolin is a plant flavonoid, widely available as a health supplement product, which has been demonstrated to exhibit anti-oxidative and anti-inflammatory effects, and provide protection against advanced glycation end products and mitochondrial damage. It has also been shown to facilitate disassembly, prevent oligomer formation and increase clearance of Aβ in a mouse model of CAA. Disturbed cerebrovascular reactivity and spatial reference memory impairment in CAA are completely prevented by Taxifolin treatment. These results highlight the need for clinical trials on the efficacy and safety of Taxifolin in patients with CAA.
Collapse
Affiliation(s)
- Satoshi Saito
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masashi Tanaka
- Department of Physical Therapy, Health Science University, Fujikawaguchiko, Japan.,Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
38
|
Howe MD, McCullough LD, Urayama A. The Role of Basement Membranes in Cerebral Amyloid Angiopathy. Front Physiol 2020; 11:601320. [PMID: 33329053 PMCID: PMC7732667 DOI: 10.3389/fphys.2020.601320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Dementia is a neuropsychiatric syndrome characterized by cognitive decline in multiple domains, often leading to functional impairment in activities of daily living, disability, and death. The most common causes of age-related progressive dementia include Alzheimer's disease (AD) and vascular cognitive impairment (VCI), however, mixed disease pathologies commonly occur, as epitomized by a type of small vessel pathology called cerebral amyloid angiopathy (CAA). In CAA patients, the small vessels of the brain become hardened and vulnerable to rupture, leading to impaired neurovascular coupling, multiple microhemorrhage, microinfarction, neurological emergencies, and cognitive decline across multiple functional domains. While the pathogenesis of CAA is not well understood, it has long been thought to be initiated in thickened basement membrane (BM) segments, which contain abnormal protein deposits and amyloid-β (Aβ). Recent advances in our understanding of CAA pathogenesis link BM remodeling to functional impairment of perivascular transport pathways that are key to removing Aβ from the brain. Dysregulation of this process may drive CAA pathogenesis and provides an important link between vascular risk factors and disease phenotype. The present review summarizes how the structure and composition of the BM allows for perivascular transport pathways to operate in the healthy brain, and then outlines multiple mechanisms by which specific dementia risk factors may promote dysfunction of perivascular transport pathways and increase Aβ deposition during CAA pathogenesis. A better understanding of how BM remodeling alters perivascular transport could lead to novel diagnostic and therapeutic strategies for CAA patients.
Collapse
Affiliation(s)
| | | | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
39
|
Hansen D, Ling H, Lashley T, Foley JA, Strand C, Eid TM, Holton JL, Warner TT. Novel clinicopathological characteristics differentiate dementia with Lewy bodies from Parkinson's disease dementia. Neuropathol Appl Neurobiol 2020; 47:143-156. [PMID: 32720329 DOI: 10.1111/nan.12648] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) known as Lewy body dementias have overlapping clinical and neuropathological features. Neuropathology in both includes combination of Lewy body and Alzheimer's disease (AD) pathology. Cerebral amyloid angiopathy (CAA), often seen in AD, is increasingly recognized for its association with dementia. AIMS This study investigated clinical and neuropathological differences between DLB and PDD. METHODS 52 PDD and 16 DLB cases from the Queen Square Brain Bank (QSBB) for Neurological disorders were included. Comprehensive clinical data of motor and cognitive features were obtained from medical records. Neuropathological assessment included examination of CAA, Lewy body and AD pathology. RESULTS CAA was more common in DLB than in PDD (P = 0.003). The severity of CAA was greater in DLB than in PDD (P = 0.009), with significantly higher CAA scores in the parietal lobe (P = 0.043), and the occipital lobe (P = 0.008), in DLB than in PDD. The highest CAA scores were observed in cases with APOE ε4/4 and ε2/4. Survival analysis showed worse prognosis in DLB, as DLB reached each clinical milestone sooner than PDD. Absence of dyskinesia in DLB is linked to the significantly lower lifetime cumulative dose of levodopa in comparison with PDD. CONCLUSIONS This is the first study which identified prominent concurrent CAA pathology as a pathological substrate of DLB. More prominent CAA and rapid disease progression as measured by clinical milestones distinguish DLB from PDD.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - J A Foley
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - C Strand
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T M Eid
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
40
|
Gatti L, Tinelli F, Scelzo E, Arioli F, Di Fede G, Obici L, Pantoni L, Giaccone G, Caroppo P, Parati EA, Bersano A. Understanding the Pathophysiology of Cerebral Amyloid Angiopathy. Int J Mol Sci 2020; 21:ijms21103435. [PMID: 32414028 PMCID: PMC7279405 DOI: 10.3390/ijms21103435] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), one of the main types of cerebral small vessel disease, is a major cause of spontaneous intracerebral haemorrhage and an important contributor to cognitive decline in elderly patients. Despite the number of experimental in vitro studies and animal models, the pathophysiology of CAA is still largely unknown. Although several pathogenic mechanisms including an unbalance between production and clearance of amyloid beta (Aβ) protein as well as ‘the prion hypothesis’ have been invoked as possible disease triggers, they do not explain completely the disease pathogenesis. This incomplete disease knowledge limits the implementation of treatments able to prevent or halt the clinical progression. The continuous increase of CAA patients makes imperative the development of suitable experimental in vitro or animal models to identify disease biomarkers and new pharmacological treatments that could be administered in the early disease stages to prevent irreversible changes and disease progression.
Collapse
Affiliation(s)
- Laura Gatti
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Francesca Tinelli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Emma Scelzo
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Francesco Arioli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Leonardo Pantoni
- “Luigi Sacco” Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
| | - Giorgio Giaccone
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Eugenio Agostino Parati
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
- Correspondence: ; Tel.: +39-0223943310
| |
Collapse
|
41
|
Boutté AM, Hook V, Thangavelu B, Sarkis GA, Abbatiello BN, Hook G, Jacobsen JS, Robertson CS, Gilsdorf J, Yang Z, Wang KKW, Shear DA. Penetrating Traumatic Brain Injury Triggers Dysregulation of Cathepsin B Protein Levels Independent of Cysteine Protease Activity in Brain and Cerebral Spinal Fluid. J Neurotrauma 2020; 37:1574-1586. [PMID: 31973644 DOI: 10.1089/neu.2019.6537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cathepsin B (CatB), a lysosomal cysteine protease, is important to brain function and may have dual utility as a peripheral biomarker of moderate-severe traumatic brain injury (TBI). The present study determined levels of pro- and mature (mat) CatB protein as well as cysteine protease activity within the frontal cortex (FC; proximal injury site), hippocampus (HC; distal injury site), and cerebral spinal fluid (CSF) collected 1-7 days after craniotomy and penetrating ballistic-like brain injury (PBBI) in rats. Values were compared with naïve controls. Further, the utility of CatB protein as a translational biomarker was determined in CSF derived from patients with severe TBI. Craniotomy increased matCatB levels in the FC and HC, and led to elevation of HC activity at day 7. PBBI caused an even greater elevation in matCatB within the FC and HC within 3-7 days. After PBBI, cysteine protease activity peaked at 3 days in the FC and was elevated at 1 day and 7 days, but not 3 days, in the HC. In rat CSF, proCatB, matCatB, and cysteine protease activity peaked at 3 days after craniotomy and PBBI. Addition of CA-074, a CatB-specific inhibitor, confirmed that protease activity was due to active matCatB in rat brain tissues and CSF at all time-points. In patients, CatB protein was detectable from 6 h through 10 days after TBI. Notably, CatB levels were significantly higher in CSF collected within 3 days after TBI compared with non-TBI controls. Collectively, this work indicates that CatB and its cysteine protease activity may serve as collective molecular signatures of TBI progression that differentially vary within both proximal and distal brain regions. CatB and its protease activity may have utility as a surrogate, translational biomarker of acute-subacute TBI.
Collapse
Affiliation(s)
- Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - George Anis Sarkis
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachussets, USA
| | - Brittany N Abbatiello
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gregory Hook
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - J Steven Jacobsen
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - Claudia S Robertson
- The Center for Neurosurgical Intensive Care, Ben Taub General Hospital Baylor College of Medicine, Department of Neurosurgery, Houston, Texas, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
42
|
Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21061992. [PMID: 32183348 PMCID: PMC7139812 DOI: 10.3390/ijms21061992] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer’s disease (AD) pathogenesis through amyloid-β (Aβ) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting Aβ, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including Aβ drainage pathways, Aβ aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.
Collapse
|
43
|
Koemans EA, Voigt S, Rasing I, van Etten ES, van Zwet EW, van Walderveen MAA, Wermer MJH, Terwindt GM. Migraine With Aura as Early Disease Marker in Hereditary Dutch-Type Cerebral Amyloid Angiopathy. Stroke 2020; 51:1094-1099. [PMID: 32114932 DOI: 10.1161/strokeaha.119.028170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and Purpose- To determine whether migraine, which has often been described as an inaugural manifestation in monogenic cerebrovascular syndromes, is associated with cerebral amyloid pathology, we assessed migraine and its correlation with magnetic resonance imaging markers in Hereditary Dutch-Type Cerebral Amyloid Angiopathy (D-CAA or Hereditary Cerebral Hemorrhage With Amyloidosis-Dutch type). Methods- All D-CAA mutation carriers who visited our clinic between 2012 and 2018 were included. Migraine was diagnosed by an interview and classified according to the International Classification of Headache Disorders. Magnetic resonance imaging scans were scored for intracerebral hemorrhage (ICH) location(s) and presence of cortical superficial siderosis. Kaplan Meier survival analysis was used for age of ICH onset in carriers with and without migraine. Correlation with ICH location(s) and cortical superficial siderosis were calculated with Poisson regression analysis adjusted for confounders. Results- We included 86 D-CAA mutation carriers (57% women, mean age 57 years), 48 (56%) suffered from migraine, all with aura. Prevalence was higher than expected compared with the general population (women, P<0.05; men, P<0.001). Migraine was the inaugural symptom in 77% and an isolated symptom in 35% of the carriers. Carriers with and without migraine did not differ for age of first ICH, cortical superficial siderosis prevalence, or occipital ICH. Time between migraine onset and first ICH was 8.5 years. Aura attacks lasting ≥60 minutes signaled acute ICH in 55%. Conclusions- Migraine with aura is an important, often inaugural, symptom in D-CAA. Aura attacks lasting ≥60 minutes may signal acute ICH in D-CAA. Migraine with aura may be regarded as an early marker of disease in hereditary CAA preceding the occurrence of symptomatic ICH by several years.
Collapse
Affiliation(s)
- Emma A Koemans
- From the Department of Neurology (E.A.K., S.V., I.R., E.S.v.E., M.J.H.W., G.M.T.), Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- From the Department of Neurology (E.A.K., S.V., I.R., E.S.v.E., M.J.H.W., G.M.T.), Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- From the Department of Neurology (E.A.K., S.V., I.R., E.S.v.E., M.J.H.W., G.M.T.), Leiden University Medical Center, the Netherlands
| | - Ellis S van Etten
- From the Department of Neurology (E.A.K., S.V., I.R., E.S.v.E., M.J.H.W., G.M.T.), Leiden University Medical Center, the Netherlands
| | - Erik W van Zwet
- Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center, the Netherlands
| | | | - Marieke J H Wermer
- From the Department of Neurology (E.A.K., S.V., I.R., E.S.v.E., M.J.H.W., G.M.T.), Leiden University Medical Center, the Netherlands
| | - Gisela M Terwindt
- From the Department of Neurology (E.A.K., S.V., I.R., E.S.v.E., M.J.H.W., G.M.T.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
44
|
Kuiperij HB, Hondius DC, Kersten I, Versleijen AAM, Rozemuller AJM, Greenberg SM, Schreuder FHBM, Klijn CJM, Verbeek MM. Apolipoprotein D: a potential biomarker for cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2020; 46:431-440. [PMID: 31872472 DOI: 10.1111/nan.12595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023]
Abstract
AIMS We investigated the potential of apolipoprotein D (apoD) as cerebrospinal fluid (CSF) biomarker for cerebral amyloid angiopathy (CAA) after confirmation of its association with CAA pathology in human brain tissue. METHODS The association of apoD with CAA pathology was analysed in human occipital lobe tissue of CAA (n = 9), Alzheimer's disease (AD) (n = 11) and healthy control cases (n = 11). ApoD levels were quantified in an age- and sex-matched CSF cohort of CAA patients (n = 31), AD patients (n = 27) and non-neurological controls (n = 67). The effects of confounding factors (age, sex, serum levels) on apoD levels were studied using CSF of non-neurological controls (age range 16-85 years), and paired CSF and serum samples. RESULTS ApoD was strongly associated with amyloid deposits in vessels, but not with parenchymal plaques in human brain tissue. CSF apoD levels correlated with age and were higher in men than women in subjects >50 years. The apoD CSF/serum ratio correlated with the albumin ratio. When controlling for confounding factors, CSF apoD levels were significantly lower in CAA patients compared with controls and compared with AD patients (P = 0.0008). CONCLUSIONS Our data show that apoD is specifically associated with CAA pathology and may be a CSF biomarker for CAA, but clinical application is complicated due to dependency on age, sex and blood-CSF barrier integrity. Well-controlled follow-up studies are required to determine whether apoD can be used as reliable biomarker for CAA.
Collapse
Affiliation(s)
- H B Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D C Hondius
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - I Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A A M Versleijen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - S M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Zhu X, Xu F, Hoos MD, Lee H, Benveniste H, Van Nostrand WE. Reduced Levels of Cerebrospinal Fluid/Plasma Aβ40 as an Early Biomarker for Cerebral Amyloid Angiopathy in RTg-DI Rats. Int J Mol Sci 2020; 21:ijms21010303. [PMID: 31906317 PMCID: PMC6982234 DOI: 10.3390/ijms21010303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
The accumulation of fibrillar amyloid β-protein (Aβ) in blood vessels of the brain, the condition known as cerebral amyloid angiopathy (CAA), is a common small vessel disease that promotes cognitive impairment and is strongly associated with Alzheimer’s disease. Presently, the clinical diagnosis of this condition relies on neuroimaging markers largely associated with cerebral macro/microbleeds. However, these are markers of late-stage disease detected after extensive cerebral vascular amyloid accumulation has become chronic. Recently, we generated a novel transgenic rat model of CAA (rTg-DI) that recapitulates multiple aspects of human CAA disease with the progressive accumulation of cerebral vascular amyloid, largely composed of Aβ40, and the consistent emergence of subsequent microbleeds. Here, we investigated the levels of Aβ40 in the cerebrospinal fluid (CSF) and plasma of rTg-DI rats as CAA progressed from inception to late stage disease. The levels of Aβ40 in CSF and plasma precipitously dropped at the early onset of CAA accumulation at three months of age and continued to decrease with the progression of disease. Notably, the reduction in CSF/plasma Aβ40 levels preceded the emergence of cerebral microbleeds, which first occurred at about six months of age, as detected by in vivo magnetic resonance imaging and histological staining of brain tissue. These findings support the concept that reduced CSF/plasma levels of Aβ40 could serve as a biomarker for early stage CAA disease prior to the onset of cerebral microbleeds for future therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
| | - Michael D. Hoos
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
- Enzo Life Sciences, 10 Executive Blvd, Farmingdale, NY 11735, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA; (H.L.); (H.B.)
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA; (H.L.); (H.B.)
| | - William E. Van Nostrand
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
- Correspondence: ; Tel.: +1-401-874-2363
| |
Collapse
|
46
|
He W, You J, Wan Q, Xiao K, Chen K, Lu Y, Li L, Tang Y, Deng Y, Yao Z, Yue J, Cao G. The anatomy and metabolome of the lymphatic system in the brain in health and disease. Brain Pathol 2019; 30:392-404. [PMID: 31747475 DOI: 10.1111/bpa.12805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies have demonstrated that the brain is equipped with a lymphatic drainage system that is actively involved in parenchymal waste clearance, brain homeostasis and immune regulation. However, the exact anatomic drainage routes of brain lymph fluid (BLF) remain elusive, hampering the physiological study and clinical application of this system. In this study, we systematically dissected the anatomy of the BLF pathways in a rat model. Moreover, we developed a protocol to collect BLF from the afferent lymphatic vessels of deep cervical lymph nodes (dcLNs) and cerebrospinal fluid (CSF) from the fourth ventricle. Nuclear magnetic resonance spectroscopy showed that BLF contains more metabolites than CSF, suggesting that BLF might be a more sensitive indicator of brain dynamics under physiological and pathological conditions. Finally, we identified several metabolites as potential diagnostic biomarkers for glioma, Parkinson's disease and CNS infectious diseases. Together, these data may provide insight into the physiology of the lymphatic system in the brain and into the clinical diagnosis of CNS disorders.
Collapse
Affiliation(s)
- Wenbo He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Biomedical Engineering, University of North Texas, Denton, TX
| | - Qianfen Wan
- Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ke Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kening Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA
| | - Yajie Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunte Deng
- Department of Pathology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, China
| | - Junqiu Yue
- Department of Pathology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Bio-Medical Center, Huazhong Agricultural University, Wuhan, 430070, China.,Cooperative Innovation Center for Sustainable Pig Production (CICSPP), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
47
|
Schelle J, Wegenast-Braun BM, Fritschi SK, Kaeser SA, Jährling N, Eicke D, Skodras A, Beschorner N, Obermueller U, Häsler LM, Wolfer DP, Mueggler T, Shimshek DR, Neumann U, Dodt HU, Staufenbiel M, Jucker M. Early Aβ reduction prevents progression of cerebral amyloid angiopathy. Ann Neurol 2019; 86:561-571. [PMID: 31359452 DOI: 10.1002/ana.25562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Clinical trials targeting β-amyloid peptides (Aβ) for Alzheimer disease (AD) failed for arguable reasons that include selecting the wrong stages of AD pathophysiology or Aβ being the wrong target. Targeting Aβ to prevent cerebral amyloid angiopathy (CAA) has not been rigorously followed, although the causal role of Aβ for CAA and related hemorrhages is undisputed. CAA occurs with normal aging and to various degrees in AD, where its impact and treatment is confounded by the presence of parenchymal Aβ deposition. METHODS APPDutch mice develop CAA in the absence of parenchymal amyloid, mimicking hereditary cerebral hemorrhage with amyloidosis Dutch type (HCHWA-D). Mice were treated with a β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. We used 3-dimensional ultramicroscopy and immunoassays for visualizing CAA and assessing Aβ in cerebrospinal fluid (CSF) and brain. RESULTS CAA onset in mice was at 22 to 24 months, first in frontal leptomeningeal and superficial cortical vessels followed by vessels penetrating the cortical layers. CSF Aβ increased with aging followed by a decrease of both Aβ40 and Aβ42 upon CAA onset, supporting the idea that combined reduction of CSF Aβ40 and Aβ42 is a specific biomarker for vascular amyloid. BACE1 inhibitor treatment starting at CAA onset and continuing for 4 months revealed a 90% Aβ reduction in CSF and largely prevented CAA progression and associated pathologies. INTERPRETATION This is the first study showing that Aβ reduction at early disease time points largely prevents CAA in the absence of parenchymal amyloid. Our observation provides a preclinical basis for Aβ-reducing treatments in patients at risk of CAA and in presymptomatic HCHWA-D. ANN NEUROL 2019;86:561-571.
Collapse
Affiliation(s)
- Juliane Schelle
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Bettina M Wegenast-Braun
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sarah K Fritschi
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephan A Kaeser
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nina Jährling
- TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniel Eicke
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Angelos Skodras
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Natalie Beschorner
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulrike Obermueller
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lisa M Häsler
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David P Wolfer
- Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Thomas Mueggler
- Institute for Biomedical Engineering, University and Swiss Federal Institute for Technology, Zürich, Switzerland
| | | | - Ulf Neumann
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hans-Ulrich Dodt
- TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Staufenbiel
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Schultz AP, Kloet RW, Sohrabi HR, van der Weerd L, van Rooden S, Wermer MJH, Moursel LG, Yaqub M, van Berckel BNM, Chatterjee P, Gardener SL, Taddei K, Fagan AM, Benzinger TL, Morris JC, Sperling R, Johnson K, Bateman RJ, Gurol ME, van Buchem MA, Martins R, Chhatwal JP, Greenberg SM. Amyloid imaging of dutch-type hereditary cerebral amyloid angiopathy carriers. Ann Neurol 2019; 86:616-625. [PMID: 31361916 DOI: 10.1002/ana.25560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine whether amyloid imaging with the positron emission tomography (PET) agent Pittsburgh compound B (PiB) can detect vascular β-amyloid (Aβ) in the essentially pure form of cerebral amyloid angiopathy associated with the Dutch-type hereditary cerebral amyloid angiopathy (D-CAA) mutation. METHODS PiB retention in a cortical composite of frontal, lateral, and retrosplenial regions (FLR) was measured by PiB-PET in 19 D-CAA mutation carriers (M+ ; 13 without neurologic symptoms, 6 with prior lobar intracerebral hemorrhage) and 17 mutation noncarriers (M- ). Progression of PiB retention was analyzed in a subset of 18 serially imaged individuals (10 asymptomatic M+ , 8 M- ). We also analyzed associations between PiB retention and cerebrospinal fluid (CSF) Aβ concentrations in 17 M+ and 11 M- participants who underwent lumbar puncture and compared the findings to PiB-PET and CSF Aβ in 37 autosomal dominant Alzheimer disease (ADAD) mutation carriers. RESULTS D-CAA M+ showed greater age-dependent FLR PiB retention (p < 0.001) than M- , and serially imaged asymptomatic M+ demonstrated greater longitudinal increases (p = 0.004). Among M+ , greater FLR PiB retention associated with reduced CSF concentrations of Aβ40 (r = -0.55, p = 0.021) but not Aβ42 (r = 0.01, p = 0.991). Despite comparably low CSF Aβ40 and Aβ42, PiB retention was substantially less in D-CAA than ADAD (p < 0.001). INTERPRETATION Increased PiB retention in D-CAA and correlation with reduced CSF Aβ40 suggest this compound labels vascular amyloid, although to a lesser degree than amyloid deposits in ADAD. Progression in PiB signal over time suggests amyloid PET as a potential biomarker in trials of candidate agents for this untreatable cause of hemorrhagic stroke. ANN NEUROL 2019;86:616-625.
Collapse
Affiliation(s)
- Aaron P Schultz
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA
| | - Reina W Kloet
- Departments of Neurology and Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hamid R Sohrabi
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Louise van der Weerd
- Departments of Neurology and Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanneke van Rooden
- Departments of Neurology and Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke J H Wermer
- Departments of Neurology and Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laure Grand Moursel
- Departments of Neurology and Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine and Department of Neurology (Alzheimer's Center), VU University Medical Center, Amsterdam, the Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine and Department of Neurology (Alzheimer's Center), VU University Medical Center, Amsterdam, the Netherlands
| | - Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Samantha L Gardener
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Anne M Fagan
- Departments of Neurology and Radiology, Washington University School of Medicine, St Louis, MO
| | - Tammie L Benzinger
- Departments of Neurology and Radiology, Washington University School of Medicine, St Louis, MO
| | - John C Morris
- Departments of Neurology and Radiology, Washington University School of Medicine, St Louis, MO
| | - Reisa Sperling
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA
| | - Keith Johnson
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA
| | - Randall J Bateman
- Departments of Neurology and Radiology, Washington University School of Medicine, St Louis, MO
| | | | - M Edip Gurol
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA
| | - Mark A van Buchem
- Departments of Neurology and Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralph Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Jasmeer P Chhatwal
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA
| | - Steven M Greenberg
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
49
|
Carmona-Iragui M, Videla L, Lleó A, Fortea J. Down syndrome, Alzheimer disease, and cerebral amyloid angiopathy: The complex triangle of brain amyloidosis. Dev Neurobiol 2019; 79:716-737. [PMID: 31278851 DOI: 10.1002/dneu.22709] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/04/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β-amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD-related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD-related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker-characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma-free model to study AD-related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Videla
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
50
|
de Retana SF, Marazuela P, Solé M, Colell G, Bonaterra A, Sánchez-Quesada JL, Montaner J, Maspoch D, Cano-Sarabia M, Hernández-Guillamon M. Peripheral administration of human recombinant ApoJ/clusterin modulates brain beta-amyloid levels in APP23 mice. ALZHEIMERS RESEARCH & THERAPY 2019; 11:42. [PMID: 31077261 PMCID: PMC6511153 DOI: 10.1186/s13195-019-0498-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Background ApoJ/clusterin is a multifunctional protein highly expressed in the brain. The implication of ApoJ in β-amyloid (Aβ) fibrillization and clearance in the context of Alzheimer’s disease has been widely studied, although the source and concentration of ApoJ that promotes or inhibits Aβ cerebral accumulation is not clear yet. ApoJ is abundant in plasma and approximately 20% can appear bound to HDL-particles. In this regard, the impact of plasmatic ApoJ and its lipidation status on cerebral β-amyloidosis is still not known. Hence, our main objective was to study the effect of a peripheral increase of free ApoJ or reconstituted HDL particles containing ApoJ in an experimental model of cerebral β-amyloidosis. Methods Fourteen-month-old APP23 transgenic mice were subjected to subchronic intravenous treatment with rHDL-rApoJ nanodiscs or free rApoJ for 1 month. Aβ concentration and distribution in the brain, as well as Aβ levels in plasma and CSF, were determined after treatments. Other features associated to AD pathology, such as neuronal loss and neuroinflammation, were also evaluated. Results Both ApoJ-based treatments prevented the Aβ accumulation in cerebral arteries and induced a decrease in total brain insoluble Aβ42 levels. The peripheral treatment with rApoJ also induced an increase in the Aβ40 levels in CSF, whereas the concentration remained unaltered in plasma. At all the endpoints studied, the lipidation of rApoJ did not enhance the protective properties of free rApoJ. The effects obtained after subchronic treatment with free rApoJ were accompanied by a reduction in hippocampal neuronal loss and an enhancement of the expression of a phagocytic marker in microglial cells surrounding Aβ deposits. Finally, despite the activation of this phagocytic phenotype, treatments did not induce a global neuroinflammatory status. In fact, free rApoJ treatment was able to reduce the levels of interleukin-17 (IL17) and keratinocyte chemoattractant (KC) chemokine in the brain. Conclusions Our results demonstrate that an increase in circulating human rApoJ induces a reduction of insoluble Aβ and CAA load in the brain of APP23 mice. Thus, our study suggests that peripheral interventions, based on treatments with multifunctional physiological chaperones, offer therapeutic opportunities to regulate the cerebral Aβ load. Electronic supplementary material The online version of this article (10.1186/s13195-019-0498-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofía Fernández de Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Guillem Colell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Anna Bonaterra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBER of Diabetes and Metabolism (CIBERDEM), ISCIII, Madrid, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, , Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, , Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.
| |
Collapse
|