1
|
El Ayoubi NK, Bal MN, Metri N, El Sammak S, Baalbaki M, Gharios M, Fatfat A, Khoury SJ. Slower retinal thinning over a year predicts continuous NEDA status at follow-up in multiple sclerosis: A longitudinal OCT study. Mult Scler 2025:13524585251332499. [PMID: 40219952 DOI: 10.1177/13524585251332499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Retinal layer thickness measured by optical coherence tomography (OCT) correlates with disability and disease activity in multiple sclerosis (MS), yet there is scarce data on the ability of retinal OCT rates of change to predict subsequent continuous disease stability. AIMS To investigate whether the rate of change in retinal OCT measures during the first year of monitoring can predict maintenance of continuous "No evidence of disease activity" (c-NEDA) status in MS. METHODS We conducted a longitudinal study of people with MS (PwMS) from our observational cohort (AMIR) at the American University of Beirut. Cases included had at least three spectral-domain OCT scans at baseline, 12 months, and at the last visit. Mixed effects regression (controlling for age, sex, disease duration, EDSS, gap time from initiation of current DMT to first OCT scan, type of DMT, and history of optic neuritis per eye) was performed to explore the differences between the annualized changes in retinal layer thicknesses (microns/year) during the first year in the c-NEDA group compared to those with evidence of disease activity (EDA) at any point during follow-up. RESULTS In total, 222 eyes of 111 RRMS cases (67 females, 60.4%) were included and followed up clinically for a median (min-max) of 5.24 (3-8.64) years. During the study period, 51 (45.9%) cases maintained c-NEDA, and 60 (54.1%) had EDA. In regression models, EDA cases had greater mean retinal thinning rates during the first year of observation compared to c-NEDA cases with an annualized loss (microns/year) in pRNFL of -1.84 versus 0.03 (p < 0.0001); in macular RNFL -1.86 versus -0.76 (p < 0.0001); in GCIPL -0.13 versus 0.53 (p = 0.008); and in retinal thickness -3.81 versus -1.06 (p < 0.0001). CONCLUSION Our data support the potential value of retinal OCT in prospectively identifying PwMS likely to maintain c-NEDA status versus EDA during follow-up, guiding proactive treatment strategies.
Collapse
Affiliation(s)
- Nabil K El Ayoubi
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut, Beirut, Lebanon
| | - Mark N Bal
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Sally El Sammak
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Marwa Baalbaki
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Gharios
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Adnan Fatfat
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samia J Khoury
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Zone-Abid I, Maaloul K, Hamza N, Hdiji O, Mhiri C, Trigui A. Optical coherence tomography in multiple sclerosis: A Tunisian tertiary center study. J Fr Ophtalmol 2025; 48:104371. [PMID: 39662309 DOI: 10.1016/j.jfo.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE To study retinal layers on OCT in patients with multiple sclerosis (MS) and look for correlations with clinical and electrophysiological characteristics. METHODS We conducted a cross-sectional study including MS patients aged between 18 and 60 years and a reference group of healthy, age- and gender-matched, control participants. A neurological examination with assessment of disability by the Expanded Disability Status Scale (EDSS), an ophthalmological examination, a spectral-domain OCT, and visual evoked potentials (VEP) were performed. RESULTS Fifty-one patients with MS and 30 control subjects were included in the study. The mean age of our patients was 38 years, and the sex ratio (male/female) was 0.49. Mean total thickness of the peripapillary retinal nerve fiber layer (pRNFL) and mean thicknesses in the individual quadrants were significantly lower than those of control subjects (P<0.001). All mean thicknesses of the various retinal layers were reduced compared to those of control eyes, but the difference was statistically significant only for the inner plexiform layer (IPL), the inner nuclear layer (INL) and the outer plexiform layer (OPL). We found a significant relationship between pRNFL atrophy as well as ganglion cell inner plexiform layer (GCIPL) atrophy and history of MS-ON (multiple sclerosis-optic neuritis) (P<0.001). pRNFL was preserved in the primary progressive form of MS, while it was atrophied in relapsing-remitting and secondary progressive forms. There was no significant change in inner retinal layer thicknesses according to duration of MS progression. We found a significant correlation between pRNFL atrophy in the superior (R=-0.22, P=0.03), inferior (R=-0.28, P=0.005) and temporal (R=-0.21, P=0.03) quadrants and the EDSS score. The difference in the thickness of the other retinal layers was significant for the GCIPL in patients with a high EDSS score (>3). There was no significant difference in the thickness of the various retinal layers between eyes of patients on first- or a second-line treatment. We found a correlation between visual acuity and pRNFL (R=0.446, P<0.001) and GCIPL thickness (R=0.343, P=0.001). There was a correlation between the increase of P100 wave latency in VEP and pRNFL atrophy (R=-0.32, P=0.01). A correlation between pRNFL atrophy and the decrease in the amplitude of the P100 wave was only seen in MS-ON eyes (R=0.41, P=0.03). CONCLUSIONS Correlations between pRNFL and GCIPL atrophy and clinical and electrophysiological parameters of MS suggest that OCT is an important tool to quantify neurodegeneration and to monitor disease progression in MS patients.
Collapse
Affiliation(s)
- I Zone-Abid
- Department of Ophtalmology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - K Maaloul
- Department of Ophtalmology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.
| | - N Hamza
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - O Hdiji
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - C Mhiri
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - A Trigui
- Department of Ophtalmology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Bsteh G, Hegen H, Krajnc N, Föttinger F, Altmann P, Auer M, Berek K, Kornek B, Leutmezer F, Macher S, Monschein T, Ponleitner M, Rommer P, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Deisenhammer F, Di Pauli F, Pemp B, Berger T. Retinal thinning differentiates treatment effects in relapsing multiple sclerosis below the clinical threshold. Ann Clin Transl Neurol 2025; 12:345-354. [PMID: 39686570 PMCID: PMC11822785 DOI: 10.1002/acn3.52279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE To investigate retinal layer thinning as a biomarker of disease-modifying treatment (DMT) effects in relapsing multiple sclerosis (RMS). METHODS From an ongoing prospective observational study, we included patients with RMS, who (i) had an optical coherence tomography (OCT) scan within 6 to 12 months after DMT start (rebaseline) and ≥1 follow-up OCT ≥12 months after rebaseline and (ii) adhered to DMT during follow-up. Differences between DMT in thinning of peripapillary-retinal-nerve-fiber-layer (pRNFL) and macular ganglion cell-plus-inner plexiform-layer (GCIPL) were analyzed using mixed-effects linear regression. Eyes suffering optic neuritis during follow-up were excluded. RESULTS We included 291 RMS patients (mean age 30.8 years [SD 7.9], 72.9% female, median disease duration 9 months [range 6-94], median rebaseline-to-last-follow-up-interval 32 months [12-82]). Mean annualized rates of retinal layer thinning (%/year) in reference to DMF (n = 84, GCIPL 0.28, pRNFL 0.53) were similar under TERI (n = 18, GCIPL 0.34, pRNFL 0.59), GLAT (n = 24, GCIPL 0.32, pRNFL 0.56), and IFNb (n = 13, GCIPL 0.33, pRNFL 0.60) were slightly lower under S1PM (n = 27, GCIPL 0.19, pRNFL 0.42) and CLA (n = 23, GCIPL 0.20, pRNFL 0.42), and were significantly lower under NTZ (n = 47, GCIPL 0.09, pRNFL 0.24; both p < 0.001) and antiCD20 (n = 55, GCIPL 0.10, pRNFL 0.23; both p < 0.001). In patients achieving NEDA-2, observed thinning rates were lower overall, but still significantly lower under NTZ and antiCD20. INTERPRETATION Applying a rebaselining concept, retinal layer thinning differentiates DMT effects even in clinically stable patients and, thus, might be a useful biomarker to monitor DMT efficacy on subclinical neuroaxonal degeneration-at least on a group level.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Harald Hegen
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Nik Krajnc
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fabian Föttinger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Patrick Altmann
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Michael Auer
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Klaus Berek
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fritz Leutmezer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Stefan Macher
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Tobias Monschein
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Markus Ponleitner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Christiane Schmied
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Karin Zebenholzer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gudrun Zulehner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Tobias Zrzavy
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | | | | | - Berthold Pemp
- Department of OphthalmologyMedical University of ViennaViennaAustria
| | - Thomas Berger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Adibi A, Adibi I, Javidan M. Effect of Different Treatments on Retinal Thickness Changes in Patients With Multiple Sclerosis: A Review. CNS Neurosci Ther 2025; 31:e70225. [PMID: 39853938 PMCID: PMC11759887 DOI: 10.1111/cns.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disorder affecting the central nervous system, with varying clinical manifestations such as optic neuritis, sensory disturbances, and brainstem syndromes. Disease progression is monitored through methods like MRI scans, disability scales, and optical coherence tomography (OCT), which can detect retinal thinning, even in the absence of optic neuritis. MS progression involves neurodegeneration, particularly trans-synaptic degeneration, which extends beyond the initial injury site. This review focuses on the impact of different MS treatments on retinal thickness as assessed by OCT. RESULTS Injectable drugs, such as interferon beta and glatiramer acetate (GA), have a relatively modest impact on retinal atrophy. Oral medications like Fingolimod, Teriflunomide, and Dimethyl fumarate also have different impacts on retinal thickness. Fingolimod has been shown to protect against retinal thinning but may lead to macular edema. DMF-treated patients had less ganglion cell-inner plexiform layer thinning than GA-treated patients but more thinning compared to natalizumab-treated patients and healthy controls. Teriflunomide's impact on retinal layers remains unexplored in human studies. Monoclonal antibodies, including Alemtuzumab, Rituximab, Ocrelizumab, and Natalizumab, had protective effects on retinal layer atrophy. Alemtuzumab-treated patients showed significantly less atrophy compared to interferon- and GA-treated patients. Rituximab initially increased atrophy rates in the first months but subsequently demonstrated potential neuroprotective effects. Ocrelizumab slowed the rate of inner nuclear layer thinning in progressive forms of the disease. Natalizumab is considered the most effective in reducing retinal layer atrophy, particularly the peripapillary retinal nerve fiber layer. CONCLUSIONS It's important to note that the effectiveness of these treatments may vary depending on MS subtype and individual factors. Future research should explore the long-term effects of these treatments on retinal layers and their correlations with overall disease progression and disability in MS patients.
Collapse
Affiliation(s)
- Armin Adibi
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
- Neuroscience Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Iman Adibi
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
- Neuroscience Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Milad Javidan
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
- Neuroscience Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
5
|
Klyscz P, Vigiser I, Solorza Buenrostro G, Motamedi S, Leutloff CJ, Schindler P, Schmitz‐Hübsch T, Paul F, Zimmermann HG, Oertel FC. Hyperreflective retinal foci are associated with retinal degeneration after optic neuritis in neuromyelitis optica spectrum disorders and multiple sclerosis. Eur J Neurol 2025; 32:e70038. [PMID: 39790055 PMCID: PMC11718220 DOI: 10.1111/ene.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Hyperreflective retinal foci (HRF) visualized by optical coherence tomography (OCT) potentially represent clusters of microglia. We compared HRF frequencies and their association with retinal neurodegeneration between people with clinically isolated syndrome (pwCIS), multiple sclerosis (pwMS), aquaporin 4-IgG positive neuromyelitis optica spectrum disorder (pwNMOSD), and healthy controls (HC)-as well as between eyes with (ON+eyes) and without a history of optic neuritis (ON-eyes). METHODS Cross-sectional data of pwCIS, pwMS, and pwNMOSD with previous ON and HC were acquired at Charité-Universitätsmedizin Berlin. HRF analysis was performed manually on the central macular OCT scan. Semi-manual OCT segmentation was performed to acquire the combined ganglion cell and inner plexiform layer (GCIPL), inner nuclear layer (INL), and peripapillary retinal nerve fiber layer (pRNFL) thickness. Group comparisons were performed by linear mixed models. RESULTS In total, 227 eyes from 88 patients (21 pwCIS, 32 pwMS, and 35 pwNMOSD) and 35 HCs were included. HRF in GCIPL and INL were more frequently detected in pwCIS, pwMS, and pwNMOSD than HCs (p < 0.001 for all comparisons) with pwCIS exhibiting the greatest numbers. ON+eyes of pwMS had less HRF in GCIPL than ON-eyes (p = 0.036), but no difference was seen in pwCIS and pwNMOSD. HRF GCIPL were correlated to GCIPL thickness in ON+eyes in pwMS (p = 0.040) and pwNMOSD (p = 0.031). CONCLUSION HRF occur in ON+eyes and ON-eyes across neuroinflammatory diseases. In pwMS and pwNMOSD, HRF frequency was positively associated with GCIPL thickness indicating that HRF formation might be dependent on retinal ganglion cells.
Collapse
Affiliation(s)
- Philipp Klyscz
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Ifat Vigiser
- Neuroimmunology and Multiple Sclerosis Unit, Neurology InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Gilberto Solorza Buenrostro
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Seyedamirhosein Motamedi
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Carla Johanna Leutloff
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Patrick Schindler
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Tanja Schmitz‐Hübsch
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Hanna Gwendolyn Zimmermann
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Einstein Center Digital FutureBerlinGermany
| | - Frederike Cosima Oertel
- Experimental and Clinical Research CenterMax Delbrück Center for Molecular Medicine Berlin and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research Center (NCRC)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
6
|
Bsteh G, Hegen H, Krajnc N, Föttinger F, Altmann P, Auer M, Berek K, Kornek B, Leutmezer F, Macher S, Monschein T, Ponleitner M, Rommer P, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Deisenhammer F, Di Pauli F, Pemp B, Berger T. Retinal layer thinning for monitoring disease-modifying treatment in relapsing multiple sclerosis-Evidence for applying a rebaselining concept. Mult Scler 2024; 30:1128-1138. [PMID: 39109593 DOI: 10.1177/13524585241267257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND Employing a rebaselining concept may reduce noise in retinal layer thinning measured by optical coherence tomography (OCT). METHODS From an ongoing prospective observational study, we included patients with relapsing multiple sclerosis (RMS), who had OCT scans at disease-modifying treatment (DMT) start (baseline), 6-12 months after baseline (rebaseline), and ⩾12 months after rebaseline. Mean annualized percent loss (aL) rates (%/year) were calculated both from baseline and rebaseline for peripapillary-retinal-nerve-fiber-layer (aLpRNFLbaseline/aLpRNFLrebaseline) and macular-ganglion-cell-plus-inner-plexiform-layer (aLGCIPLbaseline/aLGCIPLrebaseline) by mixed-effects linear regression models. RESULTS We included 173 RMS patients (mean age 31.7 years (SD 8.8), 72.8% female, median disease duration 15 months (12-94) median baseline-to-last-follow-up-interval 37 months (18-71); 56.6% moderately effective DMT (M-DMT), 43.4% highly effective DMT (HE-DMT)). Both mean aLpRNFLbaseline and aLGCIPLbaseline significantly increased in association with relapse (0.51% and 0.26% per relapse, p < 0.001, respectively) and disability worsening (1.10% and 0.48%, p < 0.001, respectively) before baseline, but not with DMT class. Contrarily, neither aLpRNFLrebaseline nor aLGCIPLrebaseline was dependent on relapse or disability worsening before baseline, while HE-DMT significantly lowered aLpRNFLrebaseline (by 0.31%, p < 0.001) and aLGCIPLrebaseline (0.25%, p < 0.001) compared with M-DMT. CONCLUSIONS Applying a rebaselining concept significantly improves differentiation of DMT effects on retinal layer thinning by avoiding carry-over confounding from previous disease activity.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fabian Föttinger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Monschein
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christiane Schmied
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Berthold Pemp
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Bsteh G, Dal Bianco A, Zrzavy T, Berger T. Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis. Pharmacol Rev 2024; 76:564-578. [PMID: 38719481 DOI: 10.1124/pharmrev.124.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Assunta Dal Bianco
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Gakis G, Angelopoulos I, Panagoulias I, Mouzaki A. Current knowledge on multiple sclerosis pathophysiology, disability progression assessment and treatment options, and the role of autologous hematopoietic stem cell transplantation. Autoimmun Rev 2024; 23:103480. [PMID: 38008300 DOI: 10.1016/j.autrev.2023.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that affects nearly 2.8 million people each year. MS distinguishes three main types: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). RRMS is the most common type, with the majority of patients eventually progressing to SPMS, in which neurological development is constant, whereas PPMS is characterized by a progressive course from disease onset. New or additional insights into the role of effector and regulatory cells of the immune and CNS systems, Epstein-Barr virus (EBV) infection, and the microbiome in the pathophysiology of MS have emerged, which may lead to the development of more targeted therapies that can halt or reverse neurodegeneration. Depending on the type and severity of the disease, various disease-modifying therapies (DMTs) are currently used for RRMS/SPMS and PPMS. As a last resort, and especially in highly active RRMS that does not respond to DMTs, autologous hematopoietic stem cell transplantation (AHSCT) is performed and has shown good results in reducing neuroinflammation. Nevertheless, the question of its potential role in preventing disability progression remains open. The aim of this review is to provide a comprehensive update on MS pathophysiology, assessment of MS disability progression and current treatments, and to examine the potential role of AHSCT in preventing disability progression.
Collapse
Affiliation(s)
- Georgios Gakis
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Angelopoulos
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
9
|
Mirmosayyeb O, Yazdan Panah M, Mokary Y, Ghaffary EM, Ghoshouni H, Zivadinov R, Weinstock-Guttman B, Jakimovski D. Optical coherence tomography (OCT) measurements and disability in multiple sclerosis (MS): A systematic review and meta-analysis. J Neurol Sci 2023; 454:120847. [PMID: 37924591 DOI: 10.1016/j.jns.2023.120847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Studies have demonstrated that people with multiple sclerosis (pwMS) experience visual impairments and neurodegenerative retinal processes. The disability progression in pwMS may be associated with retinal changes assessed with optical coherence tomography (OCT). This meta-analysis aims at synthesizing the correlations between OCT measurements of disability in pwMS. METHODS We systematically searched four databases (PubMed/MEDLINE, Embase, Scopus, and Web of Science) from inception to November 2022, then conducted a meta-analysis using a random effects model to determine the pooled correlation coefficient(r) between OCT measurements and disability scales by R version 4.2.3 with the meta version 6.2-1 package. RESULTS From 3129 studies, 100 studies were included. Among 9051 pwMS, the female-to-male ratio was 3.15:1, with a mean age of 39.57 ± 6.07 years. The mean disease duration and Expanded Disability Status Scale (EDSS) were 8.5 ± 3.7 and 2.7 ± 1.1, respectively. Among the pooled subgroup analyses, macular ganglion cell inner plexiform layer (mGCIPL) in patients with relapsing-remitting (pwRRMS) and peripapillary retinal nerve fiber layer (pRNFL) in patients with progressive MS (pwPMS) had strong correlations with EDSS, r = -0.33 (95% CI: -0.45 to -0.20, I2 = 45%, z-score = -4.86, p < 0.001) and r = -0.20 (95% CI:-0.58 to 0.26, I2 = 76%, z-score = -0.85, p = 0.395), respectively. According to subgroup analysis on pwMS without optic neuritis (ON) history, the largest correlation was seen between EDSS and macular ganglion cell complex (mGCC): r = -0.39 (95% CI: -0.70 to 0.04, I2 = 79%, z-score = -1.79, p = 0.073). CONCLUSION OCT measurements are correlated with disability in pwMS, and they can complement the comprehensive neurological visit as an additional paraclinical test.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mohammad Yazdan Panah
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousef Mokary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Ehrhardt H, Lambe J, Moussa H, Vasileiou ES, Kalaitzidis G, Murphy OC, Filippatou AG, Pellegrini N, Douglas M, Davis S, Nagy N, Quiroga A, Hu C, Zambriczki Lee A, Duval A, Fitzgerald KC, Prince JL, Calabresi PA, Sotirchos ES, Bermel R, Saidha S. Effects of Ibudilast on Retinal Atrophy in Progressive Multiple Sclerosis Subtypes: Post Hoc Analyses of the SPRINT-MS Trial. Neurology 2023; 101:e1014-e1024. [PMID: 37460235 PMCID: PMC10491449 DOI: 10.1212/wnl.0000000000207551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/08/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Ganglion cell + inner plexiform layer (GCIPL) thinning, measured by optical coherence tomography (OCT), reflects global neurodegeneration in multiple sclerosis (MS). Atrophy of the inner (INL) and outer nuclear layer (ONL) may also be prominent in progressive MS (PMS). The phase 2, SPRINT-MS trial found reduced brain atrophy with ibudilast therapy in PMS. In this post hoc analysis of the SPRINT-MS trial, we investigate (1) retinal atrophy (2) differences in response by subtype and (3) associations between OCT and MRI measures of neurodegeneration. METHODS In the multicenter, double-blind SPRINT-MS trial, participants with secondary progressive MS (SPMS) or primary progressive MS (PPMS) were randomized to ibudilast or placebo. OCT and MRI data were collected every 24 weeks for 96 weeks. Extensive OCT quality control and algorithmic segmentation produced consistent results across Cirrus HD-OCT and Spectralis devices. Primary endpoints were GCIPL, INL, and ONL atrophy, assessed by linear mixed-effects regression. Secondary endpoints were associations of OCT measures, brain parenchymal fraction, and cortical thickness, assessed by partial Pearson correlations. RESULTS One hundred thirty-four PPMS and 121 SPMS participants were included. GCIPL atrophy was 79% slower in the ibudilast (-0.07 ± 0.23 µm/y) vs placebo group (-0.32 ± 0.20 µm/y, p = 0.003). This effect predominated in the PPMS cohort (ibudilast: -0.08 ± 0.29 µm/y vs placebo: -0.60 ± 0.29 µm/y, a decrease of 87%, p < 0.001) and was not detected in the SPMS cohort (ibudilast: -0.21 ± 0.28 µm/y vs placebo: -0.14 ± 0.27 µm/y, p = 0.55). GCIPL, INL, and ONL atrophy rates correlated with whole brain atrophy rates across the cohort (r = 0.27, r = 0.26, and r = 0.20, respectively; p < 0.001). Power calculations from these data show future trials of similar size and design have ≥80% power to detect GCIPL atrophy effect sizes of approximately 40%. DISCUSSION Ibudilast treatment decreased GCIPL atrophy in PMS, driven by the PPMS cohort, with no effect seen in SPMS. Modulated atrophy of retinal layers may be detectable in sample sizes smaller than the SPRINT-MS trial and correlate with whole brain atrophy in PMS, further highlighting their utility as outcomes in PMS. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that ibudilast reduces composite ganglion cell + inner plexiform layer atrophy, without reduction of inner or outer nuclear layer atrophy, in patients with primary progressive MS but not those with secondary progressive MS.
Collapse
Affiliation(s)
- Henrik Ehrhardt
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Jeffrey Lambe
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Hussein Moussa
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Eleni S Vasileiou
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Grigorios Kalaitzidis
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Olwen C Murphy
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Angeliki G Filippatou
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Nicole Pellegrini
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Morgan Douglas
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Simidele Davis
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Natalia Nagy
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Agustina Quiroga
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Chen Hu
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Alexandra Zambriczki Lee
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Anna Duval
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Kathryn C Fitzgerald
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Jerry L Prince
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Peter A Calabresi
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Elias S Sotirchos
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Robert Bermel
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Shiv Saidha
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH.
| |
Collapse
|
11
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
12
|
Viladés E, Cordón B, Pérez-Velilla J, Orduna E, Satue M, Polo V, Sebastian B, Larrosa JM, Pablo L, García-Martin E. Evaluation of multiple sclerosis severity using a new OCT tool. PLoS One 2023; 18:e0288581. [PMID: 37440532 DOI: 10.1371/journal.pone.0288581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
PURPOSE To assess the ability of a new posterior pole protocol to detect areas with significant differences in retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness in patients with multiple sclerosis versus healthy control subjects; in addition, to assess the correlation between RNFL and GCL thickness, disease duration, and the Expanded Disability Status Scale (EDSS). METHODS We analyzed 66 eyes of healthy control subjects and 100 eyes of remitting-relapsing multiple sclerosis (RR-MS) patients. Double analysis based on first clinical symptom onset (CSO) and conversion to clinically definite MS (CDMS) was performed. The RR-MS group was divided into subgroups by CSO and CDMS year: CSO-1 (≤ 5 years) and CSO-2 (≥ 6 years), and CDMS-1 (≤ 5 years) and CDMS-2 (≥ 6 years). RESULTS Significant differences in RNFL and GCL thickness were found between the RR-MS group and the healthy controls and between the CSO and CDMS subgroups and in both layers. Moderate to strong correlations were found between RNFL and GCL thickness and CSO and CDMS. Furthermore, we observed a strong correlation with EDSS 1 year after the OCT examination. CONCLUSIONS The posterior pole protocol is a useful tool for assessing MS and can reveal differences even in early stages of the disease. RNFL thickness shows a strong correlation with disability status, while GCL thickness correlates better with disease duration.
Collapse
Affiliation(s)
- Elisa Viladés
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Beatriz Cordón
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Javier Pérez-Velilla
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Elvira Orduna
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Maria Satue
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Vicente Polo
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Berta Sebastian
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Jose Manuel Larrosa
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Luis Pablo
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Elena García-Martin
- Miguel Servet Ophthalmology Research and Innovation Group (GIMSO), Aragon Institute for Health Research (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
| |
Collapse
|
13
|
He Y, Carass A, Liu Y, Calabresi PA, Saidha S, Prince JL. Longitudinal deep network for consistent OCT layer segmentation. BIOMEDICAL OPTICS EXPRESS 2023; 14:1874-1893. [PMID: 37206119 PMCID: PMC10191669 DOI: 10.1364/boe.487518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/21/2023]
Abstract
Retinal layer thickness is an important bio-marker for people with multiple sclerosis (PwMS). In clinical practice, retinal layer thickness changes in optical coherence tomography (OCT) are widely used for monitoring multiple sclerosis (MS) progression. Recent developments in automated retinal layer segmentation algorithms allow cohort-level retina thinning to be observed in a large study of PwMS. However, variability in these results make it difficult to identify patient-level trends; this prevents patient specific disease monitoring and treatment planning using OCT. Deep learning based retinal layer segmentation algorithms have achieved state-of-the-art accuracy, but the segmentation is performed on each individual scan without utilizing longitudinal information, which can be important in reducing segmentation error and reveal subtle changes in retinal layers. In this paper, we propose a longitudinal OCT segmentation network which achieves more accurate and consistent layer thickness measurements for PwMS.
Collapse
Affiliation(s)
- Yufan He
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aaron Carass
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yihao Liu
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter A. Calabresi
- Dept. of Neurology, The Johns Hopkins University School of Medicine, MD 21287, USA
| | - Shiv Saidha
- Dept. of Neurology, The Johns Hopkins University School of Medicine, MD 21287, USA
| | - Jerry L. Prince
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Ganapathy Subramanian R, Zivadinov R, Bergsland N, Dwyer MG, Weinstock-Guttman B, Jakimovski D. Multiple sclerosis optic neuritis and trans-synaptic pathology on cortical thinning in people with multiple sclerosis. J Neurol 2023:10.1007/s00415-023-11709-y. [PMID: 37067590 DOI: 10.1007/s00415-023-11709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND The multi-order visual system represents an excellent testing site regarding the process of trans-synaptic degeneration. The presence and extent of global versus trans-synaptic neurodegeneration in people with multiple sclerosis (pwMS) is not clear. OBJECTIVE To explore cross-sectional and longitudinal relationships between retinal, thalamic and cortical changes in pwMS with and without MS-related optic neuritis (pwMSON and pwoMSON) using MRI and optical coherence tomography (OCT). METHODS 162 pwMS and 47 healthy controls (HCs) underwent OCT and brain MRI at baseline and 5.5-years follow-up. Peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell inner plexiform layer (mGCIPL) thicknesses were determined. Global volume measures of brain parenchymal volume (BPV)/percent brain volume change (PBVC), thalamic volume and T2-lesion volume (LV) were derived using standard analysis protocols. Regional cortical thickness was determined using FreeSurfer. Cross-sectional and longitudinal relationship between the retinal measures, thalamic volume and cortical thickness were assessed using age, BPV/PBVC and T2-LV adjusted correlations and regressions. RESULTS After age, BPV and T2-LV adjustment, the thalamic volume explained additional variance in the thickness of pericalcarine (R2 increase of 0.066, standardized β = 0.299, p = 0.039) and lateral occipital (R2 increase of 0.024, standardized β = 0.299, p = 0.039) gyrii in pwMSON. In pwoMSON, the thalamic volume was a significant predictor only of control (frontal) regions of pars opercularis. There was no relationship between thalamic atrophy and cortical thinning over the follow-up in both pwMS with and without MSON. While numerically lower in the pwMSON group, the inter-eye difference was not able to predict the presence of MSON. CONCLUSIONS MSON can induce a measurable amount of trans-synaptic pathology on second-order cortical regions.
Collapse
Affiliation(s)
- Ranjani Ganapathy Subramanian
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
15
|
Cagol A, Fuertes NC, Stoessel M, Barakovic M, Schaedelin S, D'Souza M, Würfel J, Brandt AU, Kappos L, Sprenger T, Naegelin Y, Kuhle J, Granziera C, Papadopoulou A. Optical coherence tomography reflects clinically relevant gray matter damage in patients with multiple sclerosis. J Neurol 2023; 270:2139-2148. [PMID: 36625888 PMCID: PMC10025239 DOI: 10.1007/s00415-022-11535-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Retinal degeneration leading to optical coherence tomography (OCT) changes is frequent in patients with multiple sclerosis (PwMS). OBJECTIVE To investigate associations among OCT changes, MRI measurements of global and regional brain volume loss, and physical and cognitive impairment in PwMS. METHODS 95 PwMS and 52 healthy controls underwent OCT and MRI examinations. Mean peripapillary retinal nerve fiber layer (pRNFL) thickness and ganglion cell/inner plexiform layer (GCIPL) volume were measured. In PwMS disability was quantified with the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). Associations between OCT, MRI, and clinical measures were investigated with multivariable regression models. RESULTS In PwMS, pRNFL and GCIPL were associated with the volume of whole brain (p < 0.04), total gray matter (p < 0.002), thalamus (p ≤ 0.04), and cerebral cortex (p ≤ 0.003) -both globally and regionally-, but not white matter. pRNFL and GCIPL were also inversely associated with T2-lesion volume (T2LV), especially in the optic radiations (p < 0.0001). The brain volumes associated with EDSS and SDMT significantly overlapped with those correlating with pRNFL and GCIPL. CONCLUSIONS In PwMS, pRNFL and GCIPL reflect the integrity of clinically-relevant gray matter structures, underling the value of OCT measures as markers of neurodegeneration and disability in multiple sclerosis.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Nuria Cerdá Fuertes
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marc Stoessel
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Marcus D'Souza
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Würfel
- Medical Image Analysis Center and Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Alexander U Brandt
- Experimental and Clinical Research Center Max Delbrueck Center for Molecular Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- University of Irvine, Irvine, CA, USA
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Yvonne Naegelin
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Athina Papadopoulou
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Bsteh G, Hegen H, Altmann P, Auer M, Berek K, Di Pauli F, Haider L, Kornek B, Krajnc N, Leutmezer F, Macher S, Rommer P, Walchhofer LM, Zebenholzer K, Zulehner G, Deisenhammer F, Pemp B, Berger T. Retinal layer thickness predicts disability accumulation in early relapsing multiple sclerosis. Eur J Neurol 2023; 30:1025-1034. [PMID: 36719184 DOI: 10.1111/ene.15718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to investigate baseline peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) thickness for prediction of disability accumulation in early relapsing multiple sclerosis (RMS). METHODS From a prospective observational study, we included patients with newly diagnosed RMS and obtained spectral-domain optical coherence tomography scan within 90 days after RMS diagnosis. Impact of pRNFL and GCIPL thickness for prediction of disability accumulation (confirmed Expanded Disability Status Scale [EDSS] score ≥ 3.0) was tested by multivariate (adjusted hazard ratio [HR] with 95% confidence interval [CI]) Cox regression models. RESULTS We analyzed 231 MS patients (mean age = 30.3 years, SD = 8.1, 74% female) during a median observation period of 61 months (range = 12-93). Mean pRNFL thickness was 92.6 μm (SD = 12.1), and mean GCIPL thickness was 81.4 μm (SD = 11.8). EDSS ≥ 3 was reached by 28 patients (12.1%) after a median 49 months (range = 9-92). EDSS ≥ 3 was predicted with GCIPL < 77 μm (HR = 2.7, 95% CI = 1.6-4.2, p < 0.001) and pRNFL thickness ≤ 88 μm (HR = 2.0, 95% CI = 1.4-3.3, p < 0.001). Higher age (HR = 1.4 per 10 years, p < 0.001), incomplete remission of first clinical attack (HR = 2.2, p < 0.001), ≥10 magnetic resonance imaging (MRI) lesions (HR = 2.0, p < 0.001), and infratentorial MRI lesions (HR = 1.9, p < 0.001) were associated with increased risk of disability accumulation, whereas highly effective disease-modifying treatment was protective (HR = 0.6, p < 0.001). Type of first clinical attack and presence of oligoclonal bands were not significantly associated. CONCLUSIONS Retinal layer thickness (GCIPL more than pRNFL) is a useful predictor of future disability accumulation in RMS, independently adding to established markers.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Haider
- Department of Neuroradiology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Rzepiński Ł, Kucharczuk J, Tkaczyńska M, Parisi V, Grzybowski A. Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients. Brain Sci 2023; 13:brainsci13040591. [PMID: 37190556 DOI: 10.3390/brainsci13040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
This study aimed to determine whether peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell–inner plexiform layer (GCIPL) thickness thresholds for single-time-point swept-source optical coherence tomography (SS-OCT) measures can differentiate the clinical outcomes of treatment-naïve people with multiple sclerosis (pwMS). A total of 275 patients with the clinically isolated syndrome (n = 23), benign MS (n = 8), relapsing–remitting MS (n = 185), secondary progressive MS (n = 28), primary progressive MS (n = 31), and with no history of optic neuritis were included. The mean Expanded Disability Status Scale (EDSS) score was 3.0 ± 1.6. The cut-off values of pRNFL (87 µm and 88 µm) and GCIPL (70 µm) thicknesses have been adopted from previous studies using spectral-domain OCT. PwMS with pRNFL ≤87 µm and ≤88 µm had a longer disease duration, more advanced disability, and more frequently progressive MS variants compared to those with greater pRNFL thicknesses. In distinguishing pwMS with disability greater than or equal to the mean EDSS score (EDSS ≥ 3) from those with less severe disability, GCIPL thickness <70 µm had the highest sensitivity, while pRNFL thickness ≤87 µm had the greatest specificity. The optimal cut-off values differentiating patients with EDSS ≥ 3 from those with less severe disability was 63 µm for GCIPL thickness and 93.5 µm for pRNFL thickness. In conclusion, pRNFL and GCIPL thickness thresholds for single-time-point SS-OCT measurements may be helpful in differentiating the disability status of treatment-naïve pwMS.
Collapse
Affiliation(s)
- Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
- Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
| | - Jan Kucharczuk
- Department of Ophthalmology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Magda Tkaczyńska
- Department of Surgery, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Żołnierska 18, 10-561 Olsztyn, Poland
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Mickiewicza 24/3B, 60-836 Poznan, Poland
| |
Collapse
|
18
|
A prospective study of disease modifying therapy and retinal atrophy in relapsing-remitting multiple sclerosis. J Neurol Sci 2023; 446:120552. [PMID: 36774748 DOI: 10.1016/j.jns.2023.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND To compare the rate of retinal atrophy over time in patients with relapsing-remitting multiple sclerosis (RRMS) treated with various disease-modifying therapies (DMT). METHODS Patients with RRMS on various DMT and those observed without treatment were prospectively enrolled into the study between September 2015 and June 2018. All subjects with follow-up of 1-4 years were included and categorized into groups as "no drug", "low efficacy drug", "high efficacy drug", or "dimethyl fumarate" (DMF), based on treatment modality used for the longest duration of their follow-up. Ocular coherence tomography (OCT) was used to measure peripapillary retinal nerve fiber layer thickness (RNFL) and ganglion cell/inner plexiform layer (GC-IPL) thickness at baseline and every 6 months. A linear mixed effects regression model was performed to compare rates of retinal atrophy across treatment groups. RESULTS Out of 67 participants who met inclusion criteria (mean age = 37; 76% female), 13 were untreated, 12 on low efficacy therapy, 18 on DMF, and 24 on high efficacy therapy. History of optic neuritis was associated with lower baseline GC-IPL thickness (p = 0.003). Higher baseline GC-IPL thickness was associated with increased rate of GC-IPL thinning (p = 0.009). Age, disease duration, and ethnicity were not predictors of baseline RNFL or GC-IPL thickness, or rate of atrophy of these layers. CONCLUSIONS There were no differences in rate of GC-IPL atrophy between patients with RRMS on different treatments in this cohort. Age, disease duration, and ethnicity also did not predict retinal atrophy. History of ON was associated with reduced GC-IPL thickness at baseline, consistent with previous research. Rate of GC-IPL thinning was higher for subjects with higher baseline GC-IPL thickness, suggesting a plateau effect.
Collapse
|
19
|
Kalaitzidis G, Pellegrini N, Nagy N, Vasileiou E, Ehrhardt H, Reppen A, Murphy OC, Moussa H, Filippatou A, Lambe J, DuVal A, Fioravante N, Kwakyi O, Nguyen J, Davis S, Douglas M, Ramirez A, Ecoff K, Valenzuela A, Reyes-Mantilla M, Hu C, Fitzgerald KC, Sotirchos ES, Saidha S, Calabresi PA. Effects of Myopia on Rates of Change in Optical Coherence Tomography Measured Retinal Layer Thicknesses in People with Multiple Sclerosis and Healthy Controls. Curr Eye Res 2023; 48:312-319. [PMID: 36440535 DOI: 10.1080/02713683.2022.2149806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To quantify the associations of myopia with longitudinal changes in retinal layer thicknesses in people with multiple sclerosis (PwMS) and healthy controls (HC). METHODS A cohort of PwMS and HC with recorded refractive error (RE) prospectively scanned on Cirrus HD-OCT at the Johns Hopkins MS Center was assessed for inclusion. Exclusion criteria included OCT follow-up < 6 months, ocular comorbidities, incidental OCT pathologies, and inadequate scan quality. Eyes were classified as having high myopia (HM) (RE≤ -6 diopters), low myopia (LM) (RE> -6 and ≤ -3 diopters), or no myopia (NM) (RE> -3 and ≤ +2.75). Linear mixed-effects regression models were used in analyses. RESULTS A total of 213 PwMS (eyes: 67 HM, 98 LM, 207 NM) and 80 HC (eyes: 26 HM, 37 LM, 93 NM) were included. Baseline average ganglion cell/inner plexiform (GCIPL) and peri-papillary retinal nerve fiber layer (pRNFL) thicknesses were lower in MS HM compared with MS NM (diff: -3.2 µm, 95% CI: -5.5 to -0.8, p = 0.008 and -5.3 µm, 95% CI: -9.0 to -1.7, p = 0.004, respectively), and similarly in HC HM, as compared with HC NM. Baseline superior, inferior, and nasal pRNFL thicknesses were lower in HM compared with NM, while temporal pRNFL thickness was higher, both in MS and HC (MS: 7.1 µm, 95% CI: 2.7-11.6, p = 0.002; HC: 4.7 µm, 95% CI: -0.3 to 9.7, p = 0.07). No longitudinal differences in rates of GCIPL change were noted between HM and LM vs. NM, either in MS or HC. CONCLUSION Cross-sectional differences in average GCIPL and pRNFL thicknesses are commonly seen in people with HM as compared to reference normative values from people with NM and can lead to false attribution of pathology if RE is not taken into account. However, our study suggests that longitudinal changes in average GCIPL thickness in PwMS with myopia are similar in magnitude to PwMS with NM, and therefore are appropriate for monitoring disease-related pathology.
Collapse
Affiliation(s)
- Grigorios Kalaitzidis
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole Pellegrini
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia Nagy
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleni Vasileiou
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henrik Ehrhardt
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abbey Reppen
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olwen C Murphy
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hussein Moussa
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angeliki Filippatou
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna DuVal
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Fioravante
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ohemaa Kwakyi
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Nguyen
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simidele Davis
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Morgan Douglas
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Ramirez
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katie Ecoff
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssandra Valenzuela
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Reyes-Mantilla
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Hu
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias S Sotirchos
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD,USA
| |
Collapse
|
20
|
Torbus M, Niewiadomska E, Dobrakowski P, Papuć E, Rybus-Kalinowska B, Szlacheta P, Korzonek-Szlacheta I, Kubicka-Bączyk K, Łabuz-Roszak B. The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study. J Clin Med 2022; 12:jcm12010093. [PMID: 36614893 PMCID: PMC9821099 DOI: 10.3390/jcm12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of the study was to assess the usefulness of optical coherence tomography (OCT) in the detection of the neurodegenerative process in younger patients with multiple sclerosis (MS). The study group consisted of 61 patients with a relapsing remitting course of MS (mean age 36.4 ± 6.7 years) divided into two groups: short (≤5 years) and long (>10 years) disease duration. OCT, P300 evoked potential, Montreal Cognitive Assessment, and performance subtests (Picture Completion and Digit Symbol) of the Wechsler Adult Intelligence Scale were performed in all patients. Mean values of most parameters assessed in OCT (pRNFL Total, pRNFL Inferior, pRNFL Superior, pRNFL Temporalis, mRNFL, GCIPL, mRNFL+GCIPL) were significantly lower in MS patients in comparison to controls. And in patients with longer disease duration in comparison to those with shorter. Most OCT parameters negatively correlated with the EDSS score (p < 0.05). No significant correlation was found between OCT results and both P300 latency and the results of psychometric tests. OCT, as a simple, non-invasive, quick, and inexpensive method, could be useful for monitoring the progression of disease in MS patients.
Collapse
Affiliation(s)
- Magdalena Torbus
- Institute of Psychology, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland
| | - Ewa Niewiadomska
- Department of Biostatistics, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Dobrakowski
- Institute of Psychology, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland
| | - Ewa Papuć
- Department of Neurology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Barbara Rybus-Kalinowska
- Department of Basic Medical Sciences, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Patryk Szlacheta
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ilona Korzonek-Szlacheta
- Department of Prevention of Metabolic Diseases, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kubicka-Bączyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Beata Łabuz-Roszak
- Department of Neurology, Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland
- Correspondence:
| |
Collapse
|
21
|
Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare (Basel) 2022; 10:healthcare10081386. [PMID: 35893208 PMCID: PMC9394264 DOI: 10.3390/healthcare10081386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative, potentially disabling disease of the central nervous system. OCT (Optical Coherence Tomography) and OCT-A (Optical Coherence Tomography with Angiography) are imaging techniques for the retina and choroid that are used in the diagnosis and monitoring of ophthalmological conditions. Their use has recently expanded the study of several autoimmune disorders, including MS. Although their application in MS remains unclear, the results seem promising. This review aimed to provide insight into the most recent OCT and OCT-A findings in MS and may function as a reference point for future research. According to the current literature, the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform complex (GC-IPL) are significantly reduced in people with MS and are inversely correlated with disease duration. The use of OCT might help distinguish between MS and neuromyelitis optica spectrum disorders (NMOSD), as the latter presents with more pronounced thinning in both the RNFL and GC-IPL. The OCT-A findings in MS include reduced vessel density in the macula, peripapillary area, or both, and the enlargement of the foveal avascular zone (FAZ) in the setting of optic neuritis. Additionally, OCT-A might be able to detect damage in the very early stages of the disease as well as disease progression in severe cases.
Collapse
|
22
|
Graves J. Identifying Multiple Sclerosis Activity: Do the Eyes Have It? Neurology 2022; 99:269-270. [PMID: 35618437 DOI: 10.1212/wnl.0000000000200903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jennifer Graves
- Department of Neurosciences, University of California, San Diego
| |
Collapse
|
23
|
Chua J, Bostan M, Li C, Sim YC, Bujor I, Wong D, Tan B, Yao X, Schwarzhans F, Garhöfer G, Fischer G, Vass C, Tiu C, Pirvulescu R, Popa-Cherecheanu A, Schmetterer L. A multi-regression approach to improve optical coherence tomography diagnostic accuracy in multiple sclerosis patients without previous optic neuritis. Neuroimage Clin 2022; 34:103010. [PMID: 35447469 PMCID: PMC9043868 DOI: 10.1016/j.nicl.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/19/2023]
Abstract
OCT diagnostics for MS improved after combining macular data with compensated peripapillary RNFL.
Background Optical coherence tomography (OCT) is a retinal imaging system that may improve the diagnosis of multiple sclerosis (MS) persons, but the evidence is currently equivocal. To assess whether compensating the peripapillary retinal nerve fiber layer (pRNFL) thickness for ocular anatomical features as well as the combination with macular layers can improve the capability of OCT in differentiating non-optic neuritis eyes of relapsing-remitting MS patients from healthy controls. Methods 74 MS participants (n = 129 eyes) and 84 age- and sex-matched healthy controls (n = 149 eyes) were enrolled. Macular ganglion cell complex (mGCC) thickness was extracted and pRNFL measurement was compensated for ocular anatomical factors. Thickness measurements and their corresponding areas under the receiver operating characteristic curves (AUCs) were compared between groups. Results Participants with MS showed significantly thinner mGCC, measured and compensated pRNFL (p ≤ 0.026). Compensated pRNFL achieved better performance than measured pRNFL for MS differentiation (AUC, 0.75 vs 0.80; p = 0.020). Combining macular and compensated pRNFL parameters provided the best discrimination of MS (AUC = 0.85 vs 0.75; p < 0.001), translating to an average improvement in sensitivity of 24 percent for differentiation of MS individuals. Conclusion The capability of OCT in MS differentiation is made more robust by accounting OCT scans for individual anatomical differences and incorporating information from both optic disc and macular regions, representing markers of axonal damage and neuronal injury, respectively.
Collapse
Affiliation(s)
- Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Mihai Bostan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Ophthalmology Emergency Hospital, Bucharest, Romania
| | - Chi Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Yin Ci Sim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Inna Bujor
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemical and Biological Engineering, Nanyang Technological University, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemical and Biological Engineering, Nanyang Technological University, Singapore
| | - Xinwen Yao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemical and Biological Engineering, Nanyang Technological University, Singapore
| | - Florian Schwarzhans
- Center for Medical Statistics Informatics and Intelligent Systems, Section for Medical Information Management, Medical University Vienna, Vienna, Austria; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Georg Fischer
- Center for Medical Statistics Informatics and Intelligent Systems, Section for Medical Information Management, Medical University Vienna, Vienna, Austria
| | - Clemens Vass
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Cristina Tiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Emergency University Hospital, Department of Neurology, Bucharest, Romania
| | - Ruxandra Pirvulescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Emergency University Hospital, Department of Ophthalmology, Bucharest, Romania
| | - Alina Popa-Cherecheanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Emergency University Hospital, Department of Ophthalmology, Bucharest, Romania.
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemical and Biological Engineering, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| |
Collapse
|
24
|
Miscioscia A, Puthenparampil M, Miante S, Pengo M, Rinaldi F, Perini P, Gallo P. Retinal inner nuclear layer thinning is decreased and associates with the clinical outcome in ocrelizumab-treated primary progressive multiple sclerosis. J Neurol 2022; 269:5436-5442. [PMID: 35648233 PMCID: PMC9467948 DOI: 10.1007/s00415-022-11183-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ocrelizumab was found to decrease brain atrophy rate in primary progressive multiple sclerosis (PPMS), but no data are currently available on the effect of ocrelizumab on retinal layer thicknesses in the PPMS population. OBJECTIVE To assess retinal layer changes in ocrelizumab-treated PPMS and test their possible application as biomarkers of therapy response. METHODS 36 PPMS patients, treated with ocrelizumab for at least 6 months, and 39 sex- and age-matched healthy controls (HC) were included in a blind, longitudinal study. Spectrum-domain optical coherence tomography (SD-OCT) was performed at study entry (T0) and after 6 (T6) and 12 months (T12). At month 24 (T24), patients were divided into responders (no evidence of 1-year confirmed disability progression, 1y-CDP) and non-responders (evidence of 1y-CDP). RESULTS At T24, 23/36 (64%) patients were considered responders and 13/36 (36%) non-responders. At T0, peripapillary retinal nerve fiber layer (pRNFL) thickness, macular ganglion cell-inner plexiform layer (GCIPL) and inner retinal layer (IRL) volume were significantly lower in PPMS compared to HC (p = 0.001 for all comparisons). At T6 and T12, non-responders significantly differed in the inner nuclear layer (INL) thinning rate compared to responders (p = 0.005 at both time-points). CONCLUSIONS Ocrelizumab significantly slows down INL thinning rate in PPMS responders. The longitudinal analysis of retina layer changes by means of OCT may be a promising prognostic test, and merits further investigations.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Marco Puthenparampil
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Silvia Miante
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy ,Present Address: Neurology Unit, Ospedale dell’Angelo, Mestre, Italy
| | - Marta Pengo
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy ,Present Address: Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Rinaldi
- Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Paola Perini
- Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Paolo Gallo
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| |
Collapse
|
25
|
Graves JS, Oertel FC, Van der Walt A, Collorone S, Sotirchos ES, Pihl-Jensen G, Albrecht P, Yeh EA, Saidha S, Frederiksen J, Newsome SD, Paul F. Leveraging Visual Outcome Measures to Advance Therapy Development in Neuroimmunologic Disorders. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 9:9/2/e1126. [PMID: 34955459 PMCID: PMC8711076 DOI: 10.1212/nxi.0000000000001126] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
The visual system offers unparalleled precision in the assessment of neuroaxonal damage. With the majority of patients with multiple sclerosis (MS) experiencing afferent and efferent visual dysfunction, outcome measures capturing these deficits provide insight into neuroaxonal injury, even in those with minimal disability. Ideal for use in clinical trials, visual measures are generally inexpensive, accessible, and reproducible. Quantification of visual acuity, visual fields, visual quality of life, and electrophysiologic parameters allows assessment of function, whereas optical coherence tomography (OCT) provides reliable measures of the structural integrity of the anterior afferent visual pathway. The technology of oculomotor biometrics continues to advance, and discrete measures of fixation, smooth pursuit, and saccadic eye movement abnormalities are ready for inclusion in future trials of MS progression. Visual outcomes allow tracking of neuroaxonal injury and aid in distinguishing MS from diseases such as neuromyelitis optica spectrum disorder (NMOSD) or myelin oligodendrocyte glycoprotein antibody-associated diseases (MOGAD). OCT has also provided unique insights into pathophysiology, including the identification of foveal pitting in NMOSD, possibly from damage to Müller cells, which carry an abundance of aquaporin-4 channels. For some study designs, the cost-benefit ratio favors visual outcomes over more expensive MRI outcomes. With the next frontier of therapeutics focused on remyelination and neuroprotection, visual outcomes are likely to take center stage. As an international community of collaborative, committed, vision scientists, this review by the International MS Visual System Consortium (IMSVISUAL) outlines the quality standards, informatics, and framework needed to routinely incorporate vision outcomes into MS and NMOSD trials.
Collapse
Affiliation(s)
- Jennifer S Graves
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada.
| | - Frederike Cosima Oertel
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Anneke Van der Walt
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Sara Collorone
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Elias S Sotirchos
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Gorm Pihl-Jensen
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Philipp Albrecht
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - E Ann Yeh
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Shiv Saidha
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Jette Frederiksen
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Scott Douglas Newsome
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | - Friedemann Paul
- Department of Neurosciences (J.S.G.), University of California, San Diego; Experimental and Clinical Research Center (F.C.O., F.P.), Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin & NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of neuroscience (A.V.D.W.), Central Clinical School, Monash University, Melbourne, Australia; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation (S.C.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology (E.S.S., S.S., S.D.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Rigshospitalet (J.F.), Denmark; Department of Neurology (P.A.), Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Division of Neurology, Department of Pediatrics (E.A.Y.), Division of Neuroscience and Mental Health, Hospital for Sick Children, Hospital for Sick Children Research Institute, and University of Toronto, Toronto, Canada
| | | |
Collapse
|
26
|
Chen Q, Fang M, Miri S, Thakor K, Delgado S, Hernandez J, Alba DE, Gregori G, Porciatti V, Wang J, Jiang H. Retinal microvascular and neuronal function in patients with multiple sclerosis: 2-year follow-up. Mult Scler Relat Disord 2021; 56:103314. [PMID: 34634624 DOI: 10.1016/j.msard.2021.103314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/11/2021] [Accepted: 10/03/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the longitudinal changes in retinal microstructure, microvasculature, microcirculation, and axonal and neuronal functions in patients with relapsing-remitting multiple sclerosis (RRMS) over the time course of about two years. METHODS A total of 30 patients (60 eyes) with RRMS were followed for a period of 27 ± 6 months and evaluated with a battery of clinical tests including low contrast letter acuity (LCLA), intraretinal layer thicknesses by optical coherence tomography (OCT), ganglion cell function by steady-state pattern electroretinography (PERG), axonal function by polarization-sensitive OCT, volumetric vessel density (VVD) by OCT angiography, and retinal tissue perfusion (RTP) by retinal function imager. RESULTS Axonal function measured as retinal nerve fiber layer birefringence in the temporal quadrant and vessel density in the deep vascular plexus were significantly decreased at 2-year follow-up (P < 0.05). Subgroup analyses showed that the increased retinal blood flow volume occurred in patients with no evidence of disease activity (NEDA), and with stable or improved visual function (P < 0.05). There was no significant difference in the expanded disability state scale, LCLA, RTP, VVD, or PERG measures between the two visits (P > 0.05). CONCLUSION To our best knowledge, this is the first 2-year prospective comprehensive study with a detailed assessment of retinal microstructure and neuronal functions in patients with RRMS. The recovery of retinal microcirculation occurred in patients with NEDA, and stable or improved visual function, suggesting these measurements as potential imaging biomarkers for monitoring disease progression.
Collapse
Affiliation(s)
- Qi Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Min Fang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Shahnaz Miri
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kinjal Thakor
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffrey Hernandez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Diego Eduardo Alba
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vittorio Porciatti
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
27
|
Pisa M, Croese T, Dalla Costa G, Guerrieri S, Huang SC, Finardi A, Fabbella L, Sangalli F, Colombo B, Moiola L, Martinelli V, Comi G, Furlan R, Leocani L. Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain 2021; 144:848-862. [PMID: 33829250 DOI: 10.1093/brain/awaa458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022] Open
Abstract
Optical coherence tomography (OCT) is gaining increasing relevance in the assessment of patients with multiple sclerosis. Converging evidence point to the view that neuro-retinal changes, in eyes without acute optic neuritis, reflect inflammatory and neurodegenerative processes taking place throughout the CNS. The present study aims at exploring the usefulness of OCT as a marker of inflammation and disease burden in the earliest phases of the disease. Thus, a cohort of 150 consecutive patients underwent clinical, neurophysiological and brain MRI assessment as well as lumbar puncture as part of their diagnostic workup for a neurological episode suggestive of inflammatory CNS disorder; among those 32 patients had another previous misdiagnosed episode. For the present study, patients also received a visual pathway assessment (OCT, visual evoked potentials, visual acuity), measurement of CSF inflammatory markers (17 cytokines-chemokines, extracellular vesicles of myeloid origin), and dosage of plasma neurofilaments. Subclinical optic nerve involvement is frequently found in clinically isolated syndromes by visual evoked potentials (19.2%). OCT reveals ganglion cell layer asymmetries in 6.8% of patients; retinal fibre layer asymmetries, despite being more frequent (17.8%), display poor specificity. The presence of subclinical involvement is associated with a greater disease burden. Second, ganglion cell layer thinning reflects the severity of disease involvement even beyond the anterior optic pathway. In fact, the ganglion cell layer in eyes without evidence of subclinical optic involvement is correlated with Expanded Disability Status Scale, low contrast visual acuity, disease duration, brain lesion load, presence of gadolinium enhancing lesions, abnormalities along motor and somatosensory evoked potentials, and frequency of CSF-specific oligoclonal bands. Third, the inner nuclear layer thickens in a post-acute (1.1-3.7 months) phase after a relapse, and this phenomenon is counteracted by steroid treatment. Likewise, a longitudinal analysis on 65 patients shows that this swelling is transient and returns to normal values after 1 year follow-up. Notwithstanding, the clinical, MRI, serological and CSF markers of disease activity considered in the study are strictly associated with one another, but none of them are associated with the inner nuclear layer. Our findings challenge the current hypothesis that the inner nuclear layer is an acute phase marker of inflammatory activity. The present study suggests that instrumental evidence of subclinical optic nerve involvement is associated with a greater disease burden in clinically isolated syndrome. Neuro-retinal changes are present since the earliest phases of the disease and yield important information regarding the neurodegenerative and inflammatory processes occurring in the CNS.
Collapse
Affiliation(s)
- Marco Pisa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso Croese
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Guerrieri
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sangalli
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Vittorio Martinelli
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Rzepiński Ł, Kucharczuk J, Maciejek Z, Grzybowski A, Parisi V. Spectral-Domain Optical Coherence Tomography Assessment in Treatment-Naïve Patients with Clinically Isolated Syndrome and Different Multiple Sclerosis Types: Findings and Relationship with the Disability Status. J Clin Med 2021; 10:jcm10132892. [PMID: 34209692 PMCID: PMC8268329 DOI: 10.3390/jcm10132892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/08/2023] Open
Abstract
This study evaluates the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV) using spectral-domain optical coherence tomography in treatment naïve patients with the clinically isolated syndrome (CIS) and different multiple sclerosis (MS) types. A total of 126 patients (15 CIS, 65 relapsing-remitting MS, 14 secondary progressive MS, 11 primary progressive MS, 21 benign MS) with or without optic neuritis (ON) history and 63 healthy age-similar controls were assessed. Concerning controls' eyes, pRNFL thickness was significantly reduced in CIS-ON eyes (p < 0.01), while both TMV and pRNFL thickness was decreased in all MS eyes regardless of ON history (p < 0.01). Significant differences in pRNFL thickness and TMV between MS variants were observed for non-ON eyes (p < 0.01), with the lowest values in benign and secondary progressive disease type, respectively. The pRNFL thickness was inversely correlated with Expanded Disability Status Scale (EDSS) score in non-ON subgroups (p < 0.01), whereas TMV was inversely correlated with EDSS score in both ON and non-ON subgroups (p < 0.01). Concluding, pRNFL thinning confirms optic nerve damage in CIS-ON eyes and appears to be disproportionately high with respect to the disability status of benign MS patients. The values of TMV and pRNFL in non-ON eyes significantly correspond to MS course heterogeneity and patients' disability than in ON eyes.
Collapse
Affiliation(s)
- Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
- Neurology Department, Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
- Correspondence:
| | - Jan Kucharczuk
- Department of Ophthalmology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
| | - Zdzisław Maciejek
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
- Neurology Department, Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Żołnierska 18, 10-561 Olsztyn, Poland;
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Mickiewicza 24/3B, 60-836 Poznan, Poland
| | | |
Collapse
|
29
|
Jakimovski D, Zivadinov R, Vaughn CB, Ozel O, Weinstock-Guttman B. Clinical effects associated with five-year retinal nerve fiber layer thinning in multiple sclerosis. J Neurol Sci 2021; 427:117552. [PMID: 34175775 DOI: 10.1016/j.jns.2021.117552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neurodegenerative changes in multiple sclerosis (MS) are associated with long-term disability progression (DP). Optical coherence tomography (OCT) measures may be used to monitor DP. OBJECTIVE To determine significant effects driving the changes in OCT-based peripapillary retinal nerve fiber layer (pRNFL) in heterogeneous group of MS patients. METHODS Total of 144 MS patients (109 relapsing-remitting MS and 35 progressive MS (PMS) with mean age at baseline of 47.6 and 56.5 years old, respectively) underwent clinical and OCT examination over 5-year follow-up. All OCT exams were reviewed using the OSCAR-IB criteria. The 5-year DP was determined based on Expanded Disability Status Scale (EDSS) changes and MS clinical trial criteria. Data regarding previous history of MS optic neuritis (MSON) and use of disease modifying treatment (DMT) was derived by in-person interview and review of electronic medical records. Mixed model-type of repeated measure analysis determined effects driving pRNFL change for analysis which utilized all eyes separately. RESULTS Over an average of 5.3-years follow-up, the MS population demonstrated significant pRNFL thinning (F = 16.108, p < 0.001). The pRNFL thinning was greater due to progressive MS subtype (F = 5.102, p = 0.025), greater age at baseline (F = 4.554, p = 0.034), occurrence of DP (F = 6.583, p = 0.011), and previous history of MSON (F = 7.053, p = 0.008). Use of any or highly potent DMT (natalizumab versus first-line injectable treatments versus no DMT) significantly reduced the pRNFL thinning (F = 8.367, p = 0.004) over the follow-up. Lastly, occurrence of DP in PMS patients older than 50 years old was associated with greater pRNFL thinning (F = 6.667, p = 0.013). CONCLUSION Longitudinal pRNFL changes are modified by age, disease subtype, disabiltiy progression, history of MSON, DMT use and their interactions.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Robert Zivadinov
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Caila B Vaughn
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Osman Ozel
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
30
|
Long-Term Stability of Neuroaxonal Structure in Alemtuzumab-Treated Relapsing-Remitting Multiple Sclerosis Patients. J Neuroophthalmol 2021; 40:37-43. [PMID: 32045393 DOI: 10.1097/wno.0000000000000802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) experience progressive thinning in optical coherence tomography (OCT) measures of neuroaxonal structure regardless of optic neuritis history. Few prospective studies have investigated the effects of disease-modifying therapies on neuroaxonal degeneration in the retina. Alemtuzumab is a monoclonal antibody shown to be superior to interferon β-1a in treating relapsing-remitting MS (RRMS). The purpose of this study was to assess the effects of alemtuzumab and first-line injectable treatments on OCT measures of neuroaxonal structure including peripapillary retinal nerve fiber layer (RNFL) thickness and combined ganglion cell-inner plexiform (GCIP) layer volume in RRMS patients followed up over 5 years. METHODS In this retrospective pilot study with prospectively collected double cohort data, spectral domain OCT measures of RNFL thickness and GCIP volume were compared between alemtuzumab-treated RRMS patients (N = 24) and RRMS patients treated with either interferon-β or glatiramer acetate (N = 21). RESULTS Over a median of 60 months (range 42-60 months), the alemtuzumab cohort demonstrated a change in the mean RNFL thickness (thinning from baseline) of -0.88 μm (95% confidence interval [CI] -2.63 to 0.86; P = 0.32) and mean GCIP volume of +0.013 mm (95% CI -0.006 to 0.032; P = 0.18). Over the same time period, the first-line therapy-treated cohort demonstrated greater degrees of RNFL thinning (mean change in RNFL thickness was -3.65 μm [95% CI -5.40 to -1.89; P = 0.0001]). There was also more prominent GCIP volume loss relative to baseline in the first-line therapy group (-0.052 mm [95% CI -0.070 to -0.034; P < 0.0001]). CONCLUSIONS Alemtuzumab-treated patients with RRMS demonstrated relative stability of OCT-measured neuroaxonal structure compared with RRMS patients treated with either interferon-β or glatiramer acetate over a 5-year period. These findings, along with previous demonstration of improved brain atrophy rates, suggest that alemtuzumab may offer long-term preservation of neuroaxonal structure in patients with RRMS.
Collapse
|
31
|
El Ayoubi NK, Bou Reslan SW, Baalbaki MM, Darwish H, Khoury SJ. Effect of fingolimod vs interferon treatment on OCT measurements and cognitive function in RRMS. Mult Scler Relat Disord 2021; 53:103041. [PMID: 34051694 DOI: 10.1016/j.msard.2021.103041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To explore prospectively through OCT the rate of retinal layer changes in relapsing-remitting multiple sclerosis patients followed up on fingolimod or interferon, as well as the treatments' differential effects on cognitive tests scores. METHODS This prospective observational study enrolled 128 stable RRMS patients treated either with fingolimod (n = 71) or interferon (n = 56). Symbol-Digit Modality Test and retinal OCT scans were obtained at baseline and every 6 to 12 months. A subgroup of patients underwent expanded cognitive tests annually (Brief visual-spatial memory-total recall, BVMT-delayed recall, and Montreal Cognitive Assessment). Retinal-OCT scans were also obtained from 22 age- and sex-matched healthy controls. Mixed effects regression was used to study annualized changes in retinal layers and cognitive function, including differences between treatment groups. Correlations between annualized changes in retinal measurements and cognitive scores were also explored. RESULTS Fingolimod treated patients showed no significant difference in the rate of thinning of all retinal layers when compared to healthy controls and had significantly less GCIPL thinning when compared to interferons. SDMT scores improved similarly among both RRMS treatment groups. However, interferon but not fingolimod treated patients had significant decline in MOCA and total recall scores. We also found correlations between the annualized change in GCIPL thickness and annualized change in MOCA scores, and similar correlations with annualized change in total recall scores. CONCLUSION Fingolimod has a potential role in reducing retinal neurodegeneration in RRMS. Longitudinal OCT measures appear to be sensitive to changes in cognitive function and may be useful for monitoring neuroprotective therapies.
Collapse
Affiliation(s)
- Nabil K El Ayoubi
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sarah W Bou Reslan
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marwa M Baalbaki
- Department of Neurology, George Washington University, Washington DC, United States
| | - Hala Darwish
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon; Hariri School of Nursing, American University of Beirut, Lebanon
| | - Samia J Khoury
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
32
|
Simpson A, Mowry EM, Newsome SD. Early Aggressive Treatment Approaches for Multiple Sclerosis. Curr Treat Options Neurol 2021; 23:19. [PMID: 34025110 PMCID: PMC8121641 DOI: 10.1007/s11940-021-00677-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW This review presents a comprehensive analysis of the current high-efficacy disease-modifying therapies (DMTs) available for treatment of multiple sclerosis (MS). We discuss the existing approved and emerging therapeutics in patients with relapsing and progressive forms of MS using data from clinical trials and observational studies. Treatment considerations in pediatric and pregnant populations are also reviewed. Finally, we discuss the treatment paradigms of the escalation and early aggressive approaches to treatment of MS, with review of ongoing clinical trials to compare these approaches. RECENT FINDINGS Natalizumab has shown promising data on efficacy in not only randomized trials but also observational studies when compared with placebo, the injectable DMTs, and fingolimod. The anti-CD20 B cell depleting therapies (rituximab, ocrelizumab, and ofatumumab) have also demonstrated superiority in randomized clinical trials compared to their comparator group (placebo, interferon, and teriflunomide, respectively) and rituximab has shown in observational studies to be more effective than older injectable therapies and some of the oral therapies. Alemtuzumab has shown good efficacy in randomized controlled trials and observational studies yet has several potentially severe side effects limiting its use. Mitoxantrone has similarly demonstrated significant reduction in new disease activity compared to placebo but is rarely used due to its severe side effects. Cladribine is an oral DMT often grouped in discussion with other higher efficacy DMTs but may be slightly less effective than the other therapies described in this review. Many emerging targets for therapeutic intervention are currently under investigation that may prove to be beneficial in early aggressive MS, including autologous hematopoietic stem cell transplantation. SUMMARY Traditionally, MS has been treated with an escalation approach, starting patients on a modestly effective DMT and subsequently escalating to a higher efficacy DMT when there is evidence of clinical and/or radiologic breakthrough activity. With the development of higher efficacy therapies and emerging data showing the potential positive long-term impact of these therapies when started earlier in the disease course, many clinicians have shifted to an early aggressive treatment approach in which patients are initially started on a higher efficacy DMT. Two clinical trials, the TRaditional versus Early Aggressive Therapy for MS (TREAT-MS) trial and the Determining the Effectiveness of earLy Intensive Versus Escalation approaches for the treatment of Relapsing-remitting MS (DELIVER-MS) trial, aim to directly compare these treatment strategies and their impact on clinical and radiologic outcomes.
Collapse
Affiliation(s)
- Alexandra Simpson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Ellen M. Mowry
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Scott D. Newsome
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD USA
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins Hospital, 600 North Wolfe St., Pathology 627, Baltimore, MD 21287 USA
| |
Collapse
|
33
|
Klumbies K, Rust R, Dörr J, Konietschke F, Paul F, Bellmann-Strobl J, Brandt AU, Zimmermann HG. Retinal Thickness Analysis in Progressive Multiple Sclerosis Patients Treated With Epigallocatechin Gallate: Optical Coherence Tomography Results From the SUPREMES Study. Front Neurol 2021; 12:615790. [PMID: 33995239 PMCID: PMC8113620 DOI: 10.3389/fneur.2021.615790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Epigallocatechin gallate (EGCG) is an anti-inflammatory agent and has proven neuroprotective properties in animal models of multiple sclerosis (MS). Optical coherence tomography (OCT) assessed retinal thickness analysis can reflect treatment responses in MS. Objective: To analyze the influence of EGCG treatment on retinal thickness analysis as secondary and exploratory outcomes of the randomized controlled Sunphenon in Progressive Forms of MS trial (SUPREMES, NCT00799890). Methods: SUPREMES patients underwent OCT with the Heidelberg Spectralis device at a subset of visits. We determined peripapillary retinal nerve fiber layer (pRNFL) thickness from a 12° ring scan around the optic nerve head and thickness of the ganglion cell/inner plexiform layer (GCIP) and inner nuclear layer (INL) within a 6 mm diameter grid centered on the fovea from a macular volume scan. Longitudinal OCT data were available for exploratory analysis from 31 SUPREMES participants (12/19 primary/secondary progressive MS (PPMS/SPMS); mean age 51 ± 7 years; 12 female; mean time since disease onset 16 ± 11 years). We tested the null hypothesis of no treatment*time interaction using nonparametric analysis of longitudinal data in factorial experiments. Results: After 2 years, there were no significant differences in longitudinal retinal thickness changes between EGCG treated and placebo arms in any OCT parameter (Mean change [confidence interval] ECGC vs. Placebo: pRNFL: -0.83 [1.29] μm vs. -0.64 [1.56] μm, p = 0.156; GCIP: -0.67 [0.67] μm vs. -0.14 [0.47] μm, p = 0.476; INL: -0.06 [0.58] μm vs. 0.22 [0.41] μm, p = 0.455). Conclusion: Retinal thickness analysis did not reveal a neuroprotective effect of EGCG. While this is in line with the results of the main SUPREMES trial, our study was probably underpowered to detect an effect. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT00799890.
Collapse
Affiliation(s)
- Katharina Klumbies
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rebekka Rust
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Dörr
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Neurology Department, Oberhavel Clinic, Hennigsdorf, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
34
|
Lambe J, Risher H, Filippatou AG, Murphy OC, Sotirchos ES, Ehrhardt H, Ogbuokiri E, Pellegrini N, Toliver B, Luciano NJ, Davis S, Fioravante N, Kwakyi O, Prince JL, Calabresi PA, Fitzgerald KC, Saidha S. Modulation of Retinal Atrophy With Rituximab in Multiple Sclerosis. Neurology 2021; 96:e2525-e2533. [PMID: 33827962 DOI: 10.1212/wnl.0000000000011933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/24/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the effects of rituximab on retinal atrophy in patients with relapsing-remitting multiple sclerosis (RRMS), we performed serial optical coherence tomography (OCT) scans among a cohort of patients with RRMS on rituximab and compared rates of ganglion cell + inner plexiform layer (GCIPL) atrophy to those observed among age- and sex-matched glatiramer acetate (GA)-and natalizumab-treated patients with RRMS and healthy controls (HCs). METHODS In this observational study, patients with RRMS treated with a single disease-modifying therapy and HCs were followed with serial OCT for a median duration of 2.8 years. Participants with uncontrolled hypertension, diabetes mellitus, or glaucoma, and eyes with optic neuritis ≤6 months prior to baseline OCT, or during follow-up, were excluded. Statistical analyses were performed using linear mixed-effects regression. RESULTS During the overall follow-up period, rates of GCIPL atrophy were -0.28 ± 0.11 µm/y among rituximab-treated patients with RRMS (n = 35). This was similar to GA-treated (n = 49; -0.33 ± 0.05 µm/y; p = 0.69) and natalizumab-treated patients (n = 88; -0.17 ± 0.10 µm/y; p = 0.13) and faster than HCs (n = 78; -0.15 ± 0.03 µm/y; p = 0.006). Rituximab-treated patients exhibited 0.55 ± 0.23 µm/y faster rates of GCIPL atrophy during the first 12 months of treatment, relative to afterwards (n = 25; p = 0.02), during which period GCIPL atrophy rates were -0.14 ± 0.13 µm/y. CONCLUSIONS Retinal atrophy in RRMS is modulated by rituximab. Greater attenuation of retinal atrophy may occur after 12 months of rituximab treatment, following which time GCIPL atrophy rates are similar to those observed among natalizumab-treated patients with RRMS and HCs. Our findings raise the possibility that the neuroprotective therapeutic response with rituximab in RRMS may take up to 12 months, which should be confirmed by larger studies. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence on the difference in rate of change of the GCIPL thickness in patients with RRMS comparing rituximab to other disease-modifying therapies.
Collapse
Affiliation(s)
- Jeffrey Lambe
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Hunter Risher
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Angeliki G Filippatou
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Olwen C Murphy
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Elias S Sotirchos
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Henrik Ehrhardt
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Esther Ogbuokiri
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Nicole Pellegrini
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Brandon Toliver
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Nicholas J Luciano
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Simidele Davis
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Nicholas Fioravante
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Ohemaa Kwakyi
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jerry L Prince
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Peter A Calabresi
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kathryn C Fitzgerald
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.
| | - Shiv Saidha
- From the Department of Neurology (J.L., H.R., A.G.F., O.C.M., E.S.S., H.E., E.O., N.P., B.T., N.J.L., S.D., N.F., O.K., P.A.C., K.C.F., S.S.), Johns Hopkins University School of Medicine; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
35
|
Toosy AT, Kapur K, Nair KV. Is OCT a Viable Tool to Monitor Disease-Modifying Treatments in RRMS Yet? Neurology 2021; 96:927-928. [PMID: 33827959 DOI: 10.1212/wnl.0000000000011928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ahmed T Toosy
- From the Queen Square MS Centre (A.T.T.), Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; Department of Neurology (K.K.), Boston Children's Hospital, Harvard Medical School, MA; and Department of Neurology and Pharmacy (K.V.N.), University of Colorado Anschutz Medical Campus, Aurora.
| | - Kush Kapur
- From the Queen Square MS Centre (A.T.T.), Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; Department of Neurology (K.K.), Boston Children's Hospital, Harvard Medical School, MA; and Department of Neurology and Pharmacy (K.V.N.), University of Colorado Anschutz Medical Campus, Aurora
| | - Kavita V Nair
- From the Queen Square MS Centre (A.T.T.), Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK; Department of Neurology (K.K.), Boston Children's Hospital, Harvard Medical School, MA; and Department of Neurology and Pharmacy (K.V.N.), University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
36
|
Bsteh G, Hegen H, Altmann P, Auer M, Berek K, Di Pauli F, Leutmezer F, Rommer P, Wurth S, Zinganell A, Zrzavy T, Deisenhammer F, Berger T. Retinal layer thinning predicts treatment failure in relapsing multiple sclerosis. Eur J Neurol 2021; 28:2037-2045. [PMID: 33735479 PMCID: PMC8251588 DOI: 10.1111/ene.14829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Background and purpose Peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell plus inner plexiform layer (GCIPL) thinning are markers of neuroaxonal degeneration in multiple sclerosis (MS), which is reduced by disease‐modifying treatment (DMT). We aimed to investigate the potential of pRNFL and GCIPL thinning for prediction of DMT failure in relapsing MS (RMS). Methods In this 4‐year prospective observational study on 113 RMS patients, pRNFL and GCIPL were measured at DMT initiation and after 12 months (M12) and 24 months (M24). Treatment failure was defined as 6‐month confirmed Expanded Disability Status Scale (EDSS) progression and/or Symbol Digit Modalities Test (SDMT) worsening. Optimal cutoff values for predicting treatment failure were determined by receiver operating characteristic analyses and hazard ratios (HRs) by multivariable Cox regression adjusting for age, sex, disease duration, EDSS/SDMT, and DMT class. Results Thinning of GCIPL >0.5 μm/year at M24 showed superior value for treatment failure prediction (HR: 4.5, 95% confidence interval [CI]: 1.8–7.6, p < 0.001; specificity 91%, sensitivity 81%), followed by GCIPL >0.5 μm at M12 (odds ratio [OR]: 3.9, 95% CI: 1.4–6.9, p < 0.001; specificity 85%, sensitivity 78%), and pRNFL ≥2 μm/year at M24 (OR: 3.7, 95% CI: 1.1–6.5, p = 0.023; specificity 84%, sensitivity 69%), whereas pRNFL at M12 was not predictive. Conclusions GCIPL, and to a lesser degree pRNFL, thinning predicts disability progression after DMT initiation and may be a useful and accessible biomarker of treatment failure in RMS.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
You Y, Barnett MH, Yiannikas C, Parratt JDE, Matthews JG, Graham SL, Klistorner A. Interferon-β Is Less Effective Than Other Drugs in Controlling the Rate of Retinal Ganglion Cell Loss in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e971. [PMID: 33597189 PMCID: PMC8105907 DOI: 10.1212/nxi.0000000000000971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Objective To investigate the association between disease-modifying therapies (DMTs) and the rate of progressive retinal ganglion cell (RGC) and nerve fiber loss in MS. Methods One hundred five relapsing-remitting patients with MS were followed annually for a median of 4.0 years using optical coherence tomography. Twenty-five healthy subjects were also included as normal controls. The rates of global peripapillary retinal nerve fiber layer (pRNFL), temporal RNFL (tRNFL), and ganglion cell inner plexiform layer (GCIPL) thinning were analyzed according to DMT type using a linear mixed-effects model. Optic radiation lesion volume was measured on brain MRI and included as a covariate to minimize the effects of retrograde transsynaptic degeneration. Results The annual rates of RNFL and GCIPL thinning were higher in patients treated with “platform” therapies (interferon-β and glatiramer acetate) compared with DMTs of higher clinical efficacy (including fingolimod, dimethyl fumarate, natalizumab, alemtuzumab, rituximab, and ocrelizumab) (difference = −0.22 μm/y, p = 0.02 for pRNFL; difference = −0.34 μm/y, p = 0.009 for tRNFL; and difference = −0.16 μm/y, p = 0.005 for GCIPL). Based on an analysis of individual treatments (interferon-β, glatiramer acetate, fingolimod, and natalizumab), interferon-β was associated with inferior RGC preservation, relative to the other drugs. No effect difference was found between glatiramer acetate, fingolimod, and natalizumab. Conclusions Progressive loss of RGCs in patients with MS is more pronounced in patients treated with interferon-β than other DMTs. This finding may have implications for DMT selection in MS. Classification of Evidence This study provides Class IV evidence that for patients with MS, treatment with interferon-β compared with other DMTs leads to a more pronounced rate of retinal ganglion cell loss.
Collapse
Affiliation(s)
- Yuyi You
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia.
| | - Michael H Barnett
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Con Yiannikas
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - John D E Parratt
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Jim G Matthews
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Stuart L Graham
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Alexander Klistorner
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| |
Collapse
|
38
|
Barreiro-González A, Sanz MT, Carratalà-Boscà S, Pérez-Miralles F, Alcalá C, Carreres-Polo J, España-Gregori E, Casanova B. Magnetic resonance imaging and optical coherence tomography correlations in multiple sclerosis beyond anatomical landmarks. J Neurol Sci 2020; 419:117180. [PMID: 33091751 DOI: 10.1016/j.jns.2020.117180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 10/10/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate multiple sclerosis (MS) optical coherence tomography (OCT) cross-sectional correlations with central nervous system (CNS) magnetic resonance imaging (MRI). MATERIAL AND METHODS Peripapillary retinal nerve fiber layer (pRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner (INL) and outer nuclear layer (ONL) of 54 relapsing remitting (RRMS) and 38 progressive (PMS, 9 primary and 29 secondary) patients were measured. With less than 3 months brain parenchymal fraction (BPF), spinal cord (SC), total gray matter (GM) and white matter volumes were calculated. Demographical and clinical data was compared according to the history of optic neuritis (HON). Relationships between OCT and MRI data were assessed using multivariable linear regression models, adjusting for age, gender and disease duration, taking into account HON and disease subtype. RESULTS Cerebellum (p = 0.008), pRNFL (p = 0.001), GCL (p = 0.001) and IPL (p = 0.001) were thinner, while INL was thicker (p = 0.02) if HON. SC correlated better with nasal pRNFL sectors in eyes with HON (all eyes: average pRNFL p = 0.035 η2 = 0.213; N-pRNFL p = 0.04 η2 = 0.36, NI-pRNFL p = 0.0001 η2 = 0.484. RRMS eyes: N-pRNFL p = 0.034 η2 = 0.348; NI-pRNFL p = 0.013 η2 = 0.441), while it correlates with PMB (p = 0.032 η2 = 0.144), GCL (p = 0.03 η2 = 0.147) and IPL (p = 0.028 η2 = 0.151) in eyes without HON regardless of the disease subtype. INL presented no microcystic macular oedema and was inversely associated with BPF (p = 0.029 η2 = 0.363) and cerebellum (p = 0.015 η2 = 0.428) in PMS eyes without HON. CONCLUSIONS OCT data correlates with different CNS compartments, even with no anatomical or functional linkage, serving as useful neurodegeneration and inflammation surrogate marker.
Collapse
Affiliation(s)
| | - Maria T Sanz
- Departamento de Didáctica de la Matemática, Universidad de Valencia, Valencia, Spain
| | - Sara Carratalà-Boscà
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - Carmen Alcalá
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Joan Carreres-Polo
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Enrique España-Gregori
- Ophthalmology Department, La Fe University and Polytechnic Hospital, Valencia, Spain; Surgery Department, Faculty of Medicine, University of Valencia, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain; Medicine Department, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
39
|
Bsteh G, Berek K, Hegen H, Altmann P, Wurth S, Auer M, Zinganell A, Di Pauli F, Rommer P, Leutmezer F, Deisenhammer F, Berger T. Macular ganglion cell-inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult Scler 2020; 27:684-694. [PMID: 32613912 DOI: 10.1177/1352458520935724] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Macular ganglion cell-inner plexiform layer (mGCIPL) is an emerging biomarker of neuroaxonal degeneration in multiple sclerosis (MS). OBJECTIVE We aimed to determine cut-off values of mGCIPL thinning for discriminating between progressing and stable patients in relapsing multiple sclerosis (RMS). METHODS This is a 3-year prospective longitudinal study on 183 RMS patients with annual optical coherence tomography. Best possible cut-off values of baseline mGCIPL and annual loss of macular ganglion cell-inner plexiform layer (aLmGCIPL) for discriminating clinically progressing (physical progression or cognitive decline) from stable patients were defined by receiver operating characteristics analysis and tested using multivariate regression models. RESULTS Baseline mGCIPL thickness <77 µm was associated with an increased risk (hazard ratio: 2.7, 95% confidence interval (CI): 1.5-4.7, p < 0.001) of disability progression. An aLmGCIPL cut-off ⩾1 µm accurately identified clinically progressing patients (87% sensitivity at 90% specificity) and was a strong predictor of clinical progression (odds ratio: 18.3, 95% CI: 8.8-50.3). CONCLUSION We present evidence that cross-sectionally measured mGCIPL thickness and annualized thinning rates of mGCIPL are able to identify clinically progressing RMS with high accuracy.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria/Department of Neurology, Medical University of Graz, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Cennamo G, Carotenuto A, Montorio D, Petracca M, Moccia M, Melenzane A, Tranfa F, Lamberti A, Spiezia AL, Servillo G, De Angelis M, Petruzzo M, Criscuolo C, Lanzillo R, Brescia Morra V. Peripapillary Vessel Density as Early Biomarker in Multiple Sclerosis. Front Neurol 2020; 11:542. [PMID: 32625163 PMCID: PMC7311750 DOI: 10.3389/fneur.2020.00542] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
Background: To evaluate retinal vessel density (VD) in macular and in peripapillary regions in patients with recent onset of multiple sclerosis, at initial demyelinating event (IDE) and in matched relapsing-remitting multiple sclerosis (RRMS) patients. Methods: We evaluated VD in superficial capillary plexus, deep capillary plexus, choriocapillaris and radial peripapillary capillary plexus in IDE, RRMS patients and in matched healthy controls (HCs) through Optical Coherence Tomography Angiography (OCT-A). Clinical history, including history of optic neuritis, Expanded Disability Status scale and disease duration of patients were collected. Results: Thirty patients (20 with IDE and 10 with RRMS) and 15 HCs were enrolled. IDE patients showed a lower VD in radial peripapillary capillary plexus compared with controls (coeff. β = −3.578; p = 0.002). RRMS patients displayed a lower VD in both superficial capillary plexus and radial peripapillary capillary plexus compared with HCs (coeff. β = −4.955; p = 0.002, and coeff. β = −7.446; p < 0.001, respectively). Furthermore, RRMS patients showed a decreased VD in radial peripapillary capillary plexus compared with IDE patients (coeff. β = −3.868; p = 0.003). Conclusions: Peripapillary region vessel density reduction, revealed through OCT-A, might be considered as an early event in MS, and might be relevant as a biomarker of disease pathology.
Collapse
Affiliation(s)
- Gilda Cennamo
- Eye Clinic, Public Health Department, University of Naples Federico II, Naples, Italy
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Daniela Montorio
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Maria Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Antonietta Melenzane
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Anna Lamberti
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Antonio L Spiezia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Giuseppe Servillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Marcello De Angelis
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Martina Petruzzo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| |
Collapse
|
41
|
Kuchling J, Paul F. Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Front Neurol 2020; 11:450. [PMID: 32625158 PMCID: PMC7311777 DOI: 10.3389/fneur.2020.00450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune central nervous system conditions with increasing incidence and prevalence. While MS is the most frequent inflammatory CNS disorder in young adults, NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts for approximately 1% of demyelinating disorders, with the relative proportion within the demyelinating CNS diseases varying widely among different races and regions. Most immunomodulatory drugs used in MS are inefficacious or even harmful in NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction from MS. Despite distinct immunopathology and differences in disease course and severity there might be considerable overlap in clinical and imaging findings, posing a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal cord is of paramount importance when managing patients with autoimmune CNS conditions. Once a diagnosis has been established, imaging techniques are often deployed at regular intervals over the disease course as surrogate measures for disease activity and progression and to surveil treatment effects. While the application of some imaging modalities for monitoring of disease course was established decades ago in MS, the situation is unclear in NMOSD where work on longitudinal imaging findings and their association with clinical disability is scant. Moreover, as long-term disability is mostly attack-related in NMOSD and does not stem from insidious progression as in MS, regular follow-up imaging might not be useful in the absence of clinical events. However, with accumulating evidence for covert tissue alteration in NMOSD and with the advent of approved immunotherapies the role of imaging in the management of NMOSD may be reconsidered. By contrast, MS management still faces the challenge of implementing imaging techniques that are capable of monitoring progressive tissue loss in clinical trials and cohort studies into treatment algorithms for individual patients. This article reviews the current status of imaging research in MS and NMOSD with an emphasis on emerging modalities that have the potential to be implemented in clinical practice.
Collapse
Affiliation(s)
- Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
42
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
43
|
Sotirchos ES, Gonzalez Caldito N, Filippatou A, Fitzgerald KC, Murphy OC, Lambe J, Nguyen J, Button J, Ogbuokiri E, Crainiceanu CM, Prince JL, Calabresi PA, Saidha S. Progressive Multiple Sclerosis Is Associated with Faster and Specific Retinal Layer Atrophy. Ann Neurol 2020; 87:885-896. [PMID: 32285484 DOI: 10.1002/ana.25738] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Therapeutic development in progressive multiple sclerosis (PMS) has been hampered by a lack of reliable biomarkers to monitor neurodegeneration. Optical coherence tomography (OCT)-derived retinal measures have been proposed as promising biomarkers to fulfill this role. However, it is unclear whether retinal atrophy persists in PMS, exceeds normal aging, or can be distinguished from relapsing-remitting multiple sclerosis (RRMS). METHODS 178 RRMS, 186 PMS, and 66 control participants were followed with serial OCT for a median follow-up of 3.7 years. RESULTS The estimated proportion of peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell + inner plexiform layer (GCIPL) thinning in multiple sclerosis (MS) attributable to normal aging increased from 42.7% and 16.7% respectively at age 25 years, to 83.7% and 81.1% at age 65 years. However, independent of age, PMS was associated with faster pRNFL (-0.34 ± 0.09%/yr, p < 0.001) and GCIPL (-0.27 ± 0.07%/yr, p < 0.001) thinning, as compared to RRMS. In both MS and controls, higher baseline age was associated with faster inner nuclear layer (INL) and outer nuclear layer (ONL) thinning. INL and ONL thinning were independently faster in PMS, as compared to controls (INL:-0.09 ± 0.04%/yr, p = 0.03; ONL:-0.12 ± 0.06%/yr, p = 0.04), and RRMS (INL:-0.10 ± 0.04%/yr, p = 0.01; ONL:-0.13 ± 0.05%/yr, p = 0.01), whereas they were similar in RRMS and controls. Unlike RRMS, disease-modifying therapies (DMTs) did not impact rates of retinal layer atrophy in PMS. INTERPRETATION PMS is associated with faster retinal atrophy independent of age. INL and ONL measures may be novel biomarkers of neurodegeneration in PMS that appear to be unaffected by conventional DMTs. The effects of aging on rates of retinal layer atrophy should be considered in clinical trials incorporating OCT outcomes. ANN NEUROL 2020;87:885-896.
Collapse
Affiliation(s)
- Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Angeliki Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olwen C Murphy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Nguyen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia Button
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Ogbuokiri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
44
|
The International Multiple Sclerosis Visual System Consortium: Advancing Visual System Research in Multiple Sclerosis. J Neuroophthalmol 2020; 38:494-501. [PMID: 30418332 DOI: 10.1097/wno.0000000000000732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The International Multiple Sclerosis Visual System Consortium (IMSVISUAL) was formed in November 2014 with the primary goal of improving research, care, and education regarding the role of the visual system in multiple sclerosis (MS) and related disorders. METHODS In this review, we describe the formation, goals, activities, and structure of IMSVISUAL, as well as the relationship of IMSVISUAL with the Americas Committee for Treatment and Research in MS (ACTRIMS). Finally, we provide an overview of the work IMSVISUAL has completed to date, as well as an outline of research projects ongoing under the auspices of IMSVISUAL. RESULTS IMSVISUAL has 140 members worldwide and continues to grow. Through IMSVISUAL-related research, optical coherence tomography (OCT)-derived peripapillary retinal nerve fiber layer (pRNFL) thinning has been established as a predictor of future disability in MS. IMSVISUAL has also developed guidelines for reporting OCT studies in MS. Moreover, a systematic review performed by IMSVISUAL found that not only are pRNFL and ganglion cell + inner plexiform layer (GCIPL) thicknesses reduced in patients with MS (particularly in eyes with prior optic neuritis [ON]), but that inner nuclear layer measures may be higher among MS ON eyes, relative to healthy control eyes. Currently, there are several ongoing IMSVISUAL projects that will establish a role for visual outcomes in diagnosing MS and quantifying the effects of emerging therapies in clinical trials. CONCLUSIONS The development of IMSVISUAL represents a major collaborative commitment to defining the role of visual outcomes in high-quality, large-scale studies that generate definitive and instructive findings in the field of MS. As a consortium, IMSVISUAL has completed several international collaborative projects, is actively engaged in numerous ongoing research studies, and is committed to expanding the role of vision research in MS and related disorders.
Collapse
|
45
|
Hu H, Jiang H, Gameiro GR, Hernandez J, Delgado S, Wang J. Focal Thickness Reduction of the Ganglion Cell-Inner Plexiform Layer Best Discriminates Prior Optic Neuritis in Patients With Multiple Sclerosis. Invest Ophthalmol Vis Sci 2020; 60:4257-4269. [PMID: 31618762 PMCID: PMC6996667 DOI: 10.1167/iovs.19-27574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose The goal was to visualize topographic thickness maps of the intraretinal layers and evaluate their discrimination abilities and relationships with clinical manifestations in patients with multiple sclerosis (MS) and a history of optic neuritis (ON). Methods Thirty patients with relapsing-remitting MS (34 eyes with a history of ON [MSON] and 26 non-ON fellow eyes [MSFE]) were recruited together with 63 age- and sex-matched controls (HC). Ultrahigh resolution optical coherence tomography was used to image the macula and the volumetric data set was segmented to yield six intraretinal layers. Topographic thickness maps were aligned and averaged for the visualization. The thickness maps were partitioned using the Early Treatment Diabetic Retinopathy Study (ETDRS) and related to Sloan low-contrast letter acuity (LCLA), Expanded Disability Status Scale (EDSS), and disease duration. Results Focal thickness reduction occurred in the macular retinal nerve fiber layer (mRNFL) and ganglion cell-inner plexiform layer (GCIPL), with the most profound reduction occurring in MSON eyes (P < 0.05). A horseshoe-like thickness reduction pattern (U Zone) in the GCIPL appeared in MSON. The thickness of the U Zone had better discrimination power than the ETDRS partitions (area under the curve = 0.97) and differentiated 96% of MSON from HC. The thickness of the U Zone was positively correlated to 2.5% LCLA (r = 0.38, P < 0.05) and 1.25% LCLA (r = 0.57, P < 0.05). Conclusions The horseshoe-like thickness reduction of the GCIPL appeared to be an ON-specific focal thickness alteration with the highest discrimination power of prior ON.
Collapse
Affiliation(s)
- Huiling Hu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Giovana Rosa Gameiro
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jeffrey Hernandez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
46
|
Rotstein D, Montalban X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol 2020; 15:287-300. [PMID: 30940920 DOI: 10.1038/s41582-019-0170-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Personalized treatment is ideal for multiple sclerosis (MS) owing to the heterogeneity of clinical features, but current knowledge gaps, including validation of biomarkers and treatment algorithms, limit practical implementation. The contemporary approach to personalized MS therapy depends on evidence-based prognostication, an initial treatment choice and evaluation of early treatment responses to identify the need to switch therapy. Prognostication is directed by baseline clinical, environmental and demographic factors, MRI measures and biomarkers that correlate with long-term disability measures. The initial treatment choice should be a shared decision between the patient and physician. In addition to prognosis, this choice must account for patient-related factors, including comorbidities, pregnancy planning, preferences of the patients and their comfort with risk, and drug-related factors, including safety, cost and implications for treatment sequencing. Treatment response has traditionally been assessed on the basis of relapse rate, MRI lesions and disability progression. Larger longitudinal data sets have enabled development of composite outcome measures and more stringent standards for disease control. Biomarkers, including neurofilament light chain, have potential as early surrogate markers of prognosis and treatment response but require further validation. Overall, attainment of personalized treatment for MS is complex but will be refined as new data become available.
Collapse
Affiliation(s)
- Dalia Rotstein
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xavier Montalban
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada. .,Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
47
|
Mancino R, Cesareo M, Martucci A, Di Carlo E, Ciuffoletti E, Giannini C, Morrone LA, Nucci C, Garaci F. Neurodegenerative Process Linking the Eye and the Brain. Curr Med Chem 2019. [PMID: 29521197 DOI: 10.2174/0929867325666180307114332] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent literature agrees that neurodegenerative processes involve both the retina and the central nervous system, which are two strictly related anatomical structures. However, the causal mechanisms of this dual involvement are still uncertain. To date, anterograde transsynaptic neurodegeneration, triggered by retinal ganglion cells' death, and retrograde transsynaptic neurodegeneration, induced by neurodegenerative processes of the central nervous system, has been considered the major possible causal mechanisms. The development of novel neuroimaging techniques has recently supported both the study of the central stations of the visual pathway as well as the study of the retina which is possibly an open window to the central nervous system.
Collapse
Affiliation(s)
- Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emiliano Di Carlo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elena Ciuffoletti
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Clarissa Giannini
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine an d Prevention, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
48
|
Lambe J, Saidha S, Bermel RA. Optical coherence tomography and multiple sclerosis: Update on clinical application and role in clinical trials. Mult Scler 2019; 26:624-639. [PMID: 32412377 DOI: 10.1177/1352458519872751] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optical coherence tomography (OCT) has emerged as a fast, non-invasive, inexpensive, high-resolution imaging technique in multiple sclerosis (MS). Retinal layer quantification by OCT facilitates a 'window' into not only local retinal pathology but also global neurodegenerative processes, recognised to be the principal substrates of disability accumulation in MS. While OCT measures in MS have been demonstrated to reflect visual function, inflammatory activity outside of the visual pathways, disability measures including the prediction of disability progression, whole brain atrophy, and the differential neuroprotective effects of disease-modifying therapies, debate continues regarding the clinical utility of OCT in everyday practice. This review presents an overview of the evidence supporting OCT, with particular focus on its application in the MS clinic. We will also discuss the role of OCT in MS clinical trials to develop novel neuroprotective and potential remyelinating therapies.
Collapse
Affiliation(s)
- Jeffrey Lambe
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Evolution of Visual Outcomes in Clinical Trials for Multiple Sclerosis Disease-Modifying Therapies. J Neuroophthalmol 2019; 38:202-209. [PMID: 29750734 DOI: 10.1097/wno.0000000000000662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
: BACKGROUND:: The visual pathways are increasingly recognized as an ideal model to study neurodegeneration in multiple sclerosis (MS). Low-contrast letter acuity (LCLA) and optical coherence tomography (OCT) are validated measures of function and structure in MS. In fact, LCLA was the topic of a recent review by the Multiple Sclerosis Outcome Assessments Consortium (MSOAC) to qualify this visual measure as a primary or secondary clinical trial endpoint with the Food and Drug Administration (FDA) and other regulatory agencies. This review focuses on the use of LCLA and OCT measures as outcomes in clinical trials to date of MS disease-modifying therapies. METHODS A Pubmed search using the specific key words "optical coherence tomography," "low-contrast letter acuity," "multiple sclerosis," and "clinical trials" was performed. An additional search on the clinicaltrials.gov website with the same key words was used to find registered clinical trials of MS therapies that included these visual outcome measures. RESULTS As demonstrated by multiple clinical trials, LCLA and OCT measures are sensitive to treatment effects in MS. LCLA has been used in many clinical trials to date, and findings suggest that 7 letters of LCLA at the 2.5% contrast level are meaningful change. Few clinical trials using the benefits of OCT have been performed, although results of observational studies have solidified the ability of OCT to assess change in retinal structure. Continued accrual of clinical trial and observational data is needed to validate the use of OCT in clinical trials, but preliminary work suggests that an intereye difference in retinal nerve fiber layer thickness of 5-6 μm is a clinically meaningful threshold that identifies an optic nerve lesion in MS. CONCLUSIONS Visual impairment represents a significant component of overall disability in MS. LCLA and OCT enhance the detection of visual pathway injury and can be used as measures of axonal and neuronal integrity. Continued investigation is ongoing to further incorporate these vision-based assessments into clinical trials of MS therapies.
Collapse
|
50
|
Racial differences in retinal neurodegeneration as a surrogate marker for cortical atrophy in multiple sclerosis. Mult Scler Relat Disord 2019; 31:141-147. [DOI: 10.1016/j.msard.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
|