1
|
Tokatly Latzer I, Pearl PL. Creativity and its link to epilepsy. Epilepsia Open 2024. [PMID: 39589388 DOI: 10.1002/epi4.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Creative thinking represents one of our highest-order cognitive processes, involving multiple cortical structures and an intricate interplay between several cortical and subcortical networks. It results in novel ideas that translate to useful products or concepts. The evolutionary purpose of creativity is therefore apparent, as it advances our adaptation and survival. Elucidating the neurobiology and neuroanatomy of creative cognition is challenging because the construct of creativity is not clearly defined, and the many neuropsychological measures attempting to assess it are often biased, leading to imprecise findings. Using examples from the medical and music fields, creativity is demonstrably linked to the default mode network (DMN), which has the unique property of becoming activated at times of "quiet wakefulness," facilitating "defaulted" internally focused cognitive operations. Creative thoughts result from a process involving the activation and deactivation of the DMN as part of a dynamic interplay shared with the central executive network and affective salience network. The question is posed whether seizures originating from DMN-related cortical areas should be considered as having overlap with eloquent cortex, potentially exempting them from removal in epilepsy surgery. PLAIN LANGUAGE SUMMARY: Creative thinking is a higher-order cognitive process involving multiple brain structures and networks. It results in insightful and original thoughts that translate to useful products or concepts, which allow us to adapt to our surroundings. This Narrative Review presents conceptual, investigational, and neurobiological aspects of creativity, including information about a unique brain network termed "default mode network (DMN)," which activates at times of "quiet wakefulness," facilitating internally focused cognitive operations. The review ends with a discussion on whether regions of the DMN from which seizures originate should be regarded as "eloquent" and their removal should be deferred by epilepsy surgery.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Fan LP, Quijano-Ruiz A, Wang C, Zhao HW, Wang DN, Wu HM, Liu L, Zhan YH, Zhou XB. Effects of personalized music listening on post-stroke cognitive impairment: A randomized controlled trial. Complement Ther Clin Pract 2024; 57:101885. [PMID: 39098085 DOI: 10.1016/j.ctcp.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND PURPOSE Previous studies have suggested that music listening has the potential to positively affect cognitive functions and mood in individuals with post-stroke cognitive impairment (PSCI), with a preference for self-selected music likely to yield better outcomes. However, there is insufficient clinical evidence to suggest the use of music listening in routine rehabilitation care to treat PSCI. This randomized control trial (RCT) aims to investigate the effects of personalized music listening on mood improvement, activities of daily living (ADLs), and cognitive functions in individuals with PSCI. MATERIALS AND METHODS A total of 34 patients with PSCI were randomly assigned to either the music group or the control group. Patients in the music group underwent a three-month personalized music-listening intervention. The intervention involved listening to a personalized playlist tailored to each individual's cultural, ethnic, and social background, life experiences, and personal music preferences. In contrast, the control group patients listened to white noise as a placebo. Cognitive function, neurological function, mood, and ADLs were assessed. RESULTS After three months of treatment, the music group showed significantly higher Montreal Cognitive Assessment (MoCA) scores compared to the control group (p=0.027), particularly in the domains of delayed recall (p=0.019) and orientation (p=0.023). Moreover, the music group demonstrated significantly better scores in National Institutes of Health Stroke Scale (NIHSS) (p=0.008), Barthel Index (BI) (p=0.019), and Zarit Caregiver Burden Interview (ZBI) (p=0.008) compared to the control group. No effects were found on mood as measured by the Hamilton Anxiety Rating Scale (HAMA) and the Hamilton Depression Rating Scale (HAMD). CONCLUSION Personalized music listening promotes the recovery of cognitive and neurological functions, improves ADLs, and reduces caregiver burden in patients with PSCI.
Collapse
Affiliation(s)
- Li-Ping Fan
- Department of Neurology, Xinglin Branch of the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361022, China
| | - Alonso Quijano-Ruiz
- College of Arts, Xiamen University, Xiamen, Fujian, 361003, China; Ecuadorian Development Research Lab, Daule, Guayas, 090656, Ecuador
| | - Chen Wang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Hong-Wei Zhao
- College of Arts, Xiamen University, Xiamen, Fujian, 361003, China
| | - Dan-Ni Wang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Han-Ming Wu
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Lin Liu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Yi-Hong Zhan
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Xian-Bao Zhou
- College of Arts, Xiamen University, Xiamen, Fujian, 361003, China.
| |
Collapse
|
3
|
Bartoli E, Devara E, Dang HQ, Rabinovich R, Mathura RK, Anand A, Pascuzzi BR, Adkinson J, Kenett YN, Bijanki KR, Sheth SA, Shofty B. Default mode network electrophysiological dynamics and causal role in creative thinking. Brain 2024; 147:3409-3425. [PMID: 38889248 PMCID: PMC11449134 DOI: 10.1093/brain/awae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The default mode network (DMN) is a widely distributed, intrinsic brain network thought to play a crucial role in internally directed cognition. The present study employs stereo-EEG in 13 human patients, obtaining high resolution neural recordings across multiple canonical DMN regions during two processes that have been associated with creative thinking: spontaneous and divergent thought. We probe these two DMN-associated higher cognitive functions through mind wandering and alternate uses tasks, respectively. Our results reveal DMN recruitment during both tasks, as well as a task-specific dissociation in spatiotemporal response dynamics. When compared to the fronto-parietal network, DMN activity was characterized by a stronger increase in gamma band power (30-70 Hz) coupled with lower theta band power (4-8 Hz). The difference in activity between the two networks was especially strong during the mind wandering task. Within the DMN, we found that the tasks showed different dynamics, with the alternate uses task engaging the DMN more during the initial stage of the task, and mind wandering in the later stage. Gamma power changes were mainly driven by lateral DMN sites, while theta power displayed task-specific effects. During alternate uses task, theta changes did not show spatial differences within the DMN, while mind wandering was associated to an early lateral and late dorsomedial DMN engagement. Furthermore, causal manipulations of DMN regions using direct cortical stimulation preferentially decreased the originality of responses in the alternative uses task, without affecting fluency or mind wandering. Our results suggest that DMN activity is flexibly modulated as a function of specific cognitive processes and supports its causal role in divergent thinking. These findings shed light on the neural constructs supporting different forms of cognition and provide causal evidence for the role of DMN in the generation of original connections among concepts.
Collapse
Affiliation(s)
- Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan Devara
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huy Q Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rikki Rabinovich
- Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Raissa K Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bailey R Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion—Israel Institute of Technology, Haifa, 3200003Israel
| | - Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ben Shofty
- Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
4
|
Hsieh JK, Prakash PR, Flint RD, Fitzgerald Z, Mugler E, Wang Y, Crone NE, Templer JW, Rosenow JM, Tate MC, Betzel R, Slutzky MW. Cortical sites critical to language function act as connectors between language subnetworks. Nat Commun 2024; 15:7897. [PMID: 39284848 PMCID: PMC11405775 DOI: 10.1038/s41467-024-51839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Historically, eloquent functions have been viewed as localized to focal areas of human cerebral cortex, while more recent studies suggest they are encoded by distributed networks. We examined the network properties of cortical sites defined by stimulation to be critical for speech and language, using electrocorticography from sixteen participants during word-reading. We discovered distinct network signatures for sites where stimulation caused speech arrest and language errors. Both demonstrated lower local and global connectivity, whereas sites causing language errors exhibited higher inter-community connectivity, identifying them as connectors between modules in the language network. We used machine learning to classify these site types with reasonably high accuracy, even across participants, suggesting that a site's pattern of connections within the task-activated language network helps determine its importance to function. These findings help to bridge the gap in our understanding of how focal cortical stimulation interacts with complex brain networks to elicit language deficits.
Collapse
Affiliation(s)
- Jason K Hsieh
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Prashanth R Prakash
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA
| | - Robert D Flint
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zachary Fitzgerald
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew C Tate
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Cognitive Science Program, Program in Neuroscience, and Network Science Institute, Indiana University, Bloomington, IN, 47401, USA
| | - Marc W Slutzky
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Mahgoub R, Bayram AK, Spencer DD, Alkawadri R. Functional parcellation of the cingulate gyrus by electrical cortical stimulation: a synthetic literature review and future directions. J Neurol Neurosurg Psychiatry 2024; 95:704-721. [PMID: 38242679 DOI: 10.1136/jnnp-2023-332246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND The cingulate gyrus (CG), a brain structure above the corpus callosum, is recognised as part of the limbic system and plays numerous vital roles. However, its full functional capacity is yet to be understood. In recent years, emerging evidence from imaging modalities, supported by electrical cortical stimulation (ECS) findings, has improved our understanding. To our knowledge, there is a limited number of systematic reviews of the cingulate function studied by ECS. We aim to parcellate the CG by reviewing ECS studies. DESIGN/METHODS We searched PubMed and Embase for studies investigating CG using ECS. A total of 30 studies met the inclusion criteria. We evaluated the ECS responses across the cingulate subregions and summarised the reported findings. RESULTS We included 30 studies (totalling 887 patients, with a mean age of 31.8±9.8 years). The total number of electrodes implanted within the cingulate was 3028 electrode contacts; positive responses were obtained in 941 (31.1%, median percentages, 32.3%, IQR 22.2%-64.3%). The responses elicited from the CG were as follows. Simple motor (8 studies, 26.7 %), complex motor (10 studies, 33.3%), gelastic with and without mirth (7 studies, 23.3%), somatosensory (9 studies, 30%), autonomic (11 studies, 36.7 %), psychic (8 studies, 26.7%) and vestibular (3 studies, 10%). Visual and speech responses were also reported. Despite some overlap, the results indicate that the anterior cingulate cortex is responsible for most emotional, laughter and autonomic responses, while the middle cingulate cortex controls most complex motor behaviours, and the posterior cingulate cortex (PCC) regulates visual, among various other responses. Consistent null responses have been observed across different regions, emphasising PCC. CONCLUSIONS Our results provide a segmental mapping of the functional properties of CG, helping to improve precision in the surgical planning of epilepsy.
Collapse
Affiliation(s)
- Rawan Mahgoub
- Department of Neurology, The University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Ayse Kacar Bayram
- Department of Pediatrics, Division of Pediatric Neurology, University of Health Sciences, Kayseri City Hospital, Kayseri, Turkey
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rafeed Alkawadri
- Department of Neurology, The University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Ramos Benitez J, Kannan S, Hastings WL, Parker BJ, Willbrand EH, Weiner KS. Ventral temporal and posteromedial sulcal morphology in autism spectrum disorder. Neuropsychologia 2024; 195:108786. [PMID: 38181845 DOI: 10.1016/j.neuropsychologia.2024.108786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Two parallel research tracks link the morphology of small and shallow indentations, or sulci, of the cerebral cortex with functional features of the cortex and human cognition, respectively. The first track identified a relationship between the mid-fusiform sulcus (MFS) in ventral temporal cortex (VTC) and cognition in individuals with Autism Spectrum Disorder (ASD). The second track identified a new sulcus, the inframarginal sulcus (IFRMS), that serves as a tripartite landmark within the posteromedial cortex (PMC). As VTC and PMC are structurally and functionally different in ASD, here, we integrated these two tracks and tested if there are morphological differences in VTC and PMC sulci in a sample of young (5-17 years old) male participants (50 participants with ASD and 50 neurotypical controls). Our approach replicates and extends recent findings in four ways. First, regarding replication, the standard deviation (STD) of MFS cortical thickness (CT) was increased in ASD. Second, MFS length was shorter in ASD. Third, the CT STD effect extended to other VTC and to PMC sulci. Fourth, additional morphological features of VTC sulci (depth, surface area, gray matter volume) and PMC sulci (mean CT) were decreased in ASD, including putative tertiary sulci, which emerge last in gestation and continue to develop after birth. To our knowledge, this study is the most extensive comparison of the sulcal landscape (including putative tertiary sulci) in multiple cortical expanses between individuals with ASD and NTs based on manually defined sulci at the level of individual hemispheres, providing novel targets for future studies of neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Javier Ramos Benitez
- Neuroscience Graduate Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Sandhya Kannan
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - William L Hastings
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Rossi E, Marrosu F, Saba L. Music Therapy as a Complementary Treatment in Patients with Dementia Associated to Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2024; 98:33-51. [PMID: 38427477 DOI: 10.3233/jad-230852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is a complex condition that affects various aspects of a patient's life. Music therapy may be considered a beneficial supplementary tool to traditional therapies, that not fully address the range of AD manifestations. Objective The purpose of this systematic review is to investigate whether music therapy can have a positive impact on AD patients and on which symptoms. Methods The main research databases employed have been PubMed and Cochrane, using the keywords "dementia", "music therapy", "Alzheimer", "fMRI", "music", and "EEG". Results After removing duplicates and irrelevant studies, 23 were screened using set criteria, resulting in the final inclusion of 15 studies. The total number of participants included in these studies has been of 1,196 patients. For the fMRI analysis the search resulted in 28 studies on PubMed, two of which were included in the research; the total number of participants was of 124 individuals. The studies conducted with EEG were found using PubMed. The initial search resulted in 15 studies, but after a more accurate evaluation only 2 have been included in the analysis. Conclusions Even though the data currently available is not sufficient to draw conclusions supported by robust statistical power, the impact of music therapy on AD neuropsychiatric symptoms deserves great interest. Further research should be ushered, possibly multicentric studies, led with neuroimaging and other recent techniques, which can eventually open views on the music role in improving the cognitive status in AD.
Collapse
Affiliation(s)
- Eleonora Rossi
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | | | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Bartoli E, Devara E, Dang HQ, Rabinovich R, Mathura RK, Anand A, Pascuzzi BR, Adkinson J, Bijanki KR, Sheth SA, Shofty B. Default mode network spatio-temporal electrophysiological signature and causal role in creativity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557639. [PMID: 37786678 PMCID: PMC10541614 DOI: 10.1101/2023.09.13.557639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The default mode network (DMN) is a widely distributed, intrinsic brain network thought to play a crucial role in internally-directed cognition. It subserves self-referential thinking, recollection of the past, mind wandering, and creativity. Knowledge about the electrophysiology underlying DMN activity is scarce, due to the difficulty to simultaneously record from multiple distant cortical areas with commonly-used techniques. The present study employs stereo-electroencephalography depth electrodes in 13 human patients undergoing monitoring for epilepsy, obtaining high spatiotemporal resolution neural recordings across multiple canonical DMN regions. Our results offer a rare insight into the temporal evolution and spatial origin of theta (4-8Hz) and gamma signals (30-70Hz) during two DMN-associated higher cognitive functions: mind-wandering and alternate uses. During the performance of these tasks, DMN activity is defined by a specific pattern of decreased theta coupled with increased gamma power. Critically, creativity and mind wandering engage the DMN with different dynamics: creativity recruits the DMN strongly during the covert search of ideas, while mind wandering displays the strongest modulation of DMN during the later recall of the train of thoughts. Theta band power modulations, predominantly occurring during mind wandering, do not show a predominant spatial origin within the DMN. In contrast, gamma power effects were similar for mind wandering and creativity and more strongly associated to lateral temporal nodes. Interfering with DMN activity through direct cortical stimulation within several DMN nodes caused a decrease in creativity, specifically reducing the originality of the alternate uses, without affecting creative fluency or mind wandering. These results suggest that DMN activity is flexibly modulated as a function of specific cognitive processes and supports its causal role in creative thinking. Our findings shed light on the neural constructs supporting creative cognition and provide causal evidence for the role of DMN in the generation of original connections among concepts.
Collapse
Affiliation(s)
- E Bartoli
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - E Devara
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - H Q Dang
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - R Rabinovich
- Department of Neurosurgery, University of Utah, USA
| | - R K Mathura
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - A Anand
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - B R Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - J Adkinson
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - K R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, USA
- Department of Neuroscience, Baylor College of Medicine, USA
| | - S A Sheth
- Department of Neurosurgery, Baylor College of Medicine, USA
- Department of Neuroscience, Baylor College of Medicine, USA
| | - B Shofty
- Department of Neurosurgery, University of Utah, USA
| |
Collapse
|
9
|
Lyu D, Stieger JR, Xin C, Ma E, Lusk Z, Aparicio MK, Werbaneth K, Perry CM, Deisseroth K, Buch V, Parvizi J. Causal evidence for the processing of bodily self in the anterior precuneus. Neuron 2023; 111:2502-2512.e4. [PMID: 37295420 DOI: 10.1016/j.neuron.2023.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023]
Abstract
To probe the causal importance of the human posteromedial cortex (PMC) in processing the sense of self, we studied a rare cohort of nine patients with electrodes implanted bilaterally in the precuneus, posterior cingulate, and retrosplenial regions with a combination of neuroimaging, intracranial recordings, and direct cortical stimulations. In all participants, the stimulation of specific sites within the anterior precuneus (aPCu) caused dissociative changes in physical and spatial domains. Using single-pulse electrical stimulations and neuroimaging, we present effective and resting-state connectivity of aPCu hot zone with the rest of the brain and show that they are located outside the boundaries of the default mode network (DMN) but connected reciprocally with it. We propose that the function of this subregion of the PMC is integral to a range of cognitive processes that require the self's physical point of reference, given its location within a spatial environment.
Collapse
Affiliation(s)
- Dian Lyu
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - James Robert Stieger
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cindy Xin
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eileen Ma
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Mariel Kalkach Aparicio
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Werbaneth
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Megan Perry
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl Deisseroth
- Departments of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivek Buch
- Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University School of Medicine, Stanford, CA, USA; Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Departments of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Havlík M, Hlinka J, Klírová M, Adámek P, Horáček J. Towards causal mechanisms of consciousness through focused transcranial brain stimulation. Neurosci Conscious 2023; 2023:niad008. [PMID: 37089451 PMCID: PMC10120840 DOI: 10.1093/nc/niad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Conscious experience represents one of the most elusive problems of empirical science, namely neuroscience. The main objective of empirical studies of consciousness has been to describe the minimal sets of neural events necessary for a specific neuronal state to become consciously experienced. The current state of the art still does not meet this objective but rather consists of highly speculative theories based on correlates of consciousness and an ever-growing list of knowledge gaps. The current state of the art is defined by the limitations of past stimulation techniques and the emphasis on the observational approach. However, looking at the current stimulation technologies that are becoming more accurate, it is time to consider an alternative approach to studying consciousness, which builds on the methodology of causal explanations via causal alterations. The aim of this methodology is to move beyond the correlates of consciousness and focus directly on the mechanisms of consciousness with the help of the currently focused brain stimulation techniques, such as geodesic transcranial electric neuromodulation. This approach not only overcomes the limitations of the correlational methodology but will also become another firm step in the following science of consciousness.
Collapse
Affiliation(s)
- Marek Havlík
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
| | - Jaroslav Hlinka
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic
| | - Monika Klírová
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Petr Adámek
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Jiří Horáček
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
11
|
Axelrod V, Rozier C, Sohier E, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L. Intracranial study in humans: Neural spectral changes during watching comedy movie of Charlie Chaplin. Neuropsychologia 2023; 185:108558. [PMID: 37061128 DOI: 10.1016/j.neuropsychologia.2023.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Humor plays a prominent role in our lives. Thus, understanding the cognitive and neural mechanisms of humor is particularly important. Previous studies that investigated neural substrates of humor used functional MRI and to a lesser extent EEG. In the present study, we conducted intracranial recording in human patients, enabling us to obtain the signal with high temporal precision from within specific brain locations. Our analysis focused on the temporal lobe and the surrounding areas, the temporal lobe was most densely covered in our recording. Thirteen patients watched a fragment of a Charlie Chaplin movie. An independent group of healthy participants rated the same movie fragment, helping us to identify the most funny and the least funny frames of the movie. We compared neural activity occurring during the most funny and least funny frames across frequencies in the range of 1-170 Hz. The most funny compared to least funny parts of the movie were associated with activity modulation in the broadband high-gamma (70-170 Hz; mostly activation) and to a lesser extent gamma band (40-69Hz; activation) and low frequencies (1-12 Hz, delta, theta, alpha bands; mostly deactivation). With regard to regional specificity, we found three types of brain areas: (I) temporal pole, middle and inferior temporal gyrus (both anterior and posterior) in which there was both activation in the high-gamma/gamma bands and deactivation in low frequencies; (II) ventral part of the temporal lobe such as the fusiform gyrus, in which there was mostly deactivation the low frequencies; (III) posterior temporal cortex and its environment, such as the middle occipital and the temporo-parietal junction, in which there was activation in the high-gamma/gamma band. Overall, our results suggest that humor appreciation might be achieved by neural activity across the frequency spectrum.
Collapse
Affiliation(s)
- Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Camille Rozier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Elisa Sohier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, 47-83 boulevard de l'Hôpital, Paris 75013, France
| |
Collapse
|
12
|
Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. A tripartite view of the posterior cingulate cortex. Nat Rev Neurosci 2023; 24:173-189. [PMID: 36456807 PMCID: PMC10041987 DOI: 10.1038/s41583-022-00661-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.
Collapse
Affiliation(s)
- Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lyndsey Aponik-Gremillion
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Health Sciences, Dumke College for Health Professionals, Weber State University, Ogden, UT, USA
| | - Megan E Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research and Center for Neural Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
13
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 PMCID: PMC11709228 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Plute TJ, Spencer DD, Alkawadri R. Age-dependent vestibular cingulate-cerebral network underlying gravitational perception: a cross-sectional multimodal study. Brain Inform 2022; 9:30. [PMID: 36542188 PMCID: PMC9772366 DOI: 10.1186/s40708-022-00176-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cingulate gyrus (CG) is a frequently studied yet not wholly understood area of the human cerebrum. Previous studies have implicated CG in different adaptive cognitive-emotional functions and fascinating or debilitating symptoms. We describe an unusual loss of gravity perception/floating sensation in consecutive persons with drug-resistant epilepsy undergoing electrical cortical stimulation (ECS), network analysis, and network robustness mapping. METHODS Using Intracranial-EEG, Granger causality analysis, cortico-cortical evoked potentials, and fMRI, we explicate the functional networks arising from this phenomenon's anterior, middle, and posterior cingulate cortex. RESULTS Fifty-four icEEG cases from 2013 to 2019 were screened. In 40.7% of cases, CG was sampled and in 22.2% the sampling was bilateral. ECS mapping was carried out in 18.5% of the entire cohort and 45.4% of the cingulate sampled cases. Five of the ten CG cases experienced symptoms during stimulation. A total of 1942 electrodes were implanted with a median number of 182 electrode contacts per patient (range: 106-274). The electrode contacts sampled all major cortex regions. Sixty-three contacts were within CG. Of those, 26 were electrically stimulated; 53.8% of the stimulated contacts produced positive responses, whereas 46.2% produced no observable responses. Our study reports a unique perceptive phenomenon of a subjective sense of weightlessness/floating sensation triggered by anterior and posterior CG stimulation, in 30% of cases and 21.42% of electrode stimulation sites. Notable findings include functional connections between the insula, the posterior and anterior cingulate cortex, and networks between the middle cingulate and the frontal and temporal lobes and the cerebellum. We also postulate a vestibular-cerebral-cingulate network responsible for the perception of gravity while suggesting that cingulate functional connectivity follows a long-term developmental trajectory as indicated by a robust, positive correlation with age and the extent of Granger connectivity (r = 0.82, p = 0.0035). DISCUSSION We propose, in conjunction with ECS techniques, that a better understanding of the underlying gravity perception networks can lead to promising neuromodulatory clinical applications. CLASSIFICATION OF EVIDENCE This study provides Class II evidence for CG's involvement in the higher order processing of gravity perception and related actions.
Collapse
Affiliation(s)
- Tritan J Plute
- School of Medicine, Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, LKB 8Th Floor, Suite 815.05, Pittsburgh, PA, 15213, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, 06520-8062, USA
| | - Rafeed Alkawadri
- School of Medicine, Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, LKB 8Th Floor, Suite 815.05, Pittsburgh, PA, 15213, USA.
- Department of Neurology, Yale School of Medicine, New Haven, 06520-8018, USA.
| |
Collapse
|
15
|
Jaafar N, Bhatt A, Eid A, Koubeissi MZ. The Temporal Lobe as a Symptomatogenic Zone in Medial Parietal Lobe Epilepsy. Front Neurol 2022; 13:804128. [PMID: 35370889 PMCID: PMC8965346 DOI: 10.3389/fneur.2022.804128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Some surgical failures after temporal lobe epilepsy surgery may be due to the presence of an extratemporal epileptogenic zone. Of particular interest is the medial parietal lobe due to its robust connectivity with mesial temporal structures. Seizures in that area may be clinically silent before propagating to the symptomatogenic temporal lobe. In this paper, we present an overview of the anatomical connectivity, semiology, radiology, electroencephalography, neuropsychology, and outcomes in medial parietal lobe epilepsy. We also present two illustrative cases of seizures originating from the precuneus and the posterior cingulate cortex. We conclude that the medial parietal lobe should be strongly considered for sampling by intracranial electrodes in individuals with nonlesional temporal lobe epilepsy, especially if scrutinizing the presurgical data produces discordant findings.
Collapse
Affiliation(s)
- Nadim Jaafar
- Department of Neurology, George Washington University, Washington, DC, United States
| | - Amar Bhatt
- Rush Medical College, Rush University, Chicago, IL, United States
| | - Alexandra Eid
- Department of Neurology, George Washington University, Washington, DC, United States
| | - Mohamad Z. Koubeissi
- Department of Neurology, George Washington University, Washington, DC, United States
- *Correspondence: Mohamad Z. Koubeissi
| |
Collapse
|
16
|
The default network is causally linked to creative thinking. Mol Psychiatry 2022; 27:1848-1854. [PMID: 34974525 PMCID: PMC9095481 DOI: 10.1038/s41380-021-01403-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Creative thinking represents a major evolutionary mechanism that greatly contributed to the rapid advancement of the human species. The ability to produce novel and useful ideas, or original thinking, is thought to correlate well with unexpected, synchronous activation of several large-scale, dispersed cortical networks, such as the default network (DN). Despite a vast amount of correlative evidence, a causal link between default network and creativity has yet to be demonstrated. Surgeries for resection of brain tumors that lie in proximity to speech related areas are performed while the patient is awake to map the exposed cortical surface for language functions. Such operations provide a unique opportunity to explore human behavior while disrupting a focal cortical area via focal electrical stimulation. We used a novel paradigm of individualized direct cortical stimulation to examine the association between creative thinking and the DN. Preoperative resting-state fMRI was used to map the DN in individual patients. A cortical area identified as a DN node (study) or outside the DN (controls) was stimulated while the participants performed an alternate-uses-task (AUT). This task measures divergent thinking through the number and originality of different uses provided for an everyday object. Baseline AUT performance in the operating room was positively correlated with DN integrity. Direct cortical stimulation at the DN node resulted in decreased ability to produce alternate uses, but not in the originality of uses produced. Stimulation in areas that when used as network seed regions produced a network similar to the canonical DN was associated with reduction of creative fluency. Stimulation of areas that did not produce a default-like network (controls) did not alter creative thinking. This is the first study to causally link the DN and creative thinking.
Collapse
|
17
|
Abstract
In this manuscript, we report a rare case of a patient with localized seizures originating from the right anterior and dorsal posteromedial cortex (PMC). We mapped the electrophysiological and neuroimaging connectivity of the ictal onset site and replicated seizure auras by stimulating the homotopical PMC site in the left hemisphere. Our findings provide a causal link between PMC and the sense of self and provide unique clues about the pathophysiology of self-dissociation in neuropsychiatric conditions. The posteromedial cortex (PMC) is known to be a core node of the default mode network. Given its anatomical location and blood supply pattern, the effects of targeted disruption of this part of the brain are largely unknown. Here, we report a rare case of a patient (S19_137) with confirmed seizures originating within the PMC. Intracranial recordings confirmed the onset of seizures in the right dorsal posterior cingulate cortex, adjacent to the marginal sulcus, likely corresponding to Brodmann area 31. Upon the onset of seizures, the patient reported a reproducible sense of self-dissociation—a condition he described as a distorted awareness of the position of his body in space and feeling as if he had temporarily become an outside observer to his own thoughts, his “me” having become a separate entity that was listening to different parts of his brain speak to each other. Importantly, 50-Hz electrical stimulation of the seizure zone and a homotopical region within the contralateral PMC induced a subjectively similar state, reproducibly. We supplement our clinical findings with the definition of the patient’s network anatomy at sites of interest using cortico-cortical–evoked potentials, experimental and resting-state electrophysiological connectivity, and individual-level functional imaging. This rare case of patient S19_137 highlights the potential causal importance of the PMC for integrating self-referential information and provides clues for future mechanistic studies of self-dissociation in neuropsychiatric populations.
Collapse
|
18
|
Does the Prefrontal Cortex Play an Essential Role in Consciousness? Insights from Intracranial Electrical Stimulation of the Human Brain. J Neurosci 2021; 41:2076-2087. [PMID: 33692142 DOI: 10.1523/jneurosci.1141-20.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
A central debate in philosophy and neuroscience pertains to whether PFC activity plays an essential role in the neural basis of consciousness. Neuroimaging and electrophysiology studies have revealed that the contents of conscious perceptual experience can be successfully decoded from PFC activity, but these findings might be confounded by postperceptual cognitive processes, such as thinking, reasoning, and decision-making, that are not necessary for consciousness. To clarify the involvement of the PFC in consciousness, we present a synthesis of research that has used intracranial electrical stimulation (iES) for the causal modulation of neural activity in the human PFC. This research provides compelling evidence that iES of only certain prefrontal regions (i.e., orbitofrontal cortex and anterior cingulate cortex) reliably perturbs conscious experience. Conversely, stimulation of anterolateral prefrontal sites, often considered crucial in higher-order and global workspace theories of consciousness, seldom elicits any reportable alterations in consciousness. Furthermore, the wide variety of iES-elicited effects in the PFC (e.g., emotions, thoughts, and olfactory and visual hallucinations) exhibits no clear relation to the immediate environment. Therefore, there is no evidence for the kinds of alterations in ongoing perceptual experience that would be predicted by higher-order or global workspace theories. Nevertheless, effects in the orbitofrontal and anterior cingulate cortices suggest a specific role for these PFC subregions in supporting emotional aspects of conscious experience. Overall, this evidence presents a challenge for higher-order and global workspace theories, which commonly point to the PFC as the basis for conscious perception based on correlative and possibly confounded information.
Collapse
|
19
|
Curot J, Roux FE, Sol JC, Valton L, Pariente J, Barbeau EJ. Awake Craniotomy and Memory Induction Through Electrical Stimulation: Why Are Penfield's Findings Not Replicated in the Modern Era? Neurosurgery 2021; 87:E130-E137. [PMID: 31914177 DOI: 10.1093/neuros/nyz553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/13/2019] [Indexed: 01/21/2023] Open
Abstract
From the 1930s through the early 1960s, Wilder Penfield12 collected a large number of memories induced by electrical brain stimulation (EBS) during awake craniotomy. As a result, he was a major contributor to several neuroscientific and neuropsychological concepts of long-term memory. His 1963 paper, which recorded all the cases of memories he induced in his operating room, remains a substantial point of reference in neuroscience in 2019, although some of his interpretations are now debatable. However, it is highly surprising that, since Penfield's12 reports, there has been no other surgical publication on memories induced during awake surgery. In this review, we explore this phenomenon and analyze some of the reasons that might explain it. We hypothesize that the main reasons for lack of subsequent reports are related to changes in operative procedures (ie, use of anesthetics, time constraints, and insufficient debriefings) and changes in EBS parameters, rather than to the sites that are stimulated, the pathology treated, or the tasks used. If reminiscences are still induced, they should be reported in detail to add valuable contributions to the understanding of long-term memory networks, especially memories that are difficult to reproduce in the laboratory, such as autobiographical memories.
Collapse
Affiliation(s)
- Jonathan Curot
- Department of Neurophysiological Explorations, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Centre de Recherche Cerveau et Cognition CerCo, CNRS, UMR5549, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Franck-Emmanuel Roux
- Centre de Recherche Cerveau et Cognition CerCo, CNRS, UMR5549, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Department of Neurosurgery, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jean-Christophe Sol
- Department of Neurosurgery, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France
| | - Luc Valton
- Department of Neurophysiological Explorations, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Jéremie Pariente
- Department of Cognitive Neurology, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France
| | - Emmanuel J Barbeau
- Centre de Recherche Cerveau et Cognition CerCo, CNRS, UMR5549, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
20
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
21
|
Vesuna S, Kauvar IV, Richman E, Gore F, Oskotsky T, Sava-Segal C, Luo L, Malenka RC, Henderson JM, Nuyujukian P, Parvizi J, Deisseroth K. Deep posteromedial cortical rhythm in dissociation. Nature 2020; 586:87-94. [PMID: 32939091 PMCID: PMC7553818 DOI: 10.1038/s41586-020-2731-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Advanced imaging methods now allow cell-type-specific recording of neural activity across the mammalian brain, potentially enabling the exploration of how brain-wide dynamical patterns give rise to complex behavioural states1-12. Dissociation is an altered behavioural state in which the integrity of experience is disrupted, resulting in reproducible cognitive phenomena including the dissociation of stimulus detection from stimulus-related affective responses. Dissociation can occur as a result of trauma, epilepsy or dissociative drug use13,14, but despite its substantial basic and clinical importance, the underlying neurophysiology of this state is unknown. Here we establish such a dissociation-like state in mice, induced by precisely-dosed administration of ketamine or phencyclidine. Large-scale imaging of neural activity revealed that these dissociative agents elicited a 1-3-Hz rhythm in layer 5 neurons of the retrosplenial cortex. Electrophysiological recording with four simultaneously deployed high-density probes revealed rhythmic coupling of the retrosplenial cortex with anatomically connected components of thalamus circuitry, but uncoupling from most other brain regions was observed-including a notable inverse correlation with frontally projecting thalamic nuclei. In testing for causal significance, we found that rhythmic optogenetic activation of retrosplenial cortex layer 5 neurons recapitulated dissociation-like behavioural effects. Local retrosplenial hyperpolarization-activated cyclic-nucleotide-gated potassium channel 1 (HCN1) pacemakers were required for systemic ketamine to induce this rhythm and to elicit dissociation-like behavioural effects. In a patient with focal epilepsy, simultaneous intracranial stereoencephalography recordings from across the brain revealed a similarly localized rhythm in the homologous deep posteromedial cortex that was temporally correlated with pre-seizure self-reported dissociation, and local brief electrical stimulation of this region elicited dissociative experiences. These results identify the molecular, cellular and physiological properties of a conserved deep posteromedial cortical rhythm that underlies states of dissociation.
Collapse
Affiliation(s)
- Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ethan Richman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Felicity Gore
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Tomiko Oskotsky
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Clara Sava-Segal
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Paul Nuyujukian
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Fox KCR, Shi L, Baek S, Raccah O, Foster BL, Saha S, Margulies DS, Kucyi A, Parvizi J. Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nat Hum Behav 2020; 4:1039-1052. [PMID: 32632334 DOI: 10.1038/s41562-020-0910-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Intracranial electrical stimulation (iES) of the human brain has long been known to elicit a remarkable variety of perceptual, motor and cognitive effects, but the functional-anatomical basis of this heterogeneity remains poorly understood. We conducted a whole-brain mapping of iES-elicited effects, collecting first-person reports following iES at 1,537 cortical sites in 67 participants implanted with intracranial electrodes. We found that intrinsic network membership and the principal gradient of functional connectivity strongly predicted the type and frequency of iES-elicited effects in a given brain region. While iES in unimodal brain networks at the base of the cortical hierarchy elicited frequent and simple effects, effects became increasingly rare, heterogeneous and complex in heteromodal and transmodal networks higher in the hierarchy. Our study provides a comprehensive exploration of the relationship between the hierarchical organization of intrinsic functional networks and the causal modulation of human behaviour and experience with iES.
Collapse
Affiliation(s)
- Kieran C R Fox
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. .,School of Medicine, Stanford University, Stanford, CA, USA.
| | - Lin Shi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sori Baek
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Omri Raccah
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Brett L Foster
- Departments of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Srijani Saha
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS), UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Aaron Kucyi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Stimulation of the Posterior Cingulate Cortex Impairs Episodic Memory Encoding. J Neurosci 2019; 39:7173-7182. [PMID: 31358651 DOI: 10.1523/jneurosci.0698-19.2019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
Neuroimaging experiments implicate the posterior cingulate cortex (PCC) in episodic memory processing, making it a potential target for responsive neuromodulation strategies outside of the hippocampal network. However, causal evidence for the role that PCC plays in memory encoding is lacking. In human female and male participants (N = 17) undergoing seizure mapping, we investigated functional properties of the PCC using deep brain stimulation (DBS) and stereotactic electroencephalography. We used a verbal free recall paradigm in which the PCC was stimulated during presentation of half of the study lists, whereas no stimulation was applied during presentation of the remaining lists. We investigated whether stimulation affected memory and modulated hippocampal activity. Results revealed four main findings. First, stimulation during episodic memory encoding impaired subsequent free recall, predominantly for items presented early in the study lists. Second, PCC stimulation increased hippocampal gamma-band power. Third, stimulation-induced hippocampal gamma power predicted the magnitude of memory impairment. Fourth, functional connectivity between the hippocampus and PCC predicted the strength of the stimulation effect on memory. Our findings offer causal evidence implicating the PCC in episodic memory encoding. Importantly, the results indicate that stimulation targeted outside of the temporal lobe can modulate hippocampal activity and impact behavior. Furthermore, measures of connectivity between brain regions within a functional network can be informative in predicting behavioral effects of stimulation. Our findings have significant implications for developing therapies to treat memory disorders and cognitive impairment using DBS.SIGNIFICANCE STATEMENT Cognitive impairment and memory loss are critical public health challenges. Deep brain stimulation (DBS) is a promising tool for developing strategies to ameliorate memory disorders by targeting brain regions involved in mnemonic processing. Using DBS, our study sheds light on the lesser-known role of the posterior cingulate cortex (PCC) in memory encoding. Stimulating the PCC during encoding impairs subsequent recall memory. The degree of impairment is predicted by stimulation-induced hippocampal gamma oscillations and functional connectivity between PCC and hippocampus. Our findings provide the first causal evidence implicating PCC in memory encoding and highlight the PCC as a favorable target for neuromodulation strategies using a priori connectivity measures to predict stimulation effects. This has significant implications for developing therapies for memory diseases.
Collapse
|
24
|
Khambhati AN, Kahn AE, Costantini J, Ezzyat Y, Solomon EA, Gross RE, Jobst BC, Sheth SA, Zaghloul KA, Worrell G, Seger S, Lega BC, Weiss S, Sperling MR, Gorniak R, Das SR, Stein JM, Rizzuto DS, Kahana MJ, Lucas TH, Davis KA, Tracy JI, Bassett DS. Functional control of electrophysiological network architecture using direct neurostimulation in humans. Netw Neurosci 2019; 3:848-877. [PMID: 31410383 PMCID: PMC6663306 DOI: 10.1162/netn_a_00089] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/14/2019] [Indexed: 01/30/2023] Open
Abstract
Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. By integrating multimodal intracranial recordings and diffusion-weighted imaging from patients with drug-resistant epilepsy, we test hypothesized structural and functional rules that predict altered patterns of synchronized local field potentials. We demonstrate the ability to predictably reconfigure functional interactions depending on stimulation strength and location. Stimulation of areas with structurally weak connections largely modulates the functional hubness of downstream areas and concurrently propels the brain towards more difficult-to-reach dynamical states. By using focal perturbations to bridge large-scale structure, function, and markers of behavior, our findings suggest that stimulation may be tuned to influence different scales of network interactions driving cognition. Brain stimulation devices capable of perturbing the physiological state of neural systems are rapidly gaining popularity for their potential to treat neurological and psychiatric disease. A root problem is that underlying dysfunction spans a large-scale network of brain regions, requiring the ability to control the complex interactions between multiple brain areas. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. We demonstrate the ability to predictably reconfigure patterns of interactions between functional brain areas by modulating the strength and location of stimulation. Our findings have high significance for designing stimulation protocols capable of modulating distributed neural circuits in the human brain.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ari E Kahn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Costantini
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Youssef Ezzyat
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan A Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institutes of Health, Bethesda, MD, USA
| | | | - Sarah Seger
- Department of Neurosurgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Shennan Weiss
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Richard Gorniak
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph I Tracy
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
New perspectives for the modulation of mind-wandering using transcranial electric brain stimulation. Neuroscience 2019; 409:69-80. [DOI: 10.1016/j.neuroscience.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022]
|
26
|
Yih J, Beam DE, Fox KCR, Parvizi J. Intensity of affective experience is modulated by magnitude of intracranial electrical stimulation in human orbitofrontal, cingulate and insular cortices. Soc Cogn Affect Neurosci 2019; 14:339-351. [PMID: 30843590 PMCID: PMC6537947 DOI: 10.1093/scan/nsz015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
The subjective and behavioral effects of intracranial electrical stimulation (iES) have been studied for decades, but there is a knowledge gap regarding the relationship between the magnitude of electric current and the type, intensity and valence of evoked subjective experiences. We report on rare iES data from 18 neurosurgical patients with implanted intracranial electrodes in the orbitofrontal cortex (OFC), the insula (INS) and the anterior portion of cingulate cortex (ACC). ACC stimulation elicited somatic and visceral sensations, whereas OFC stimulation predominantly elicited olfactory and gustatory responses, and INS stimulation elicited a mix of effects involving somatic and visceral sensations, olfaction and gustation. Further, we found striking evidence that the magnitude of electric current delivered intracranially correlated positively with the perceived intensity of subjective experience and the evoked emotional state, a relationship observed across all three regions. Finally, we observed that the majority of reported experiences were negatively valenced and unpleasant, especially those elicited by ACC stimulation. The present study provides novel case studies from the human brain confirming that these structures contribute causally to the creation of affective states and demonstrates a direct relationship between the magnitude of electrical stimulation of these structures and the qualia of elicited subjective experience. Summary: This study provides critical knowledge about the effect of electrical charge magnitude on the intensity of human subjective experiences and emotional states. We shed light on the fundamental relationship between the electrical (physical) state of cortical tissue and the modality and intensity of human (subjective) experience. As electroceutical interventions are increasingly employed to treat neurological and psychiatric disorders, these findings highlight the importance of electrical stimulation magnitude for eliciting specific changes in human subjective experience.
Collapse
Affiliation(s)
- Jennifer Yih
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Danielle E Beam
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kieran C R Fox
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
The disentanglement of the neural and experiential complexity of self-generated thoughts: A users guide to combining experience sampling with neuroimaging data. Neuroimage 2019; 192:15-25. [DOI: 10.1016/j.neuroimage.2019.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
|
28
|
Abstract
The default network (DN) is a brain network with correlated activities spanning frontal, parietal, and temporal cortical lobes. The DN activates for high-level cognition tasks and deactivates when subjects are actively engaged in perceptual tasks. Despite numerous observations, the role of DN deactivation remains unclear. Using computational neuroimaging applied to a large dataset of the Human Connectome Project (HCP) and to two individual subjects scanned over many repeated runs, we demonstrate that the DN selectively deactivates as a function of the position of a visual stimulus. That is, we show that spatial vision is encoded within the DN by means of deactivation relative to baseline. Our results suggest that the DN functions as a set of high-level visual regions, opening up the possibility of using vision-science tools to understand its putative function in cognition and perception.
Collapse
Affiliation(s)
- Martin Szinte
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, Netherlands.,Spinoza Centre for Neuroimaging, Royal Dutch Academy of Sciences, Amsterdam 1105BK, Netherlands
| | - Tomas Knapen
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, Netherlands.,Spinoza Centre for Neuroimaging, Royal Dutch Academy of Sciences, Amsterdam 1105BK, Netherlands
| |
Collapse
|
29
|
Improving the integrative memory model by integrating the temporal dynamics of memory. Behav Brain Sci 2019; 42:e286. [DOI: 10.1017/s0140525x19001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Despite highlighting the role of the attribution system and proposing a coherent large-scale architecture of declarative memory, the integrative memory model would be more “integrative” if the temporal dynamics of the interactions between its components was clarified. This is necessary to make predictions in patients with brain injury and hypothesize dissociations.
Collapse
|
30
|
Leech R, Smallwood J. The posterior cingulate cortex: Insights from structure and function. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:73-85. [PMID: 31731926 DOI: 10.1016/b978-0-444-64196-0.00005-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The posterior cingulate cortex (PCC) (Brodmann areas 23/31) is one of the least well-understood regions of the cortex. The PCC has very high levels of metabolic consumption, and network analyses of functional and structural data suggest it is a core hub in the human connectome; however, contemporary neuroscience lacks a clear account of its functional significance. Consequently, many studies over the last decade have focused on understanding the role this region plays in cognition, particularly given its apparent tendency to deactivate during demanding external tasks. Consistent with the cytoarchitecture, recent work, leveraging complex analytical approaches, highlight that the connections the PCC forms with other regions are heterogeneous, going beyond a single network, while recent studies of its function highlight a role in a wide range of complex forms of cognition including memory, navigation, and narrative comprehension. This constellation of observations highlights a role for PCC in a set of cognitive processes that are supported by internal representations but may lack a common type of representational content. Together, these structural and functional studies contribute to an emerging view of the PCC as contributing to how cognition unfolds rather than what it is focused on.
Collapse
Affiliation(s)
- Robert Leech
- Department of Neuroimaging, King's College London, London, United Kingdom.
| | | |
Collapse
|
31
|
Direct Cortical Recordings Suggest Temporal Order of Task-Evoked Responses in Human Dorsal Attention and Default Networks. J Neurosci 2018; 38:10305-10313. [PMID: 30315126 DOI: 10.1523/jneurosci.0079-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/09/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022] Open
Abstract
The past decade has seen a large number of neuroimaging studies focused on the anticorrelated functional relationship between the default mode network (DMN) and the dorsal attention network (DAN). Due principally to the low temporal resolution of functional neuroimaging modalities, the fast-neuronal dynamics across these networks remain poorly understood. Here we report novel human intracranial electrophysiology data from six neurosurgical patients (four males) with simultaneous coverage of well characterized nodes of the DMN and DAN. Subjects performed an arithmetic processing task, shown previously to evoke reliable deactivations (below baseline) in the DMN, and activations in the DAN. In this cohort, we show that DMN deactivations lag DAN activations by approximately 200 ms. Our findings suggest a clear temporal order of processing across the two networks during the current task and place the DMN further than the DAN in a plausible information-processing hierarchy.SIGNIFICANCE STATEMENT The human brain contains an intrinsic and strictly organized network architecture. Our understanding of the interplay across association networks has relied primarily on the slow fluctuations of the hemodynamic response, and as such it has lacked essential evidence regarding the temporal dynamics of activity across these networks. The current study presents evidence from high spatiotemporal methods showing that well studied areas of the default mode network display delayed task-induced activity relative to divergent responses in dorsal attention network nodes. This finding provides direct and critical evidence regarding the temporal chronology of neuronal events across opposing brain networks.
Collapse
|
32
|
Fox KCR, Yih J, Raccah O, Pendekanti SL, Limbach LE, Maydan DD, Parvizi J. Changes in subjective experience elicited by direct stimulation of the human orbitofrontal cortex. Neurology 2018; 91:e1519-e1527. [PMID: 30232252 DOI: 10.1212/wnl.0000000000006358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE We applied direct cortical stimulation (DCS) to the orbitofrontal cortex (OFC) in neurosurgical patients implanted with intracranial electrodes to probe, with high anatomic precision, the causal link between the OFC and human subjective experience. METHODS We administered 272 instances of DCS at 172 OFC sites in 22 patients with intractable focal epilepsy (from 2011 to 2017), none of whom had seizures originating from the OFC. RESULTS Our observations revealed a rich variety of affective, olfactory, gustatory, and somatosensory changes in the subjective domain. Elicited experiences were largely neutral or negatively valenced (e.g., aversive smells and tastes, sadness, and anger). Evidence was found for preferential left lateralization of negatively valenced experiences and strong right lateralization of neutral effects. Moreover, most of the elicited effects were observed after stimulation of OFC tissue around the transverse orbital sulcus, and none were seen in the most anterior aspects of the OFC. CONCLUSIONS Our study yielded 3 central findings: first, a dissociation between the "silent" anterior and nonsilent middle/posterior OFC where stimulation clearly elicits changes in subjective experience; second, evidence that the OFC might play a causal role in integrating affect and multimodal sensory experiences; and third, clear evidence for left lateralization of negatively valenced effects. Our findings provide important information for clinicians treating OFC injury or planning OFC resection and scientists seeking to understand the brain basis for the integration of sensation, cognition, and affect.
Collapse
Affiliation(s)
- Kieran C R Fox
- From the Department of Neurology and Neurological Sciences, Stanford University, CA
| | - Jennifer Yih
- From the Department of Neurology and Neurological Sciences, Stanford University, CA
| | - Omri Raccah
- From the Department of Neurology and Neurological Sciences, Stanford University, CA
| | - Shrita L Pendekanti
- From the Department of Neurology and Neurological Sciences, Stanford University, CA
| | - Lauren E Limbach
- From the Department of Neurology and Neurological Sciences, Stanford University, CA
| | - Daniella D Maydan
- From the Department of Neurology and Neurological Sciences, Stanford University, CA
| | - Josef Parvizi
- From the Department of Neurology and Neurological Sciences, Stanford University, CA.
| |
Collapse
|
33
|
Fox KCR, Foster BL, Kucyi A, Daitch AL, Parvizi J. Intracranial Electrophysiology of the Human Default Network. Trends Cogn Sci 2018; 22:307-324. [PMID: 29525387 PMCID: PMC5957519 DOI: 10.1016/j.tics.2018.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
The human default network (DN) plays a critical role in internally directed cognition, behavior, and neuropsychiatric disease. Despite much progress with functional neuroimaging, persistent questions still linger concerning the electrophysiological underpinnings, fast temporal dynamics, and causal importance of the DN. Here, we review how direct intracranial recording and stimulation of the DN provides a unique combination of high spatiotemporal resolution and causal information that speaks directly to many of these outstanding questions. Our synthesis highlights the electrophysiological basis of activation, suppression, and connectivity of the DN, each key areas of debate in the literature. Integrating these unique electrophysiological data with extant neuroimaging findings will help lay the foundation for a mechanistic account of DN function in human behavior and cognition.
Collapse
Affiliation(s)
- Kieran C R Fox
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Stanford, CA, USA.
| | - Brett L Foster
- Departments of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Aaron Kucyi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Stanford, CA, USA
| | - Amy L Daitch
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Stanford, CA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G. Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence. J Neurosci 2017; 37:9603-9613. [PMID: 28978697 PMCID: PMC5628406 DOI: 10.1523/jneurosci.3218-16.2017] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023] Open
Abstract
The role of the frontal cortex in consciousness remains a matter of debate. In this Perspective, we will critically review the clinical and neuroimaging evidence for the involvement of the front versus the back of the cortex in specifying conscious contents and discuss promising research avenues.Dual Perspectives Companion Paper: Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception?, by Brian Odegaard, Robert T. Knight, and Hakwan Lau.
Collapse
Affiliation(s)
- Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, Wisconsin 53705,
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan 20157, Italy
- Instituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, 3800 Victoria, Australia
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, 3800 Victoria, Australia
| | - Bradley R Postle
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53705, and
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719,
| |
Collapse
|
35
|
Kucyi A. Just a thought: How mind-wandering is represented in dynamic brain connectivity. Neuroimage 2017; 180:505-514. [PMID: 28684334 DOI: 10.1016/j.neuroimage.2017.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 01/24/2023] Open
Abstract
The neuroscience of mind-wandering has begun to flourish, with roles of brain regions and networks being defined for various components of spontaneous thought. However, most of brain activity does not represent immediately occurring thoughts. Instead, spontaneous, organized network activity largely reflects "intrinsic" functions that are unrelated to the current experience. There remains no consensus on how brain networks represent mind-wandering in parallel to functioning in other ongoing, predominantly unconscious processes. Commonly, in network analysis of functional neuroimaging data, functional connectivity (FC; correlated time series) between remote brain regions is considered over several minutes or longer. In contrast, dynamic functional connectivity (dFC) is a new, promising approach to characterizing spontaneous changes in neural network communication on the faster time-scale at which intra-individual fluctuations in thought contents may occur. Here I describe how a potential relationship between mind-wandering and FC has traditionally been considered in the literature, and I review methods and results pertaining to the study of the dFC-mind-wandering relationship. While acknowledging challenges to the dFC approach and to behaviorally capturing fluctuations in inner experiences, I describe a framework for describing spontaneous thoughts in terms of brain-network activity patterns that are comprised of connections weighted by time-varying relevance to conscious and unconscious processing. This perspective suggests preferential roles of certain anatomical communication avenues (e.g., via the default mode network) in mind-wandering, while also implying that a region's connectivity fluctuates over time in its immediate degree of relevance to conscious contents, ultimately allowing novelty and diversity of thought.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States.
| |
Collapse
|