1
|
Ma Q, Ma K, Dong Y, Meng Y, Zhao J, Li R, Bai Q, Wu D, Jiang D, Sun J, Zhao Y. Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT. Nat Struct Mol Biol 2025:10.1038/s41594-024-01462-9. [PMID: 39806024 DOI: 10.1038/s41594-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
The vesicular acetylcholine transporter (VAChT) has a pivotal role in packaging and transporting acetylcholine for exocytotic release, serving as a vital component of cholinergic neurotransmission. Dysregulation of its function can result in neurological disorders. It also serves as a target for developing radiotracers to quantify cholinergic neuron deficits in neurodegenerative conditions. Here we unveil the cryo-electron microscopy structures of human VAChT in its apo state, the substrate acetylcholine-bound state and the inhibitor vesamicol-bound state. These structures assume a lumen-facing conformation, offering a clear depiction of architecture of VAChT. The acetylcholine-bound structure provides a detailed understanding of how VAChT recognizes its substrate, shedding light on the coupling mechanism of protonation and substrate binding. Meanwhile, the vesamicol-bound structure reveals the binding mode of vesamicol to VAChT, laying the structural foundation for the design of the next generation of radioligands targeting VAChT.
Collapse
Affiliation(s)
- Qiao Ma
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Ma
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanli Dong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Wu
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Daohua Jiang
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Rossi L, Mota BI, Valadão PAC, Magalhães-Gomes MPS, Oliveira BS, Guatimosim S, Navegantes LCC, Miranda AS, Prado MAM, Prado VF, Guatimosim C. Influence of β 2-adrenergic selective agonist formoterol on the motor unit of a mouse model of a congenital myasthenic syndrome with complete VAChT deletion. Neuropharmacology 2024; 260:110116. [PMID: 39151654 DOI: 10.1016/j.neuropharm.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Congenital Myasthenic Syndromes (CMS) are a set of genetic diseases that affect the neuromuscular transmission causing muscular weakness. The standard pharmacological treatment aims at ameliorating the myasthenic symptom by acetylcholinesterase inhibitors. Most patients respond well in the short and medium term, however, over time the beneficial effects rapidly fade, and the efficacy of the treatment diminishes. Increasing evidence shows that β2-adrenergic agonists can be a suitable choice for the treatment of neuromuscular disorders, including CMS, as they promote beneficial effects in the neuromuscular system. The exact mechanism on which they rely is not completely understood, although patients and animal models respond well to the treatment, especially over extended periods. Here, we report the use of the long-lasting specific β2-adrenergic agonist formoterol in a myasthenic mouse model (mnVAChT-KD), featuring deletion of VAChT (Vesicular Acetylcholine Transporter) specifically in the α-motoneurons. Our findings demonstrate that formoterol treatment (300 μg/kg/day; sc) for 30 days increased the neuromuscular junction area, induced skeletal muscle hypertrophy and altered fibre type composition in myasthenic mice. Interestingly, β2-adrenergic agonists have shown efficacy even in the absence of ACh (acetylcholine). Our data provide important evidence supporting the potential of β2-adrenergic agonists in treating neuromuscular disorders of pre-synaptic origin and characterized by disruptions in nerve-muscle communication, through a direct and beneficial action within the motor unit.
Collapse
Affiliation(s)
- Leonardo Rossi
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara I Mota
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Priscila A C Valadão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matheus P S Magalhães-Gomes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Ciências Básicas, Faculdade Ciências Médicas de Minas Gerais, FCMMG, Belo Horizonte, Brazil
| | - Bruna S Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz C C Navegantes
- Departamento de Fisiologia, Escola de Medicina, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline S Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
4
|
Pugliese A, Holland SH, Rodolico C, Lochmüller H, Spendiff S. Presynaptic Congenital Myasthenic Syndromes: Understanding Clinical Phenotypes through In vivo Models. J Neuromuscul Dis 2023; 10:731-759. [PMID: 37212067 PMCID: PMC10578258 DOI: 10.3233/jnd-221646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Presynaptic congenital myasthenic syndromes (CMS) are a group of genetic disorders affecting the presynaptic side of the neuromuscular junctions (NMJ). They can result from a dysfunction in acetylcholine (ACh) synthesis or recycling, in its packaging into synaptic vesicles, or its subsequent release into the synaptic cleft. Other proteins involved in presynaptic endplate development and maintenance can also be impaired.Presynaptic CMS usually presents during the prenatal or neonatal period, with a severe phenotype including congenital arthrogryposis, developmental delay, and apnoeic crisis. However, milder phenotypes with proximal muscle weakness and good response to treatment have been described. Finally, many presynaptic genes are expressed in the brain, justifying the presence of additional central nervous system symptoms.Several animal models have been developed to study CMS, providing the opportunity to identify disease mechanisms and test treatment options. In this review, we describe presynaptic CMS phenotypes with a focus on in vivo models, to better understand CMS pathophysiology and define new causative genes.
Collapse
Affiliation(s)
- Alessia Pugliese
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stephen H. Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
5
|
Anandakrishnan R, Tobey H, Nguyen S, Sandoval O, Klein BG, Costa BM. Cranial manipulation affects cholinergic pathway gene expression in aged rats. J Osteopath Med 2022; 122:95-103. [PMID: 34995434 DOI: 10.1515/jom-2021-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
CONTEXT Age-dependent dementia is a devastating disorder afflicting a growing older population. Although pharmacological agents improve symptoms of dementia, age-related comorbidities combined with adverse effects often outweigh their clinical benefits. Therefore, nonpharmacological therapies are being investigated as an alternative. In a previous pilot study, aged rats demonstrated improved spatial memory after osteopathic cranial manipulative medicine (OCMM) treatment. OBJECTIVES In this continuation of the pilot study, we examine the effect of OCMM on gene expression to elicit possible explanations for the improvement in spatial memory. METHODS OCMM was performed on six of 12 elderly rats every day for 7 days. Rats were then euthanized to obtain the brain tissue, from which RNA samples were extracted. RNA from three treated and three controls were of sufficient quality for sequencing. These samples were sequenced utilizing next-generation sequencing from Illumina NextSeq. The Cufflinks software suite was utilized to assemble transcriptomes and quantify the RNA expression level for each sample. RESULTS Transcriptome analysis revealed that OCMM significantly affected the expression of 36 genes in the neuronal pathway (false discovery rate [FDR] <0.004). The top five neuronal genes with the largest-fold change were part of the cholinergic neurotransmission mechanism, which is known to affect cognitive function. In addition, 39.9% of 426 significant differentially expressed (SDE) genes (FDR<0.004) have been previously implicated in neurological disorders. Overall, changes in SDE genes combined with their role in central nervous system signaling pathways suggest a connection to previously reported OCMM-induced behavioral and biochemical changes in aged rats. CONCLUSIONS Results from this pilot study provide sufficient evidence to support a more extensive study with a larger sample size. Further investigation in this direction will provide a better understanding of the molecular mechanisms of OCMM and its potential in clinical applications. With clinical validation, OCMM could represent a much-needed low-risk adjunct treatment for age-related dementia including Alzheimer's disease.
Collapse
Affiliation(s)
- Ramu Anandakrishnan
- Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.,Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| | - Hope Tobey
- Sports and Osteopathic Medicine, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Steven Nguyen
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Osscar Sandoval
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Bradley G Klein
- Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Blaise M Costa
- Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.,Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
Della Marina A, Arlt A, Schara-Schmidt U, Depienne C, Gangfuß A, Kölbel H, Sickmann A, Freier E, Kohlschmidt N, Hentschel A, Weis J, Czech A, Grüneboom A, Roos A. Phenotypical and Myopathological Consequences of Compound Heterozygous Missense and Nonsense Variants in SLC18A3. Cells 2021; 10:cells10123481. [PMID: 34943989 PMCID: PMC8700530 DOI: 10.3390/cells10123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Presynaptic forms of congenital myasthenic syndromes (CMS) due to pathogenic variants in SLC18A3 impairing the synthesis and recycling of acetylcholine (ACh) have recently been described. SLC18A3 encodes the vesicular ACh transporter (VAChT), modulating the active transport of ACh at the neuromuscular junction, and homozygous loss of VAChT leads to lethality. Methods: Exome sequencing (ES) was carried out to identify the molecular genetic cause of the disease in a 5-year-old male patient and histological, immunofluorescence as well as electron- and CARS-microscopic studies were performed to delineate the muscle pathology, which has so far only been studied in VAChT-deficient animal models. Results: ES unraveled compound heterozygous missense and nonsense variants (c.315G>A, p.Trp105* and c.1192G>C, p.Asp398His) in SLC18A3. Comparison with already-published cases suggests a more severe phenotype including impaired motor and cognitive development, possibly related to a more severe effect of the nonsense variant. Therapy with pyridostigmine was only partially effective while 3,4 diaminopyridine showed no effect. Microscopic investigation of the muscle biopsy revealed reduced fibre size and a significant accumulation of lipid droplets. Conclusions: We suggest that nonsense variants have a more detrimental impact on the clinical manifestation of SLC18A3-associated CMS. The impact of pathogenic SLC18A3 variants on muscle fibre integrity beyond the effect of denervation is suggested by the build-up of lipid aggregates. This in turn implicates the importance of proper VAChT-mediated synthesis and recycling of ACh for lipid homeostasis in muscle cells. This hypothesis is further supported by the pathological observations obtained in previously published VAChT-animal models.
Collapse
Affiliation(s)
- Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (U.S.-S.); (A.G.); (H.K.); (A.R.)
- Correspondence:
| | - Annabelle Arlt
- Institute of Clinical Genetics and Tumor Genetics Bonn, 53111 Bonn, Germany; (A.A.); (N.K.)
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (U.S.-S.); (A.G.); (H.K.); (A.R.)
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany;
| | - Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (U.S.-S.); (A.G.); (H.K.); (A.R.)
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (U.S.-S.); (A.G.); (H.K.); (A.R.)
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., 44139 Dortmund, Germany; (A.S.); (E.F.); (A.H.); (A.C.); (A.G.)
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., 44139 Dortmund, Germany; (A.S.); (E.F.); (A.H.); (A.C.); (A.G.)
| | - Nicolai Kohlschmidt
- Institute of Clinical Genetics and Tumor Genetics Bonn, 53111 Bonn, Germany; (A.A.); (N.K.)
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., 44139 Dortmund, Germany; (A.S.); (E.F.); (A.H.); (A.C.); (A.G.)
| | - Joachim Weis
- Institute of Neuropathology, University Hospital Aachen, RWTH-Aachen University, 52074 Aachen, Germany;
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., 44139 Dortmund, Germany; (A.S.); (E.F.); (A.H.); (A.C.); (A.G.)
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., 44139 Dortmund, Germany; (A.S.); (E.F.); (A.H.); (A.C.); (A.G.)
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (U.S.-S.); (A.G.); (H.K.); (A.R.)
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
7
|
Ramdas S, Beeson D. Congenital myasthenic syndromes: where do we go from here? Neuromuscul Disord 2021; 31:943-954. [PMID: 34736634 DOI: 10.1016/j.nmd.2021.07.400] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022]
Abstract
Congenital myasthenia syndromes are rare but often treatable conditions affecting neuromuscular transmission. They result from loss or impaired function of one of a number of proteins secondary to a genetic defect. An estimate of the prevalence in the UK gave 9.2 cases per million, however, this is likely an underestimate since the adoption of next generation sequencing for diagnosis away from specialist centres is enhancing the 'pick up' rate. Next generation sequencing has helped identify a series of novel genes that harbour mutations causative for congenital myasthenic syndrome that include not only genes that encode proteins specifically expressed at the neuromuscular junction but also those that are ubiquitously expressed. The list of genes harbouring disease-causing mutations for congenital myasthenic syndrome continues to expand and is now over 30, but with many of the newly identified genes it is increasingly being recognised that abnormal neuromuscular transmission is only one component of a multifaceted phenotype in which muscle, the central nervous system, and other organs may also be affected. Treatment can be tailored to the underlying molecular mechanism for impaired neuromuscular transmission but treating the more complex multifaceted disorders and will require development of new therapies.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular centre, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK.
| |
Collapse
|
8
|
Piccolo G, d'Annunzio G, Amadori E, Riva A, Borgia P, Tortora D, Maghnie M, Minetti C, Gitto E, Iacomino M, Baldassari S, Fiorillo C, Zara F, Striano P, Salpietro V. Neuromuscular and Neuroendocrinological Features Associated With ZC4H2-Related Arthrogryposis Multiplex Congenita in a Sicilian Family: A Case Report. Front Neurol 2021; 12:704747. [PMID: 34322088 PMCID: PMC8313121 DOI: 10.3389/fneur.2021.704747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Wieacker-Wolff syndrome (WWS) is an X-linked Arthrogryposis Multiplex Congenita (AMC) disorder associated with broad neurodevelopmental impairment. The genetic basis of WWS lies in hemizygous pathogenic variants in ZC4H2, encoding a C4H2 type zinc-finger nuclear factor abundantly expressed in the developing human brain. The main clinical features described in WWS families carrying ZC4H2 pathogenic variants encompass having a short stature, microcephaly, birth respiratory distress, arthrogryposis, hypotonia, distal muscle weakness, and broad neurodevelopmental delay. We hereby report a Sicilian family with a boy clinically diagnosed with WWS and genetically investigated with exome sequencing (ES), leading to the identification of a c.593G>A (p. R198Q) hemizygous pathogenic variant in the ZC4H2 gene. During the first year of life, the onset of central hypoadrenalism led to recurrent hypoglycemic events, which likely contributed to seizure susceptibility. Also, muscle biopsy studies confirmed a pathology of the muscle tissue and revealed peculiar abnormalities of the neuromuscular junction. In conclusion, we expand the phenotypic spectrum of the WWS-related neurodevelopmental disorders and discuss the role of ZC4H2 in the context of the potential neuroendocrinological and neuromuscular features associated with this condition.
Collapse
Affiliation(s)
- Gianluca Piccolo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Giuseppe d'Annunzio
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Borgia
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Eloisa Gitto
- Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, Messina, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Joviano-Santos JV, Kljakic O, Magalhães-Gomes MPS, Valadão PAC, de Oliveira LR, Prado MAM, Prado VF, Guatimosim C. Motoneuron-specific loss of VAChT mimics neuromuscular defects seen in congenital myasthenic syndrome. FEBS J 2021; 288:5331-5349. [PMID: 33730374 DOI: 10.1111/febs.15825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Motoneurons (MNs) control muscle activity by releasing the neurotransmitter acetylcholine (ACh) at the level of neuromuscular junctions. ACh is packaged into synaptic vesicles by the vesicular ACh transporter (VAChT), and disruptions in its release can impair muscle contraction, as seen in congenital myasthenic syndromes (CMS). Recently, VAChT gene mutations were identified in humans displaying varying degrees of myasthenia. Moreover, mice with a global deficiency in VAChT expression display several characteristics of CMS. Despite these findings, little is known about how a long-term decrease in VAChT expression in vivo affects MNs structure and function. Using Cre-loxP technology, we generated a mouse model where VAChT is deleted in select groups of MNs (mnVAChT-KD). Molecular analysis revealed that the VAChT deletion was specific to MNs and affected approximately 50% of its population in the brainstem and spinal cord, with alpha-MNs primarily targeted (70% in spinal cord). Within each animal, the cell body area of VAChT-deleted MNs was significantly smaller compared to MNs with VAChT preserved. Likewise, muscles innervated by VAChT-deleted MNs showed atrophy while muscles innervated by VAChT-containing neurons appeared normal. In addition, mnVAChT KD mice had decreased muscle strength, were hypoactive, leaner and exhibited kyphosis. This neuromuscular dysfunction was evident at 2 months of age and became progressively worse by 6 months. Treatment of mutants with a cholinesterase inhibitor was able to improve some of the motor deficits. As these observations mimic what is seen in CMS, this new line could be valuable for assessing the efficacy of potential CMS drugs.
Collapse
Affiliation(s)
- Julliane V Joviano-Santos
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Matheus P S Magalhães-Gomes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Medicina, Faculdade Ciências Médicas de Minas Gerais, FCMMG, Belo Horizonte, Brasil
| | - Priscila Aparecida C Valadão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo R de Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.,Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Magalhães-Gomes MPS, Camargos W, Valadão PAC, Garcias RS, Rodrigues HA, Andrade JN, Teixeira VP, Naves LA, Cavalcante WLG, Gallaci M, Guatimosim S, Prado VF, Prado MAM, Guatimosim C. Increased Cholinergic Tone Causes Pre-synaptic Neuromuscular Degeneration and is Associated with Impaired Diaphragm Function. Neuroscience 2021; 460:31-42. [PMID: 33548369 DOI: 10.1016/j.neuroscience.2020.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022]
Abstract
In vertebrates, muscle activity is dependent on acetylcholine (ACh) released from neuromuscular junctions (NMJs), and changes in cholinergic neurotransmission are linked to a variety of neuromuscular diseases, including congenital myasthenic syndromes (CMS). The storage and release of ACh depends on the activity of the Vesicular Acetylcholine Transporter (VAChT), a rate-limiting step for cholinergic neurotransmission whose loss of function mutations was shown to cause human congenital myasthenia. However, we know much less about increased VAChT activity, due to copy number variations, for example. Therefore, here we investigated the impact of increased VAChT expression and consequently ACh levels at the synaptic cleft of the diaphragm NMJs. We analyzed structure and function of nerve and muscles from a mouse model of cholinergic hyperfunction (ChAT-ChR2-EYFP) with increased expression of VAChT. Our results showed a significant increase of ACh released under evoked stimuli. However, we observed deleterious changes in synaptic vesicles cycle (impaired endocytosis and decrease in vesicles number), together with structural alterations of NMJs. Interestingly, ultrastructure analyses showed that synaptic vesicles from ChAT-ChR2-EYFP mice NMJs were larger, which might be related to increased ACh load. We also observed that these larger synaptic vesicles were less rounded in comparison with control. Finally, we showed that ChAT-ChR2-EYFP mice NMJs have compromised safety factor, possible due to the structural alterations we described. These findings reveal that physiological cholinergic activity is important to maintain the structure and function of the neuromuscular system and help to understand some of the neuromuscular adverse effects experienced by chronically increased NMJ neurotransmission, such as individuals treated with cholinesterase inhibitors.
Collapse
Affiliation(s)
- Matheus P S Magalhães-Gomes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Medicina, Faculdade Ciências Médicas de Minas Gerais, FCMMG, Belo Horizonte, MG, Brazil.
| | - Wallace Camargos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Priscila A C Valadão
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rubens S Garcias
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hermann A Rodrigues
- Departamento de Ciências Básicas da Vida, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, UFJF, Governador Valadares, MG, Brazil
| | - Jéssica N Andrade
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa P Teixeira
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lígia A Naves
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walter L G Cavalcante
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcia Gallaci
- Departamento de Farmacologia, Instituto de Biociências, UNESP, Distrito de Rubião Jr., Botucatu, São Paulo, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vânia F Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Marco A M Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Cristina Guatimosim
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Lamond A, Buckley D, O'Dea J, Turner L. Variants of SLC18A3 leading to congenital myasthenic syndrome in two children with varying presentations. BMJ Case Rep 2021; 14:14/1/e237799. [PMID: 33462016 PMCID: PMC7813295 DOI: 10.1136/bcr-2020-237799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This report describes the variation in presentation of two unrelated patients found to have a rare form of presynaptic congenital myasthenic syndrome. Both patients presented with hypotonia, ptosis, poor weight gain and apneic episodes. Through whole exome sequencing, our patients were found to have the same likely pathogenic biallelic variants in W315X and I200N of SLC18A3, encoding vesicular acetylcholine transporter (VAChT). These specific variants in SLC18A3 have not been previously described in the literature. We illustrate the variety in clinical presentation and course of children with mutations in SLC18A3, leading to presynaptic congenital myasthenic syndrome through VAChT deficiency.
Collapse
Affiliation(s)
- Allison Lamond
- Pediatrics, Memorial University of Newfoundland Faculty of Medicine, St. John's, Newfoundland and Labrador, Canada
| | - David Buckley
- Pediatric Neurology, Memorial University of Newfoundland Faculty of Medicine, St. John's, Newfoundland and Labrador, Canada
| | - Jennifer O'Dea
- Pediatrics, Memorial University of Newfoundland Faculty of Medicine, St. John's, Newfoundland and Labrador, Canada
| | - Lesley Turner
- Genetics, Memorial University of Newfoundland Faculty of Medicine, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
12
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
13
|
Abstract
Background:Tics, defined as quick, rapid, sudden, recurrent, non-rhythmic motor movements or vocalizations are required components of Tourette Syndrome (TS) - a complex disorder characterized by the presence of fluctuating, chronic motor and vocal tics, and the presence of co-existing neuropsychological problems. Despite many advances, the underlying pathophysiology of tics/TS remains unknown.Objective:To address a variety of controversies surrounding the pathophysiology of TS. More specifically: 1) the configuration of circuits likely involved; 2) the role of inhibitory influences on motor control; 3) the classification of tics as either goal-directed or habitual behaviors; 4) the potential anatomical site of origin, e.g. cortex, striatum, thalamus, cerebellum, or other(s); and 5) the role of specific neurotransmitters (dopamine, glutamate, GABA, and others) as possible mechanisms (Abstract figure).Methods:Existing evidence from current clinical, basic science, and animal model studies are reviewed to provide: 1) an expanded understanding of individual components and the complex integration of the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit - the pathway involved with motor control; and 2) scientific data directly addressing each of the aforementioned controversies regarding pathways, inhibition, classification, anatomy, and neurotransmitters.Conclusion:Until a definitive pathophysiological mechanism is identified, one functional approach is to consider that a disruption anywhere within CBGTC circuitry, or a brain region inputting to the motor circuit, can lead to an aberrant message arriving at the primary motor cortex and enabling a tic. Pharmacologic modulation may be therapeutically beneficial, even though it might not be directed toward the primary abnormality.
Collapse
Affiliation(s)
- Harvey S. Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
14
|
Leite Schetino LP, Fonseca M, Magalhães Gomes MPS, Costa Valadão PA, Camargo WL, Rodrigues HA, Andrade JN, Arantes‐Costa FM, Naves LA, Prado CM, Prado VF, Prado MAM, Guatimosim C. Evaluation of the neuromuscular junction in a middle‐aged mouse model of congenital myasthenic syndrome. Muscle Nerve 2019; 60:790-800. [DOI: 10.1002/mus.26710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | - Matheus Fonseca
- Laboratório Nacional de BiociênciasCentro Nacional de Pesquisa em Energia e Materiais Campinas São Paulo Brazil
| | | | | | - Wallace Lucio Camargo
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Hermann Alecsandro Rodrigues
- Departamento de Ciências Básicas da Vida, Instituto de Ciências da VidaUniversidade Federal de Juiz de Fora Campus Governador Valadares Minas Gerais Brazil
| | - Jéssica Neves Andrade
- Departamento de MorfologiaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | | | - Lígia Araujo Naves
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Carla Máximo Prado
- Departmento de BiociênciasUniversidade Federal de São Paulo, Campus Baixada Santista São Paulo Brazil
| | - Vânia Ferreira Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell BiologyUniversity of Western Ontario London Ontario Canada
| | - Marco Antônio Máximo Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell BiologyUniversity of Western Ontario London Ontario Canada
| | - Cristina Guatimosim
- Departamento de MorfologiaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
15
|
Nicole S, Azuma Y, Bauché S, Eymard B, Lochmüller H, Slater C. Congenital Myasthenic Syndromes or Inherited Disorders of Neuromuscular Transmission: Recent Discoveries and Open Questions. J Neuromuscul Dis 2019; 4:269-284. [PMID: 29125502 PMCID: PMC5701762 DOI: 10.3233/jnd-170257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital myasthenic syndromes (CMS) form a heterogeneous group of rare diseases characterized by fatigable muscle weakness. They are genetically-inherited and caused by defective synaptic transmission at the cholinergic neuromuscular junction (NMJ). The number of genes known to cause CMS when mutated is currently 30, and the relationship between fatigable muscle weakness and defective functions is quite well-understood for many of them. However, some of the most recent discoveries in individuals with CMS challenge our knowledge of the NMJ, where the basis of the pathology has mostly been investigated in animal models. Frontier forms between CMS and congenital myopathy, which have been genetically and clinically identified, underline the poorly understood interplay between the synaptic and extrasynaptic molecules in the neuromuscular system. In addition, precise electrophysiological and histopathological investigations of individuals with CMS suggest an important role of NMJ plasticity in the response to CMS pathogenesis. While efficient drug-based treatments are already available to improve neuromuscular transmission for most forms of CMS, others, as well as neurological and muscular comorbidities, remain resistant. Taken together, the available pathological data point to physiological issues which remain to be understood in order to achieve precision medicine with efficient therapeutics for all individuals suffering from CMS.
Collapse
Affiliation(s)
- Sophie Nicole
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France
| | - Yoshiteru Azuma
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Stéphanie Bauché
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France
| | - Bruno Eymard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France
- AP-HP, Hôpital Pitié-Salpétrière, 75013 Paris, France
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Clarke Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
16
|
Hakonen AH, Polvi A, Saloranta C, Paetau A, Heikkilä P, Almusa H, Ellonen P, Jakkula E, Saarela J, Aittomäki K. SLC18A3 variants lead to fetal akinesia deformation sequence early in pregnancy. Am J Med Genet A 2019; 179:1362-1365. [PMID: 31059209 DOI: 10.1002/ajmg.a.61186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 11/10/2022]
Abstract
Fetal akinesia deformation sequence (FADS) and lethal multiple pterygium syndrome (LMPS) are clinically overlapping syndromes manifesting with reduced or absent fetal movement, arthrogryposis, and several anomalies during fetal life. The etiology of these syndromes is heterogeneous, and in many cases it remains unknown. In order to determine the genetic etiology of FADS in two fetuses with fetal akinesia, arthrogryposis, edema, and partial cleft palate, we utilized exome sequencing. Our investigations revealed a homozygous nonsense variant [c.1116C>A, p.(Cys372Ter)] in the SLC18A3 gene, which encodes for the vesicular acetylcholine transporter (VAChT) responsible for active transport of acetylcholine in the neuromuscular junction. This is the first description of a nonsense variant in the SLC18A3 gene, as only missense variants and whole gene deletions have been previously identified in patients. The previously detected SLC18A3 defects have been associated with congenital myasthenic syndromes, and therefore our findings extend the clinical spectrum of SLC18A3 defects to severe prenatal phenotypes. Our findings suggest that nonsense variants in SLC18A3 cause a more severe phenotype than missense variants and are in line with previous studies showing a lethal phenotype in VAChT knockout mice. Our results underline the importance of including SLC18A3 sequencing in the differential diagnostics of fetuses with arthrogryposis, FADS, or LMPS of unknown etiology.
Collapse
Affiliation(s)
- Anna H Hakonen
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Polvi
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Carola Saloranta
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Eveliina Jakkula
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Abstract
OBJECTIVES Congenital myasthenic syndromes (CMSs) are a genotypically and phenotypically heterogeneous group of neuromuscular disorders, which have in common an impaired neuromuscular transmission. Since the field of CMSs is steadily expanding, the present review aimed at summarizing and discussing current knowledge and recent advances concerning the etiology, clinical presentation, diagnosis, and treatment of CMSs. METHODS Systematic literature review. RESULTS Currently, mutations in 32 genes are made responsible for autosomal dominant or autosomal recessive CMSs. These mutations concern 8 presynaptic, 4 synaptic, 15 post-synaptic, and 5 glycosilation proteins. These proteins function as ion-channels, enzymes, or structural, signalling, sensor, or transporter proteins. The most common causative genes are CHAT, COLQ, RAPSN, CHRNE, DOK7, and GFPT1. Phenotypically, these mutations manifest as abnormal fatigability or permanent or fluctuating weakness of extra-ocular, facial, bulbar, axial, respiratory, or limb muscles, hypotonia, or developmental delay. Cognitive disability, dysmorphism, neuropathy, or epilepsy are rare. Low- or high-frequency repetitive nerve stimulation may show an abnormal increment or decrement, and SF-EMG an increased jitter or blockings. Most CMSs respond favourably to acetylcholine-esterase inhibitors, 3,4-diamino-pyridine, salbutamol, albuterol, ephedrine, fluoxetine, or atracurium. CONCLUSIONS CMSs are an increasingly recognised group of genetically transmitted defects, which usually respond favorably to drugs enhancing the neuromuscular transmission. CMSs need to be differentiated from neuromuscular disorders due to muscle or nerve dysfunction.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
18
|
Magalhães-Gomes MPS, Motta-Santos D, Schetino LPL, Andrade JN, Bastos CP, Guimarães DAS, Vaughan SK, Martinelli PM, Guatimosim S, Pereira GS, Coimbra CC, Prado VF, Prado MAM, Valdez G, Guatimosim C. Fast and slow-twitching muscles are differentially affected by reduced cholinergic transmission in mice deficient for VAChT: A mouse model for congenital myasthenia. Neurochem Int 2018; 120:1-12. [PMID: 30003945 PMCID: PMC6421860 DOI: 10.1016/j.neuint.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/27/2018] [Accepted: 07/07/2018] [Indexed: 12/15/2022]
Abstract
Congenital myasthenic syndromes (CMS) result from reduced cholinergic transmission at neuromuscular junctions (NMJs). While the etiology of CMS varies, the disease is characterized by muscle weakness. To date, it remains unknown if CMS causes long-term and irreversible changes to skeletal muscles. In this study, we examined skeletal muscles in a mouse line with reduced expression of Vesicular Acetylcholine Transporter (VAChT, mouse line herein called VAChT-KDHOM). We examined this mouse line for several reasons. First, VAChT plays a central function in loading acetylcholine (ACh) into synaptic vesicles and releasing it at NMJs, in addition to other cholinergic nerve endings. Second, loss of function mutations in VAChT causes myasthenia in humans. Importantly, VAChT-KDHOM present with reduced ACh and muscle weakness, resembling CMS. We evaluated the morphology, fiber type (myosin heavy chain isoforms), and expression of muscle-related genes in the extensor digitorum longus (EDL) and soleus muscles. This analysis revealed that while muscle fibers atrophy in the EDL, they hypertrophy in the soleus muscle of VAChT-KDHOM mice. Along with these cellular changes, skeletal muscles exhibit altered levels of markers for myogenesis (Pax-7, Myogenin, and MyoD), oxidative metabolism (PGC1-α and MTND1), and protein degradation (Atrogin1 and MuRF1) in VAChT-KDHOM mice. Importantly, we demonstrate that deleterious changes in skeletal muscles and motor deficits can be partially reversed following the administration of the cholinesterase inhibitor, pyridostigmine in VAChT-KDHOM mice. These findings reveal that fast and slow type muscles differentially respond to cholinergic deficits. Additionally, this study shows that the adverse effects of cholinergic transmission, as in the case of CMS, on fast and slow type skeletal muscles are reversible.
Collapse
Affiliation(s)
| | - Daisy Motta-Santos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Esportes, EEFFTO, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luana P L Schetino
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jéssica N Andrade
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiane P Bastos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Patrícia M Martinelli
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grace S Pereira
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Candido C Coimbra
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vânia F Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Marco A M Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Cristina Guatimosim
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Beecroft SJ, Lombard M, Mowat D, McLean C, Cairns A, Davis M, Laing NG, Ravenscroft G. Genetics of neuromuscular fetal akinesia in the genomics era. J Med Genet 2018; 55:505-514. [PMID: 29959180 DOI: 10.1136/jmedgenet-2018-105266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Fetal hypokinesia or akinesia encompasses a broad spectrum of disorders, united by impaired movement in utero. Often, the underlying aetiology is genetic in origin, affecting part of the neuromuscular system. The affordable and high-throughput nature of next-generation DNA sequencing has led to an explosion in disease gene discovery across rare diseases, including fetal akinesias. A genetic diagnosis has clinical utility as it may affect management and prognosis and informs recurrence risk, facilitating family planning decisions. More broadly, knowledge of disease genes increasingly allows population-based preconception carrier screening, which has reduced the incidence of recessive diseases in several populations. Despite gains in knowledge of the genetics of fetal akinesia, many families lack a genetic diagnosis. In this review, we describe the developments in Mendelian genetics of neuromuscular fetal akinesia in the genomics era. We examine genetic diagnoses with neuromuscular causes, specifically including the lower motor neuron, peripheral nerve, neuromuscular junction and muscle.
Collapse
Affiliation(s)
- Sarah Jane Beecroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Marcus Lombard
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Catriona McLean
- Victorian Neuromuscular Laboratory, Alfred Health, Melbourne, Victoria, Australia
| | - Anita Cairns
- Department of Neurology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Mark Davis
- Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Summarize features of the currently recognized congenital myasthenic syndromes (CMS) with emphasis on novel findings identified in the past 6 years. RECENT FINDINGS Since the last review of the CMS in this journal in 2012, several novel CMS were identified. The identified disease proteins are SNAP25B, synaptotagmin 2, Munc13-1, synaptobrevin-1, GFPT1, DPAGT1, ALG2, ALG14, Agrin, GMPPB, LRP4, myosin 9A, collagen 13A1, the mitochondrial citrate carrier, PREPL, LAMA5, the vesicular ACh transporter, and the high-affinity presynaptic choline transporter. Exome sequencing has provided a powerful tool for identifying novel CMS. Identifying the disease genes is essential for determining optimal therapy. The landscape of the CMS is still unfolding.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
22
|
Lorenzoni PJ, Scola RH, Kay CSK, Werneck LC, Horvath R, Lochmüller H. How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features. Neuromolecular Med 2018; 20:205-214. [DOI: 10.1007/s12017-018-8490-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 01/26/2023]
|
23
|
McMacken G, Whittaker RG, Evangelista T, Abicht A, Dusl M, Lochmüller H. Congenital myasthenic syndrome with episodic apnoea: clinical, neurophysiological and genetic features in the long-term follow-up of 19 patients. J Neurol 2018; 265:194-203. [PMID: 29189923 PMCID: PMC5760613 DOI: 10.1007/s00415-017-8689-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Congenital myasthenic syndrome with episodic apnoea (CMS-EA) is a rare but potentially treatable cause of apparent life-threatening events in infancy. The underlying mechanisms for sudden and recurrent episodes of respiratory arrest in these patients are unclear. Whilst CMS-EA is most commonly caused by mutations in CHAT, the list of associated genotypes is expanding. METHODS We reviewed clinical information from 19 patients with CMS-EA, including patients with mutations in CHAT, SLC5A7 and RAPSN, and patients lacking a genetic diagnosis. RESULTS Lack of genetic diagnosis was more common in CMS-EA than in CMS without EA (56% n = 18, compared to 7% n = 97). Most patients manifested intermittent apnoea in the first 4 months of life (74%, n = 14). A degree of clinical improvement with medication was observed in most patients (74%, n = 14), but the majority of cases also showed a tendency towards complete remission of apnoeic events with age (mean age of resolution 2 years 5 months). Signs of impaired neuromuscular transmission were detected on neurophysiology studies in 79% (n = 15) of cases, but in six cases, this was only apparent following specific neurophysiological testing protocols (prolonged high-frequency stimulation). CONCLUSIONS A relatively large proportion of CMS-EA remains genetically undiagnosed, which suggests the existence of novel causative CMS genes which remain uncharacterised. In light of the potential for recurrent life-threatening apnoeas in early life and the positive response to therapy, early diagnostic consideration of CMS-EA is critical, but without specific neurophysiology tests, it may go overlooked.
Collapse
Affiliation(s)
- Grace McMacken
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Roger G Whittaker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Abicht
- Friedrich-Baur-Institute, Ludwig Maximilians University, Munich, Germany
| | - Marina Dusl
- Friedrich-Baur-Institute, Ludwig Maximilians University, Munich, Germany
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Schwartz M, Sternberg D, Whalen S, Afenjar A, Isapof A, Chabrol B, Portnoï MF, Heide S, Keren B, Chantot-Bastaraud S, Siffroi JP. How chromosomal deletions can unmask recessive mutations? Deletions in 10q11.2 associated with CHAT or SLC18A3 mutations lead to congenital myasthenic syndrome. Am J Med Genet A 2017; 176:151-155. [PMID: 29130637 DOI: 10.1002/ajmg.a.38515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022]
Abstract
A congenital myasthenia was suspected in two unrelated children with very similar phenotypes including several episodes of severe dyspnea. Both children had a 10q11.2 deletion revealed by Single Nucleotide Polymorphisms array or by Next Generation Sequencing analysis. The deletion was inherited from the healthy mother in the first case. These deletions unmasked a recessive mutation at the same locus in both cases, but in two different genes: CHAT and SLC18A3.
Collapse
Affiliation(s)
- Mathias Schwartz
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| | - Damien Sternberg
- AP-HP, Hôpital Pitié-Salpêtrière, Biochimie et Génétique, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, ICM, Paris, France
| | - Sandra Whalen
- AP-HP, Hôpital Armand Trousseau, UF de Génétique Clinique, UPMC, Paris, France
| | - Alexandra Afenjar
- AP-HP, Hôpital Armand Trousseau, UF de Génétique Clinique, UPMC, Paris, France
| | - Arnaud Isapof
- AP-HP, Hôpital Armand Trousseau, Unité de Neuropédiatrie et Pathologie du Développement, UPMC, Paris, France
| | - Brigitte Chabrol
- CHU de Marseille, Hôpital de la Timone, Service de Neurologie Pédiatrique, Inserm U1127, CNRS UMR 7225, UPMC, Centre de Recherche de l'Institut du Cerveau et de la Moëlle épinière, Paris, France
| | - Marie-France Portnoï
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| | - Solveig Heide
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| | - Boris Keren
- AP-HP, Département de Génétique, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Jean-Pierre Siffroi
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| |
Collapse
|
25
|
Janickova H, Prado VF, Prado MAM, El Mestikawy S, Bernard V. Vesicular acetylcholine transporter (VAChT) over-expression induces major modifications of striatal cholinergic interneuron morphology and function. J Neurochem 2017. [DOI: 10.1111/jnc.14105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Helena Janickova
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Vania F. Prado
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Marco A. M. Prado
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Salah El Mestikawy
- Sorbonne Universités; Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130; Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS); Paris France
- Department of Psychiatry; Douglas Mental Health University Institute; McGill University; Montreal Canada
| | - Véronique Bernard
- Sorbonne Universités; Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130; Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS); Paris France
| |
Collapse
|