1
|
Pizzamiglio L, Capitano F, Rusina E, Fossati G, Menna E, Léna I, Antonucci F, Mantegazza M. Neurodevelopmental defects in Dravet syndrome Scn1a +/- mice: Targeting GABA-switch rescues behavioral dysfunctions but not seizures and mortality. Neurobiol Dis 2025; 207:106853. [PMID: 40021096 DOI: 10.1016/j.nbd.2025.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) caused by mutations of the SCN1A gene (NaV1.1 sodium channel) and characterized by seizures, motor disabilities and cognitive/behavioral deficits, including autistic traits. The relative role of seizures and neurodevelopmental defects in disease progression, as well as the role of the mutation in inducing early neurodevelopmental defects before symptoms' onset, are not clear yet. A delayed switch of GABAergic transmission from excitatory to inhibitory (GABA-switch) was reported in models of DS, but its effects on the phenotype have not been investigated. Using a multi-scale approach, here we show that targeting GABA-switch with the drugs KU55933 (KU) or bumetanide (which upregulate KCC2 or inhibits NKCC1 chloride transporters, respectively) rescues social interaction deficits and reduces hyperactivity observed in P21 Scn1a+/- DS mouse model. Bumetanide also improves spatial working memory defects. Importantly, neither KU nor bumetanide have effect on seizures or mortality rate. Also, we disclose early behavioral defects and delayed neurodevelopmental milestones well before seizure onset, at the beginning of NaV1.1 expression. We thus reveal that neurodevelopmental components in DS, in particular GABA switch, underlie some cognitive/behavioral defects, but not seizures. Our work provides further evidence that seizures and neuropsychiatric dysfunctions in DEEs can be uncoupled and can have differential pathological mechanisms. They could be treated separately with targeted pharmacological strategies.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Fabrizio Capitano
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Evgeniia Rusina
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | | | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Rozzano, Milan, Italy
| | - Isabelle Léna
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Flavia Antonucci
- Institute of Neuroscience - National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Rozzano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.
| | - Massimo Mantegazza
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
2
|
Mich JK, Ryu J, Wei AD, Gore BB, Guo R, Bard AM, Martinez RA, Luber EM, Liu J, Bishaw YM, Christian RJ, Oliveira LM, Miranda N, Ramirez JM, Ting JT, Lein ES, Levi BP, Kalume FK. Interneuron-specific dual-AAV SCN1A gene replacement corrects epileptic phenotypes in mouse models of Dravet syndrome. Sci Transl Med 2025; 17:eadn5603. [PMID: 40106582 DOI: 10.1126/scitranslmed.adn5603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Dravet syndrome (DS) is a severe developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10 to 20% rate of premature death. Most patients with DS harbor loss-of-function mutations in one copy of SCN1A, which encodes the voltage-gated sodium channel (NaV)1.1 alpha subunit and has been associated with inhibitory neuron dysfunction. Here, we generated a split-intein form of SCN1A and used a dual-vector delivery approach to circumvent adeno-associated virus (AAV) packaging limitations. In addition, we applied previously developed enhancer technology to produce an interneuron-specific gene replacement therapy for DS, called DLX2.0-SCN1A. The split-intein SCN1A vectors produced full-length NaV1.1 protein, and functional sodium channels were recorded in HEK293 cells in vitro. Administration of dual DLX2.0-SCN1A AAVs to wild-type mice produced full-length, reconstituted human protein by Western blot and telencephalic interneuron-specific and dose-dependent NaV1.1 expression by immunohistochemistry. These vectors also conferred strong dose-dependent protection against postnatal mortality and seizures in Scn1afl/+;Meox2-Cre and Scn1a+/R613X DS mouse models. Injection of single or dual DLX2.0-SCN1A AAVs into wild-type mice did not result in increased mortality, weight loss, or gliosis as measured by immunohistochemistry. In contrast, expression of SCN1A in all neurons driven by the human SYNAPSIN I promoter caused an adverse effect marked by increased mortality in the preweaning period, before disease onset. These findings demonstrate proof of concept that interneuron-specific AAV-mediated SCN1A gene replacement can rescue DS phenotypes in mouse models and suggest that it could be a therapeutic approach for patients with DS.
Collapse
Affiliation(s)
- John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jiyun Ryu
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Aguan D Wei
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Bryan B Gore
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rong Guo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Angela M Bard
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | - Emily M Luber
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jiatai Liu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Luiz M Oliveira
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | - Jan-Marino Ramirez
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Franck K Kalume
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
3
|
Leitner D, Kavanagh T, Kanshin E, Balcomb K, Pires G, Thierry M, Suazo JI, Schneider J, Ueberheide B, Drummond E, Wisniewski T. Differences in the cerebral amyloid angiopathy proteome in Alzheimer's disease and mild cognitive impairment. Acta Neuropathol 2024; 148:9. [PMID: 39039355 PMCID: PMC11263258 DOI: 10.1007/s00401-024-02767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid beta (Aβ) deposition in cerebrovasculature. It is prevalent with aging and Alzheimer's disease (AD), associated with intracerebral hemorrhage, and contributes to cognitive deficits. To better understand molecular mechanisms, CAA(+) and CAA(-) vessels were microdissected from paraffin-embedded autopsy temporal cortex of age-matched Control (n = 10), mild cognitive impairment (MCI; n = 4), and sporadic AD (n = 6) cases, followed by label-free quantitative mass spectrometry. 257 proteins were differentially abundant in CAA(+) vessels compared to neighboring CAA(-) vessels in MCI, and 289 in AD (p < 0.05, fold-change > 1.5). 84 proteins changed in the same direction in both groups, and many changed in the same direction among proteins significant in at least one group (p < 0.0001, R2 = 0.62). In CAA(+) vessels, proteins significantly increased in both AD and MCI were particularly associated with collagen-containing extracellular matrix, while proteins associated with ribonucleoprotein complex were significantly decreased in both AD and MCI. In neighboring CAA(-) vessels, 61 proteins were differentially abundant in MCI, and 112 in AD when compared to Control cases. Increased proteins in CAA(-) vessels were associated with extracellular matrix, external encapsulating structure, and collagen-containing extracellular matrix in MCI; collagen trimer in AD. Twenty two proteins were increased in CAA(-) vessels of both AD and MCI. Comparison of the CAA proteome with published amyloid-plaque proteomic datasets identified many proteins similarly enriched in CAA and plaques, as well as a protein subset hypothesized as preferentially enriched in CAA when compared to plaques. SEMA3G emerged as a CAA specific marker, validated immunohistochemically and with correlation to pathology levels (p < 0.0001; R2 = 0.90). Overall, the CAA(-) vessel proteomes indicated changes in vessel integrity in AD and MCI in the absence of Aβ, and the CAA(+) vessel proteome was similar in MCI and AD, which was associated with vascular matrix reorganization, protein translation deficits, and blood brain barrier breakdown.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Manon Thierry
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jianina I Suazo
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Department Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Beatrix Ueberheide
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Capitano F, Kuchenbuch M, Lavigne J, Chaptoukaev H, Zuluaga MA, Lorenzi M, Nabbout R, Mantegazza M. Preictal dysfunctions of inhibitory interneurons paradoxically lead to their rebound hyperactivity and to low-voltage-fast onset seizures in Dravet syndrome. Proc Natl Acad Sci U S A 2024; 121:e2316364121. [PMID: 38809712 PMCID: PMC11161744 DOI: 10.1073/pnas.2316364121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Epilepsies have numerous specific mechanisms. The understanding of neural dynamics leading to seizures is important for disclosing pathological mechanisms and developing therapeutic approaches. We investigated electrographic activities and neural dynamics leading to convulsive seizures in patients and mouse models of Dravet syndrome (DS), a developmental and epileptic encephalopathy in which hypoexcitability of GABAergic neurons is considered to be the main dysfunction. We analyzed EEGs from DS patients carrying a SCN1A pathogenic variant, as well as epidural electrocorticograms, hippocampal local field potentials, and hippocampal single-unit neuronal activities in Scn1a+/- and Scn1aRH/+ DS mice. Strikingly, most seizures had low-voltage-fast onset in both patients and mice, which is thought to be generated by hyperactivity of GABAergic interneurons, the opposite of the main pathological mechanism of DS. Analyzing single-unit recordings, we observed that temporal disorganization of the firing of putative interneurons in the period immediately before the seizure (preictal) precedes the increase of their activity at seizure onset, together with the entire neuronal network. Moreover, we found early signatures of the preictal period in the spectral features of hippocampal and cortical field potential of Scn1a mice and of patients' EEG, which are consistent with the dysfunctions that we observed in single neurons and that allowed seizure prediction. Therefore, the perturbed preictal activity of interneurons leads to their hyperactivity at the onset of generalized seizures, which have low-voltage-fast features that are similar to those observed in other epilepsies and are triggered by hyperactivity of GABAergic neurons. Preictal spectral features may be used as predictive seizure biomarkers.
Collapse
Affiliation(s)
- Fabrizio Capitano
- University Cote d’Azur, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
- CNRS UMR 7275, Valbonne-Sophia Antipolis06560, France
- Inserm U1323, Valbonne-Sophia Antipolis06650, France
| | - Mathieu Kuchenbuch
- Reference Centre for Rare Epilepsies, Member of European Reference Network EpiCARE, Department of Pediatric Neurology, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris75015, France
- Laboratory of Translational Research for Neurological Disorders, Inserm UMR 1163, Imagine Institute, Université Paris Cité, Paris75015, France
| | - Jennifer Lavigne
- University Cote d’Azur, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
- CNRS UMR 7275, Valbonne-Sophia Antipolis06560, France
- Inserm U1323, Valbonne-Sophia Antipolis06650, France
| | | | | | - Marco Lorenzi
- University Cote d’Azur, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
- Epione Research team, Inria Center of Université Côte d’Azur, Biot-Sophia Antipolis06410, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Member of European Reference Network EpiCARE, Department of Pediatric Neurology, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris75015, France
- Laboratory of Translational Research for Neurological Disorders, Inserm UMR 1163, Imagine Institute, Université Paris Cité, Paris75015, France
| | - Massimo Mantegazza
- University Cote d’Azur, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
- CNRS UMR 7275, Valbonne-Sophia Antipolis06560, France
- Inserm U1323, Valbonne-Sophia Antipolis06650, France
| |
Collapse
|
5
|
Mich JK, Ryu J, Wei AD, Gore BB, Guo R, Bard AM, Martinez RA, Bishaw Y, Luber E, Oliveira Santos LM, Miranda N, Ramirez JM, Ting JT, Lein ES, Levi BP, Kalume FK. AAV-mediated interneuron-specific gene replacement for Dravet syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571820. [PMID: 38168178 PMCID: PMC10760176 DOI: 10.1101/2023.12.15.571820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Dravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy of SCN1A , which has been associated with inhibitory neuron dysfunction. Here we developed an interneuron-targeting AAV human SCN1A gene replacement therapy using cell class-specific enhancers. We generated a split-intein fusion form of SCN1A to circumvent AAV packaging limitations and deliver SCN1A via a dual vector approach using cell class-specific enhancers. These constructs produced full-length Na V 1.1 protein and functional sodium channels in HEK293 cells and in brain cells in vivo . After packaging these vectors into enhancer-AAVs and administering to mice, immunohistochemical analyses showed telencephalic GABAergic interneuron-specific and dose-dependent transgene biodistribution. These vectors conferred strong dose-dependent protection against postnatal mortality and seizures in two DS mouse models carrying independent loss-of-function alleles of Scn1a, at two independent research sites, supporting the robustness of this approach. No mortality or toxicity was observed in wild-type mice injected with single vectors expressing either the N-terminal or C-terminal halves of SCN1A , or the dual vector system targeting interneurons. In contrast, nonselective neuronal targeting of SCN1A conferred less rescue against mortality and presented substantial preweaning lethality. These findings demonstrate proof-of-concept that interneuron-specific AAV-mediated SCN1A gene replacement is sufficient for significant rescue in DS mouse models and suggest it could be an effective therapeutic approach for patients with DS.
Collapse
|
6
|
Neurophysiological assessment of cortical activity in DEPDC5- and NPRL3-related epileptic mTORopathies. Orphanet J Rare Dis 2023; 18:11. [PMID: 36639812 PMCID: PMC9840333 DOI: 10.1186/s13023-022-02600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutations in the GATOR1 complex genes, DEPDC5 and NPRL3, play a major role in the development of lesional and non-lesional focal epilepsy through increased mTORC1 signalling. We aimed to assess the effects of mTORC1 hyperactivation on GABAergic inhibitory circuits, in 3 and 5 individuals carrying DEPDC5 and NPRL3 mutations respectively using a multimodal approach including transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy (MRS), and electroencephalography (EEG). RESULTS Inhibitory functions probed by TMS and MRS showed no effect of mutations on cortical GABAergic receptor-mediated inhibition and GABA concentration, in both cortical and subcortical regions. However, stronger EEG theta oscillations and stronger and more synchronous gamma oscillations were observed in DEPDC5 and NPRL3 mutations carriers. CONCLUSIONS These results suggest that DEPDC5 and NPRL3-related epileptic mTORopathies may not directly modulate GABAergic functions but are nonetheless characterized by a stronger neural entrainment that may be reflective of a cortical hyperexcitability mediated by increased mTORC1 signaling.
Collapse
|
7
|
Sciaccaluga M, Ruffolo G, Palma E, Costa C. Traditional and Innovative Anti-seizure Medications Targeting Key Physiopathological Mechanisms: Focus on Neurodevelopment and Neurodegeneration. Curr Neuropharmacol 2023; 21:1736-1754. [PMID: 37143270 PMCID: PMC10514539 DOI: 10.2174/1570159x21666230504160948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Despite the wide range of compounds currently available to treat epilepsy, there is still no drug that directly tackles the physiopathological mechanisms underlying its development. Indeed, antiseizure medications attempt to prevent seizures but are inefficacious in counteracting or rescuing the physiopathological phenomena that underlie their onset and recurrence, and hence do not cure epilepsy. Classically, the altered excitation/inhibition balance is postulated as the mechanism underlying epileptogenesis and seizure generation. This oversimplification, however, does not account for deficits in homeostatic plasticity resulting from either insufficient or excessive compensatory mechanisms in response to a change in network activity. In this respect, both neurodevelopmental epilepsies and those associated with neurodegeneration may share common underlying mechanisms that still need to be fully elucidated. The understanding of these molecular mechanisms shed light on the identification of new classes of drugs able not only to suppress seizures, but also to present potential antiepileptogenic effects or "disease-modifying" properties.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Cinzia Costa
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| |
Collapse
|
8
|
Lacroix A, Proteau-Lemieux M, Côté S, Near J, Hui SC, Edden RA, Lippé S, Çaku A, Corbin F, Lepage JF. Multimodal assessment of the GABA system in patients with fragile-X syndrome and neurofibromatosis of type 1. Neurobiol Dis 2022; 174:105881. [DOI: 10.1016/j.nbd.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
|
9
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Scaramuzzino L, Cifelli P, D’Andrea T, Martinello K, Fucile S, Palma E, Gambardella A, Ruffolo G, Cuda G, Parrotta EI. Human iPSC Modeling of Genetic Febrile Seizure Reveals Aberrant Molecular and Physiological Features Underlying an Impaired Neuronal Activity. Biomedicines 2022; 10:biomedicines10051075. [PMID: 35625812 PMCID: PMC9138645 DOI: 10.3390/biomedicines10051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular “dysmaturity” of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Pierangelo Cifelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of Aquila, 67100 Aquila, Italy;
| | - Tiziano D’Andrea
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | | | - Sergio Fucile
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS Neuromed, Via Atinense, 86077 Pozzilli, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS San Raffaele Roma, Via della Pisana, 00163 Rome, Italy
- Correspondence: (G.R.); (G.C.)
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
- Correspondence: (G.R.); (G.C.)
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| |
Collapse
|
10
|
Selvarajah A, Gorodetsky C, Marques P, Ali QZ, Berg AT, Fasano A, Andrade DM. Progressive Worsening of Gait and Motor Abnormalities in Older Adults With Dravet Syndrome. Neurology 2022; 98:e2204-e2210. [PMID: 35418450 PMCID: PMC9162168 DOI: 10.1212/wnl.0000000000200341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Relative to the pediatric population, there is very limited information about Dravet Syndrome (DS) in adults. In addition to some of the gait abnormalities reported in children with DS (such as crouch gait and ataxia), adults with this condition have other gait and motor disturbances. Our primary objective was to examine gait and motor manifestations in older adults with DS. METHODS This study has a prospective arm where 6 patients (mean age 32-years-old) were examined through a modified version of the Unified Parkinson's Disease Rating Scale (mUPDRS) in 2014 and again in 2019. mUPDRS scores were assigned to gait, resting tremors, facial expression, arising from a chair, posture, and body bradykinesia. The cross-sectional arm includes mUPDRS testing in patients that were not evaluated in 2014, and an instrumental gait analysis (IGA). These cross-sectional tests were done in the 2019-2020 period. The IGA was performed using the ProtoKinetics software with a gait mat built with sensors and two cameras capturing the sagittal and coronal planes. The IGA was performed in a group of 17 patients with DS (mean age: 31-years-old), the control group consisted of 81 healthy individuals, whose mean age was 62-years-old. Regression analyses were performed for the IGA and mUPDRS data. RESULTS Five out of six participants evaluated prospectively over 5 years experienced worsening of their parkinsonian manifestations, including gait. Two patients (47 and 51 years old) who were initially ambulatory, could no longer walk 5 years later. The cross-sectional analysis of mUPDRS in a larger group of adults showed that worse scores for arising from a chair (p= 0.04), body bradykinesia (p= 0.01), and gait (p= 0.0003) were positively associated with age. The IGA cross-sectional arm revealed that all 17 adults with DS had abnormal gait parameters in all domains tested. This group of patients performed worse than the healthy and older control group. DISCUSSION Although seizures may decrease in older adults with DS, this prospective and cross-sectional study showed that their motor symptoms and gait become progressively worse as they age.
Collapse
Affiliation(s)
- Arunan Selvarajah
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Adult Epilepsy Genetics Program, Department of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Carolina Gorodetsky
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Krembil Brain Institute, University Health Network, Toronto, ON, Canada.,Pediatric Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paula Marques
- Adult Epilepsy Genetics Program, Department of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, ON, Canada
| | - Quratulain Zulfiqar Ali
- Adult Epilepsy Genetics Program, Department of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Anne T Berg
- Division of Neurology, Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfonso Fasano
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Krembil Brain Institute, University Health Network, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, ON, Canada
| | - Danielle M Andrade
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada .,Adult Epilepsy Genetics Program, Department of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada.,Krembil Brain Institute, University Health Network, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
11
|
Helling RM, Shmuely S, Bauer PR, Tolner EA, Visser GH, Thijs RD. Tracking cortical excitability dynamics with transcranial magnetic stimulation in focal epilepsy. Ann Clin Transl Neurol 2022; 9:540-551. [PMID: 35297209 PMCID: PMC8994988 DOI: 10.1002/acn3.51535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The lack of reliable biomarkers constrain epilepsy management. We assessed the potential of repeated transcranial magnetic stimulation with electromyography (TMS-EMG) to track dynamical changes in cortical excitability on a within-subject basis. METHODS We recruited people with refractory focal epilepsy who underwent video-EEG monitoring and drug tapering as part of the presurgical evaluation. We performed daily TMS-EMG measurements with additional postictal assessments 1-6 h following seizures to assess resting motor threshold (rMT), and motor evoked potentials (MEPs) with single- and paired-pulse protocols. Anti-seizure medication (ASM) regimens were recorded for the day before each measurement and expressed in proportion to the dosage before tapering. Additional measurements were performed in healthy controls to evaluate day-to-day rMT variability. RESULTS We performed 77 (58 baseline, 19 postictal) measurements in 16 people with focal epilepsy and 35 in seven healthy controls. Controls showed minimal day-to-day rMT variation. Withdrawal of ASMs was associated with a lower rMT without affecting MEPs of single- and paired-pulse TMS-EMG paradigms. Postictal measurements following focal to bilateral tonic-clonic seizures demonstrated unaltered rMT and increased short interval intracortical inhibition, while measurements following focal seizures with impaired awareness showed decreased rMT's and reduced short and long interval intracortical inhibition. CONCLUSION Serial within-subject rMT measurements yielded reproducible, stable results in healthy controls. ASM tapering and seizures had distinct effects on TMS-EMG excitability indices in people with epilepsy. Drug tapering decreased rMT, indicating increased overall corticospinal excitability, whereas seizures affected intracortical inhibition with contrasting effects between seizure types.
Collapse
Affiliation(s)
- Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Sharon Shmuely
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Germany
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, UK.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
12
|
Gaburjáková M, Gaburjáková J, Krejčíová E, Kosnáč D, Kosnáčová H, Nagy Š, Polák Š, Sabo M, Trnka M, Kopáni M. Blocking effect of ferritin on the ryanodine receptor-isoform 2. Arch Biochem Biophys 2021; 712:109031. [PMID: 34534540 DOI: 10.1016/j.abb.2021.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Iron, an essential element for most living organism, participates in a wide variety of physiological processes. Disturbance in iron homeostasis has been associated with numerous pathologies, particularly in the heart and brain, which are the most susceptible organs. Under iron-overload conditions, the generation of reactive oxygen species leads to impairment in Ca2+ signaling, fundamentally implicated in cardiac and neuronal physiology. Since iron excess is accompanied by increased expression of iron-storage protein, ferritin, we examined whether ferritin has an effect on the ryanodine receptor - isoform 2 (RYR2), which is one of the major components of Ca2+ signaling. Using the method of planar lipid membranes, we show that ferritin induced an abrupt, permanent blockage of the RYR2 channel. The ferritin effect was strongly voltage dependent and competitively antagonized by cytosolic TEA+, an impermeant RYR2 blocker. Our results collectively indicate that monomeric ferritin highly likely blocks the RYR2 channel by a direct electrostatic interaction within the wider region of the channel permeation pathway.
Collapse
Affiliation(s)
- Marta Gaburjáková
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Gaburjáková
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Krejčíová
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniel Kosnáč
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Helena Kosnáčová
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Slovak Academy of Sciences, Department of Genetics, Cancer Research Institute, Biomedical Research Center, Bratislava, Slovakia
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Sabo
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Trnka
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Kopáni
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
13
|
Palmer EE, Howell K, Scheffer IE. Natural History Studies and Clinical Trial Readiness for Genetic Developmental and Epileptic Encephalopathies. Neurotherapeutics 2021; 18:1432-1444. [PMID: 34708325 PMCID: PMC8608984 DOI: 10.1007/s13311-021-01133-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
The developmental and epileptic encephalopathies (DEEs) are the most severe group of epilepsies. They usually begin in infancy or childhood with drug-resistant seizures, epileptiform EEG patterns, developmental slowing or regression, and cognitive impairment. DEEs have a high mortality and profound morbidity; comorbidities are common including autism spectrum disorders. With advances in genetic sequencing, over 400 genes have been implicated in DEEs, with a genetic cause now identified in over 50% patients. Each genetic DEE typically has a broad genotypic-phenotypic spectrum, based on the underlying pathophysiology. There is a pressing need to improve health outcomes by developing novel targeted therapies for specific genetic DEE phenotypes that not only improve seizure control, but also developmental outcomes and comorbidities. Clinical trial readiness relies firstly on a deep understanding of phenotype-genotype correlation and evolution of a condition over time, in order to select appropriate patients for clinical trials. Understanding the natural history of the disorder informs assessment of treatment efficacy in terms of both clinical outcome and biomarker utility. Natural history studies (NHS) provide a high quality, integrated, comprehensive approach to understanding a complex disease and underpin clinical trial design for novel therapies. NHS are pre-planned observational studies designed to track the course of a disease and identify demographic, genetic, environmental, and other variables, including biomarkers, that correlate with the disease's evolution and outcomes. Due to the rarity of individual genetic DEEs, appropriately funded high-quality DEE NHS will be required, with sustainable frameworks and equitable access to affected individuals globally.
Collapse
Affiliation(s)
- Elizabeth E Palmer
- School of Women's and Children's Health, UNSW, Sydney, NSW, Australia
- Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Katherine Howell
- Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Ingrid E Scheffer
- Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia.
- Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
15
|
Silvennoinen K, Balestrini S, Rothwell JC, Sisodiya SM. Transcranial magnetic stimulation as a tool to understand genetic conditions associated with epilepsy. Epilepsia 2020; 61:1818-1839. [PMID: 32783192 PMCID: PMC8432162 DOI: 10.1111/epi.16634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
Advances in genetics may enable a deeper understanding of disease mechanisms and promote a shift to more personalised medicine in the epilepsies. At present, understanding of consequences of genetic variants mainly relies on preclinical functional work; tools for acquiring similar data from the living human brain are needed. Transcranial magnetic stimulation (TMS), in particular paired-pulse TMS protocols which depend on the function of cortical GABAergic interneuron networks, has the potential to become such a tool. For this report, we identified and reviewed 23 publications on TMS studies of cortical excitability and inhibition in 15 different genes or conditions relevant to epilepsy. Reduced short-interval intracortical inhibition (SICI) and reduced cortical silent period (CSP) duration were the most commonly reported findings, suggesting abnormal GABAA - (SICI) or GABAB ergic (CSP) signalling. For several conditions, these findings are plausible based on established evidence of involvement of the GABAergic system; for some others, they may inform future research around such mechanisms. Challenges of TMS include lack of complete understanding of the neural underpinnings of the measures used: hypotheses and analyses should be based on existing clinical and preclinical data. Further pitfalls include gathering sufficient numbers of participants, and the effect of confounding factors, especially medications. TMS-EEG is a unique perturbational technique to study the intrinsic properties of the cortex with excellent temporal resolution; while it has the potential to provide further information of use in interpreting effects of genetic variants, currently the links between measures and neurophysiology are less established. Despite these challenges, TMS is a tool with potential for elucidating the system-level in vivo functional consequences of genetic variants in people carrying genetic changes of interest, providing unique insights.
Collapse
Affiliation(s)
- Katri Silvennoinen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Department of UCL Queen Square, Institute of Neurology, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| |
Collapse
|
16
|
Balestrini S, Sander JW. Transcranial magnetic stimulation as a biomarker of treatment response in children with epilepsy. Dev Med Child Neurol 2020; 62:770. [PMID: 32090314 DOI: 10.1111/dmcn.14496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simona Balestrini
- NIHR Biomedical Research Centre at University College London Hospitals, UCL Queen Square Institute of Neurology, London, UK
| | - Josemir W Sander
- NIHR Biomedical Research Centre at University College London Hospitals, UCL Queen Square Institute of Neurology, London, UK.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| |
Collapse
|
17
|
Mantegazza M, Broccoli V. SCN1A/Na V 1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models. Epilepsia 2020; 60 Suppl 3:S25-S38. [PMID: 31904127 DOI: 10.1111/epi.14700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
Pathogenic SCN1A/NaV 1.1 mutations cause well-defined epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome. In addition, they cause a severe form of migraine with aura, familial hemiplegic migraine. Moreover, SCN1A/NaV 1.1 variants have been inferred as risk factors in other types of epilepsy. We review here the advancements obtained studying pathologic mechanisms of SCN1A/NaV 1.1 mutations with experimental systems. We present results gained with in vitro expression systems, gene-targeted animal models, and the induced pluripotent stem cell (iPSC) technology, highlighting advantages, limits, and pitfalls for each of these systems. Overall, the results obtained in the last two decades confirm that the initial pathologic mechanism of epileptogenic SCN1A/NaV 1.1 mutations is loss-of-function of NaV 1.1 leading to hypoexcitability of at least some types of γ-aminobutyric acid (GABA)ergic neurons (including cortical and hippocampal parvalbumin-positive and somatostatin-positive ones). Conversely, more limited results point to NaV 1.1 gain-of-function for familial hemiplegic migraine (FHM) mutations. Behind these relatively simple pathologic mechanisms, an unexpected complexity has been observed, in part generated by technical issues in experimental studies and in part related to intrinsically complex pathophysiologic responses and remodeling, which yet remain to be fully disentangled.
Collapse
Affiliation(s)
- Massimo Mantegazza
- University Cote d'Azur (UCA), CNRS UMR7275, INSERM, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,Institute of Neuroscience, National Research Council (CNR), Milan, Italy
| |
Collapse
|
18
|
Huang HW, Tsai JJ, Su PF, Mau YL, Wu YJ, Wang WC, Lin CCK. Cortical Excitability by Transcranial Magnetic Stimulation as Biomarkers for Seizure Controllability in Temporal Lobe Epilepsy. Neuromodulation 2020; 23:399-406. [PMID: 31840383 DOI: 10.1111/ner.13093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate whether indicators of cortical excitability are good biomarkers of seizure controllability in temporal lobe epilepsy (TLE). MATERIALS AND METHODS Three groups of subjects were recruited: those with poorly controlled (PC) TLE (N = 41), well-controlled (WC) TLE (N = 71), and healthy controls (N = 44). Short- and long-latency recovery curves were obtained by paired-pulse transcranial magnetic stimulation. Linear mixed effect models were used to study the effects of group, interstimulus interval (ISI), and antiepileptic drugs on long-interval intracortical inhibition (LICI) and short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). RESULTS The mixed effect model that did not incorporate antiepileptic drugs showed that group and ISI were significant factors for LICI and SICI/ICF. LICI in the healthy control group was greater than in the two epilepsy groups, and the difference was significant at ISIs of 50, 150, and 200 msec. In contrast, SICI/ICF in the PC group was greater than in the healthy control and WC groups, and the difference was significant at an ISI of 15 msec. However, due to large variance, it was difficult to identify a cutoff value with both good sensitivity and good specificity. Incorporating the information of antiepileptic drugs to the mixed effect model did not change the overall results. CONCLUSIONS Although LICI and SICI/ICF parameters were significantly different at the group level, they may not be suitable biomarkers for the controllability of TLE at the subject level.
Collapse
Affiliation(s)
- Han-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Jane Tsai
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fang Su
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lin Mau
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Wang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Sanchez-Carpintero R, Urrestarazu E, Cieza S, Alegre M, Artieda J, Crespo-Eguilaz N, Valencia M. Abnormal brain gamma oscillations in response to auditory stimulation in Dravet syndrome. Eur J Paediatr Neurol 2020; 24:134-141. [PMID: 31879226 DOI: 10.1016/j.ejpn.2019.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the capability of children with Dravet syndrome to generate brain γ-oscillatory activity in response to auditory steady-state stimulation. METHODS Fifty-one subjects were included: 13 with Dravet syndrome with SCN1A gene alterations, 26 with non-Dravet epilepsies and 12 healthy controls. Responses to auditory steady-state stimulation elicited with a chirp-modulated tone between 1 and 120 Hz were collected in subjects and compared across groups. RESULTS Subjects with Dravet syndrome showed weak or no responses in the 1-120 Hz frequency range. Healthy controls showed oscillatory responses following the frequency of the modulation that were maximal in the low (30-70 Hz) and high (80-120) γ-ranges both, in the power and inter-trial coherence estimates. Non-Dravet epileptic children showed differences in the auditory responses when compared with the healthy controls but were able to generate oscillatory evoked activities following the frequency-varying stimulation. CONCLUSIONS The ability to generate brain γ-oscillatory activity of children with Dravet in response to a chirp-modulated auditory stimulus is highly impaired, is not due to epilepsy and is consistent with the Nav1.1 channel dysfunction affecting interneuron activity seen in Dravet mouse models. SIGNIFICANCE The reported deficits in the brain oscillatory activity evoked by chirp modulated tones in children with Dravet is compatible with Dravet syndrome disease mechanisms and constitutes a potential biomarker for future disease-modifying interventions.
Collapse
Affiliation(s)
- Rocio Sanchez-Carpintero
- Pediatric Neurology Unit. Department of Pediatrics. Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Elena Urrestarazu
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Neurophysiology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Sofía Cieza
- Neurophysiology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Manuel Alegre
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Neurophysiology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Julio Artieda
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Neurophysiology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Nerea Crespo-Eguilaz
- Pediatric Neurology Unit. Department of Pediatrics. Clínica Universidad de Navarra, Pamplona, Spain
| | - Miguel Valencia
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; University of Navarra, Neuroscience Program, CIMA, Pamplona, Spain.
| |
Collapse
|
20
|
Hyperexcitability and impaired intracortical inhibition in patients with fragile-X syndrome. Transl Psychiatry 2019; 9:312. [PMID: 31748507 PMCID: PMC6868148 DOI: 10.1038/s41398-019-0650-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 01/10/2023] Open
Abstract
Fragile-X syndrome (FXS) is characterized by neurological and psychiatric problems symptomatic of cortical hyperexcitability. Recent animal studies identified deficient γ-aminobutyricacid (GABA) inhibition as a key mechanism for hyperexcitability in FXS, but the GABA system remains largely unexplored in humans with the disorder. The primary objective of this study was to assess GABA-mediated inhibition and its relationship with hyperexcitability in patients with FXS. Transcranial magnetic stimulation (TMS) was used to assess cortical and corticospinal inhibitory and excitatory mechanisms in 18 patients with a molecular diagnosis of FXS and 18 healthy controls. GABA-mediated inhibition was measured with short-interval intracortical inhibition (GABAA), long-interval intracortical inhibition (GABAB), and the corticospinal silent period (GABAA+B). Net intracortical facilitation involving glutamate was assessed with intracortical facilitation, and corticospinal excitability was measured with the resting motor threshold. Results showed that FXS patients had significantly reduced short-interval intracortical inhibition, increased long-interval intracortical inhibition, and increased intracortical facilitation compared to healthy controls. In the FXS group, reduced short-interval intracortical inhibition was associated with heightened intracortical facilitation. Taken together, these results suggest that reduced GABAA inhibition is a plausible mechanism underlying cortical hyperexcitability in patients with FXS. These findings closely match those observed in animal models, supporting the translational validity of these markers for clinical research.
Collapse
|
21
|
Tsuboyama M, Lee Kaye H, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation of the Motor Cortex in Epilepsy. Front Integr Neurosci 2019; 13:57. [PMID: 31736722 PMCID: PMC6837164 DOI: 10.3389/fnint.2019.00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is associated with numerous neurodevelopmental disorders. Transcranial magnetic stimulation (TMS) of the motor cortex coupled with electromyography (EMG) enables biomarkers that provide measures of cortical excitation and inhibition that are particularly relevant to epilepsy and related disorders. The motor threshold (MT), cortical silent period (CSP), short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) are among TMS-derived metrics that are modulated by antiepileptic drugs. TMS may have a practical role in optimization of antiepileptic medication regimens, as studies demonstrate dose-dependent relationships between TMS metrics and acute medication administration. A close association between seizure freedom and normalization of cortical excitability with long-term antiepileptic drug use highlights a plausible utility of TMS in measures of anti-epileptic drug efficacy. Finally, TMS-derived biomarkers distinguish patients with various epilepsies from healthy controls and thus may enable development of disorder-specific biomarkers and therapies both within and outside of the epilepsy realm.
Collapse
Affiliation(s)
- Melissa Tsuboyama
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Harper Lee Kaye
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Alexander Rotenberg
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
22
|
Ruffolo G, Cifelli P, Miranda-Lourenço C, De Felice E, Limatola C, Sebastião AM, Diógenes MJ, Aronica E, Palma E. Rare Diseases of Neurodevelopment: Maintain the Mystery or Use a Dazzling Tool for Investigation? The Case of Rett Syndrome. Neuroscience 2019; 439:146-152. [PMID: 31229630 DOI: 10.1016/j.neuroscience.2019.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/25/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
The investigation on neurotransmission function during normal and pathologic development is a pivotal component needed to understand the basic mechanisms underlying neurodevelopmental pathologies. To study these diseases, many animal models have been generated which allowed to face the limited availability of human tissues and, as a consequence, most of the electrophysiology has been performed on these models of diseases. On the other hand, the technique of membrane microtransplantation in Xenopus oocytes allows the study of human functional neurotransmitter receptors thanks to the use of tissues from autopsies or surgeries, even in quantities that would not permit other kinds of functional studies. In this short article, we intend to underline how this technique is well-fit for the study of rare diseases by characterizing the electrophysiological properties of GABAA and AMPA receptors in Rett syndrome. For our purposes, we used both tissues from Rett syndrome patients and Mecp2-null mice, a well validated murine model of the same disease, in order to strengthen the solidity of our results through the comparison of the two. Our findings retrace previous results and, in the light of this, further argue in favor of Prof. Miledi's technique of membrane microtransplantation that proves itself a very useful tool of investigation in the field of neurophysiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
| | | | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Cristina Limatola
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| | - Eleonora Palma
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy.
| |
Collapse
|
23
|
Electrophysiological monitoring of inhibition in mammalian species, from rodents to humans. Neurobiol Dis 2019; 130:104500. [PMID: 31195126 DOI: 10.1016/j.nbd.2019.104500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/20/2023] Open
Abstract
GABAergic interneurons constitute a highly diverse family of neurons that play a critical role in cortical functions. Due to their prominent role in cortical network dynamics, genetic, developmental, or other dysfunctions in GABAergic neurons have been linked to neurological disorders such as epilepsy. Thus, it is crucial to investigate the interaction of these various neurons and to develop methods to specifically and directly monitor inhibitory activity in vivo. While research in small mammals has benefited from a wealth of recent technological development, bridging the gap to large mammals and humans remains a challenge. This is of particular interest since single neuron monitoring with intracranial electrodes in epileptic patients is developing quickly, opening new avenues for understanding the role of different cell types in epilepsy. Here, we review currently available techniques that monitor inhibitory activity in the brain and the respective validations in rodents. Finally, we discuss the future developments of these techniques and how knowledge from animal research can be translated to the study of neuronal circuit dynamics in the human brain.
Collapse
|
24
|
Sun Y, Dolmetsch RE. Investigating the Therapeutic Mechanism of Cannabidiol in a Human Induced Pluripotent Stem Cell (iPSC)-Based Model of Dravet Syndrome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:185-191. [PMID: 31186344 DOI: 10.1101/sqb.2018.83.038174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dravet syndrome is an infantile epileptic encephalopathy primarily caused by loss-of-function variants of the gene SCN1A Standard treatment regimens have very limited efficacy to combat the life-threatening seizures in Dravet syndrome or the behavioral-cognitive comorbidities of the disease. Recently there has been encouraging progress in developing new treatments for this disorder. One of the clinical advances is cannabidiol (CBD), a compound naturally found in cannabis and shown to further reduce convulsive seizures in patients when used together with existing drug regimens. Like many other natural products, the exact therapeutic mechanism of CBD remains undefined. Previously we have established a human cellular model of Dravet syndrome by differentiating patient-derived induced pluripotent stem cells (iPSCs) into telencephalic inhibitory and excitatory neurons. Here we have applied this model to investigate the antiepileptic mechanism(s) of CBD at the cellular level. We first determined the effect of escalating the concentrations of CBD on neuronal excitability, using primary culture of rat cortical neurons. We found modulatory effects on excitability at submicromolar concentrations and toxic effects at high concentrations (15 µM). We then tested CBD at 50 nM, a concentration that corresponds to the estimated human clinical exposure, in telencephalic neurons derived from a patient iPSC line and control cell line H9. This 50 nM of CBD increased the excitability of inhibitory neurons but decreased the excitability of excitatory neurons, without changing the amplitude of sodium currents in either cell type. Our findings suggest a cell type-dependent mechanism for the therapeutic action of CBD in Dravet syndrome that is independent of sodium channel activity.
Collapse
Affiliation(s)
- Yishan Sun
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA.,Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ricardo E Dolmetsch
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA.,Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
25
|
Salgueiro-Pereira AR, Duprat F, Pousinha PA, Loucif A, Douchamps V, Regondi C, Ayrault M, Eugie M, Stunault MI, Escayg A, Goutagny R, Gnatkovsky V, Frassoni C, Marie H, Bethus I, Mantegazza M. A two-hit story: Seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiol Dis 2019; 125:31-44. [DOI: 10.1016/j.nbd.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
|
26
|
Brueggeman L, Sturgeon ML, Martin RM, Grossbach AJ, Nagahama Y, Zhang A, Howard MA, Kawasaki H, Wu S, Cornell RA, Michaelson JJ, Bassuk AG. Drug repositioning in epilepsy reveals novel antiseizure candidates. Ann Clin Transl Neurol 2019; 6:295-309. [PMID: 30847362 PMCID: PMC6389756 DOI: 10.1002/acn3.703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Objective Epilepsy treatment falls short in ~30% of cases. A better understanding of epilepsy pathophysiology can guide rational drug development in this difficult to treat condition. We tested a low-cost, drug-repositioning strategy to identify candidate epilepsy drugs that are already FDA-approved and might be immediately tested in epilepsy patients who require new therapies. Methods Biopsies of spiking and nonspiking hippocampal brain tissue from six patients with unilateral mesial temporal lobe epilepsy were analyzed by RNA-Seq. These profiles were correlated with transcriptomes from cell lines treated with FDA-approved drugs, identifying compounds which were tested for therapeutic efficacy in a zebrafish seizure assay. Results In spiking versus nonspiking biopsies, RNA-Seq identified 689 differentially expressed genes, 148 of which were previously cited in articles mentioning seizures or epilepsy. Differentially expressed genes were highly enriched for protein-protein interactions and formed three clusters with associated GO-terms including myelination, protein ubiquitination, and neuronal migration. Among the 184 compounds, a zebrafish seizure model tested the therapeutic efficacy of doxycycline, metformin, nifedipine, and pyrantel tartrate, with metformin, nifedipine, and pyrantel tartrate all showing efficacy. Interpretation This proof-of-principle analysis suggests our powerful, rapid, cost-effective approach can likely be applied to other hard-to-treat diseases.
Collapse
Affiliation(s)
- Leo Brueggeman
- Department of PsychiatryCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Morgan L. Sturgeon
- The Interdisciplinary Graduate Program in Molecular MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
| | | | | | | | - Angela Zhang
- Department of BiostatisticsUniversity of WashingtonSeattleWashington
| | | | | | - Shu Wu
- Department of PediatricsUniversity of IowaIowa CityIowa
| | - Robert A. Cornell
- Department of Anatomy and Cell BiologyUniversity of IowaIowa CityIowa
| | - Jacob J. Michaelson
- Department of PsychiatryCarver College of MedicineUniversity of IowaIowa CityIowa
| | | |
Collapse
|
27
|
Ruffolo G, Cifelli P, Roseti C, Thom M, van Vliet EA, Limatola C, Aronica E, Palma E. A novel GABAergic dysfunction in human Dravet syndrome. Epilepsia 2018; 59:2106-2117. [DOI: 10.1111/epi.14574] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Gabriele Ruffolo
- Department of Physiology and Pharmacology; Pasteur Institute-Cenci Bolognetti Foundation; Sapienza University of Rome; Rome Italy
| | - Pierangelo Cifelli
- Department of Physiology and Pharmacology; Pasteur Institute-Cenci Bolognetti Foundation; Sapienza University of Rome; Rome Italy
- IRCCS Neuromed; Pozzilli Italy
| | | | - Maria Thom
- Department of Clinical and Experimental Epilepsy; University College London Institute of Neurology; London UK
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology; Amsterdam UMC; University of Amsterdam; Amsterdam Neuroscience; Amsterdam The Netherlands
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Cristina Limatola
- Department of Physiology and Pharmacology; Pasteur Institute-Cenci Bolognetti Foundation; Sapienza University of Rome; Rome Italy
- IRCCS Neuromed; Pozzilli Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology; Amsterdam UMC; University of Amsterdam; Amsterdam Neuroscience; Amsterdam The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
| | - Eleonora Palma
- Department of Physiology and Pharmacology; Pasteur Institute-Cenci Bolognetti Foundation; Sapienza University of Rome; Rome Italy
- IRCCS San Raffaele Pisana; Rome Italy
| |
Collapse
|
28
|
Balestrini S, Sisodiya SM. Personalized treatment in the epilepsies: challenges and opportunities. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1486189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom
| |
Collapse
|
29
|
Ali Rodriguez R, Joya C, Hines RM. Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:132. [PMID: 29740280 PMCID: PMC5928253 DOI: 10.3389/fnmol.2018.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale. These disorders are heterogeneous, yet they share common behavioral symptomatology as well as overlapping genetic contributors, including proteins involved in the formation, specialization, and function of synaptic connections. Advances may arise from bridging the current knowledge on synapse related factors indicated from both human studies in NDD populations, and in animal models. Mounting evidence has shown a link to inhibitory synapse formation, specialization, and function among Autism, Angelman, Rett and Dravet syndromes. Inhibitory signaling is diverse, with numerous subtypes of inhibitory interneurons, phasic and tonic modes of inhibition, and the molecular and subcellular diversity of GABAA receptors. We discuss common ribs of inhibitory synapse dysfunction in the umbrella of NDD, highlighting alterations in the developmental switch to inhibitory GABA, dysregulation of neuronal activity patterns by parvalbumin-positive interneurons, and impaired tonic inhibition. Increasing our basic understanding of inhibitory synapses, and their role in NDDs is likely to produce significant therapeutic advances in behavioral symptom alleviation for interrelated NDDs.
Collapse
Affiliation(s)
- Rachel Ali Rodriguez
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Christina Joya
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
30
|
Carpenter JC, Schorge S. The voltage-gated channelopathies as a paradigm for studying epilepsy-causing genes. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Bauer PR, de Goede AA, Stern WM, Pawley AD, Chowdhury FA, Helling RM, Bouet R, Kalitzin SN, Visser GH, Sisodiya SM, Rothwell JC, Richardson MP, van Putten MJAM, Sander JW. Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study. Brain 2018; 141:409-421. [PMID: 29340584 PMCID: PMC5837684 DOI: 10.1093/brain/awx343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Abstract
Cortical excitability, as measured by transcranial magnetic stimulation combined with electromyography, is a potential biomarker for the diagnosis and follow-up of epilepsy. We report on long-interval intracortical inhibition data measured in four different centres in healthy controls (n = 95), subjects with refractory genetic generalized epilepsy (n = 40) and with refractory focal epilepsy (n = 69). Long-interval intracortical inhibition was measured by applying two supra-threshold stimuli with an interstimulus interval of 50, 100, 150, 200 and 250 ms and calculating the ratio between the response to the second (test stimulus) and to the first (conditioning stimulus). In all subjects, the median response ratio showed inhibition at all interstimulus intervals. Using a mixed linear-effects model, we compared the long-interval intracortical inhibition response ratios between the different subject types. We conducted two analyses; one including data from the four centres and one excluding data from Centre 2, as the methods in this centre differed from the others. In the first analysis, we found no differences in long-interval intracortical inhibition between the different subject types. In all subjects, the response ratios at interstimulus intervals 100 and 150 ms showed significantly more inhibition than the response ratios at 50, 200 and 250 ms. Our second analysis showed a significant interaction between interstimulus interval and subject type (P = 0.0003). Post hoc testing showed significant differences between controls and refractory focal epilepsy at interstimulus intervals of 100 ms (P = 0.02) and 200 ms (P = 0.04). There were no significant differences between controls and refractory generalized epilepsy groups or between the refractory generalized and focal epilepsy groups. Our results do not support the body of previous work that suggests that long-interval intracortical inhibition is significantly reduced in refractory focal and genetic generalized epilepsy. Results from the second analysis are even in sharper contrast with previous work, showing inhibition in refractory focal epilepsy at 200 ms instead of facilitation previously reported. Methodological differences, especially shorter intervals between the pulse pairs, may have contributed to our inability to reproduce previous findings. Based on our results, we suggest that long-interval intracortical inhibition as measured by transcranial magnetic stimulation and electromyography is unlikely to have clinical use as a biomarker of epilepsy.
Collapse
Affiliation(s)
- Prisca R Bauer
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - Annika A de Goede
- Department of Clinical Neurophysiology, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - William M Stern
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| | - Adam D Pawley
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London 16 De Crespigny Park, London, SE5 8AF, UK
| | - Fahmida A Chowdhury
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London 16 De Crespigny Park, London, SE5 8AF, UK
| | - Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
- Image Sciences Institute, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Université Claude Bernard Lyon1, Brain Dynamics and Cognition Team, Centre Hospitalier Le Vinatier (Bât. 452), 95 Bd Pinel, 69500 Bron, France
| | - Stiliyan N Kalitzin
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
- Image Sciences Institute, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| | - John C Rothwell
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London 16 De Crespigny Park, London, SE5 8AF, UK
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Clinical Neurophysiology and Neurology, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ Enschede, The Netherlands
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| |
Collapse
|
32
|
Mantegazza M, Cestèle S. Pathophysiological mechanisms of migraine and epilepsy: Similarities and differences. Neurosci Lett 2017; 667:92-102. [PMID: 29129678 DOI: 10.1016/j.neulet.2017.11.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Migraine and epilepsy are episodic disorders with distinct features, but they have some clinical and pathophysiological overlaps. We review here clinical overlaps between seizures and migraine attacks, activities of neuronal networks observed during seizures and migraine attacks, and molecular and cellular mechanisms of migraine identified in genetic forms, focusing on genetic variants identified in hemiplegic migraine and their functional effects. Epilepsy and migraine can be generated by dysfunctions of the same neuronal networks, but these dysfunctions can be disease-specific, even if pathogenic mutations target the same protein. Studies of rare monogenic forms have allowed the identification of some molecular/cellular dysfunctions that provide a window on pathological mechanisms: we have begun to disclose the tip of the iceberg.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Côte d'Azur (UCA), 660 route des Lucioles, 06560 Valbonne, Sophia Antipolis, France; Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 660 Route des Lucioles, 06560 Valbonne, Sophia Antipolis, France.
| | - Sandrine Cestèle
- Université Côte d'Azur (UCA), 660 route des Lucioles, 06560 Valbonne, Sophia Antipolis, France; Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 660 Route des Lucioles, 06560 Valbonne, Sophia Antipolis, France
| |
Collapse
|
33
|
Benke D, Möhler H. Impact on GABA systems in monogenetic developmental CNS disorders: Clues to symptomatic treatment. Neuropharmacology 2017; 136:46-55. [PMID: 28764992 DOI: 10.1016/j.neuropharm.2017.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022]
Abstract
Animal studies of several single-gene disorders demonstrate that reversing the molecular signaling deficits can result in substantial symptomatic improvements in function. Focusing on the ratio of excitation to inhibition as a potential pathophysiological hallmark, seven single-gene developmental CNS disorders are reviewed which are characterized by a striking dysregulation of neuronal inhibition. Deficits in inhibition and excessive inhibition are found. The examples of developmental disorders encompass Neurofibromatosis type 1, Fragile X syndrome, Rett syndrome, Dravet syndrome including autism-like behavior, NONO-mutation-induced intellectual disability, Succinic semialdehyde dehydrogenase deficiency and Congenital nystagmus due to FRMD7 mutations. The phenotype/genotype correlations observed in animal models point to potential treatment options and will continue to inspire clinical research. Three drugs are presently in clinical trials: acamprosate and ganoxolon for Fragile X syndrome and SGS-742 for SSADH deficiency. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Drug Discovery Network Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Hanns Möhler
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 10, 8023 Zurich, Switzerland.
| |
Collapse
|