1
|
Sivera Mascaró R, García Sobrino T, Horga Hernández A, Pelayo Negro AL, Alonso Jiménez A, Antelo Pose A, Calabria Gallego MD, Casasnovas C, Cemillán Fernández CA, Esteban Pérez J, Fenollar Cortés M, Frasquet Carrera M, Gallano Petit MP, Giménez Muñoz A, Gutiérrez Gutiérrez G, Gutiérrez Martínez A, Juntas Morales R, Ciano-Petersen NL, Martínez Ulloa PL, Mederer Hengstl S, Millet Sancho E, Navacerrada Barrero FJ, Navarrete Faubel FE, Pardo Fernández J, Pascual Pascual SI, Pérez Lucas J, Pino Mínguez J, Rabasa Pérez M, Sánchez González M, Sotoca J, Rodríguez Santiago B, Rojas García R, Turon-Sans J, Vicent Carsí V, Sevilla Mantecón T. Clinical practice guidelines for the diagnosis and management of Charcot-Marie-Tooth disease. Neurologia 2025; 40:290-305. [PMID: 38431252 DOI: 10.1016/j.nrleng.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Charcot-Marie-Tooth disease (CMT) is classified according to neurophysiological and histological findings, the inheritance pattern, and the underlying genetic defect. The objective of these guidelines is to offer recommendations for the diagnosis, prognosis, follow-up, and treatment of this disease in Spain. MATERIAL AND METHODS These consensus guidelines were developed through collaboration by a multidisciplinary panel encompassing a broad group of experts on the subject, including neurologists, paediatric neurologists, geneticists, physiatrists, and orthopaedic surgeons. RECOMMENDATIONS The diagnosis of CMT is clinical, with patients usually presenting a common or classical phenotype. Clinical assessment should be followed by an appropriate neurophysiological study; specific recommendations are established for the parameters that should be included. Genetic diagnosis should be approached sequentially; once PMP22 duplication has been ruled out, if appropriate, a next-generation sequencing study should be considered, taking into account the limitations of the available techniques. To date, no pharmacological disease-modifying treatment is available, but symptomatic management, guided by a multidiciplinary team, is important, as is proper rehabilitation and orthopaedic management. The latter should be initiated early to identify and improve the patient's functional deficits, and should include individualised exercise guidelines, orthotic adaptation, and assessment of conservative surgeries such as tendon transfer. The follow-up of patients with CMT is exclusively clinical, and ancillary testing is not necessary in routine clinical practice.
Collapse
Affiliation(s)
- R Sivera Mascaró
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - T García Sobrino
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain.
| | - A Horga Hernández
- Servicio de Neurología, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - A L Pelayo Negro
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Madrid, Spain
| | - A Alonso Jiménez
- Neuromuscular Reference Center, Neurology Department, University Hospital of Antwerp, Amberes, Belgium
| | - A Antelo Pose
- Servicio de Rehabilitación, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - C Casasnovas
- Unitat de Neuromuscular, Servicio de Neurología, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | | | - J Esteban Pérez
- Servicio de Neurología, Unidad de ELA y Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Fenollar Cortés
- Genética Clínica, Servicio de Análisis Clínicos, Instituto de Medicina del Laboratorio, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - M Frasquet Carrera
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitari Dr. Peset, Valencia, Spain
| | - M P Gallano Petit
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A Giménez Muñoz
- Servicio de Neurología, Hospital Royo Villanova, Zaragoza, Spain
| | - G Gutiérrez Gutiérrez
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain; Facultad de Medicina, Universidad Europea de Madrid, Madrid, Spain
| | - A Gutiérrez Martínez
- Servicio de Neurología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - R Juntas Morales
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - N L Ciano-Petersen
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - P L Martínez Ulloa
- Servicio de Neurología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - S Mederer Hengstl
- Servicio de Neurología, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - E Millet Sancho
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - F J Navacerrada Barrero
- Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | - F E Navarrete Faubel
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Pardo Fernández
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - J Pérez Lucas
- Servicio de Neurología, Hospital del Tajo, Aranjuez, Madrid, Spain
| | - J Pino Mínguez
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | - M Rabasa Pérez
- Servicio de Neurología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - M Sánchez González
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Sotoca
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - R Rojas García
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - J Turon-Sans
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - V Vicent Carsí
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - T Sevilla Mantecón
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Universidad de Valencia, Valencia, Spain
| |
Collapse
|
2
|
Christou M, Sargiannidou I, Papacharalambous R, Richter J, Tryfonos C, Christodoulou C, Kagiava A, Kleopa KA. A dose escalation and safety study of AAVrh10-mediated Schwann cell-targeted gene therapy for CMT1X. Neurotherapeutics 2025; 22:e00568. [PMID: 40055046 DOI: 10.1016/j.neurot.2025.e00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited demyelinating neuropathy caused by loss-of-function mutations in the GJB1 gene, encoding the gap junction protein connexin32 (Cx32). Cx32 plays a critical role in Schwann cell function and myelin formation in the peripheral nervous system. We have developed a gene replacement therapeutic approach using a humanized AAVrh10 vector construct expressing GJB1 under the control of the Schwann cell-specific human myelin protein zero (MPZ) promoter. Lumbar intrathecal injection of increasing AAVrh10-hMPZ.GJB1 doses (low: 1 × 1011 vg, standard: 2 × 1011 vg and high: 1 × 1012 vg) into Gjb1-null mice resulted in adequate, dose-dependent biodistribution of the vector in anterior lumbar roots and peripheral nerves, as well as high rates of Schwann cell-specific Cx32 expression in the standard- and high-dose groups. Both standard and high vector doses provided significant therapeutic benefit evaluated by behavioural, electrophysiological and morphological outcomes. Intrathecal delivery of AAVrh10-hMPZ.GJB1 induced the production of anti-AAVrh10 antibodies at 6 weeks post-injection. However, no histopathological or inflammatory changes were observed in neural or peripheral tissues, besides a mild increase in inflammatory cell numbers in sciatic nerves of mice treated with the high dose only. This study provides proof of concept for a clinically translatable AAVrh10-mediated gene therapy approach for CMT1X.
Collapse
Affiliation(s)
- Melina Christou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Revekka Papacharalambous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus; Centre for Neuromuscular Disorders and Neuropathology Lab, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Jan Richter
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Christina Tryfonos
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Christina Christodoulou
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus; Centre for Neuromuscular Disorders and Neuropathology Lab, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| |
Collapse
|
3
|
Barbat du Closel L, Bonello‐Palot N, Delmont E, Péréon Y, Echaniz‐Laguna A, Camdessanché JP, Pakleza AN, Chanson J, Frachet S, Magy L, Cassereau J, Cintas P, Choumert A, Devic P, Louis SL, Tard C, Solé G, Salort‐Campana E, Bouhour F, Latour P, Stojkovic T, Attarian S. Phenotype-genotype correlation in X-linked Charcot-Marie-Tooth disease: A French cohort study. Eur J Neurol 2025; 32:e16523. [PMID: 39569692 PMCID: PMC11622270 DOI: 10.1111/ene.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AND PURPOSE X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) ranks as the second most prevalent hereditary neuropathy and, currently, has no definitive cure. Emerging preclinical trials offer hope for potential clinical studies in the near future. While it is widely accepted that experimental groups in these trials should be balanced for age and gender, there is a current shortfall in data regarding phenotype-genotype correlations. Our aim was to provide a more detailed understanding of these correlations to facilitate the formation of well-matched patient groups in upcoming clinical trials. METHODS We conducted a retrospective evaluation of CMTX1 patients from 13 designated reference centers in France. Data on genetics, clinical features, and nerve conduction were systematically gathered. RESULTS We analyzed the genotype-phenotype correlations in 275 CMTX1 patients belonging to 162 families and carrying 87 distinct variants. Patients with variants affecting the transmembrane domains demonstrated significantly greater severity, as evidenced by a Charcot-Marie-Tooth Examination Score of 10.5, compared to 7.1 for those with intracellular domain variants and 8.7 for extracellular domain variants (p < 0.000). These patients also experienced an earlier age of onset, showed slower ulnar nerve conduction velocities and had more substantial loss of motor amplitude. CONCLUSIONS This study confirms the presence of a correlation between the mutated protein domain and the clinical phenotype. Patients with a variant in the transmembrane domains demonstrated a more severe clinical and electrophysiological profile. Consequently, the genotype could play a prognostic role in addition to its diagnostic role, and it will be essential to consider this in future clinical trials.
Collapse
Affiliation(s)
- Luce Barbat du Closel
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
| | | | - Emilien Delmont
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
| | - Yann Péréon
- CHU Nantes, Laboratoire d'Explorations FonctionnellesReference Center for NMD AOC, Filnemus, Euro‐NMDNantesFrance
| | - Andoni Echaniz‐Laguna
- Department of NeurologyAPHP, CHU de BicêtreLe Kremlin‐BicêtreFrance
- French National Reference Center for Rare NeuropathiesLe Kremlin‐BicêtreFrance
- Inserm U1195 and Paris‐Saclay UniversityLe Kremlin‐BicêtreFrance
| | | | - Aleksandra Nadaj Pakleza
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile‐de‐FranceService de Neurologie, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Jean‐Baptiste Chanson
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile‐de‐FranceService de Neurologie, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Simon Frachet
- Service et Laboratoire de NeurologieCentre de Référence Neuropathies Périphériques rares, NNerf, UR NeurIT, CHU LimogesLimogesFrance
| | - Laurent Magy
- Service et Laboratoire de NeurologieCentre de Référence Neuropathies Périphériques rares, NNerf, UR NeurIT, CHU LimogesLimogesFrance
| | - Julien Cassereau
- Reference Center for Neuromuscular Disorders AOC and National Reference Center for Neurogenetic DiseasesAngers University HospitalAngersFrance
| | - Pascal Cintas
- Centre de référence de pathologie neuromusculaire de Toulouse. Hôpital PurpanToulouseFrance
| | - Ariane Choumert
- Service des Maladies Neurologiques RaresCHU de la Réunion—GH Sud Réunion—Saint‐PierreMarseilleFrance
| | - Perrine Devic
- Department of NeurologyHospices Civils de Lyon, Lyon Sud HospitalPierre‐BéniteFrance
| | - Sarah Léonard Louis
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceInstitut de Myologie, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Céline Tard
- U1172, centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceCHU de LilleLilleFrance
| | - Guilhem Solé
- Centre de référence des maladies neuromusculaires AOC CHU de Bordeaux Hôpital PellegrinBordeauxFrance
| | - Emmanuelle Salort‐Campana
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
- Marseille Medical GeneticsAix‐Marseille University–Inserm UMR 1251MarseilleFrance
| | - Françoise Bouhour
- Service d'Electroneuromyographie et Pathologies Neuromusculaires, Hospices Civils de LyonLyonFrance
| | - Philippe Latour
- PGNM, Institut NeuroMyoGèneUniversité Lyon1‐CNRS UMR5261‐INSERMLyonFrance
- Unité fonctionnelle de neurogénétique moléculaireCHU de Lyon‐HCL groupement EstBronFrance
| | - Tanya Stojkovic
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceInstitut de Myologie, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
- Marseille Medical GeneticsAix‐Marseille University–Inserm UMR 1251MarseilleFrance
| |
Collapse
|
4
|
Nomakuchi TT, Teferedegn EY, Li D, Muirhead KJ, Dubbs H, Leonard J, Muraresku C, Sergio E, Arnold K, Pizzino A, Skraban CM, Zackai EH, Wang K, Ganetzky RD, Vanderver AL, Ahrens-Nicklas RC, Bhoj EJK. Utility of genome sequencing in exome-negative pediatric patients with neurodevelopmental phenotypes. Am J Med Genet A 2024; 194:e63817. [PMID: 39031459 PMCID: PMC11540733 DOI: 10.1002/ajmg.a.63817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Exome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis. Here, we present nine cases of pediatric NDD that were molecularly diagnosed with GS between 2017 and 2022, following non-diagnostic ES. All individuals presented with global developmental delay or regression. Other features present in our cohort included epilepsy, white matter abnormalities, brain malformation and dysmorphic features. Two cases were diagnosed on GS due to newly described gene-disease relationship or variant reclassification (MAPK8IP3, CHD3). Additional features missed on ES that were later detected on GS were: intermediate-size deletions in three cases who underwent ES that were not validated for CNV detection, pathogenic variants within the non-protein coding genes SNORD118 and RNU7-1, pathogenic variant within the promoter region of GJB1, and a coding pathogenic variant within BCAP31 which was not sufficiently covered on ES. GS following non-diagnostic ES led to the identification of pathogenic variants in this cohort of nine cases, four of which would not have been identified by reanalysis alone.
Collapse
Affiliation(s)
- Tomoki T. Nomakuchi
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eden Y. Teferedegn
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dong Li
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kayla J. Muirhead
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Holly Dubbs
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jacqueline Leonard
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Colleen Muraresku
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily Sergio
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaley Arnold
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amy Pizzino
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cara M. Skraban
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine H. Zackai
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Wang
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca D. Ganetzky
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adeline L. Vanderver
- Department of Neurology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca C. Ahrens-Nicklas
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth J. K. Bhoj
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Grosz BR, Parmar JM, Ellis M, Bryen S, Simons C, Reis ALM, Stevanovski I, Deveson IW, Nicholson G, Laing N, Wallis M, Ravenscroft G, Kumar KR, Vucic S, Kennerson ML. A deep intronic variant in MME causes autosomal recessive Charcot-Marie-Tooth neuropathy through aberrant splicing. J Peripher Nerv Syst 2024; 29:262-274. [PMID: 38860315 DOI: 10.1111/jns.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Loss-of-function variants in MME (membrane metalloendopeptidase) are a known cause of recessive Charcot-Marie-Tooth Neuropathy (CMT). A deep intronic variant, MME c.1188+428A>G (NM_000902.5), was identified through whole genome sequencing (WGS) of two Australian families with recessive inheritance of axonal CMT using the seqr platform. MME c.1188+428A>G was detected in a homozygous state in Family 1, and in a compound heterozygous state with a known pathogenic MME variant (c.467del; p.Pro156Leufs*14) in Family 2. AIMS We aimed to determine the pathogenicity of the MME c.1188+428A>G variant through segregation and splicing analysis. METHODS The splicing impact of the deep intronic MME variant c.1188+428A>G was assessed using an in vitro exon-trapping assay. RESULTS The exon-trapping assay demonstrated that the MME c.1188+428A>G variant created a novel splice donor site resulting in the inclusion of an 83 bp pseudoexon between MME exons 12 and 13. The incorporation of the pseudoexon into MME transcript is predicted to lead to a coding frameshift and premature termination codon (PTC) in MME exon 14 (p.Ala397ProfsTer47). This PTC is likely to result in nonsense mediated decay (NMD) of MME transcript leading to a pathogenic loss-of-function. INTERPRETATION To our knowledge, this is the first report of a pathogenic deep intronic MME variant causing CMT. This is of significance as deep intronic variants are missed using whole exome sequencing screening methods. Individuals with CMT should be reassessed for deep intronic variants, with splicing impacts being considered in relation to the potential pathogenicity of variants.
Collapse
Affiliation(s)
- Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
| | - Jevin M Parmar
- Rare Disease Genetics and Functional Genomics Research Group, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha Bryen
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Andre L M Reis
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Igor Stevanovski
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Garth Nicholson
- The University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Nigel Laing
- Rare Disease Genetics and Functional Genomics Research Group, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics Research Group, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Kishore R Kumar
- The University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Translational Neurogenomics Group, Genomic and Inherited Disease Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Healthcare Campus, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Steve Vucic
- The University of Sydney, Camperdown, New South Wales, Australia
- Brain and Nerve Research Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
7
|
Scherer SS, Svaren J. Peripheral Nervous System (PNS) Myelin Diseases. Cold Spring Harb Perspect Biol 2024; 16:a041376. [PMID: 38253417 PMCID: PMC11065170 DOI: 10.1101/cshperspect.a041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
This is a review of inherited and acquired causes of human demyelinating neuropathies and a subset of disorders that affect axon-Schwann cell interactions. Nearly all inherited demyelinating neuropathies are caused by mutations in genes that are expressed by myelinating Schwann cells, affecting diverse functions in a cell-autonomous manner. The most common acquired demyelinating neuropathies are Guillain-Barré syndrome and chronic, inflammatory demyelinating polyneuropathy, both of which are immune-mediated. An additional group of inherited and acquired disorders affect axon-Schwann cell interactions in the nodal region. Overall, these disorders affect the formation of myelin and its maintenance, with superimposed axonal loss that is clinically important.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Svaren
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
8
|
Figueiredo FB, Tomaselli PJ, Hallak J, Mattiello-Sverzut AC, Covaleski APPM, Sobreira CFDR, de Paula Gouvêa S, Marques W. Genetic diversity in hereditary axonal neuropathy: Analyzing 53 Brazilian children. J Peripher Nerv Syst 2024; 29:97-106. [PMID: 38375759 DOI: 10.1111/jns.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND AIMS The genetic epidemiology of inherited neuropathies in children remains largely unknown. In this study, we specifically investigated the genetic profile of a Brazilian cohort of pediatric patients with pure or complex axonal neuropathies, a crucial knowledge in the near future for establishing treatment priorities and perspectives for this group of patients. METHODS Fifty-three pediatric patients who were assessed prior to reaching the age of 20, and who had clinical diagnoses of axonal hereditary neuropathy or presented with axonal neuropathy as the primary clinical feature, were included in the study. The recruitment of these cases took place from January 1, 2018, to December 31, 2020. The diagnosis was based on clinical and electrophysiological data. A molecular assessment was made using target-gene panel or whole-exome sequencing. Subsequently, segregation analysis was performed on available family members, and all candidate variants found were confirmed through Sanger. RESULTS A molecular diagnosis was reached in 68% of the patients (n = 36/53), considering only pathogenic and probably pathogenic variants. Variants in MFN2 (n = 15) and GJB1 (n = 3) accounted for half of the genetically confirmed patients (50%; n = 18/36). The other 18 genetically diagnosed patients had variants in several less common genes. INTERPRETATION Apart from MFN2 and GJB1 genes, universally recognized as a frequent cause of axonal neuropathies in most studied population, our Brazilian cohort of children with axonal neuropathies showed an important genetic heterogeneity, probably reflecting the multi ethnicity of the Brazilian population. Diagnostic, counseling, and future interventions should consider this characteristic.
Collapse
Affiliation(s)
- Fernanda Barbosa Figueiredo
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pedro José Tomaselli
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jaime Hallak
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Sciences and Technology-INCT-Translational Medicine-CNPq/FAPESP, Ribeirao Preto, Brazil
| | | | | | | | - Silmara de Paula Gouvêa
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Wilson Marques
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Sciences and Technology-INCT-Translational Medicine-CNPq/FAPESP, Ribeirao Preto, Brazil
| |
Collapse
|
9
|
Feng X, Liu S, Li K, Bu F, Yuan H. NCAD v1.0: a database for non-coding variant annotation and interpretation. J Genet Genomics 2024; 51:230-242. [PMID: 38142743 DOI: 10.1016/j.jgg.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The application of whole genome sequencing is expanding in clinical diagnostics across various genetic disorders, and the significance of non-coding variants in penetrant diseases is increasingly being demonstrated. Therefore, it is urgent to improve the diagnostic yield by exploring the pathogenic mechanisms of variants in non-coding regions. However, the interpretation of non-coding variants remains a significant challenge, due to the complex functional regulatory mechanisms of non-coding regions and the current limitations of available databases and tools. Hence, we develop the non-coding variant annotation database (NCAD, http://www.ncawdb.net/), encompassing comprehensive insights into 665,679,194 variants, regulatory elements, and element interaction details. Integrating data from 96 sources, spanning both GRCh37 and GRCh38 versions, NCAD v1.0 provides vital information to support the genetic diagnosis of non-coding variants, including allele frequencies of 12 diverse populations, with a particular focus on the population frequency information for 230,235,698 variants in 20,964 Chinese individuals. Moreover, it offers prediction scores for variant functionality, five categories of regulatory elements, and four types of non-coding RNAs. With its rich data and comprehensive coverage, NCAD serves as a valuable platform, empowering researchers and clinicians with profound insights into non-coding regulatory mechanisms while facilitating the interpretation of non-coding variants.
Collapse
Affiliation(s)
- Xiaoshu Feng
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Sihan Liu
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Ke Li
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China.
| |
Collapse
|
10
|
Maciel VAZ, Maximiano-Alves G, Frezatti RSS, Alves ALDM, Andrade BMA, Leal RDCC, Tomaselli PJ, Reilly MM, Marques W. Unveiling the clinical and electrophysiological profile of CMTX6: Insights from two Brazilian families. J Peripher Nerv Syst 2023; 28:614-619. [PMID: 37849068 DOI: 10.1111/jns.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND AIMS X-linked Charcot-Marie-Tooth disease type 6 (CMTX6) is an extremely rare condition associated with mutations in the PDK3 gene. To date, only three families from different countries have been reported (Australia, South Korea, and Germany). In this study, we sought to provide a comprehensive clinical and electrophysiological characterization of two Brazilian families. METHODS We conducted comprehensive clinical assessments, extensive electrophysiological evaluations, and performed whole-exome sequencing in the probands to investigate the genetic basis of the disease. RESULTS Males in the family carrying the Arg162His mutation displayed early-onset motor and/or sensory axonal neuropathy, absence of tendon jerks, pes cavus, and frequently reported pain. Females in the same family exhibited a milder phenotype of the disease with later onset and some remained asymptomatic into their 50s. In the unrelated family with a single affected male, the clinical presentation was characterized by severe progressive sensorimotor polyneuropathy accompanied by neuropathic pain. INTERPRETATION We report two Brazilian families with CMTX6 including one harboring a previously unpublished variant in the PDK3 gene, which co-segregates with the disease as expected in a X-linked disease. Notably, the clinical presentations across the five families with available descriptions, including our study, share striking similarities. Furthermore, the proximity of the three reported mutations suggests potential functional similarities and common underlying mechanisms. This study contributes to the growing knowledge of CMTX6 and underscores the importance of international collaborations in studying rare genetic disorders.
Collapse
Affiliation(s)
- Victor Augusto Zanesi Maciel
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Gustavo Maximiano-Alves
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Rodrigo Siqueira Soares Frezatti
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Anna Letícia De Moraes Alves
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Bianca Mara Alves Andrade
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Rita De Cassia Carvalho Leal
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Pedro José Tomaselli
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Record CJ, Skorupinska M, Laura M, Rossor AM, Pareyson D, Pisciotta C, Feely SME, Lloyd TE, Horvath R, Sadjadi R, Herrmann DN, Li J, Walk D, Yum SW, Lewis RA, Day J, Burns J, Finkel RS, Saporta MA, Ramchandren S, Weiss MD, Acsadi G, Fridman V, Muntoni F, Poh R, Polke JM, Zuchner S, Shy ME, Scherer SS, Reilly MM. Genetic analysis and natural history of Charcot-Marie-Tooth disease CMTX1 due to GJB1 variants. Brain 2023; 146:4336-4349. [PMID: 37284795 PMCID: PMC10545504 DOI: 10.1093/brain/awad187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Shawna M E Feely
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina W Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospitals Network, Sydney, 2145Australia
| | - Richard S Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Titusville, NJ 08560, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA, 98195USA
| | - Gyula Acsadi
- Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London, WC1N 1EH, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
12
|
Kagiava A, Karaiskos C, Lapathitis G, Heslegrave A, Sargiannidou I, Zetterberg H, Bosch A, Kleopa KA. Gene replacement therapy in two Golgi-retained CMT1X mutants before and after the onset of demyelinating neuropathy. Mol Ther Methods Clin Dev 2023; 30:377-393. [PMID: 37645436 PMCID: PMC10460951 DOI: 10.1016/j.omtm.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mutations affecting the GJB1/connexin 32 (Cx32) gene. We previously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we delivered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines expressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and peripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 40530 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 40530 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Assumpció Bosch
- Department of Biochemistry & Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Bellatera, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 028029 Madrid, Spain
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| |
Collapse
|
13
|
Li M, Yin M, Yang L, Chen Z, Du P, Sun L, Chen J. A novel splicing mutation in 5'UTR of GJB1 causes X-linked Charcot-Marie-tooth disease. Mol Genet Genomic Med 2023; 11:e2108. [PMID: 36394156 PMCID: PMC10009907 DOI: 10.1002/mgg3.2108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is the most frequent hereditary motor sensory neurological disease. GJB1 gene is the second most frequent cause of CMT, accounting for approximately 10% of CMT cases worldwide. We identified a large Han family with X-linked CMT disease. METHODS In this study, the probands and his mother underwent electrophysiological examinations and other family members were assessed retrospectively. Whole-exome sequencing, Sanger sequencing, and SNP array linkage analysis were performed to find and confirm the variant. The functional effect of the identified variant was further investigated in HEK293 cells and MCF-7 cells by minigene splicing assay. RESULTS The affected individuals had some clinical symptoms including symmetric atrophy and progressive weakness of the distal muscles in their twenties. Electrophysiological examinations result in peripheral nerve injury of the upper and lower limbs. Whole-exome sequencing identified a novel hemizygous deletion mutation (NM_000166: c.-16-8_-14del) in the GJB1 gene. SNP array linkage analysis and co-segregation analysis confirmed this mutation. Minigene splicing assay verified that this mutation leads to the activation of cryptic splicing sites in exon 2 which results in the deletion of exon 2. CONCLUSION Our study provides theoretical guidance for prenatal diagnosis and subsequent fertility of this family. This result expands the spectrum of mutations in GJB1 known to be associated with CMTX and contributes to the diagnosis of CMT and clinical genetic counseling.
Collapse
Affiliation(s)
- MeiYi Li
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Minna Yin
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Yang
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiheng Chen
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Du
- Genetic Testing Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Juan Chen
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Tabet D, Parikh V, Mali P, Roth FP, Claussnitzer M. Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annu Rev Genet 2022; 56:441-465. [PMID: 36055970 DOI: 10.1146/annurev-genet-072920-032107] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Scalable sequence-function studies have enabled the systematic analysis and cataloging of hundreds of thousands of coding and noncoding genetic variants in the human genome. This has improved clinical variant interpretation and provided insights into the molecular, biophysical, and cellular effects of genetic variants at an astonishing scale and resolution across the spectrum of allele frequencies. In this review, we explore current applications and prospects for the field and outline the principles underlying scalable functional assay design, with a focus on the study of single-nucleotide coding and noncoding variants.
Collapse
Affiliation(s)
- Daniel Tabet
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Victoria Parikh
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Frederick P Roth
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine and Endocrine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA;
| |
Collapse
|
15
|
Soriano-Sexto A, Gallego D, Leal F, Castejón-Fernández N, Navarrete R, Alcaide P, Couce ML, Martín-Hernández E, Quijada-Fraile P, Peña-Quintana L, Yahyaoui R, Correcher P, Ugarte M, Rodríguez-Pombo P, Pérez B. Identification of Clinical Variants beyond the Exome in Inborn Errors of Metabolism. Int J Mol Sci 2022; 23:ijms232112850. [PMID: 36361642 PMCID: PMC9654865 DOI: 10.3390/ijms232112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022] Open
Abstract
Inborn errors of metabolism (IEM) constitute a huge group of rare diseases affecting 1 in every 1000 newborns. Next-generation sequencing has transformed the diagnosis of IEM, leading to its proposed use as a second-tier technology for confirming cases detected by clinical/biochemical studies or newborn screening. The diagnosis rate is, however, still not 100%. This paper reports the use of a personalized multi-omics (metabolomic, genomic and transcriptomic) pipeline plus functional genomics to aid in the genetic diagnosis of six unsolved cases, with a clinical and/or biochemical diagnosis of galactosemia, mucopolysaccharidosis type I (MPS I), maple syrup urine disease (MSUD), hyperphenylalaninemia (HPA), citrullinemia, or urea cycle deficiency. Eight novel variants in six genes were identified: six (four of them deep intronic) located in GALE, IDUA, PTS, ASS1 and OTC, all affecting the splicing process, and two located in the promoters of IDUA and PTS, thus affecting these genes’ expression. All the new variants were subjected to functional analysis to verify their pathogenic effects. This work underscores how the combination of different omics technologies and functional analysis can solve elusive cases in clinical practice.
Collapse
Affiliation(s)
- Alejandro Soriano-Sexto
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Diana Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Fátima Leal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Natalia Castejón-Fernández
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Patricia Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - María L. Couce
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, University of Santiago de Compostela, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - Elena Martín-Hernández
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Servicio de Pediatría, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas Hereditarias, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Pilar Quijada-Fraile
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Servicio de Pediatría, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas Hereditarias, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Complejo Hospitalario Universitario Insular Materno-Infantil (CHUIMI), Universidad de Las Palmas de Gran Canaria, Asociación Canaria para La Investigación Pediátrica, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN) ISCIII, 35016 Gran Canaria, Spain
| | - Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening, Institute of Biomedical Research in Málaga (IBIMA-Plafatorma BIONAND), IBIMA-RARE, Málaga Regional University Hospital, 29010 Málaga, Spain
| | - Patricia Correcher
- Nutrition and Metabolophaties Unit, Hospital Universitario La Fe, 46026 Valencia, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
Chu F, Xu J, Wang Y, Li Y, Wang Y, Liu Z, Li C. Novel mutations in GJB1 trigger intracellular aggregation and stress granule formation in X-linked Charcot-Marie-Tooth Disease. Front Neurosci 2022; 16:972288. [PMID: 36225735 PMCID: PMC9548587 DOI: 10.3389/fnins.2022.972288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked Charcot-Marie-Tooth Disease type 1(CMT1X) is the second most common form of inherited peripheral neuropathy that is caused by mutations in the gap junction beta-1 (GJB1) gene. Using targeted exome-sequencing, we investigated four CMT families from central-southern China and identified two novel missense variants (p.F31S and p.W44G) and two previously reported variants (p.R220Pfs*23 and p.R164Q) of GJB1. All four probands presented typical early-onset peripheral neuropathy, of which the R220Pfs*23 carrier also had neurologic manifestations in the central nervous system. We then constructed GJB1 expression vectors and performed cell biological analysis in vitro. Expression of FLAG-tagged GJB1 at various time points after transfection revealed evident protein aggregation with both wild-type and mutant forms, indicated with immunostaining and immunoblotting. Detergent-based sequential fractionation confirmed that all mutants were higher expressed and more prone to aggregate than the wild-type, whereas the R220Pfs*23 mutant showed the greatest amount of SDS-soluble multimers and monomers among groups. Moreover, intracellular aggregation probably occurs in the endoplasmic reticulum compartment rather than the Golgi apparatus. Gap junction plaques were present in all groups and were only compromised in frameshift mutant. Further evidence reveals significant intracellular stress granule formation induced by mutated GJB1 and impaired cell viability indicative of cytotoxicity of self-aggregates. Together, our findings demonstrate novel GJB1 variants-induced cell stress and dysfunction and provide insights into understanding the pathomechanisms of GJB1-CMTX1 and other related disorders.
Collapse
Affiliation(s)
- Fan Chu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Baracaldo-Santamaría D, Corrales-Hernández MG, Ortiz-Vergara MC, Cormane-Alfaro V, Luque-Bernal RM, Calderon-Ospina CA, Cediel-Becerra JF. Connexins and Pannexins: Important Players in Neurodevelopment, Neurological Diseases, and Potential Therapeutics. Biomedicines 2022; 10:2237. [PMID: 36140338 PMCID: PMC9496069 DOI: 10.3390/biomedicines10092237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-to-cell communication is essential for proper embryonic development and its dysfunction may lead to disease. Recent research has drawn attention to a new group of molecules called connexins (Cxs) and pannexins (Panxs). Cxs have been described for more than forty years as pivotal regulators of embryogenesis; however, the exact mechanism by which they provide this regulation has not been clearly elucidated. Consequently, Cxs and Panxs have been linked to congenital neurodegenerative diseases such as Charcot-Marie-Tooth disease and, more recently, chronic hemichannel opening has been associated with adult neurodegenerative diseases (e.g., Alzheimer's disease). Cell-to-cell communication via gap junctions formed by hexameric assemblies of Cxs, known as connexons, is believed to be a crucial component in developmental regulation. As for Panxs, despite being topologically similar to Cxs, they predominantly seem to form channels connecting the cytoplasm to the extracellular space and, despite recent research into Panx1 (Pannexin 1) expression in different regions of the brain during the embryonic phase, it has been studied to a lesser degree. When it comes to the nervous system, Cxs and Panxs play an important role in early stages of neuronal development with a wide span of action ranging from cellular migration during early stages to neuronal differentiation and system circuitry formation. In this review, we describe the most recent available evidence regarding the molecular and structural aspects of Cx and Panx channels, their role in neurodevelopment, congenital and adult neurological diseases, and finally propose how pharmacological modulation of these channels could modify the pathogenesis of some diseases.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Maria Camila Ortiz-Vergara
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Valeria Cormane-Alfaro
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Ricardo-Miguel Luque-Bernal
- Anatomy and Embriology Units, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juan-Fernando Cediel-Becerra
- Histology and Embryology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
18
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
19
|
Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S, Campbell C, Downes K, Ellard S, Duff-Farrier C, FitzPatrick DR, Greally JM, Ingles J, Krishnan N, Lord J, Martin HC, Newman WG, O'Donnell-Luria A, Ramsden SC, Rehm HL, Richardson E, Singer-Berk M, Taylor JC, Williams M, Wood JC, Wright CF, Harrison SM, Whiffin N. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med 2022; 14:73. [PMID: 35850704 PMCID: PMC9295495 DOI: 10.1186/s13073-022-01073-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts. METHODS We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups. RESULTS We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants. CONCLUSIONS These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.
Collapse
Affiliation(s)
- Jamie M Ellingford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, M13 9PT, UK.
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
- Genomics England, London, UK.
| | - Joo Wook Ahn
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Stephanie Barton
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Chris Campbell
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- South West Genomic Laboratory Hub, Exeter Genomic Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Celia Duff-Farrier
- South West NHS Genomic Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John M Greally
- Department of Pediatrics, Division of Pediatric Genetic, Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert, Einstein College of Medicine, Bronx, NY, USA
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - William G Newman
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ebony Richardson
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Maggie Williams
- South West NHS Genomic Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Jordan C Wood
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Steven M Harrison
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Nicola Whiffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
20
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Jennings MJ, Heslegrave AJ, Sargiannidou I, Stavrou M, Zetterberg H, Reilly MM, Christodoulou C, Horvath R, Kleopa KA. AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy. Gene Ther 2021; 28:659-675. [PMID: 33692503 PMCID: PMC8599011 DOI: 10.1038/s41434-021-00250-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023]
Abstract
Mutations in the GJB1 gene, encoding the gap junction (GJ) protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We developed a gene therapy approach for CMT1X using an AAV9 vector to deliver the GJB1/Cx32 gene under the myelin protein zero (Mpz) promoter for targeted expression in Schwann cells. Lumbar intrathecal injection of the AAV9-Mpz.GJB1 resulted in widespread biodistribution in the peripheral nervous system including lumbar roots, sciatic and femoral nerves, as well as in Cx32 expression in the paranodal non-compact myelin areas of myelinated fibers. A pre-, as well as post-onset treatment trial in Gjb1-null mice, demonstrated improved motor performance and sciatic nerve conduction velocities along with improved myelination and reduced inflammation in peripheral nerve tissues. Blood biomarker levels were also significantly ameliorated in treated mice. This study provides evidence that a clinically translatable AAV9-mediated gene therapy approach targeting Schwann cells could potentially treat CMT1X.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Amanda J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
21
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Kovale S, Terauda R, Millere E, Taurina G, Murmane D, Isakova J, Kenina V, Gailite L. GJB1 Gene Analysis in Two Extended Families with X-Linked Charcot-Marie-Tooth Disease. Case Rep Neurol 2021; 13:422-428. [PMID: 34326750 PMCID: PMC8299378 DOI: 10.1159/000515170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
X-linked Charcot-Marie-Tooth (CMT) disease type I (CMTX1) is the second most frequent type of CMT disease caused by pathogenic variants in the GJB1 gene. We described 2 extended cases (families) with CMTX1 with identified pathogenic variants – p.Val139Met and p.Arg215Trp. In both the families, neurological symptoms started earlier in male than in female patients. In some family members, molecular diagnostics was performed prior to neurological investigation due to family cascade screening. There was variable neurological phenotype representing CMT. Conclusions: There is a large clinical heterogeneity in CMTX, even amongst the family members.
Collapse
Affiliation(s)
- Sabine Kovale
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Ruta Terauda
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Elina Millere
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia
| | - Gita Taurina
- Children's Clinical University Hospital, Riga, Latvia
| | - Daiga Murmane
- Children's Clinical University Hospital, Riga, Latvia
| | - Jekaterina Isakova
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Viktorija Kenina
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| |
Collapse
|
23
|
Grosz BR, Svaren J, Perez-Siles G, Nicholson GA, Kennerson ML. Revisiting the pathogenic mechanism of the GJB1 5' UTR c.-103C > T mutation causing CMTX1. Neurogenetics 2021; 22:149-160. [PMID: 34089394 PMCID: PMC8241655 DOI: 10.1007/s10048-021-00650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
The second most common form of Charcot-Marie-Tooth neuropathy (CMT), X-linked CMT type X1 (CMTX1), is caused by coding and non-coding mutations in the gap junction beta 1 (GJB1) gene. The non-coding GJB1 c.-103C > T mutation (NM_000166.5) has been reported to cause CMTX1 in multiple families. This study assessed the internal ribosomal entry site (IRES) activity previously reported for the rat Gjb1 P2 5' untranslated region (UTR). Using a bicistronic assay and transfecting RT4 Schwann cells, IRES activity of the human GJB1 P2 5' UTR was compared to the GJB1 P2 5' UTR containing either the c.-103C > T mutation or the non-pathogenic c.-102G > A variant. No differences in GJB1 P2 5' UTR IRES activity were observed between the negative control, the wild-type P2 5' UTR, the c.-103C > T 5' UTR or the c.-102G > A 5' UTR, irrespective of the GJB1 intron being present (p = .429 with intron, and p = .865 without). A theoretical c.-131A > G variant was predicted to result in the same RNA secondary structure as the GJB1 c.-103C > T P2 5' UTR. However, no significant difference was observed between expression from the wild-type GJB1 P2 5' UTR and the GJB1 c.-131A > G variant (p = .688). Deletion of the conserved region surrounding the c.-103C > T mutation (c.-108_-103del) resulted in significantly higher expression than the c.-103C > T mutation alone (p = .019), suggesting that the conserved c.-108_-103 region was not essential for translation. The reporter assays in this study do not recapitulate the previously reported GJB1 IRES activity and suggest an alternate pathogenic mechanism for the c.-103C > T CMTX1 non-coding mutation.
Collapse
Affiliation(s)
- Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia.
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.
| | - John Svaren
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Garth A Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
| |
Collapse
|
24
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
25
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
26
|
Millere E, Rots D, Simrén J, Ashton NJ, Kupats E, Micule I, Priedite V, Kurjane N, Blennow K, Gailite L, Zetterberg H, Kenina V. Plasma neurofilament light chain as a potential biomarker in Charcot-Marie-Tooth disease. Eur J Neurol 2021; 28:974-981. [PMID: 33340200 DOI: 10.1111/ene.14689] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth (CMT) disease is a chronic, slowly progressing disorder. The lack of specific disease progression biomarkers limits the execution of clinical trials. However, neurofilament light chain (NfL) has been suggested as a potential biomarker for peripheral nervous system disorders. METHODS Ninety-six CMT disease patients and 60 healthy controls were enrolled in the study. Disease severity assessment included clinical evaluation with CMT Neuropathy Score version 2 (CMTNSv2). Blood plasma NfL concentrations were measured using the single-molecule array NfL assay. RESULTS The NfL concentration was significantly higher in the CMT disease patient group than in the controls (p < 0.001). Of the CMT disease patients, those with type CMTX1 had a higher NfL level than those in the two other analysed subgroups (CMT1A and other CMT disease types) (p = 0.0498). The NfL concentration had a significant but weak correlation with the CMTNSv2 (rs = 0.25, p = 0.012). In one CMT disease patient with an extremely elevated NfL level, overlap with chronic inflammatory demyelinating polyneuropathy was suspected. Receiver operating characteristic analysis showed that an NfL concentration of 8.9 pg/ml could be used to discriminate CMT disease patients from controls, with an area under the curve of 0.881. CONCLUSIONS Our study confirmed that the plasma NfL concentration is significantly higher in CMT disease patients than in controls. Plasma NfL concentration was found to significantly, albeit weakly, reflect the clinical severity of CMT disease. In the future, NfL may be used, either individually or collaboratively, as a biomarker in the clinical context of suspected CMT disease; however, several issues need to be addressed first.
Collapse
Affiliation(s)
- Elina Millere
- Department of Neurology and Neurosurgery, Children's Clinical University Hospital, Riga, Latvia.,Department of Doctoral Studies, Riga Stradins University, Riga, Latvia
| | - Dmitrijs Rots
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Einars Kupats
- Department of Neurology, Riga East Clinical University Hospital, Riga, Latvia
| | - Ieva Micule
- Clinic of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, Riga, Latvia
| | | | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia.,Outpatient Service Centre, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute, UCL, London, UK
| | - Viktorija Kenina
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia.,Rare Disease Centre, Riga East Clinical University Hospital, Riga, Latvia
| |
Collapse
|
27
|
Boso F, Taioli F, Cabrini I, Cavallaro T, Fabrizi GM. Aberrant Splicing in GJB1 and the Relevance of 5' UTR in CMTX1 Pathogenesis. Brain Sci 2020; 11:brainsci11010024. [PMID: 33375465 PMCID: PMC7824018 DOI: 10.3390/brainsci11010024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
The second most common form of Charcot-Marie-Tooth disease (CMT) follows an X-linked dominant inheritance pattern (CMTX1), referring to mutations in the gap junction protein beta 1 gene (GJB1) that affect connexin 32 protein (Cx32) and its ability to form gap junctions in the myelin sheath of peripheral nerves. Despite the advances of next-generation sequencing (NGS), attention has only recently also focused on noncoding regions. We describe two unrelated families with a c.-17+1G>T transversion in the 5' untranslated region (UTR) of GJB1 that cosegregates with typical features of CMTX1. As suggested by in silico analysis, the mutation affects the regulatory sequence that controls the proper splicing of the intron in the corresponding mRNA. The retention of the intron is also associated with reduced levels of the transcript and the loss of immunofluorescent staining for Cx32 in the nerve biopsy, thus supporting the hypothesis of mRNA instability as a pathogenic mechanism in these families. Therefore, our report corroborates the role of 5' UTR of GJB1 in the pathogenesis of CMTX1 and emphasizes the need to include this region in routine GJB1 screening, as well as in NGS panels.
Collapse
Affiliation(s)
- Federica Boso
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
| | - Ilaria Cabrini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
| | - Tiziana Cavallaro
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-0458124286
| |
Collapse
|
28
|
Abstract
Abstract
Inherited peripheral neuropathy is the most common hereditary neuromuscular disease with a prevalence of about 1:2,500. The most frequent form is Charcot-Marie-Tooth disease (CMT, or hereditary motor and sensory neuropathy [HMSN]). Other clinical entities are hereditary neuropathy with liability to pressure palsies (HNPP), distal hereditary motor neuropathies (dHMN), and hereditary sensory and autonomic neuropathies (HSAN). With the exception of HNPP, which is almost always caused by defects of the PMP22 gene, all other forms show genetic heterogeneity with altogether more than 100 genes involved. Mutation detection rates vary considerably, reaching up to 80 % in demyelinating CMT (CMT1) but are still as low as 10–30 % in axonal CMT (CMT2), dHMN, and HSAN. Based on current information, analysis of only four genes (PMP22, GJB1, MPZ, MFN2) identifies 80–90 % of CMT-causing mutations that can be detected in all known disease genes. For the remaining patients, parallel analysis of multiple neuropathy genes using next-generation sequencing is now replacing phenotype-oriented multistep gene-by-gene sequencing. Such approaches tend to generate a wealth of genetic information that requires comprehensive evaluation of the pathogenic relevance of identified variants. In this review, we present current classification systems, specific phenotypic clues, and diagnostic yields in the different subgroups of hereditary CMT and motor neuropathies.
Collapse
|
29
|
Liu X, Duan X, Zhang Y, Sun A, Fan D. Cross-Sectional Study in a Large Cohort of Chinese Patients With GJB1 Gene Mutations. Front Neurol 2020; 11:690. [PMID: 32903794 PMCID: PMC7438869 DOI: 10.3389/fneur.2020.00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited neuropathies. The GJB1 gene is the pathogenic gene of CMTX1. In this study, we screened a cohort of 465 unrelated Chinese CMT patients from years 2007 to 2019 and 650 controls by direct Sanger sequencing in GJB1 gene or targeted next-generation sequencing (NGS) or whole-exome sequencing (WES). A bidirectional Sanger sequencing would be performed on the 600 bases in the upstream promoter region and 30 bases in the 3′ untranslated region (UTR), if no mutation was found in the coding region of GJB1 of the patient. According to the results, 24 missense mutations, 4 nonsense mutation, 1 entire deletion, 1 intronic mutation, and 4 frameshift mutations in GJB1 were identified. Three of them were novel mutations (c.104 T>C, c.658-659 ins C, and c.811 del G). Moreover, central nervous system involvement was observed in five patients carrying mutations of R15W, V95M, R142W, R164W, and E186K. Our findings expand the mutational spectrum of the GJB1 gene in CMT patients. We also explored the genotype–phenotype correlation according to the collected information in this study. NGS panels for detecting inherited neuropathy should cover the non-coding region of GJB1.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Aping Sun
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
30
|
The Role of Noncoding Variants in Heritable Disease. Trends Genet 2020; 36:880-891. [PMID: 32741549 DOI: 10.1016/j.tig.2020.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
The genetic basis of disease has largely focused on coding regions. However, it has become clear that a large proportion of the noncoding genome is functional and harbors genetic variants that contribute to disease etiology. Here, we review recent examples of inherited noncoding alterations that are responsible for Mendelian disorders or act to influence complex traits. We explore both rare and common genetic variants and discuss the wide range of mechanisms by which they affect gene regulation to promote disease. We also debate the challenges and progress associated with identifying and interpreting the functional and clinical significance of genetic variation in the context of the noncoding regulatory landscape.
Collapse
|
31
|
Tsang MHY, Chiu ATG, Kwong BMH, Liang R, Yu MHC, Yeung KS, Ho WHL, Mak CCY, Leung GKC, Pei SLC, Fung JLF, Wong VCN, Muntoni F, Chung BHY, Chan SHS. Diagnostic value of whole-exome sequencing in Chinese pediatric-onset neuromuscular patients. Mol Genet Genomic Med 2020; 8:e1205. [PMID: 32154989 PMCID: PMC7216811 DOI: 10.1002/mgg3.1205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuromuscular disorders (NMDs) comprise a group of heterogeneous genetic diseases with a broad spectrum of overlapping the clinical presentations that makes diagnosis challenging. Notably, the recent introduction of whole-exome sequencing (WES) is introducing rapid changes on the genetic diagnosis of NMDs. We aimed to investigate the diagnostic value of WES for pediatric-onset NMDs. METHODS We applied integrated diagnostic approach and performed WES in 50 Chinese subjects (30 males, 20 females) with undiagnosed pediatric-onset NMDs despite previous specific tests. The patients were categorized in four subgroups according to phenotyping and investigation findings. Variants on NMDs gene list and open exome analysis for those with initial negative findings were identified. RESULTS WES identified causative variants in ACTA1 (n = 2), POMT1, COL6A1 (n = 2), MTMR2, LMNA, SELENON, DNM2, TGFB1, MPZ, IGHMBP2, and LAMA2 in 13 patients. Two subjects have variants of uncertain significance (VUSs) in TTN and SCN11A, unlikely to be pathogenic due to incompatible phenotypes. The mean interval time from symptom onset to genetic diagnosis was 10.4 years (range from 1 month to 33 years). The overall diagnostic yield of WES in our cohort was 26%. Open exome analysis was necessary to identify the pathogenic variant in TGFB1 that caused skeletal dysplasia with neuromuscular presentation. CONCLUSION Our study shows a clear role of WES in the pathway of integrated diagnostic approach to shorten the diagnostic odyssey in patients with rare NMDs.
Collapse
Affiliation(s)
- Mandy H Y Tsang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Annie T G Chiu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Bernard M H Kwong
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Rui Liang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Mullin H C Yu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Kit-San Yeung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Wetor H L Ho
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Christopher C Y Mak
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Gordon K C Leung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Steven L C Pei
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Jasmine L F Fung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Virginia C N Wong
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK
| | - Brian H Y Chung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Sophelia H S Chan
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| |
Collapse
|
32
|
Kelley MA, Oaklander AL. Association of small-fiber polyneuropathy with three previously unassociated rare missense SCN9A variants. Can J Pain 2020; 4:19-29. [PMID: 32719824 PMCID: PMC7384751 DOI: 10.1080/24740527.2020.1712652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Small fiber polyneuropathy (SFN) involves ectopic firing and degeneration of small-diameter, somatic/autonomic peripheral axons. Causes include diabetes, inflammation and rare pathogenic mutations, including in SCN9-11 genes that encode small fiber sodium channels. AIMS The aim of this study is to associate a new phenotype-immunotherapy-responsive SFN-with rare amino acid-substituting SCN9A variants and present potential explanations. METHODS A retrospective chart review of two Caucasians with skin biopsy confirmed SFN and rare SCN9A single nucleotide polymorphisms not previously reported in neuropathy. RESULTS A 47-year-old with 4 years of disabling widespread neuropathic pain and exertional intolerance had nerve- and skin biopsy-confirmed SFN, with blood tests revealing only high-titer antinuclear antibodies and low complement C4 consistent with B cell dysimmunity. Six years of intravenous immunoglobulin (IVIg) therapy markedly improved sensory and autonomic symptoms and normalized his neurite density. After whole exome sequencing revealed a potentially pathogenic SCN9A-A3734G variant, sodium channel blockers were tried. Herpes zoster left a 32-year-old with disabling exertional intolerance ("chronic fatigue syndrome"), postural syncope and tachycardia, arm and leg paresthesias, reduced sweating, and distal hairloss. Screening revealed antinuclear and potassium channel autoantibodies, so prednisone and then IVIg were prescribed with great benefit. During 4 years of immunotherapy, his symptoms and function improved, and all abnormal biomarkers (autonomic testing and skin biopsies) normalized. Whole exome sequencing then revealed two nearby compound heterozygous SCN9A variants that were computer-predicted to be deleterious. CONCLUSIONS These cases newly associate three novel amino acid-substituting SCN9A variants with immunotherapy-responsive neuropathy. Only larger studies can determine whether these are contributory or coincidental, but they associate new variants with moderate or high likelihood of pathogenicity with a new highly related phenotype.
Collapse
Affiliation(s)
- Mary A. Kelley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Dell Medical School at the University of Texas, Austin, Texas, USA
| | - Anne Louise Oaklander
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology (Neuropathology), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
34
|
Cortese A, Wilcox JE, Polke JM, Poh R, Skorupinska M, Rossor AM, Laura M, Tomaselli PJ, Houlden H, Shy ME, Reilly MM. Targeted next-generation sequencing panels in the diagnosis of Charcot-Marie-Tooth disease. Neurology 2020; 94:e51-e61. [PMID: 31827005 PMCID: PMC7011687 DOI: 10.1212/wnl.0000000000008672] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the effectiveness of targeted next-generation sequencing (NGS) panels in achieving a molecular diagnosis in Charcot-Marie-Tooth disease (CMT) and related disorders in a clinical setting. METHODS We prospectively enrolled 220 patients from 2 tertiary referral centers, one in London, United Kingdom (n = 120), and one in Iowa (n = 100), in whom a targeted CMT NGS panel had been requested as a diagnostic test. PMP22 duplication/deletion was previously excluded in demyelinating cases. We reviewed the genetic and clinical data upon completion of the diagnostic process. RESULTS After targeted NGS sequencing, a definite molecular diagnosis, defined as a pathogenic or likely pathogenic variant, was reached in 30% of cases (n = 67). The diagnostic rate was similar in London (32%) and Iowa (29%). Variants of unknown significance were found in an additional 33% of cases. Mutations in GJB1, MFN2, and MPZ accounted for 39% of cases that received genetic confirmation, while the remainder of positive cases had mutations in diverse genes, including SH3TC2, GDAP1, IGHMBP2, LRSAM1, FDG4, and GARS, and another 12 less common genes. Copy number changes in PMP22, MPZ, MFN2, SH3TC2, and FDG4 were also accurately detected. A definite genetic diagnosis was more likely in cases with an early onset, a positive family history of neuropathy or consanguinity, and a demyelinating neuropathy. CONCLUSIONS NGS panels are effective tools in the diagnosis of CMT, leading to genetic confirmation in one-third of cases negative for PMP22 duplication/deletion, thus highlighting how rarer and previously undiagnosed subtypes represent a relevant part of the genetic landscape of CMT.
Collapse
Affiliation(s)
- Andrea Cortese
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Janel E Wilcox
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - James M Polke
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Roy Poh
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Mariola Skorupinska
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Alexander M Rossor
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Matilde Laura
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Pedro J Tomaselli
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Henry Houlden
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Michael E Shy
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Mary M Reilly
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City.
| |
Collapse
|
35
|
Kagiava A, Richter J, Tryfonos C, Karaiskos C, Heslegrave AJ, Sargiannidou I, Rossor AM, Zetterberg H, Reilly MM, Christodoulou C, Kleopa KA. Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X. Hum Mol Genet 2019; 28:3528-3542. [PMID: 31411673 DOI: 10.1093/hmg/ddz199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X), one of the commonest forms of inherited demyelinating neuropathy, results from GJB1 gene mutations causing loss of function of the gap junction protein connexin32 (Cx32). The aim of this study was to examine whether delayed gene replacement therapy after the onset of peripheral neuropathy can provide a therapeutic benefit in the Gjb1-null/Cx32 knockout model of CMT1X. After delivery of the LV-Mpz.GJB1 lentiviral vector by a single lumbar intrathecal injection into 6-month-old Gjb1-null mice, we confirmed expression of Cx32 in lumbar roots and sciatic nerves correctly localized at the paranodal myelin areas. Gjb1-null mice treated with LV-Mpz.GJB1 compared with LV-Mpz.Egfp (mock) vector at the age of 6 months showed improved motor performance at 8 and 10 months. Furthermore, treated mice showed increased sciatic nerve conduction velocities, improvement of myelination and reduced inflammation in lumbar roots and peripheral nerves at 10 months of age, along with enhanced quadriceps muscle innervation. Plasma neurofilament light (NEFL) levels, a clinically relevant biomarker, were also ameliorated in fully treated mice. Intrathecal gene delivery after the onset of peripheral neuropathy offers a significant therapeutic benefit in this disease model, providing a proof of principle for treating patients with CMT1X at different ages.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - H Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - M M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
36
|
Next-generation sequencing in Charcot-Marie-Tooth disease: opportunities and challenges. Nat Rev Neurol 2019; 15:644-656. [PMID: 31582811 DOI: 10.1038/s41582-019-0254-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
Abstract
Charcot-Marie-Tooth disease and the related disorders hereditary motor neuropathy and hereditary sensory neuropathy, collectively termed CMT, are the commonest group of inherited neuromuscular diseases, and they exhibit wide phenotypic and genetic heterogeneity. CMT is usually characterized by distal muscle atrophy, often with foot deformity, weakness and sensory loss. In the past decade, next-generation sequencing (NGS) technologies have revolutionized genomic medicine and, as these technologies are being applied to clinical practice, they are changing our diagnostic approach to CMT. In this Review, we discuss the application of NGS technologies, including disease-specific gene panels, whole-exome sequencing, whole-genome sequencing (WGS), mitochondrial sequencing and high-throughput transcriptome sequencing, to the diagnosis of CMT. We discuss the growing challenge of variant interpretation and consider how the clinical phenotype can be combined with genetic, bioinformatic and functional evidence to assess the pathogenicity of genetic variants in patients with CMT. WGS has several advantages over the other techniques that we discuss, which include unparalleled coverage of coding, non-coding and intergenic areas of both nuclear and mitochondrial genomes, the ability to identify structural variants and the opportunity to perform genome-wide dense homozygosity mapping. We propose an algorithm for incorporating WGS into the CMT diagnostic pathway.
Collapse
|
37
|
Eggermann K, Gess B, Häusler M, Weis J, Hahn A, Kurth I. Hereditary Neuropathies. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:91-97. [PMID: 29478438 DOI: 10.3238/arztebl.2018.0091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hereditary peripheral neuropathies constitute a large group of genetic diseases, with an overall prevalence of 1:2500. In recent years, the use of so-called next-generation sequencing (NGS) has led to the identification of many previously unknown involved genes and genetic defects that cause neuropathy. In this article, we review the procedures and utility of genetic evaluation for hereditary neurop - athies, while also considering the implications of the fact that causally directed treatment of these disorders is generally unavailable. METHODS This review is based on pertinent publications retrieved by a PubMed search employing the search terms "hereditary neuropathy," "Charcot-Marie-Tooth disease," "hereditary sensory neuropathy," and "hereditary motor neuropathy." RESULTS With rare exceptions, the diagnostic evaluation for hereditary neuropathies proceeds in stepwise fashion, beginning with the study of individual genes. If this fails to detect any abnormality, NGS analysis, which involves the sequencing of many different genes in parallel and has now become available for routine diagnosis, should be performed early on in the diagnostic work-up. Exome and genome analyses are currently performed only when considered to be indicated in the individual case. Whenever a hereditary neuropathy is suspected, other (including potentially treatable) causes of neuropathy should be ruled out. Mutations in neurop athy-associated genes may also be associated with other clinical entities such as spastic paraplegia or myopathy. Thus, interdisciplinary assessment is necessary. CONCLUSION The molecular diagnosis of neuropathies has become much more successful through the use of NGS. Although causally directed treatment approaches still need to be developed, the correct diagnosis puts an end to the often highly stressful search for a cause and enables determination of the risk of disease in other members of the patient's family.
Collapse
Affiliation(s)
- Katja Eggermann
- Institute of Human Genetics, Uniklinik RWTH Aachen; Department of Neurology, Uniklinik RWTH Aachen; Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, Uniklinik RWTH Aachen; Department of Neuropediatrics, Developmental Medicine and Epileptology, Children's Medical Center; Giessen, University of Giessen; Institute of Neuropathology, Uniklinik RWTH Aachen
| | | | | | | | | | | |
Collapse
|
38
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
39
|
Luo S, Jin H, Chen J, Zhang L. A Novel Variant in Non-coding Region of GJB1 Is Associated With X-Linked Charcot-Marie-Tooth Disease Type 1 and Transient CNS Symptoms. Front Neurol 2019; 10:413. [PMID: 31068899 PMCID: PMC6491636 DOI: 10.3389/fneur.2019.00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/04/2019] [Indexed: 11/27/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) is a dominantly inherited peripheral neuropathy and is caused by mutations in gap junction beta 1 gene (GJB1). Here, a novel variant of c.-170T>G in GJB1 was identified in a large Chinese CMTX1 pedigree. The proband presented transient “stroke-like” episodes in addition to the peripheral neuropathy. At the time of episode, he had transient hyperthyroidism. To our knowledge, this is the first variant found in non-coding region associated with transient central nervous system (CNS) symptoms and in this case, thyroid dysfunction might contribute to the episode. The mechanism of CMTX1 as well as the transient CNS symptoms waits to be elucidated.
Collapse
Affiliation(s)
- Si Luo
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Koutsis G, Breza M, Velonakis G, Tzartos J, Kasselimis D, Kartanou C, Karavasilis E, Tzanetakos D, Anagnostouli M, Andreadou E, Evangelopoulos ME, Kilidireas C, Potagas C, Panas M, Karadima G. X linked Charcot-Marie-Tooth disease and multiple sclerosis: emerging evidence for an association. J Neurol Neurosurg Psychiatry 2019; 90:187-194. [PMID: 30196252 DOI: 10.1136/jnnp-2018-319014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/31/2018] [Accepted: 08/11/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVE X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary neuropathy caused by mutations in GJB1 coding for connexin-32, a gap junction protein expressed in Schwann cells, but also found in oligodendrocytes. Four patients with CMTX developing central nervous system (CNS) demyelination compatible with multiple sclerosis (MS) have been individually published. We presently sought to systematically investigate the relationship between CMTX and MS. METHODS Over 20 years, 70 consecutive patients (36 men) with GJB1 mutations were identified at our Neurogenetics Unit, Athens, Greece, and assessed for clinical features suggestive of MS. Additionally, 18 patients with CMTX without CNS symptoms and 18 matched controls underwent brain MRI to investigate incidental findings. Serum from patients with CMTX and MS was tested for CNS immunoreactivity. RESULTS We identified three patients with CMTX who developed clinical features suggestive of inflammatory CNS demyelination fulfilling MS diagnostic criteria. The resulting 20-year MS incidence (4.3%) differed significantly from the highest background 20-year MS incidence ever reported from Greece (p=0.00039). The search for incidental brain MRI findings identified two CMTX cases (11%) with lesions suggestive of focal demyelination compared with 0 control. Moreover, 10 cases in the CMTX cohort had hyperintensity in the splenium of the corpus callosum compared with 0 control (p=0.0002). No specific CNS-reactive humoral factors were identified in patients with CMTX and MS. CONCLUSIONS We have demonstrated a higher than expected frequency of MS in patients with CMTX and identified incidental focal demyelinating lesions on brain MRI in patients with CMTX without CNS symptoms. This provides circumstantial evidence for GJB1 mutations acting as a possible MS risk factor.
Collapse
Affiliation(s)
- Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianthi Breza
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- 2nd Department of Radiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - John Tzartos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Crete, Greece
| | - Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- 2nd Department of Radiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Anagnostouli
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisavet Andreadou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Bortolozzi M. What's the Function of Connexin 32 in the Peripheral Nervous System? Front Mol Neurosci 2018; 11:227. [PMID: 30042657 PMCID: PMC6048289 DOI: 10.3389/fnmol.2018.00227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Connexin 32 (Cx32) is a fundamental protein in the peripheral nervous system (PNS) as its mutations cause the X-linked form of Charcot–Marie–Tooth disease (CMT1X), the second most common form of hereditary motor and sensory neuropathy and a demyelinating disease for which there is no effective therapy. Since mutations of the GJB1 gene encoding Cx32 were first reported in 1993, over 450 different mutations associated with CMT1X including missense, frameshift, deletion and non-sense ones have been identified. Despite the availability of a sizable number of studies focusing on normal and mutated Cx32 channel properties, the crucial role played by Cx32 in the PNS has not yet been elucidated, as well as the molecular pathogenesis of CMT1X. Is Cx32 fundamental during a particular phase of Schwann cell (SC) life? Are Cx32 paired (gap junction, GJ) channels in myelinated SCs important for peripheral nerve homeostasis? The attractive hypothesis that short coupling of adjacent myelin layers by Cx32 GJs is required for efficient diffusion of K+ and signaling molecules is still debated, while a growing body of evidence is supporting other possible functions of Cx32 in the PNS, mainly related to Cx32 unpaired channels (hemichannels), which could be involved in a purinergic-dependent pathway controlling myelination. Here we review the intriguing puzzle of findings about Cx32 function and dysfunction, discussing possible directions for future investigation.
Collapse
Affiliation(s)
- Mario Bortolozzi
- Department of Physics and Astronomy G. Galilei, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy.,Padova Neuroscience Center (PNC), Padua, Italy
| |
Collapse
|
42
|
Chen DH, Ma M, Scavina M, Blue E, Wolff J, Karna P, Dorschner MO, Raskind WH, Bird TD. An 8-generation family with X-linked Charcot-Marie-Tooth: Confirmation Of the pathogenicity Of a 3' untranslated region mutation in GJB1 and its clinical features. Muscle Nerve 2018; 57:859-862. [PMID: 29236290 PMCID: PMC5910283 DOI: 10.1002/mus.26037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Mutations in gap junction protein beta 1 (GJB1) on the X chromosome represent one of the most common causes of hereditary neuropathy. We assessed manifestations associated with a rare 3' untranslated region mutation (UTR) of GJB1 in a large family with X-linked Charcot-Marie-Tooth disease (CMTX). METHODS Clinical, electrophysiological, and molecular genetic analyses were performed on an 8-generation family with CMTX. RESULTS There were 22 affected males and 19 symptomatic females, including an 83-year-old woman followed for 40 years. Electrophysiological studies showed a primarily axonal neuropathy. The c.*15C>T mutation in the GJB1 3' UTR was identified in 4 branches of the family with a log of odds (LOD) of 4.91. This created a BstE II enzyme recognition site that enabled detection by restriction digestion. DISCUSSION The c.*15C>T mutation in the GJB1 3' UTR segregates with CMTX1 in 8 generations. Penetrance in males and females is essentially complete. A straightforward genetic method to detect this mutation is described. Muscle Nerve 57: 859-862, 2018.
Collapse
Affiliation(s)
- Dong-Hui Chen
- Department of Neurology, University of Washington, Seattle, WA
| | - Maxwell Ma
- Department of Neurology, University of Washington, Seattle, WA
- Neurology Section, VA Puget Sound Health Care System, Seattle, WA
| | - Mena Scavina
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Elizabeth Blue
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
| | - John Wolff
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Prasanthi Karna
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
| | - Michael O. Dorschner
- Center for Precision Diagnostics, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| | - Wendy H. Raskind
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Thomas D. Bird
- Department of Neurology, University of Washington, Seattle, WA
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
43
|
Cutrupi AN, Brewer MH, Nicholson GA, Kennerson M. Structural variations causing inherited peripheral neuropathies: A paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genomic Med 2018; 6:422-433. [PMID: 29573232 PMCID: PMC6014456 DOI: 10.1002/mgg3.390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5 Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.
Collapse
Affiliation(s)
- Anthony N. Cutrupi
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Megan H. Brewer
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Garth A. Nicholson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| | - Marina L. Kennerson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| |
Collapse
|
44
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Lapathitis G, Sargiannidou I, Christodoulou C, Kleopa KA. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum Mol Genet 2018; 27:1460-1473. [PMID: 29462293 DOI: 10.1093/hmg/ddy056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 11/14/2022] Open
Abstract
Gap junction beta-1 (GJB1) gene mutations affecting the gap junction protein connexin32 (Cx32) cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a common inherited neuropathy. Targeted expression of virally delivered Cx32 in Schwann cells following intrathecal injection of lentiviral vectors in the Cx32 knockout (KO) mouse model of the disease has led to morphological and functional improvement. To examine whether this approach could be effective in CMT1X patients expressing different Cx32 mutants, we treated transgenic Cx32 KO mice expressing the T55I, R75W or N175D CMT1X mutations. All three mutants were localized in the perinuclear compartment of myelinating Schwann cells consistent with retention in the ER (T55I) or Golgi (R75W, N175D) and loss of physiological expression in the non-compact myelin. Following intrathecal delivery of the GJB1 gene we detected the virally delivered wild-type (WT) Cx32 in non-compact myelin of T55I KO mice, but only rarely in N175D KO or R75W KO mice, suggesting dominant-negative effects of the R75W and N175D mutants but not of the T55I mutant on co-expressed WT Cx32. GJB1 treated T55I KO mice showed improved motor performance, lower ratios of abnormally myelinated fibers and reduction of inflammatory cells in spinal roots and peripheral nerves compared with mock-treated littermates. Either partial (N175D KO) or no (R75W KO) improvement was observed in the other two mutant lines. Thus, certain CMT1X mutants may interfere with gene addition therapy for CMT1X. Whereas gene addition can be used for non-interfering CMT1X mutations, further studies will be needed to develop treatments for patients harboring interfering mutations.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - G Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| |
Collapse
|
45
|
Masingue M, Perrot J, Carlier RY, Piguet-Lacroix G, Latour P, Stojkovic T. WES homozygosity mapping in a recessive form of Charcot-Marie-Tooth neuropathy reveals intronic GDAP1 variant leading to a premature stop codon. Neurogenetics 2018; 19:67-76. [PMID: 29396836 DOI: 10.1007/s10048-018-0539-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.
Collapse
Affiliation(s)
- Marion Masingue
- Centre de Référence de pathologie neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Paris, France.
| | - Jimmy Perrot
- Department of Neurobiology, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Robert-Yves Carlier
- Department of Medical Imaging, Hôpitaux universitaires Paris Ile-de-France Ouest, Hôpital Raymond Poincaré, Garches, France
| | | | - Philippe Latour
- Department of Neurobiology, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Tanya Stojkovic
- Centre de Référence de pathologie neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
46
|
Panosyan FB, Laura M, Rossor AM, Pisciotta C, Piscosquito G, Burns J, Li J, Yum SW, Lewis RA, Day J, Horvath R, Herrmann DN, Shy ME, Pareyson D, Reilly MM, Scherer SS. Cross-sectional analysis of a large cohort with X-linked Charcot-Marie-Tooth disease (CMTX1). Neurology 2017; 89:927-935. [PMID: 28768847 PMCID: PMC5577965 DOI: 10.1212/wnl.0000000000004296] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To extend the phenotypic description of Charcot-Marie-Tooth disease (CMTX1) and to draw new genotype-phenotype relationships. METHODS Mutations in GJB1 cause the main X-linked form of CMTX (CMTX1). We report cross-sectional data from 160 patients (from 120 different families, with 89 different mutations) seen at the Inherited Neuropathies Consortium centers. RESULTS We evaluated 87 males who had a mean age of 41 years (range 10-78 years) and 73 females who had a mean age of 46 years (range 15-84 years). Sensory-motor polyneuropathy affects both sexes, more severely in males than in females, and there was a strong correlation between age and disease burden in males but not in females. Compared with females, males had more severe reduction in motor and sensory neurophysiology parameters. In contrast to females, the radial nerve sensory response in older males tended to be more severely affected compared with younger males. Median and ulnar nerve motor amplitudes were also more severely affected in older males, whereas ulnar nerve motor potentials tended to be more affected in older females. Conversely, there were no statistical differences between the sexes in other features of the disease, such as problems with balance and hand dexterity. CONCLUSIONS In the absence of a phenotypic correlation with specific GJB1 mutations, sex-specific distinctions and clinically relevant attributes need to be incorporated into the measurements for clinical trials in people with CMTX1. CLINICALTRIALSGOV IDENTIFIER NCT01193075.
Collapse
Affiliation(s)
- Francis B Panosyan
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia.
| | - Matilde Laura
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Alexander M Rossor
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Chiara Pisciotta
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Giuseppe Piscosquito
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Joshua Burns
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Jun Li
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Sabrina W Yum
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Richard A Lewis
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - John Day
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Rita Horvath
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - David N Herrmann
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Michael E Shy
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Davide Pareyson
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Mary M Reilly
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Steven S Scherer
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| |
Collapse
|
47
|
Patel N, Khan AO, Al-Saif M, Moghrabi WN, AlMaarik BM, Ibrahim N, Abdulwahab F, Hashem M, Alshidi T, Alobeid E, Alomar RA, Al-Harbi S, Abouelhoda M, Khabar KSA, Alkuraya FS. A novel mechanism for variable phenotypic expressivity in Mendelian diseases uncovered by an AU-rich element (ARE)-creating mutation. Genome Biol 2017; 18:144. [PMID: 28754144 PMCID: PMC5534118 DOI: 10.1186/s13059-017-1274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Background Variable expressivity is a well-known phenomenon in which patients with mutations in one gene display varying degrees of clinical severity, potentially displaying only subsets of the clinical manifestations associated with the multisystem disorder linked to the gene. This remains an incompletely understood phenomenon with proposed mechanisms ranging from allele-specific to stochastic. Results We report three consanguineous families in which an isolated ocular phenotype is linked to a novel 3′ UTR mutation in SLC4A4, a gene known to be mutated in a syndromic form of intellectual disability with renal and ocular involvement. Although SLC4A4 is normally devoid of AU-rich elements (AREs), a 3′ UTR motif that mediates post-transcriptional control of a subset of genes, the mutation we describe creates a functional ARE. We observe a marked reduction in the transcript level of SLC4A4 in patient cells. Experimental confirmation of the ARE-creating mutation is shown using a post-transcriptional reporter system that reveals consistent reduction in the mRNA-half life and reporter activity. Moreover, the neo-ARE binds and responds to the zinc finger protein ZFP36/TTP, an ARE-mRNA decay-promoting protein. Conclusions This novel mutational mechanism for a Mendelian disease expands the potential mechanisms that underlie variable phenotypic expressivity in humans to also include 3′ UTR mutations with tissue-specific pathology.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, 112412, United Arab Emirates
| | - Maher Al-Saif
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Walid N Moghrabi
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Balsam M AlMaarik
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana A Alomar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saad Al-Harbi
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| |
Collapse
|