1
|
Rajanna S, Gundale PP, Dev Mahadevaiah A. Advancements in the treatment of Alzheimer's disease: a comprehensive review. Dement Neuropsychol 2025; 19:e20240204. [PMID: 40195966 PMCID: PMC11975295 DOI: 10.1590/1980-5764-dn-2024-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 04/09/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and behavioral changes. Despite being the most common cause of dementia, effective treatments have been elusive. However, recent years have witnessed significant advancements in understanding and treating Alzheimer's. Key to these advancements is the shift toward targeted therapies tailored to individual genetic and biomarker profiles, promising more effective outcomes while minimizing side effects. The integration of advanced neuroimaging techniques has revolutionized early diagnosis and disease monitoring, enabling proactive intervention strategies that may alter disease trajectories. This review provides an overview of these advancements, focusing on disease-modifying therapies, symptomatic treatments, combination therapies, lifestyle interventions, biomarker development, innovative drug delivery systems, immunotherapy, gene therapy, and neuroprotective agents.
Collapse
Affiliation(s)
- Srushti Rajanna
- East West College of Pharmacy, Department of Pharmacy Practice, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
2
|
Ullah A, Lee GJ, Park JH, Park AR, Kwon HT, Lim SI. Human serum albumin-coated cellulose beads for extracorporeal amyloid-beta scavenging: A promising Alzheimer's disease-modifying approach. Int J Biol Macromol 2025; 309:142757. [PMID: 40180066 DOI: 10.1016/j.ijbiomac.2025.142757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by cognitive decline, largely resulting from the accumulation of amyloid-beta (Aβ) plaques. Targeting Aβ has gained significant attention as a potential therapeutic approach for AD. In this study, cellulose beads (CBs) were covalently functionalized with human serum albumin (HSA). The functionalized CBs were extensively characterized using FTIR, SEM, XPS, and thermal analysis, confirming successful stepwise modification and HSA immobilization on their surface. The degree of HSA immobilization reached the highest level for fine CBs (50-75 μm), yielding 1.25 μg, 5.86 μg, and 6.45 μg of HSA per mg of beads treated with 1 %, 5 %, and 7 % HSA solutions, respectively. The GFP-Aβ fusion protein, recombinantly expressed and purified as a model ligand, was then adsorbed onto HSA-coated CBs and qualitatively analyzed by confocal microscopy. Quantitative adsorption studies demonstrated that HSA-coated CBs sequestered 335 ng/g of GFP-Aβ in PBS and 114 ng/g in human serum. Time-dependent and column-based assays also showed 318 ng/g sequestration capacities in PBS and 115 ng/g in human serum, respectively. These findings demonstrate HSA-functionalized CBs as a promising extracorporeal system for Aβ clearance, with vast potential therapeutic application as an AD modifying approach.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Gyu-Jin Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jong-Ha Park
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Ae-Ran Park
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Shah FA, Qadir H, Khan JZ, Faheem M. A review: From old drugs to new solutions: The role of repositioning in alzheimer's disease treatment. Neuroscience 2025; 576:167-181. [PMID: 40164279 DOI: 10.1016/j.neuroscience.2025.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Drug repositioning or drug reprofiling, involves identifying novel indications for approved and previously abandoned drugs in the treatment of other diseases. The traditional drug discovery process is tedious, time-consuming, risky, and challenging. Fortunately, the inception of the drug repositioning concept has expedited the process by using compounds with established safety profiles in humans, and thereby significantly reducing costs. Alzheimer's disease (AD) is a severe neurological disorder characterized by progressive degeneration of the brain with limited and less effective therapeutic interventions. Researchers have attempted to identify potential treatment of AD from existing drug however, the success of drug repositioning strategy in AD remains uncertain. This article briefly discusses the importance and effectiveness of drug repositioning strategies, the major obstacles in the development of drugs for AD, approaches to address these challenges, and the role of machine learning in identifying early markers of AD for improved management.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Halima Qadir
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad Pakistan.
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan.
| |
Collapse
|
4
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2025; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
5
|
Gol Mohammad Pour Afrakoti L, Daneshpour Moghadam S, Hadinezhad P. Alzheimer's disease and the immune system: A comprehensive overview with a focus on B cells, humoral immunity, and immunotherapy. J Alzheimers Dis Rep 2025; 9:25424823251329188. [PMID: 40297057 PMCID: PMC12035277 DOI: 10.1177/25424823251329188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/11/2025] [Indexed: 04/30/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the major cause of dementia. Amyloid-β (Aβ) and tau aggregation, mitochondrial dysfunction, and microglial dysregulation are key contributors to AD pathogenesis. Impairments in the blood-brain barrier have unveiled the contribution of the immune system, particularly B cells, in AD pathology. B cells, a crucial component of adaptive immunity, exhibit diverse functions, including antigen presentation and antibody production. While their role in neuroinflammatory disorders has been well-documented, their specific function in AD lacks adequate data. This review examines the dual role of the B cells and humoral immunity in modulating brain inflammation in AD and explores recent advancements in passive and active immunotherapeutic strategies targeting AD pathobiology. We summarize preclinical and clinical studies investigating B cell frequency, altered antibody levels, and their implications in neuroinflammation and immunotherapy. Notably, B cells demonstrate protective and pathological roles in AD, influencing neurodegeneration through antibody-mediated clearance of toxic aggregates and inflammatory activation inflammation. Passive immunotherapies targeting Aβ have shown potential in reducing amyloid plaques, while active immunotherapies are emerging as promising strategies, requiring further validation. Understanding the interplay between B cells, humoral immunity, microglia, and mitochondrial dysfunction is critical to unraveling AD pathogenesis. Their dual nature in disease progression underscores the need for precise therapeutic interventions to optimize immunotherapy outcomes and mitigate neuroinflammation effectively.
Collapse
Affiliation(s)
| | - Sanam Daneshpour Moghadam
- Department of Diagnostic and Public Health, School of Biotechnology, University of Verona, Verona, Italy
| | - Pezhman Hadinezhad
- Cognitive Neurology, Dementia and Neuropsychiatry Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wang YR, Zeng XQ, Wang J, Fowler CJ, Li QX, Bu XL, Doecke J, Maruff P, Martins RN, Rowe CC, Masters CL, Wang YJ, Liu YH. Autoantibodies to BACE1 promote Aβ accumulation and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 148:57. [PMID: 39448400 DOI: 10.1007/s00401-024-02814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
The profile of autoantibodies is dysregulated in patients with Alzheimer's disease (AD). Autoantibodies to beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) are present in human blood. This study aims to investigate the clinical relevance and pathophysiological roles of autoantibodies to BACE1 in AD. Clinical investigations were conducted in two independent cohorts, the Chongqing cohort, and the Australian Imaging, Biomarkers, and Lifestyle (AIBL) cohort. The Chongqing cohort included 55 AD patients, 28 patients with non-AD dementia, and 70 cognitively normal subjects (CN). The AIBL cohort included 162 Aβ-PET- CN, 169 Aβ-PET+ cognitively normal subjects (preclinical AD), and 31 Aβ-PET+ cognitively impaired subjects (Clinical AD). Plasma autoantibodies to BACE1 were determined by one-site Elisa. The associations of plasma autoantibodies to BACE1 with brain Aβ load and cognitive trajectory were investigated. The effects of autoantibodies to BACE1 on AD-type pathologies and underlying mechanisms were investigated in APP/PS1 mice and SH/APPswe/PS1wt cell lines. In the Chongqing cohort, plasma autoantibodies to BACE1 were higher in AD patients, in comparison with CN and non-AD dementia patients. In the AIBL cohort, plasma autoantibodies to BACE1 were highest in clinical AD patients, followed by preclinical AD and CN subjects. Higher autoantibodies to BACE1 were associated with an increased incidence of brain amyloid positivity conversion during follow-up. Autoantibodies to BACE1 exacerbated brain amyloid deposition and subsequent AD-type pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration in APP/PS1 mice. Autoantibodies to BACE1 increased Aβ production by promoting BACE1 expression through inhibiting PPARγ signaling. These findings suggest that autoantibodies to BACE1 are pathogenic in AD and the upregulation of these autoantibodies may promote the development of the disease. This study offers new insights into the mechanism of AD from an autoimmune perspective.
Collapse
Affiliation(s)
- Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
- Centre of Health Management, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | | | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - James Doecke
- The Australian E-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- CogState, Melbourne, VIC, Australia
| | - Ralph N Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
| |
Collapse
|
8
|
Veremeyko T, Barteneva NS, Vorobyev I, Ponomarev ED. The Emerging Role of Immunoglobulins and Complement in the Stimulation of Neuronal Activity and Repair: Not as Simple as We Thought. Biomolecules 2024; 14:1323. [PMID: 39456256 PMCID: PMC11506258 DOI: 10.3390/biom14101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Neurologic disorders such as traumatic brain injury, multiple sclerosis, Alzheimer's disease, and drug-resistant epilepsy have a high socioeconomic impact around the world. Current therapies for these disorders are often not effective. This creates a demand for the development of new therapeutic approaches to treat these disorders. Recent data suggest that autoreactive naturally occurring immunoglobulins produced by subsets of B cells, called B1 B cells, combined with complement, are actively involved in the processes of restoration of neuronal functions during pathological conditions and remyelination. The focus of this review is to discuss the possibility of creating specific therapeutic antibodies that can activate and fix complement to enhance neuronal survival and promote central nervous system repair after injuries associated with many types of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
| | - Natasha S. Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
| | - Ivan Vorobyev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
- Laboratory of Cell Motility, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D. Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM. Blood-based therapies to combat neurodegenerative diseases. Metab Brain Dis 2024; 39:985-1004. [PMID: 38842660 DOI: 10.1007/s11011-024-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mervyn Chen Xi Lim
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Min Tze Tsen
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Thangwaritorn S, Lee C, Metchikoff E, Razdan V, Ghafary S, Rivera D, Pinto A, Pemminati S. A Review of Recent Advances in the Management of Alzheimer's Disease. Cureus 2024; 16:e58416. [PMID: 38756263 PMCID: PMC11098549 DOI: 10.7759/cureus.58416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative condition and a form of dementia encountered in medical practice. Despite many proposed and attempted treatments, this disease remains a major puzzle in the public health systems worldwide. The initial part of this article provides an overview and illustration of the primary mechanisms responsible for neuronal damage in AD. Subsequently, it offers a critical evaluation of the most noteworthy studies on pharmacological therapy for AD and outlines recent advancements and novel approaches to managing this condition. Main properties, categorization, Food and Drug Administration (FDA) status, mechanisms of action, benefits, and common side effects of the classical and the most recently proposed pharmacological treatments for AD are described. The conventional pharmacological agents revised comprise cholinesterase inhibitors, monoclonal antibodies, and other therapies, such as memantine, valproic acid, and rosiglitazone. The innovative reviewed pharmacological agents comprise the monoclonal antibodies: donanemab, gantenerumab, solanezumab, bapineuzumab, crenezumab, and semorinemab. Nutritional supplements such as alpha-tocopherol (vitamin E) and caprylidene are also revised. Tau and amyloid-targeting treatments include methylthioninium moiety (MT), leuco-methylthioninium bis (LMTM), an oxidized form of MT, and tramiprosate, which inhibits the beta-amyloid (Aβ) monomer aggregation into toxic oligomers. Antidiabetic and anti-neuroinflammation drugs recently proposed for AD treatment are discussed. The antidiabetic drugs include NE3107, an anti-inflammatory and insulin sensitizer, and the diabetes mainstream drug metformin. The anti-neuroinflammatory AD therapies include the use of sodium oligomannate (GV-971), infusions with intravenous immunoglobulin aiming to decrease plasma levels of the constituents of Aβ plaques, and masitinib, a tyrosine kinase inhibitor that impacts mast and microglia cells. Additional anti-inflammatory agents being currently tested in phase-2 clinical trials, such as atomoxetine (selective norepinephrine reuptake inhibitor), losartan (angiotensin 2 receptor agonist), genistein (anti-inflammatory isoflavone neuroprotective agent), trans-resveratrol (polyphenol antioxidant plant estrogen), and benfotiamine (synthetic thiamine precursor), were reviewed. Lastly, drugs targeting Alzheimer's-associated symptoms, such as brexpiprazole (serotonin dopamine activity modulator) and suvorexant (orexin receptor antagonist), respectively, used for agitation and insomnia in AD patients, are reviewed. As experimental investigations and clinical research progress, there is a possibility that a combination of newly tested medications and traditional ones may emerge as a promising treatment option for AD in the future.
Collapse
Affiliation(s)
- Skylynn Thangwaritorn
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Christopher Lee
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Elena Metchikoff
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Vidushi Razdan
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Suliman Ghafary
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Dominic Rivera
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Alvaro Pinto
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Sudhakar Pemminati
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| |
Collapse
|
11
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
12
|
Ullah A, Lee GJ, Kwon HT, Lim SI. Covalent immobilization of human serum albumin on cellulose acetate membrane for scavenging amyloid beta - A stepping extracorporeal strategy for ameliorating Alzheimer's disease. Colloids Surf B Biointerfaces 2024; 234:113753. [PMID: 38241888 DOI: 10.1016/j.colsurfb.2024.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by interrupted neurocognitive functions and impaired mental development presumably caused by the accumulation of amyloid beta (Aβ) in the form of plaques. Targeting Aβ has been considered a promising approach for treating AD. In the current study, human serum albumin (HSA), a natural Aβ binder, is covalently immobilized onto the surface of a cellulose acetate (CA) membrane to devise an extracorporeal Aβ sequester. The immobilization of HSA at 3.06 ± 0.22 μg/mm2 of the CA membrane was found to be active functionally, as evidenced by the esterase-like activity converting p-nitrophenyl acetate into p-nitrophenol. The green fluorescent protein-Aβ (GFP-Aβ) fusion protein, recombinantly produced as a model ligand, exhibited characteristics of native Aβ. These features include the propensity to form aggregates or fibrils and an affinity for HSA with a dissociation constant (KD) of 0.91 μM. The HSA on the CA membrane showed concentration-dependent sequestration of GFP-Aβ in the 1-10-μM range. Moreover, it had a greater binding capacity than HSA immobilized on a commercial amine-binding plate. Results suggest that the covalent immobilization of HSA on the CA surface can be used as a potential platform for sequestering Aβ to alleviate AD.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Gyu-Jin Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
13
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Ten Kate M, Barkhof F, Schwarz AJ. Consistency between Treatment Effects on Clinical and Brain Atrophy Outcomes in Alzheimer's Disease Trials. J Prev Alzheimers Dis 2024; 11:38-47. [PMID: 38230715 PMCID: PMC10994869 DOI: 10.14283/jpad.2023.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/17/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Longitudinal changes in volumetric MRI outcome measures have been shown to correlate well with longitudinal changes in clinical instruments and have been widely used as biomarker outcomes in clinical trials for Alzheimer's disease (AD). While instances of discordant findings have been noted in some trials, especially the recent amyloid-removing therapies, the overall relationship between treatment effects on brain atrophy and clinical outcomes, and how it might depend on treatment target or mechanism, clinical instrument or imaging variable is not yet clear. OBJECTIVE To systematically assess the consistency and therapeutic class-dependence of treatment effects on clinical outcomes and on brain atrophy in published reports of clinical trials conducted in mild cognitive impairment (MCI) and/or AD. DESIGN Quantitative review of the published literature. The consistency of treatment effects on clinical and brain atrophy outcomes was assessed in terms of statistical agreement with hypothesized equal magnitude effects (e.g., 30% slowing of both) and nominal directional concordance, as a function of therapeutic class. SETTING Interventional randomized clinical trials. PARTICIPANTS MCI or AD trial participants. INTERVENTION Treatments included were those that involved ingestion or injection of a putatively active substance into the body, encompassing both pharmacological and controlled dietary interventions. MEASUREMENTS Each trial included in the analysis reported at least one of the required clinical outcomes (ADAS-Cog, CDR-SB or MMSE) and at least one of the required imaging outcomes (whole brain, ventricular or hippocampal volume). RESULTS Data from 35 trials, comprising 185 pairwise comparisons, were included. Overall, the 95% confidence bounds overlapped with the line of identity for 150/185 (81%) of the imaging-clinical variable pairs. The greatest proportion of outliers was found in trials of anti-amyloid antibodies that have been shown to dramatically reduce the level of PET-detectable amyloid plaques, for which only 13/33 (39%) of observations overlapped the identity line. A Deming regression calculated using all data points yielded a slope of 0.54, whereas if data points from the amyloid remover class were excluded, the Deming regression line had a slope of 0.92. Directional discordance of treatment effects was also most pronounced for the amyloid-removing class, and for comparisons involving ventricular volume. CONCLUSION Our results provide a frame of reference for the interpretation of clinical and brain atrophy results from future clinical trials and highlight the importance of mechanism of action in the interpretation of imaging results.
Collapse
Affiliation(s)
- M Ten Kate
- Adam J Schwarz, PhD, Takeda Pharmaceuticals, Ltd., 40 Landsdowne St., Cambridge MA 02139, USA Tel: (+1) 317 282 3557,
| | | | | |
Collapse
|
15
|
Vashisth K, Sharma S, Ghosh S, Babu MA, Ghosh S, Iqbal D, Kamal M, Almutary AG, Jha SK, Ojha S, Bhaskar R, Jha NK, Sinha JK. Immunotherapy in Alzheimer's Disease: Current Status and Future Directions. J Alzheimers Dis 2024; 101:S23-S39. [PMID: 39422934 DOI: 10.3233/jad-230603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by memory loss, cognitive decline, and behavioral changes. Immunotherapy aims to harness the immune system to target the underlying pathology of AD and has shown promise as a disease-modifying treatment for AD. By focusing on the underlying disease pathogenesis and encouraging the removal of abnormal protein aggregates in the brain, immunotherapy shows promise as a potential treatment for AD. The development of immunotherapy for AD began with early attempts to use antibodies to target beta-amyloid. The amyloid hypothesis which suggests that the accumulation of beta-amyloid in the brain triggers the pathological cascade that leads to AD has been a driving force behind the development of immunotherapy for AD. However, recent clinical trials of monoclonal antibodies targeting amyloid-β have shown mixed results, highlighting the need for further research into alternative immunotherapy approaches. Additionally, the safety and efficacy of immunotherapy for AD remain an area of active investigation. Some immunotherapeutic approaches have shown promise, while others have been associated with significant side effects, including inflammation of the brain. Sleep has a significant impact on various physiological processes, including the immune system, and has been linked to the pathogenesis of AD. Thus, improving sleep quality and duration may benefit the immune system and potentially enhance the effectiveness of immunotherapeutic approaches for AD. In this review, we discussed the promises of immunotherapy as a disease-modifying treatment for AD as well as possible methods to improve the efficacy and safety of immunotherapy to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
| | - Shivani Sharma
- Department of Pharmaceutics, R.K.S.D. College of Pharmacy, Kaithal, Haryana, India
| | - Shampa Ghosh
- GloNeuro, Noida, India
- ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
16
|
Kim J, Jeon H, Yun Kim H, Kim Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-β Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023; 24:e202300328. [PMID: 37497809 DOI: 10.1002/cbic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-β (Aβ). AD therapeutic research has been focused on targeting different species of Aβ in the amyloidogenic process to control Aβ content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aβ-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aβ-targeting chemical drugs.
Collapse
Affiliation(s)
- JiMin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hanna Jeon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
17
|
Xie Z, Meng J, Wu Z, Nakanishi H, Hayashi Y, Kong W, Lan F, Narengaowa, Yang Q, Qing H, Ni J. The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist 2023; 29:616-638. [PMID: 35348415 DOI: 10.1177/10738584211070273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microglia are critical players in the neuroimmune system, and their involvement in Alzheimer's disease (AD) pathogenesis is increasingly being recognized. However, whether microglia play a positive or negative role in AD remains largely controversial and the precise molecular targets for intervention are not well defined. This partly results from the opposing roles of microglia in AD pathology, and is mainly reflected in the microglia-neuron interaction. Microglia can prune synapses resulting in excessive synapse loss and neuronal dysfunction, but they can also promote synapse formation, enhancing neural network plasticity. Neuroimmune crosstalk accelerates microglial activation, which induces neuron death and enhances the microglial phagocytosis of β-amyloid to protect neurons. Moreover, microglia have dual opposing roles in developing the major pathological features in AD, such as amyloid deposition and blood-brain barrier permeability. This review summarizes the dual opposing role of microglia in AD from the perspective of the interaction between neurons and microglia. Additionally, current AD treatments targeting microglia and the advantages and disadvantages of developing microglia-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
18
|
Yearley AG, Goedmakers CMW, Panahi A, Doucette J, Rana A, Ranganathan K, Smith TR. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval. Artif Intell Med 2023; 143:102607. [PMID: 37673576 DOI: 10.1016/j.artmed.2023.102607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Over the past decade, machine learning (ML) and artificial intelligence (AI) have become increasingly prevalent in the medical field. In the United States, the Food and Drug Administration (FDA) is responsible for regulating AI algorithms as "medical devices" to ensure patient safety. However, recent work has shown that the FDA approval process may be deficient. In this study, we evaluate the evidence supporting FDA-approved neuroalgorithms, the subset of machine learning algorithms with applications in the central nervous system (CNS), through a systematic review of the primary literature. Articles covering the 53 FDA-approved algorithms with applications in the CNS published in PubMed, EMBASE, Google Scholar and Scopus between database inception and January 25, 2022 were queried. Initial searches identified 1505 studies, of which 92 articles met the criteria for extraction and inclusion. Studies were identified for 26 of the 53 neuroalgorithms, of which 10 algorithms had only a single peer-reviewed publication. Performance metrics were available for 15 algorithms, external validation studies were available for 24 algorithms, and studies exploring the use of algorithms in clinical practice were available for 7 algorithms. Papers studying the clinical utility of these algorithms focused on three domains: workflow efficiency, cost savings, and clinical outcomes. Our analysis suggests that there is a meaningful gap between the FDA approval of machine learning algorithms and their clinical utilization. There appears to be room for process improvement by implementation of the following recommendations: the provision of compelling evidence that algorithms perform as intended, mandating minimum sample sizes, reporting of a predefined set of performance metrics for all algorithms and clinical application of algorithms prior to widespread use. This work will serve as a baseline for future research into the ideal regulatory framework for AI applications worldwide.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Caroline M W Goedmakers
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Armon Panahi
- The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, DC 20052, USA
| | - Joanne Doucette
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Aakanksha Rana
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Kavitha Ranganathan
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Timothy R Smith
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
19
|
Chatanaka MK, Sohaei D, Diamandis EP, Prassas I. Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer's disease pathogenesis. Crit Rev Clin Lab Sci 2023; 60:398-426. [PMID: 36941789 DOI: 10.1080/10408363.2023.2187342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The amyloid hypothesis has so far been at the forefront of explaining the pathogenesis of Alzheimer's Disease (AD), a progressive neurodegenerative disorder that leads to cognitive decline and eventual death. Recent evidence, however, points to additional factors that contribute to the pathogenesis of this disease. These include the neurovascular hypothesis, the mitochondrial cascade hypothesis, the inflammatory hypothesis, the prion hypothesis, the mutational accumulation hypothesis, and the autoimmunity hypothesis. The purpose of this review was to briefly discuss the factors that are associated with autoimmunity in humans, including sex, the gut and lung microbiomes, age, genetics, and environmental factors. Subsequently, it was to examine the rise of autoimmune phenomena in AD, which can be instigated by a blood-brain barrier breakdown, pathogen infections, and dysfunction of the glymphatic system. Lastly, it was to discuss the various ways by which immune system dysregulation leads to AD, immunomodulating therapies, and future directions in the field of autoimmunity and neurodegeneration. A comprehensive account of the recent research done in the field was extracted from PubMed on 31 January 2022, with the keywords "Alzheimer's disease" and "autoantibodies" for the first search input, and "Alzheimer's disease" with "IgG" for the second. From the first search, 19 papers were selected, because they contained recent research on the autoantibodies found in the biofluids of patients with AD. From the second search, four papers were selected. The analysis of the literature has led to support the autoimmune hypothesis in AD. Autoantibodies were found in biofluids (serum/plasma, cerebrospinal fluid) of patients with AD with multiple methods, including ELISA, Mass Spectrometry, and microarray analysis. Through continuous research, the understanding of the synergistic effects of the various components that lead to AD will pave the way for better therapeutic methods and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Miyo K Chatanaka
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Dorsa Sohaei
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
20
|
Devi G. A how-to guide for a precision medicine approach to the diagnosis and treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1213968. [PMID: 37662550 PMCID: PMC10469885 DOI: 10.3389/fnagi.2023.1213968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Article purpose The clinical approach to Alzheimer's disease (AD) is challenging, particularly in high-functioning individuals. Accurate diagnosis is crucial, especially given the significant side effects, including brain hemorrhage, of newer monoclonal antibodies approved for treating earlier stages of Alzheimer's. Although early treatment is more effective, early diagnosis is also more difficult. Several clinical mimickers of AD exist either separately, or in conjunction with AD pathology, adding to the diagnostic complexity. To illustrate the clinical decision-making process, this study includes de-identified cases and reviews of the underlying etiology and pathology of Alzheimer's and available therapies to exemplify diagnostic and treatment subtleties. Problem The clinical presentation of Alzheimer's is complex and varied. Multiple other primary brain pathologies present with clinical phenotypes that can be difficult to distinguish from AD. Furthermore, Alzheimer's rarely exists in isolation, as almost all patients also show evidence of other primary brain pathologies, including Lewy body disease and argyrophilic grain disease. The phenotype and progression of AD can vary based on the brain regions affected by pathology, the coexistence and severity of other brain pathologies, the presence and severity of systemic comorbidities such as cardiac disease, the common co-occurrence with psychiatric diagnoses, and genetic risk factors. Additionally, symptoms and progression are influenced by an individual's brain reserve and cognitive reserve, as well as the timing of the diagnosis, which depends on the demographics of both the patient and the diagnosing physician, as well as the availability of biomarkers. Methods The optimal clinical and biomarker strategy for accurately diagnosing AD, common neuropathologic co-morbidities and mimickers, and available medication and non-medication-based treatments are discussed. Real-life examples of cognitive loss illustrate the diagnostic and treatment decision-making process as well as illustrative treatment responses. Implications AD is best considered a syndromic disorder, influenced by a multitude of patient and environmental characteristics. Additionally, AD existing alone is a unicorn, as there are nearly always coexisting other brain pathologies. Accurate diagnosis with biomarkers is essential. Treatment response is affected by the variables involved, and the effective treatment of Alzheimer's disease, as well as its prevention, requires an individualized, precision medicine strategy.
Collapse
Affiliation(s)
- Gayatri Devi
- Neurology and Psychiatry, Zucker School of Medicine, Hempstead, NY, United States
- Neurology and Psychiatry, Lenox Hill Hospital, New York City, NY, United States
- Park Avenue Neurology, New York City, NY, United States
| |
Collapse
|
21
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
22
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Fei Z, Pei R, Pan B, Ye S, Zhang R, Ma L, Wang Z, Li C, Du X, Cao H. Antibody Assay and Anti-Inflammatory Function Evaluation of Therapeutic Potential of Different Intravenous Immunoglobulins for Alzheimer's Disease. Int J Mol Sci 2023; 24:5549. [PMID: 36982622 PMCID: PMC10058273 DOI: 10.3390/ijms24065549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that currently has no known cure. Intravenous immunoglobulin (IVIG), which contains AD-related antibodies and has anti-inflammatory properties, has shown potential as a treatment for AD. However, the efficacy of clinical trials involving AD patients treated with IVIG has been inconsistent. Our previous study found that different IVIGs had significantly varied therapeutic effects on 3xTg-AD mice. In order to investigate the relationship between the composition and function of IVIG and its efficacy in treating AD, we selected three IVIGs that showed notable differences in therapeutic effects. Then, the concentrations of specific antibodies against β-amyloid (Aβ)42, tau, and hyperphosphorylated tau (p-tau) in three IVIGs, as well as their effects on systemic inflammation induced by lipopolysaccharide (LPS) in Balb/c mice, were analyzed and compared in this study. The results indicated that these IVIGs differed greatly in anti-Aβ42/tau antibody concentration and anti-p-tau ratio, and improved LPS-stimulated peripheral inflammation, liver and kidney injury, and neuroinflammation in Balb/c mice to varying degrees. Combined with our previous results, the efficacy of IVIG against AD may be positively correlated with its level of AD-related antibodies and anti-inflammatory ability. AD-related antibody analysis and functional evaluation of IVIG should be given sufficient attention before clinical trials, as this may greatly affect the therapeutic effect of AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; (Z.F.)
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; (Z.F.)
| |
Collapse
|
24
|
Duque KR, Vizcarra JA, Hill EJ, Espay AJ. Disease-modifying vs symptomatic treatments: Splitting over lumping. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:187-209. [PMID: 36803811 DOI: 10.1016/b978-0-323-85555-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Clinical trials of putative disease-modifying therapies in neurodegeneration have obeyed the century-old principle of convergence, or lumping, whereby any feature of a clinicopathologic disease entity is considered relevant to most of those affected. While this convergent approach has resulted in important successes in trials of symptomatic therapies, largely aimed at correcting common neurotransmitter deficiencies (e.g., cholinergic deficiency in Alzheimer's disease or dopaminergic deficiency in Parkinson's disease), it has been consistently futile in trials of neuroprotective or disease-modifying interventions. As individuals affected by the same neurodegenerative disorder do not share the same biological drivers, splitting such disease into small molecular/biological subtypes, to match people to therapies most likely to benefit them, is vital in the pursuit of disease modification. We here discuss three paths toward the splitting needed for future successes in precision medicine: (1) encourage the development of aging cohorts agnostic to phenotype in order to enact a biology-to-phenotype direction of biomarker development and validate divergence biomarkers (present in some, absent in most); (2) demand bioassay-based recruitment of subjects into disease-modifying trials of putative neuroprotective interventions in order to match the right therapies to the right recipients; and (3) evaluate promising epidemiologic leads of presumed pathogenetic potential using Mendelian randomization studies before designing the corresponding clinical trials. The reconfiguration of disease-modifying efforts for patients with neurodegenerative disorders will require a paradigm shift from lumping to splitting and from proteinopathy to proteinopenia.
Collapse
Affiliation(s)
- Kevin R Duque
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Joaquin A Vizcarra
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily J Hill
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
25
|
Ritchie M, Gillen DL, Grill JD. Recruitment across two decades of NIH-funded Alzheimer's disease clinical trials. Alzheimers Res Ther 2023; 15:28. [PMID: 36732846 PMCID: PMC9893207 DOI: 10.1186/s13195-023-01177-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Timely accrual of a representative sample is a key factor in whether Alzheimer's disease (AD) clinical trials successfully answer the scientific questions under study. Studies in other fields have observed that, over time, recruitment to trials has become increasingly reliant on larger numbers of sites, with declines in the average per-site recruitment rate. Here, we examined the trends in recruitment over a 20-year period of NIH-funded AD clinical trials conducted by the Alzheimer's Disease Cooperative Study (ADCS), a temporally consistent network of sites devoted to interventional research. METHODS We performed retrospective analyses of eleven ADCS randomized clinical trials. To examine the recruitment planning, we calculated the expected number of participants to be enrolled per site for each trial. To examine the actual trial recruitment rates, we quantified the number of participants enrolled per site per month. RESULTS No effects of time were observed on recruitment planning or overall recruitment rates across trials. No trial achieved an overall recruitment rate greater than one subject per site per month. We observed the fastest recruitment rates in trials with no competition and the slowest in trials that overlapped in time. The highest recruitment rates were consistently seen early within trials and declined over the course of studies. CONCLUSIONS Trial recruitment projections should plan for fewer than one participant randomized per site per month and consider the number of other AD trials being conducted concurrently.
Collapse
Affiliation(s)
- Marina Ritchie
- UC Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Daniel L Gillen
- UC Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Statistics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Joshua D Grill
- UC Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
26
|
Conti Filho CE, Loss LB, Marcolongo-Pereira C, Rossoni Junior JV, Barcelos RM, Chiarelli-Neto O, da Silva BS, Passamani Ambrosio R, Castro FCDAQ, Teixeira SF, Mezzomo NJ. Advances in Alzheimer's disease's pharmacological treatment. Front Pharmacol 2023; 14:1101452. [PMID: 36817126 PMCID: PMC9933512 DOI: 10.3389/fphar.2023.1101452] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. Several hypotheses emerged from AD pathophysiological mechanisms. However, no neuronal protective or regenerative drug is available nowadays. Researchers still work in drug development and are finding new molecular targets to treat AD. Therefore, this study aimed to summarize main advances in AD pharmacological therapy. Clinical trials registered in the National Library of Medicine database were selected and analyzed accordingly to molecular targets, therapeutic effects, and safety profile. The most common outcome was the lack of efficacy. Only seven trials concluded that tested drugs were safe and induced any kind of therapeutic improvement. Three works showed therapeutic effects followed by toxicity. In addition to aducanumab recent FDA approval, antibodies against amyloid-β (Aβ) showed no noteworthy results. 5-HT6 antagonists, tau inhibitors and nicotinic agonists' data were discouraging. However, anti-Aβ vaccine, BACE inhibitor and anti-neuroinflammation drugs showed promising results.
Collapse
|
27
|
Rohrer L, Yunce M, Montine TJ, Shan H. Plasma Exchange in Alzheimer's Disease. Transfus Med Rev 2023; 37:10-15. [PMID: 36357257 DOI: 10.1016/j.tmrv.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Therapeutic plasma exchange (TPE) has traditionally been used to selectively remove pathologic contents including autoantibodies, abnormal proteins, immune complexes, or toxins from a patient's plasma. In addition to the removal of molecular contributors to disease, fluid replacement and infusion of beneficial plasma constituents including albumin can be tapered based on the pathophysiologic mechanisms of the offending disease. This treatment modality has shown efficacy in symptomatic relief and slowing of disease progression for various neurologic, immunologic, and hematologic diseases. This review outlines the rationale for TPE in the treatment of Alzheimer's Disease (AD) through a potential mechanism leveraging the concentration gradient of amyloid β peptides and the infusion of albumin, and critically reviews the clinical evidence for treatment of AD using TPE and albumin replacement. This review also highlights potential sources of bias that must be considered in conjunction with the evidence of efficacy for the use of TPE in AD.
Collapse
Affiliation(s)
- Lucas Rohrer
- San Francisco, School of Medicine, University of California, San Francisco, CA, USA.
| | - Muharrem Yunce
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Hua Shan
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
Mendelsohn Z, Pemberton HG, Gray J, Goodkin O, Carrasco FP, Scheel M, Nawabi J, Barkhof F. Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence. Neuroradiology 2023; 65:5-24. [PMID: 36331588 PMCID: PMC9816195 DOI: 10.1007/s00234-022-03074-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE MRI is integral to the diagnosis of multiple sclerosis (MS) and is important for clinical prognostication. Quantitative volumetric reporting tools (QReports) can improve the accuracy and objectivity of MRI-based assessments. Several QReports are commercially available; however, validation can be difficult to establish and does not currently follow a common pathway. To aid evidence-based clinical decision-making, we performed a systematic review of commercial QReports for use in MS including technical details and published reports of validation and in-use evaluation. METHODS We categorized studies into three types of testing: technical validation, for example, comparison to manual segmentation, clinical validation by clinicians or interpretation of results alongside clinician-rated variables, and in-use evaluation, such as health economic assessment. RESULTS We identified 10 companies, which provide MS lesion and brain segmentation and volume quantification, and 38 relevant publications. Tools received regulatory approval between 2006 and 2020, contextualize results to normative reference populations, ranging from 620 to 8000 subjects, and require T1- and T2-FLAIR-weighted input sequences for longitudinal assessment of whole-brain volume and lesions. In MS, six QReports provided evidence of technical validation, four companies have conducted clinical validation by correlating results with clinical variables, only one has tested their QReport by clinician end-users, and one has performed a simulated in-use socioeconomic evaluation. CONCLUSION We conclude that there is limited evidence in the literature regarding clinical validation and in-use evaluation of commercial MS QReports with a particular lack of clinician end-user testing. Our systematic review provides clinicians and institutions with the available evidence when considering adopting a quantitative reporting tool for MS.
Collapse
Affiliation(s)
- Zoe Mendelsohn
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK ,grid.6363.00000 0001 2218 4662Department of Neuroradiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Radiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany
| | - Hugh G. Pemberton
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.420685.d0000 0001 1940 6527GE Healthcare, Amersham, UK
| | - James Gray
- grid.416626.10000 0004 0391 2793Stepping Hill Hospital, NHS Foundation Trust, Stockport, UK
| | - Olivia Goodkin
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ferran Prados Carrasco
- grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK ,grid.36083.3e0000 0001 2171 6620E-Health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Michael Scheel
- grid.6363.00000 0001 2218 4662Department of Neuroradiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany
| | - Jawed Nawabi
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany ,grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Frederik Barkhof
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK ,grid.12380.380000 0004 1754 9227Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Fei Z, Pan B, Pei R, Chen Z, Du X, Cao H, Li C. Efficacy and safety of blood derivatives therapy in Alzheimer's disease: a systematic review and meta-analysis. Syst Rev 2022; 11:256. [PMID: 36443888 PMCID: PMC9706869 DOI: 10.1186/s13643-022-02115-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Blood derivatives therapy is a conventional clinical treatment, while the treatment for Alzheimer's disease (AD) is relatively novel. To provide clinical references for treating AD, this meta-analysis was performed to evaluate the efficacy and safety of blood derivatives therapy on the patients with AD. METHODS A systematic articles search was performed for eligible studies published up to December 6, 2021 through the PubMed, Embase, Cochrane library, ClinicalTrials.gov , Chinese National Knowledge Infrastructure database, and Wanfang databases. The included articles were screened by using rigorous inclusion and exclusion criteria. Study selection and data-extraction were performed by two authors independently. Random effects model or fixed effects model was used. Quality of studies and risk of bias were evaluated according to the Cochrane risk of bias tool. All analyses were conducted using Review Manager 5.4. The study was designed and conducted according to the Preferring Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. RESULTS A total of three plasma administrations (two plasma exchange and one young plasma infusion) and five intravenous immunoglobulin (IVIG) randomized controlled trials with a sample size of 1148 subjects diagnosed with AD were included. There was no significant difference in cognitive improvement and all-cause discontinuation between intervention and placebo groups (RR 1.10, 95% CI 0.79-1.54). And Intervention groups showed not a statistically significant improvement in cognition of included subjects measured by the ADAS-Cog (MD 0.36, 95% CI 0.87-1.59), ADCS-ADL (MD -1.34, 95% CI - 5.01-2.32) and NPI (MD 2.20, 95% CI 0.07-4.32) score compared to the control groups. IVIG is well tolerated for AD patients even under the maximum dose (0.4 g/kg), but it is inferior to placebo in Neuropsychiatric Inventory scale in AD patients (MD 2.19, 95% CI 0.02-4.37). CONCLUSIONS The benefits of blood derivatives therapy for AD are limited. It is necessary to perform well-designed randomized controlled trials with large sample sizes focusing on the appropriate blood derivatives for the specific AD sub-populations in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021233886.
Collapse
Affiliation(s)
- Zhangcheng Fei
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Bo Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Renjun Pei
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Zhongsheng Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China.
| |
Collapse
|
30
|
Zheng X, Tang Y, Yang Q, Wang S, Chen R, Tao C, Zhang P, Fan B, Zhan J, Tang C, Lu L. Effectiveness and safety of anti-tau drugs for Alzheimer's disease: Systematic review and meta-analysis. J Am Geriatr Soc 2022; 70:3281-3292. [PMID: 36208415 DOI: 10.1111/jgs.18025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the cognitive effectiveness and safety of tau-targeting drugs for Alzheimer's disease (AD) METHODS: The MEDLINE, Embase, Cochrane Library, PsycINFO, ClinicalTrials.gov, and WHO International Clinical Trials Registry Platform databases were searched from inception to 22 November 2021. A systematic review and meta-analysis of randomized controlled trials were performed RESULTS: Thirty-four randomized controlled trials comprising 5549 participants, of which fifteen (51.7%) had a low risk of bias, were included. The meta-analysis showed no differences in the cognitive subscale of the AD: Assessment Scale (ADAS-Cog) between anti-tau drugs and placebo (mean difference [MD]: -0.77, 95% CI: -1.64 to 0.10; minimal important difference 3.1-3.8 points, moderate certainty evidence). For ADAS-Cog, the results subgroup analysis suggested a statistical effect of tau posttranslational modifications on drug inhibition (MD: -0.80, 95% CI: -1.43 to -0.17), which was not seen with tau aggregation inhibitors or immunotherapy (interaction p = 0.24). A total of 11.0%, 5.2%, and 4.8% of drugs inhibiting tau aggregation, immunotherapy, and drugs targeting posttranslational modifications, respectively, had a reduced risk of dropouts due to adverse events (AEs). DISCUSSION Current evidence suggests that anti-tau drugs are unlikely to have an important impact on slowing cognitive impairment. Although the subgroup analysis suggested that inhibition of tau posttranslational modifications is statistically effective and generally safer because of reduced dropouts due to AEs, the analysis has limited credibility. Additional large-scale and well-designed randomized and placebo-controlled trials will be necessary to explore the benefit of a certain type of anti-tau drug for AD.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Yuyuan Tang
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghui Yang
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Wang
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rouhao Chen
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenyang Tao
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiming Zhang
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baochao Fan
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhan
- Postdoctoral Research Station, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liming Lu
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Asher S, Priefer R. Alzheimer's disease failed clinical trials. Life Sci 2022; 306:120861. [PMID: 35932841 DOI: 10.1016/j.lfs.2022.120861] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease typically presenting with symptoms of memory loss and cognitive decline. Existing theories for the causation of this focuses on amyloid beta plaques and neurofibrillary tau tangles. Most US Food and Drug Administration approved therapies for Alzheimer's disease target cognitive function. A multitude of clinical trials, with a variety of different targets have been conducted over the decades which have focused on the two clinical signs, with the only success being the controversial 2021 approval of an IgG1 anti-Ab antibody targeting the clearance of the Aβ plaques. Presented is a review of all previously failed Alzheimer's disease clinical trials and the rationale for their failures.
Collapse
Affiliation(s)
- Shreya Asher
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States of America
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States of America.
| |
Collapse
|
32
|
Downey J, Lam JC, Li VO, Gozes I. Somatic Mutations and Alzheimer’s Disease. J Alzheimers Dis 2022; 90:475-493. [DOI: 10.3233/jad-220643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-β plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer’s disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerative studies, with the aim to bring hope for the vulnerable aging population.
Collapse
Affiliation(s)
- Jocelyn Downey
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jacqueline C.K. Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- Department of Computer Science and Technology, University of Cambridge, UK
| | - Victor O.K. Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
34
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
35
|
Chen Y, Colonna M. Spontaneous and induced adaptive immune responses in Alzheimer's disease: new insights into old observations. Curr Opin Immunol 2022; 77:102233. [PMID: 35839620 DOI: 10.1016/j.coi.2022.102233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Although AD is primarily a neurological disorder distinguished by amyloid β plaques and intracellular neurofibrillary tangles, the immune system can impact the progression of the disease and may be targeted for therapeutic purposes. To date, most studies have focused on innate immune responses of microglia. However, emerging evidence implicates adaptive immune responses by T cells and B cells in the progression of AD. Moreover, the recent approval of an antibody that promotes amyloid β plaque clearance for AD therapy has pinpointed adaptive immunity as a fertile ground for the design of novel therapeutic approaches. Here, we highlight key studies delineating T cell and B cell responses in human AD and mouse models of AD, identify open questions on the specificity, development and impact of these responses and discuss outlooks for future studies and novel therapeutic avenues.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pathology and Immunology and Department of Neurology, Washington University School of Medicine in St Louis, USA
| | - Marco Colonna
- Department of Pathology and Immunology and Department of Neurology, Washington University School of Medicine in St Louis, USA.
| |
Collapse
|
36
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|
37
|
Zhu L, Zhang MQ, Jing HR, Zhang XP, Xu LL, Ma RJ, Huang F, Shi LQ. Bioinspired Self-assembly Nanochaperone Inhibits Tau-Derived PHF6 Peptide Aggregation in Alzheimer’s Disease. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B Lymphocytes in Alzheimer's Disease-A Comprehensive Review. J Alzheimers Dis 2022; 88:1241-1262. [PMID: 35754274 DOI: 10.3233/jad-220261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-β (Aβ) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aβ in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aβ and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
39
|
Jeong H, Shin H, Hong S, Kim Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Exp Neurobiol 2022; 31:65-88. [PMID: 35673997 PMCID: PMC9194638 DOI: 10.5607/en22004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) progressively inflicts impairment of synaptic functions with notable deposition of amyloid-β (Aβ) as senile plaques within the extracellular space of the brain. Accordingly, therapeutic directions for AD have focused on clearing Aβ plaques or preventing amyloidogenesis based on the amyloid cascade hypothesis. However, the emerging evidence suggests that Aβ serves biological roles, which include suppressing microbial infections, regulating synaptic plasticity, promoting recovery after brain injury, sealing leaks in the blood-brain barrier, and possibly inhibiting the proliferation of cancer cells. More importantly, these functions were found in in vitro and in vivo investigations in a hormetic manner, that is to be neuroprotective at low concentrations and pathological at high concentrations. We herein summarize the physiological roles of monomeric Aβ and current Aβ-directed therapies in clinical trials. Based on the evidence, we propose that novel therapeutics targeting Aβ should selectively target Aβ in neurotoxic forms such as oligomers while retaining monomeric Aβ in order to preserve the physiological functions of Aβ monomers.
Collapse
Affiliation(s)
- Hyomin Jeong
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Heewon Shin
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Seungpyo Hong
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - YoungSoo Kim
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
40
|
Ross DE, Seabaugh J, Seabaugh JM, Barcelona J, Seabaugh D, Wright K, Norwind L, King Z, Graham TJ, Baker J, Lewis T. Updated Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant ® and NeuroGage ® in Patients With Traumatic Brain Injury. Front Hum Neurosci 2022; 16:715807. [PMID: 35463926 PMCID: PMC9027332 DOI: 10.3389/fnhum.2022.715807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Over 40 years of research have shown that traumatic brain injury affects brain volume. However, technical and practical limitations made it difficult to detect brain volume abnormalities in patients suffering from chronic effects of mild or moderate traumatic brain injury. This situation improved in 2006 with the FDA clearance of NeuroQuant®, a commercially available, computer-automated software program for measuring MRI brain volume in human subjects. More recent strides were made with the introduction of NeuroGage®, commercially available software that is based on NeuroQuant® and extends its utility in several ways. Studies using these and similar methods have found that most patients with chronic mild or moderate traumatic brain injury have brain volume abnormalities, and several of these studies found-surprisingly-more abnormal enlargement than atrophy. More generally, 102 peer-reviewed studies have supported the reliability and validity of NeuroQuant® and NeuroGage®. Furthermore, this updated version of a previous review addresses whether NeuroQuant® and NeuroGage® meet the Daubert standard for admissibility in court. It concludes that NeuroQuant® and NeuroGage® meet the Daubert standard based on their reliability, validity, and objectivity. Due to the improvements in technology over the years, these brain volumetric techniques are practical and readily available for clinical or forensic use, and thus they are important tools for detecting signs of brain injury.
Collapse
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - John Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Radiology, St. Mary’s Hospital School of Medical Imaging, Richmond, VA, United States
| | - Jan M. Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Justis Barcelona
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Daniel Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Katherine Wright
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Lee Norwind
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | - Zachary King
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | | | - Joseph Baker
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Neuroscience, Christopher Newport University, Newport News, VA, United States
| | - Tanner Lewis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Undergraduate Studies, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
41
|
Silvestro S, Valeri A, Mazzon E. Aducanumab and Its Effects on Tau Pathology: Is This the Turning Point of Amyloid Hypothesis? Int J Mol Sci 2022; 23:ijms23042011. [PMID: 35216126 PMCID: PMC8880389 DOI: 10.3390/ijms23042011] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people around the world. The two main pathological mechanisms underlying the disease are beta-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) of Tau proteins in the brain. Their reduction has been associated with slowing of cognitive decline and disease progression. Several antibodies aimed to target Aβ or Tau in order to represent hope for millions of patients, but only a small number managed to be selected to participate in clinical trials. Aducanumab is a monoclonal antibody recently approved by the Food and Drug Administration (FDA), which, targeting (Aβ) oligomers and fibrils, was able to reduce Aβ accumulation and slow the progression of cognitive impairment. It was also claimed to have an effect on the second hallmark of AD, decreasing the level of phospho-Tau evaluated in cerebrospinal fluid (CSF) and by positron emission tomography (PET). This evidence may represent a turning point in the development of AD-efficient drugs.
Collapse
|
42
|
Querfurth H, Marshall J, Parang K, Rioult-Pedotti MS, Tiwari R, Kwon B, Reisinger S, Lee HK. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. PLoS One 2022; 17:e0261696. [PMID: 35061720 PMCID: PMC8782417 DOI: 10.1371/journal.pone.0261696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of β-amyloid (Aβi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 μM in restoring normal insulin-dependent Akt activation and in mitigating Aβi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aβ oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of β-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| | - John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Mengia S. Rioult-Pedotti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
- Department of Neurology, Clinical Neurorehabilitation, University of Zurich, Zurich, Switzerland
| | - Rakesh Tiwari
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Providence, RI, United States of America
| | | | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| |
Collapse
|
43
|
Forgrave LM, van der Gugten JG, Nguyen Q, DeMarco ML. Establishing pre-analytical requirements and maximizing peptide recovery in the analytical phase for mass spectrometric quantification of amyloid-β peptides 1-42 and 1-40 in CSF. Clin Chem Lab Med 2021; 60:198-206. [PMID: 34881836 DOI: 10.1515/cclm-2021-0549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Amyloid-β (Aβ) peptides in cerebrospinal fluid (CSF), including Aβ42 (residues 1-42) and Aβ40 (residues 1-40), are utilized as biomarkers in the diagnostic workup of Alzheimer's disease. Careful consideration has been given to the pre-analytical and analytical factors associated with measurement of these peptides via immunoassays; however, far less information is available for mass spectrometric methods. As such, we performed a comprehensive evaluation of pre-analytical and analytical factors specific to Aβ quantification using mass spectrometry. METHODS Using our quantitative mass spectrometry assay for Aβ42 and Aβ40 in CSF, we investigated the potential for interference from hemolysate, bilirubin, lipids, and anti-Aβ-antibodies. We also optimized the composition of the calibrator surrogate matrix and Aβ recovery during and after solid phase extraction (SPE). RESULTS There was no interreference observed with total protein up to 12 g/L, hemolysate up to 10% (v/v), bilirubin up to 0.5% (v/v), intralipid up to 1% (v/v), or anti-Aβ-antibodies at expected therapeutic concentrations. For hemolysate, bilirubin and lipids, visual CSF contamination thresholds were established. In the analytical phase, Aβ recovery was increased by ∼50% via SPE solvent modifications and by over 150% via modification of the SPE collection plate, which also extended analyte stability in the autosampler. CONCLUSIONS Attention to mass spectrometric-specific pre-analytical and analytical considerations improved analytical sensitivity and reproducibility, as well as, established CSF specimen acceptance and rejection criteria for use by the clinical laboratory.
Collapse
Affiliation(s)
- Lauren M Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - J Grace van der Gugten
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| | - Quyen Nguyen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
44
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
45
|
Pemberton HG, Zaki LAM, Goodkin O, Das RK, Steketee RME, Barkhof F, Vernooij MW. Technical and clinical validation of commercial automated volumetric MRI tools for dementia diagnosis-a systematic review. Neuroradiology 2021; 63:1773-1789. [PMID: 34476511 PMCID: PMC8528755 DOI: 10.1007/s00234-021-02746-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
Developments in neuroradiological MRI analysis offer promise in enhancing objectivity and consistency in dementia diagnosis through the use of quantitative volumetric reporting tools (QReports). Translation into clinical settings should follow a structured framework of development, including technical and clinical validation steps. However, published technical and clinical validation of the available commercial/proprietary tools is not always easy to find and pathways for successful integration into the clinical workflow are varied. The quantitative neuroradiology initiative (QNI) framework highlights six necessary steps for the development, validation and integration of quantitative tools in the clinic. In this paper, we reviewed the published evidence regarding regulatory-approved QReports for use in the memory clinic and to what extent this evidence fulfils the steps of the QNI framework. We summarize unbiased technical details of available products in order to increase the transparency of evidence and present the range of reporting tools on the market. Our intention is to assist neuroradiologists in making informed decisions regarding the adoption of these methods in the clinic. For the 17 products identified, 11 companies have published some form of technical validation on their methods, but only 4 have published clinical validation of their QReports in a dementia population. Upon systematically reviewing the published evidence for regulatory-approved QReports in dementia, we concluded that there is a significant evidence gap in the literature regarding clinical validation, workflow integration and in-use evaluation of these tools in dementia MRI diagnosis.
Collapse
Affiliation(s)
- Hugh G Pemberton
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lara A M Zaki
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Olivia Goodkin
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ravi K Das
- Clinical, Educational and Health Psychology, University College London, London, UK
| | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Dalakas MC. Update on Intravenous Immunoglobulin in Neurology: Modulating Neuro-autoimmunity, Evolving Factors on Efficacy and Dosing and Challenges on Stopping Chronic IVIg Therapy. Neurotherapeutics 2021; 18:2397-2418. [PMID: 34766257 PMCID: PMC8585501 DOI: 10.1007/s13311-021-01108-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
In the last 25 years, intravenous immunoglobulin (IVIg) has had a major impact in the successful treatment of previously untreatable or poorly controlled autoimmune neurological disorders. Derived from thousands of healthy donors, IVIg contains IgG1 isotypes of idiotypic antibodies that have the potential to bind pathogenic autoantibodies or cross-react with various antigenic peptides, including proteins conserved among the "common cold"-pre-pandemic coronaviruses; as a result, after IVIg infusions, some of the patients' sera may transiently become positive for various neuronal antibodies, even for anti-SARS-CoV-2, necessitating caution in separating antibodies derived from the infused IVIg or acquired humoral immunity. IVIg exerts multiple effects on the immunoregulatory network by variably affecting autoantibodies, complement activation, FcRn saturation, FcγRIIb receptors, cytokines, and inflammatory mediators. Based on randomized controlled trials, IVIg is approved for the treatment of GBS, CIDP, MMN and dermatomyositis; has been effective in, myasthenia gravis exacerbations, and stiff-person syndrome; and exhibits convincing efficacy in autoimmune epilepsy, neuromyelitis, and autoimmune encephalitis. Recent evidence suggests that polymorphisms in the genes encoding FcRn and FcγRIIB may influence the catabolism of infused IgG or its anti-inflammatory effects, impacting on individualized dosing or efficacy. For chronic maintenance therapy, IVIg and subcutaneous IgG are effective in controlled studies only in CIDP and MMN preventing relapses and axonal loss up to 48 weeks; in practice, however, IVIg is continuously used for years in all the aforementioned neurological conditions, like is a "forever necessary therapy" for maintaining stability, generating challenges on when and how to stop it. Because about 35-40% of patients on chronic therapy do not exhibit objective neurological signs of worsening after stopping IVIg but express subjective symptoms of fatigue, pains, spasms, or a feeling of generalized weakness, a conditioning effect combined with fear that discontinuing chronic therapy may destabilize a multi-year stability status is likely. The dilemmas of continuing chronic therapy, the importance of adjusting dosing and scheduling or periodically stopping IVIg to objectively assess necessity, and concerns in accurately interpreting IVIg-dependency are discussed. Finally, the merit of subcutaneous IgG, the ineffectiveness of IVIg in IgG4-neurological autoimmunities, and genetic factors affecting IVIg dosing and efficacy are addressed.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, Dept. of Pathophysiology, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
47
|
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that currently has no cure. The aged population is growing globally, creating an urgent need for more promising therapies for this debilitating disease. Much effort has been made in recent decades, and the field is highly dynamic, with numerous trials. The main focus of these trials includes disease modification and symptomatic treatment. Some have shown beneficial outcomes, while others have shown no significant benefits. Here, we cover the outcome of recently published AD clinical trials, as well as the mechanism of action of these therapeutical agents, to re-think drug development strategies and directions for future studies.
Collapse
|
48
|
Martinkova J, Quevenco FC, Karcher H, Ferrari A, Sandset EC, Szoeke C, Hort J, Schmidt R, Chadha AS, Ferretti MT. Proportion of Women and Reporting of Outcomes by Sex in Clinical Trials for Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2124124. [PMID: 34515784 DOI: 10.1001/jamanetworkopen.2021.24124] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Women represent two-thirds of patients with Alzheimer disease (AD), and sex differences might affect results of randomized clinical trials (RCTs). However, little information exists on differences in sex as reported in RCTs for AD. OBJECTIVE To assess the ratio of females to males and the reporting of sex-stratified data in large pharmaceutical RCTs for AD. DATA SOURCES A search for pharmaceutical RCTs for AD was conducted on September 4, 2019, using ClinicalTrials.gov with the key word Alzheimer disease, and articles related to those trials were identified using the PubMed, Scopus, and Google Scholar databases. Searches were conducted between September 4 and October 31, 2019, and between April 15 and May 31, 2020. STUDY SELECTION Controlled RCTs that had more than 100 participants and tested the efficacy of drugs or herbal extracts were included. Of 1047 RCTs identified, 409 were published and therefore screened. A total of 77 articles were included in the final analysis, including 56 primary articles on AD, 13 secondary articles on AD, and 8 articles on mild cognitive impairment. DATA EXTRACTION AND SYNTHESIS The location and date of publication; number, sex, and age of patients enrolled; disease severity; experimental or approved status of the drug; and whether the study included a sex-stratified analysis in the protocol, methods, or results were extracted by 1 reviewer for each article, and the meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Data were analyzed using a mixed-effects model. MAIN OUTCOMES AND MEASURES The mean proportion of women enrolled in the trials and the associations between prespecified variables were analyzed. The proportion of articles that included sex-stratified results and the temporal trends in the reporting of these results were also studied. RESULTS In this review of 56 RCTs for AD involving 39 575 participants, 23 348 women (59.0%) were included. The mean (SD) proportion of women in RCTs of approved drugs was 67.3% (6.9%), and in RCTs of experimental drugs was 57.9% (5.9%). The proportion of women in RCTs of experimental drugs was significantly lower than the proportion of women in the general population with AD in the US (62.1%; difference, -4.56% [95% CI, -6.29% to -2.87%]; P < .001) and Europe (68.2%; difference, -10.67% [95% CI, -12.39% to -8.97%]; P < .001). Trials of approved drugs had a higher probability of including women than trials of experimental drugs (odds ratio [OR], 1.26; 95% CI, 1.05-1.52; P = .02). Both the severity of AD at baseline and the trial location were associated with the probability of women being enrolled in trials (severity: OR, 0.98; 95% CI, 0.97-1.00; P = .02; location in Europe: OR, 1.26; 95% CI, 1.05-1.52; P = .01; location in North America: OR, 0.81; 95% CI, 0.71-0.93; P = .002). Only 7 articles (12.5%) reported sex-stratified results, with an increasing temporal trend (R, 0.30; 95% CI, 0.05-0.59; P = .03). CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, the proportion of women in RCTs for AD, although higher than the proportion of men, was significantly lower than that in the general population. Only a small proportion of trials reported sex-stratified results. These findings support strategies to improve diversity in enrollment and data reporting in RCTs for AD.
Collapse
Affiliation(s)
- Julie Martinkova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Women's Brain Project, Guntershausen, Switzerland
| | - Frances-Catherine Quevenco
- Women's Brain Project, Guntershausen, Switzerland
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | | | | | | | - Cassandra Szoeke
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Reinhold Schmidt
- Department of Neurogeriatrics, University Clinic of Neurology, Medical University Graz, Graz, Austria
| | | | | |
Collapse
|
49
|
Gupta GL, Samant NP. Current druggable targets for therapeutic control of Alzheimer's disease. Contemp Clin Trials 2021; 109:106549. [PMID: 34464763 DOI: 10.1016/j.cct.2021.106549] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder that has an increasingly large burden on health and social care systems. The pathophysiology involves the accumulation of extracellular amyloid-beta plaques (Aβ) and intracellular neurofibrillary tangles contributing to neuronal death and leading to cognition impairment. However, its cause remains poorly understood, and there is no cure for AD despite extensive research and billions of dollars spent over decades. Currently, there are only four US Food and Drug Administration (FDA) approved drugs and one combination therapy available in the market for the symptomatic relief of AD. Since 2003, no new drug has been approved by the FDA for the treatment of AD. Researchers continue to explore new treatments and therapeutic strategies to treat AD. The need for novel discoveries on therapeutic targets and the development of new therapeutic approaches is imminent when considering the current expectations regarding the increased number of AD cases each year and the huge financial cost amounted to healthcare. This review focused on the current status of drugs in the clinical pipeline targeting β-amyloid, tau phosphorylation, or neurotransmitter dysfunction for therapeutic control of Alzheimer's disease.
Collapse
Affiliation(s)
- Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur 425 405, Maharashtra, India; Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| | - Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| |
Collapse
|
50
|
de Aquino CH. Methodological Issues in Randomized Clinical Trials for Prodromal Alzheimer's and Parkinson's Disease. Front Neurol 2021; 12:694329. [PMID: 34421799 PMCID: PMC8377160 DOI: 10.3389/fneur.2021.694329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the first and second most common neurodegenerative disorders, respectively. Both are proteinopathies with inexorable courses and no approved disease-modifying therapies. A substantial effort has been made to identify interventions that could slow down the progression of AD and PD; to date, with no success. The advances in biomarker research improved the identification of individuals at risk for these disorders before symptom onset, recognizing the pre-clinical stage, in which there is abnormal protein accumulation but no clinical symptoms of the disease, and the prodromal stage, in which mild symptoms are present but the clinical diagnostic criteria for disease cannot be fulfilled. The ability to detect pre-clinical and prodromal stages of these diseases has encouraged clinical trials for disease-modification at earlier phases, seeking to slow or prevent phenoconversion into clinical disease. Clinical trials at these stages have several challenges, such as the identification of the eligible population, the appropriate choice of biomarkers, the definition of clinical endpoints, the duration of follow-up, and the statistical analysis. This article aims to discuss some of the methodological challenges in the design of trials for pre-clinical and prodromal phases of AD and PD, to critically review the recent studies, and to discuss methodological approaches to mitigate these challenges in trial design.
Collapse
Affiliation(s)
- Camila Henriques de Aquino
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Department of Health, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|