1
|
Klein P, Carrazana E, Glauser T, Herman BP, Penovich P, Rabinowicz AL, Sutula TP. Do Seizures Damage the Brain?-Cumulative Effects of Seizures and Epilepsy: A 2025 Perspective. Epilepsy Curr 2025:15357597251331927. [PMID: 40256117 PMCID: PMC12003328 DOI: 10.1177/15357597251331927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
In 1885, William Gowers proposed that epilepsy is a progressive disease, based on clinical evidence before any effective treatments were available. His long-standing hypothesis has been summarized with the statement "seizures beget seizures." Whether this is the case and related questions about seizure-induced modification and damage of brain circuits are of fundamental importance for neurobiological understanding of epilepsy, development of effective treatment strategies, clinical management, and prognostication. Consensus about progression and seizure-induced damage has remained controversial. Here, we critically review these long-standing questions, incorporating perspectives about perceived inconsistencies in past studies, potential implications of recent longitudinal imaging and cognitive studies, and emphasize experimental and clinical gaps that have proved challenging. Answers to these questions are important for development of management strategies to achieve prompt effective acute control of seizures and prevention of their potential recurrence and long-term comorbidities.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | - Enrique Carrazana
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Neurelis, San Diego, CA, USA
| | - Tracy Glauser
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce P Herman
- Department of Neurology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | | | - Adrian L. Rabinowicz
- Neurelis, San Diego, CA, USA
- Center for Molecular Biology and Biotechnology, Charles E. Schmidt College of Science Florida Atlantic University, Boca Raton, FL, USA
| | - Thomas P. Sutula
- Department of Neurology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
2
|
Andrade DM. Out with prolactin, in with neurofilament light and glial fibrillary acidic protein. Epilepsy Curr 2025:15357597251324016. [PMID: 40190792 PMCID: PMC11969486 DOI: 10.1177/15357597251324016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Elevated Plasma Neurofilament Light and Glial Fbrillary Acidic Protein in Epilepsy Versus Nonepileptic Seizures and Nonepileptic Disorders. Dobson H, Al Maawali S, Malpas C, Santillo AF, Kang M, Todaro M, Watson R, Yassi N, Blennow K, Zetterberg H, Foster E, Neal A, Velakoulis D, O'Brien TJ, Eratne D, Kwan P. Epilepsia. 2024 Sep;65(9):2751-2763. doi: 10.1111/epi.18065 . Epub 2024 Jul 20. PMID: 39032019. Objective: Research suggests that recurrent seizures may lead to neuronal injury. Neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAP) levels increase in cerebrospinal fluid and blood in response to neuroaxonal damage, and they have been hypothesized as potential biomarkers for epilepsy. We examined plasma NfL and GFAP levels and their diagnostic utility in differentiating patients with epilepsy from those with psychogenic nonepileptic seizures (PNES) and other nonepileptic disorders. Methods: We recruited consecutive adults admitted for video-electroencephalographic monitoring and formal neuropsychiatric assessment. NfL and GFAP levels were quantified and compared between different patient groups and an age-matched reference cohort (n = 1926) and correlated with clinical variables in patients with epilepsy. Results: A total of 138 patients were included, of whom 104 were diagnosed with epilepsy, 22 with PNES, and 12 with other conditions. Plasma NfL and GFAP levels were elevated in patients with epilepsy compared to PNES, adjusted for age and sex (NfL p = .04, GFAP p = .04). A high proportion of patients with epilepsy (20%) had NfL levels above the 95th age-matched percentile compared to the reference cohort (5%). NfL levels above the 95th percentile of the reference cohort had a 95% positive predictive value for epilepsy. Patients with epilepsy who had NfL levels above the 95th percentile were younger than those with lower levels (37.5 vs 43.8 years, p = .03). Significance: An elevated NfL or GFAP level in an individual patient may support an underlying epilepsy diagnosis, particularly in younger adults, and cautions against a diagnosis of PNES alone. Further examination of the association between NfL and GFAP levels and specific epilepsy subtypes or seizure characteristics may provide valuable insights into disease heterogeneity and contribute to the refinement of diagnosis, understanding pathophysiological mechanisms, and formulating treatment approaches.
Collapse
Affiliation(s)
- Danielle M Andrade
- Professor of Medicine (Neurology), Division of Neurology, Temerty Faculty of Medicine, University of Toronto
| |
Collapse
|
3
|
Foit NA, Gau K, Rau A, Urbach H, Beck J, Schulze-Bonhage A. Linking Memory Impairment to Structural Connectivity in Extrahippocampal Temporal Lobe Epilepsy Surgery. Neurol Int 2025; 17:52. [PMID: 40278423 DOI: 10.3390/neurolint17040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) constitutes the most common drug-refractory epilepsy syndrome. Tailored approaches are required, as TLE originates from extrahippocampal lesions in about one-quarter of surgical candidates. Despite high success rates in seizure control, concern persists regarding postoperative memory decline after lesionectomy. We investigated the associations between structural connectivity and postoperative memory performance in extrahippocampal TLE surgery. METHODS In total, 55 patients (25 females, 30 males; mean age 29.8 ± 14.5 years; epilepsy duration 7.9 ± 10.5 years, 31 left, 24 right TLE) with extrahippocampal TLE undergoing hippocampal-sparing surgery were evaluated with standardized pre- and postoperative neuropsychological testing. Lesion volumes intersected with Human Connectome Project-derived tractography data were employed to assess the structural connectivity integrity via voxel-based and connectome-informed lesion-symptom mapping to identify cortical and white matter structures associated with cognitive outcomes. RESULTS Post-surgery, the widespread structural disconnection of several major white matter pathways was found, correlating with verbal memory and delayed recall. Additionally, the structural disconnection of the ipsilateral temporal lobe white matter was further associated with hippocampal atrophy. CONCLUSIONS Our study highlights the role of structural connectivity alterations in postoperative memory decline in extrahippocampal TLE surgery. These findings expand the traditional understanding of hippocampal integrity in memory function towards the importance of broader structural networks. Individualized, connectome-informed surgical approaches might protect neurocognitive function.
Collapse
Affiliation(s)
- Niels Alexander Foit
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Karin Gau
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Kang Y, Feng Z, Zhang Q, Liu M, Li Y, Yang H, Zheng L, Cheng C, Zhou W, Lou D, Li X, Chen L, Feng Y, Duan X, Duan J, Yu M, Yang S, Liu Y, Wang X, Deng B, Liu C, Yao X, Zhu C, Liang C, Zeng X, Ren S, Li Q, Zhong Y, Yan Y, Meng H, Zhong Z, Zhang Y, Kang J, Luan X, Pan S, Wu Y, Li T, Song W, Zhang Y. Identification of circulating risk biomarkers for cognitive decline in a large community-based population in Chongqing China. Alzheimers Dement 2025; 21:e14443. [PMID: 39713874 PMCID: PMC11848162 DOI: 10.1002/alz.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION This study aims to investigate the relationship between blood-based pathologies and established risk factors for cognitive decline in the community-based population of Chongqing, a region with significant aging. METHODS A total of 26,554 residents aged 50 years and older were recruited. Multinomial logistic regression models were applied to assess the risk factors of cognition levels. Propensity score matching and linear mixed effects models were used to evaluate the relationship between key risk factors and the circulating biomarkers. RESULTS Shared and distinct risk factors for MCI and dementia were identified. Age, lower education, medical history of stroke, hypertension, and epilepsy influenced mild cognitive impairment (MCI) progression to dementia. Correlations between key risk factors and circulating neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), amyloid β protein (Aβ)40, and Aβ42/Aβ40 ratio suggest underlying mechanisms contributing to cognitive impairment. DISCUSSION The common and distinct risk factors across cognitive decline stages emphasize the need for tailored interventions. The correlations with blood biomarkers provide insights into potential management targets. HIGHLIGHTS From a large community-based cohort study on the residents in Chongqing, we have identified that mild cognitive impairment (MCI) and dementia share several common risk factors, including age, female gender, rural living, lower education levels, and a medical history of stroke. However, each condition also has its own unique risk factors. Several factors contribute to the progression of MCI into dementia including age, education levels, occupation, and a medical history of hypertension and epilepsy. We discover the correlations between the risk factors for dementia and blood biomarkers that indicate the presence of axonal damage, glial activation, and Aβ pathology.
Collapse
|
5
|
Li W, Qin Y, Li X, Zhang H, Gong Q, Zhou D, An D. Progressive brain atrophy and cortical reorganization related to surgery in temporal lobe epilepsy. Ann Clin Transl Neurol 2025; 12:383-392. [PMID: 39708359 PMCID: PMC11822803 DOI: 10.1002/acn3.52285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVE Epilepsy is associated with progressive cortical atrophy exceeding normal aging. We aimed to explore longitudinal cortical alterations in patients with temporal lobe epilepsy (TLE) and distinct surgery outcomes. METHODS We obtained longitudinal T1-weighted MRI data in a well-designed cohort, including 53 operative TLE patients, 23 nonoperative TLE patients, and 23 healthy controls. According to seizure outcomes at 24 months after surgery, operative patients were divided into seizure-free (SF) and nonseizure-free (NSF) group. Operative patients were scanned before and after surgery, while nonoperative patients and healthy controls were rescanned with similar interval times. We measured gray matter volume (GMV) in all participants and compared longitudinal cortical alterations among groups. RESULTS In nonoperative group, statistically significant GMV decrease was observed in ipsilateral median cingulate and paracingulate gyri and cerebellum crus I when compared with healthy controls. In operative group, postoperative GMV increase was discovered in many regions involving bilateral hemispheres, especially in the frontal lobe, without differences between SF and NSF group. Postoperative GMV decrease was found in ipsilateral inferior frontal gyrus, putamen, thalamus, and insula. GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula was more significant in SF group. INTERPRETATION Progressive cortical atrophy existed in nonoperative TLE patients. Cortical remodeling indicated by postoperative GMV increase may arise mostly from the surgery itself, rather than postsurgical seizure outcomes. More significant GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula may imply their closer connections with resected regions in seizure-free patients.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
- Center of Gerontology and Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yingjie Qin
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiuli Li
- Huaxi MR Research Center, Department of Radiology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Heng Zhang
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Dong Zhou
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Dongmei An
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
6
|
Martella V, Ludovichetti R, Nierobisch N, Obermüller C, Gunzer F, Maibach F, Heesen P, Hamie Q, Terziev R, Galovic M, Kulcsar Z, Hainc N. The hypointense pulvinar sign on susceptibility weighed magnetic resonance imaging: A visual biomarker for iron deposition in epilepsy. Neuroradiol J 2024:19714009241303050. [PMID: 39622526 PMCID: PMC11613152 DOI: 10.1177/19714009241303050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVE Our study aimed to investigate potential alterations in iron deposition within pulvinar, using susceptibility weighted imaging (SWI) MRI in epilepsy patients through a biomarker termed the "hypointense pulvinar sign." METHODS A full-text radiological information system search of radiological reports was performed for the term "epilepsy" between 2014 and 2022. Only patients with the diagnosis of epilepsy were included. SWI was assessed by two readers recording lateralization of an asymmetrically more hypointense pulvinar. Cohen's kappa for inter-rater reliability was calculated. Fisher's exact test was performed to assess for significance between groups. RESULTS Our epilepsy cohort comprised 105 patients with following diagnoses: 45 intra-axial tumor, 13 meningioma, 13 MRI negative, 12 encephalomalacia, seven siderosis, six cavernoma, five arteriovenous malformation, two acute demyelinating encephalomyelitis, one tuberous sclerosis, one giant aneurysm. The hypointense pulvinar sign was correct in 44% of cases. Notably, right hemispheric lesions exhibited a significantly higher proportion of correct hypointense pulvinar signs compared to the left hemisphere (46% vs 24%; p = 0.044). Inter-rater reliability was substantial at 0.62 (p < 0.001). Only two of 21 (10%) of healthy controls demonstrated a hypointense pulvinar sign, which was significantly different from the epilepsy cohort (p < 0.01). CONCLUSIONS The hypointense pulvinar sign has proven to be a reproducible, simple to use biomarker for iron deposition in epilepsy which could be considered for inclusion into multimodal precision medicine models.
Collapse
Affiliation(s)
- Victoria Martella
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Riccardo Ludovichetti
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Nathalie Nierobisch
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Carina Obermüller
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Felix Gunzer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Fabienne Maibach
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Philip Heesen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Qeumars Hamie
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Robert Terziev
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Nicolin Hainc
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
7
|
Hashmi SA, Sachdeva S, Sindhu U, Tsai C, Bonda K, Keezer M, Zawar I, Punia V. The implications of frailty in older adults with epilepsy. Epilepsia Open 2024; 9:2128-2143. [PMID: 39248297 PMCID: PMC11633683 DOI: 10.1002/epi4.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Older adults constitute a large proportion of people with epilepsy (PWE) due to the changing demographics worldwide and epilepsy's natural history. Aging-related pathophysiological changes lower the tolerance and increase our vulnerability to stressors, which manifests as frailty. Frailty is closely associated with adverse health outcomes. This narrative review examines the interplay between frailty and epilepsy, especially in older adults, emphasizing its clinical implications, including its role in managing PWE. Mechanistically, frailty develops through complex interactions among molecular and cellular damage, including genomic instability, mitochondrial dysfunction, and hormonal changes. These contribute to systemic muscle mass, bone density, and organ function decline. The concept of frailty has evolved from a primarily physical syndrome to include social, psychological, and cognitive dimensions. The "phenotypic frailty" model, which focuses on physical performance, and the "deficit accumulation" model, which quantifies health deficits, provide frameworks for understanding and assessing frailty. PWE are potentially more prone to developing frailty due to a higher prevalence of risk factors predisposing to frailty. These include, but are not limited to, polypharmacy, higher comorbidity, low exercise level, social isolation, low vitamin D, and osteoporosis. We lack commercial biomarkers to measure frailty but can diagnose it using self- or healthcare provider-administered frailty scales. Recent attempts to develop a PWE-specific frailty scale are promising. Unlike chronological age, frailty is reversible, so its management using multidisciplinary care teams should be strongly considered. Frailty can affect antiseizure medication (ASM) tolerance secondary to its impact on pharmacokinetics and pharmacodynamics. While frailty's effect on seizure control efficacy of ASM is poorly understood, its undoubted association with overall poor outcomes, including epilepsy surgery, behooves us to consider its presence and implication while treating older PWE. Incorporation of frailty measures in future research is essential to improve our understanding of frailty's role in PWE health. PLAIN LANGUAGE SUMMARY: Frailty is the declining state of the human body. People with epilepsy are more prone to it. It should be factored into their management.
Collapse
Affiliation(s)
- Syeda Amrah Hashmi
- Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Seerat Sachdeva
- Clinical Observer, Epilepsy CenterCleveland ClinicClevelandOhioUSA
| | - Udeept Sindhu
- Clinical Observer, Epilepsy CenterCleveland ClinicClevelandOhioUSA
| | | | | | - Mark Keezer
- Department of NeurosciencesUniversité de MontréalMontrealQuebecCanada
| | - Ifrah Zawar
- Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | | |
Collapse
|
8
|
Pejovic A, Jokovic Z, Koepp M, Dakovic M, Bascarevic V, Jovanovic M, Vojvodic N, Sokic D, Ristic AJ. Progressive postoperative atrophy of ipsilateral thalamus, putamen, and globus pallidus in patients with temporal lobe epilepsy: A volumetric analysis. Epilepsia Open 2024; 9:2479-2486. [PMID: 39463140 PMCID: PMC11633681 DOI: 10.1002/epi4.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE Cortical atrophy close to medial temporal structures has been described consistently in patients with temporal lobe epilepsy (TLE). Successful TLE surgery may have a neuroprotective effect preventing further atrophy of temporal and extratemporal cortex. However, the effects of epilepsy surgery on subcortical structures demand additional enlightenment. This work aimed to determine how epilepsy surgery affects volumes of subcortical structures in medically refractory temporal lobe epilepsy patients. METHODS We compared MRI volumes of subcortical structures in 62 patients with TLE (36 left, 26 right) before and after anterior temporal lobectomy with 38 TLE patients (20 left, 18 right) who were considered to be good surgical candidates and had at least two brain MRIs. RESULTS There were no volume differences in subcortical structures on preoperative and initial MRIs of non-operated TLE patients. At baseline, the ipsilateral thalamus and putamen in TLE patients were marginally smaller than contralateral structures. Operated patients showed a significant postoperative volume reduction in ipsilateral thalamus, putamen, and globus pallidus. In contrast, there were no significant volumetric reductions in non-operated patients longitudinally. There were no volumetric changes associated with different surgical outcomes or different postoperative cognitive outcomes. SIGNIFICANCE Our study demonstrated postoperative volume loss of thalamus, putamen and globus pallidus ipsilaterally to the side of resection. Our findings suggest surgery-related changes, likely Wallerian degeneration within subcortical networks not related to seizure or cognitive outcome. PLAIN LANGUAGE SUMMARY We studied 100 patients with epilepsy, comparing those who had surgery to those who did not. After surgery, the thalamus, putamen and globus pallidus on the same side as the surgery shrank significantly, but not in non-surgery patients. This suggests surgery-related changes in deeper brain structures, unrelated to seizure freedom or cognitive outcomes. This research sheds additional light on the response of the subcortical structure to epilepsy surgery, highlighting potential areas for further study.
Collapse
Affiliation(s)
- Aleksa Pejovic
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Zorica Jokovic
- Faculty of MedicineUniversity of BelgradeBelgradeSerbia
- University Children's Hospital TirsovaBelgradeSerbia
| | | | - Marko Dakovic
- Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
| | - Vladimir Bascarevic
- Faculty of MedicineUniversity of BelgradeBelgradeSerbia
- Clinic for NeurosurgeryUniversity Clinical Center of SerbiaBelgradeSerbia
| | - Marija Jovanovic
- Radiology and Magnetic Resonance Imaging CenterUniversity Clinical Center of SerbiaBelgradeSerbia
| | - Nikola Vojvodic
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Dragoslav Sokic
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Aleksandar J. Ristic
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
9
|
Stauner L, Bao H, Delazer L, Kirsch I, Christmann T, Noachtar S, Havla J, Lauseker M, Kaufmann E. Longitudinal evaluation of retinal neuroaxonal loss in epilepsy using optical coherence tomography. Epilepsia 2024; 65:3644-3654. [PMID: 39380535 DOI: 10.1111/epi.18139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE People with epilepsy (PwE) suffer from progressive brain atrophy, which is reflected as neuroaxonal loss on the retinal level. This study aims to provide initial insight into the longitudinal dynamics of the retinal neuroaxonal loss and possible driving factors. METHODS PwE and healthy controls (HC; 18-55 years of age) underwent spectral domain optical coherence tomography at baseline and 7.0 ± 1.5 and 6.7 ± 1.0 months later, respectively. The change in retinal thickness/volume and annualized percentage change (APC) were calculated for the peripapillary retinal nerve fiber layer (pRNFL), the macular RNFL (mRNFL), the ganglion cell inner plexiform layer (GCIP), the inner nuclear layer, and the total macular volume (TMV). Group comparisons and multiple linear models with stepwise backward selection were performed to evaluate associations with demographic and clinical parameters. RESULTS PwE (n = 44, 21 females, mean age = 35.6 ± 10.9 years) revealed a significant decrease in the pRNFL, mRNFL, GCIP, and TMV thickness or volume in the study interval. When compared to HC (n = 56, 37 females, mean age = 32.7 ± 8.3 years), the APC of the pRNFL (-.98 ± 3.13%/year) and the GCIP (-1.24 ± 2.56%/year) were significantly more pronounced in PwE (p = .01 and p = .046, respectively). Of note, atrophy of the mRNFL was significantly influenced by the number of antiseizure medications (ASMs; p = .047) and increasing age of PwE (p = .03). Contradictory results, however, were revealed for the impact of seizures. SIGNIFICANCE In epilepsy, progression of retinal neuroaxonal loss was already detectable at short-term follow-up. PwE who receive a high number of ASMs seem to be at risk for accelerated neuroaxonal loss, stressing the importance of well-considered and effective antiseizure therapy.
Collapse
Affiliation(s)
- Livia Stauner
- Epilepsy Center, Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Han Bao
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig Maximilian University, Munich, Germany
- Institute for Statistics, Munich, Germany
| | - Luisa Delazer
- Epilepsy Center, Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Isabel Kirsch
- Epilepsy Center, Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tara Christmann
- Institute of Clinical Neuroimmunology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Soheyl Noachtar
- Epilepsy Center, Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Lauseker
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig Maximilian University, Munich, Germany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Dos Santos GR, Ono SE, de Carvalho Neto A, de Paola L, Silvado CES, Marques GL, Escuissato DL. Subcortical Gray Matter Volume Abnormalities in Temporal Lobe Epilepsy with Hippocampal Atrophy. Clin Med Res 2024; 22:180-187. [PMID: 39993832 PMCID: PMC11849968 DOI: 10.3121/cmr.2024.1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 02/26/2025]
Abstract
Objective: Hippocampal atrophy (HA), the main lesion associated with drug-resistant temporal lobe epilepsy, can be reliably evaluated using conventional magnetic resonance imaging (MRI) with satisfactory lateralization of the epileptogenic focus. Post-processing quantitative techniques permit better evaluation of extratemporal volume abnormalities, including cortical and subcortical gray matter (GM) structures, with more consistent findings in the hemisphere ipsilateral to the epileptogenic focus, including the thalamus and adjacent gyri. We aimed to analyze the relationship between subcortical GM volume and temporal lobe epilepsy associated with hippocampal atrophy (TLE-HA), including hippocampal subfield analysis.Design: A transversal observational study conducted with patients from Clinics Hospital of the Federal University of Paraná, and a group control of healthy participants from Diagnostico Avançado por Imagem - DAPI.Setting: This study was conducted at Diagnostico Avançado por Imagem (Clinical Imaging Institution in Curitiba, Brazil) and Clinics Hospital of the Federal University of Paraná, Brazil.Participants: Patients with TLE-HA referred for surgical planning between September 2013 and August 2018 and individuals without pathologies on MRI scans other than HA were included.Methods: Subcortical GM volumes of the hippocampus, amygdala, and basal ganglia were obtained using automated techniques from the MRI scans of 38 patients with TLE-HA (17 with left TLE-HA) and compared with those of 59 healthy controls.Results: Patients with right TLE-HA demonstrated no significantly lower volumes in the subcortical structures; however, contralateral amygdala enlargement was observed (t = 3.802, P < 0.001). No significant volume loss was observed in the left TLE-HA group, the contralateral hippocampus, or hippocampal subfield comparisons; however, enlargement of the contralateral hippocampal amygdala transitional area was observed (t = 2.57, P = 0.012 for R-TLE-HA; t = 2.20, P = 0.031 for L-TLE-HA).Conclusion: Our findings suggest different patterns of subcortical volume abnormalities in patients with left and right TLE-HA, which may indicate different neural network abnormalities on the ictal side. No significant volume abnormalities existed in the contralateral hippocampus in the TLE-HA group or specific hippocampal subfields in automated analysis. Subtle contralateral amygdala enlargement was present in both groups and may play a specific role in the epileptogenic mechanisms.
Collapse
Affiliation(s)
| | - Sergio E Ono
- Clínica Diagnóstico Avançado por Imagem - DAPI, Curitiba/PR, Brazil
| | - Arnolfo de Carvalho Neto
- Clínica Diagnóstico Avançado por Imagem - DAPI, Curitiba/PR, Brazil
- Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba/PR, Brazil
| | - Luciano de Paola
- Epilepsy and EEG Service, Hospital de Clínicas, Federal University of Paraná, Curitiba/PR, Brazil
| | - Carlos E Soares Silvado
- Epilepsy and EEG Service, Hospital de Clínicas, Federal University of Paraná, Curitiba/PR, Brazil
| | - Gustavo L Marques
- Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba/PR, Brazil
| | - Dante L Escuissato
- Clínica Diagnóstico Avançado por Imagem - DAPI, Curitiba/PR, Brazil
- Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba/PR, Brazil
| |
Collapse
|
11
|
Lin Q, Li W, Zhang Y, Li Y, Liu P, Huang X, Huang K, Cao D, Gong Q, Zhou D, An D. Brain Morphometric Alterations in Focal to Bilateral Tonic-Clonic Seizures in Epilepsy Associated With Excitatory/Inhibitory Imbalance. CNS Neurosci Ther 2024; 30:e70129. [PMID: 39582215 PMCID: PMC11586465 DOI: 10.1111/cns.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Focal to bilateral tonic-clonic seizures (FBTCS) represent the most severe seizure type in temporal lobe epilepsy (TLE), associated with extensive network abnormalities. Nevertheless, the genetic and cellular factors predispose specific TLE patients to FBTCS remain poorly understood. This study aimed to elucidate the relationship between brain morphometric alterations and transcriptional profiles in TLE patients with FBTCS (FBTCS+) compared to those without FBTCS (FBTCS-). METHODS We enrolled 126 unilateral TLE patients (89 FBTCS+ and 37 FBTCS-) along with 60 age- and gender-matched healthy controls (HC). We assessed gray matter volume to identify morphometric differences between patients and HC. Partial least squares regression was employed to investigate the association between the morphometric disparities and human brain transcriptomic data obtained from the Allen Human Brain Atlas. RESULTS Compared with HC, FBTCS+ patients exhibited morphometric alterations in bilateral cortical and subcortical regions. Conversely, FBTCS- patients exhibited more localized alterations. Imaging transcriptomic analysis revealed both FBTCS- and FBTCS+ groups harbored genes that spatially correlated with morphometric alterations. Additionally, pathway enrichment analysis identified common pathways involved in neural development and synaptic function in both groups. The FBTCS- group displayed unique pathway enrichment in catabolic processes. Furthermore, mapping these genes to specific cell types indicated enrichment in excitatory and inhibitory neurons in the FBTCS- group, while FBTCS+ group only enriched in excitatory neurons. The distinct cellular expression differences between FBTCS- and FBTCS+ groups are consistent with the distribution patterns of GABAergic expression. CONCLUSION We applied imaging transcriptomic analysis linking the morphometric changes and neurobiology in TLE patients with and without FBTCS, including gene expression, biological pathways, cell types, and neurotransmitter receptors. Our findings revealed abnormalities in inhibitory neurons and altered distribution patterns of GABAergic receptors in FBTCS+, suggesting that an excitatory/inhibitory imbalance may contribute to the increased susceptibility of certain individuals to FBTCS.
Collapse
Affiliation(s)
- Qiuxing Lin
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Wei Li
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yingying Zhang
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yuming Li
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Peiwen Liu
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiang Huang
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Kailing Huang
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Danyang Cao
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Dong Zhou
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Dongmei An
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
12
|
Kaestner E, Hassanzadeh R, Gleichgerrcht E, Hasenstab K, Roth RW, Chang A, Rüber T, Davis KA, Dugan P, Kuzniecky R, Fridriksson J, Parashos A, Bagić AI, Drane DL, Keller SS, Calhoun VD, Abrol A, Bonilha L, McDonald CR. Adding the third dimension: 3D convolutional neural network diagnosis of temporal lobe epilepsy. Brain Commun 2024; 6:fcae346. [PMID: 39474046 PMCID: PMC11520928 DOI: 10.1093/braincomms/fcae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 02/16/2025] Open
Abstract
Convolutional neural networks (CNN) show great promise for translating decades of research on structural abnormalities in temporal lobe epilepsy into clinical practice. Three-dimensional CNNs typically outperform two-dimensional CNNs in medical imaging. Here we explore for the first time whether a three-dimensional CNN outperforms a two-dimensional CNN for identifying temporal lobe epilepsy-specific features on MRI. Using 1178 T1-weighted images (589 temporal lobe epilepsy, 589 healthy controls) from 12 surgical centres, we trained 3D and 2D CNNs for temporal lobe epilepsy versus healthy control classification, using feature visualization to identify important regions. The 3D CNN was compared to the 2D model and to a randomized model (comparison to chance). Further, we explored the effect of sample size with subsampling, examined model performance based on single-subject clinical characteristics, and tested the impact of image harmonization on model performance. Across 50 datapoints (10 runs with 5-folds each) the 3D CNN median accuracy was 86.4% (35.3% above chance) and the median F1-score was 86.1% (33.3% above chance). The 3D model yielded higher accuracy compared to the 2D model on 84% of datapoints (median 2D accuracy, 83.0%), a significant outperformance for the 3D model (binomial test: P < 0.001). This advantage of the 3D model was only apparent at the highest sample size. Saliency maps exhibited the importance of medial-ventral temporal, cerebellar, and midline subcortical regions across both models for classification. However, the 3D model had higher salience in the most important regions, the ventral-medial temporal and midline subcortical regions. Importantly, the model achieved high accuracy (82% accuracy) even in patients without MRI-identifiable hippocampal sclerosis. Finally, applying ComBat for harmonization did not improve performance. These findings highlight the value of 3D CNNs for identifying subtle structural abnormalities on MRI, especially in patients without clinically identified temporal lobe epilepsy lesions. Our findings also reveal that the advantage of 3D CNNs relies on large sample sizes for model training.
Collapse
Affiliation(s)
- Erik Kaestner
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, CA 92037, USA
| | - Reihaneh Hassanzadeh
- Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Kyle Hasenstab
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92115, USA
| | - Rebecca W Roth
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Allen Chang
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn 53127, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn 53127, Germany
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia Dugan
- Department of Neurology, NYU Langone Medical Centre, New York City, NY 10016, USA
| | - Ruben Kuzniecky
- Department of Neurology, School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Alexandra Parashos
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anto I Bagić
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel L Drane
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L9 7LJ, UK
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science on Systems, Atlanta, GA 30303, USA
| | - Anees Abrol
- Center for Translational Research in Neuroimaging and Data Science on Systems, Atlanta, GA 30303, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Carrie R McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, CA 92037, USA
| |
Collapse
|
13
|
Zhang Q, Hudgins S, Struck AF, Ankeeta A, Javidi SS, Sperling MR, Hermann BP, Tracy JI. Association of Normative and Non-Normative Brain Networks With Cognitive Function in Patients With Temporal Lobe Epilepsy. Neurology 2024; 103:e209800. [PMID: 39250744 PMCID: PMC11385956 DOI: 10.1212/wnl.0000000000209800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Despite their temporal lobe pathology, a significant subgroup of patients with temporal lobe epilepsy (TLE) is able to maintain normative cognitive functioning. In this study, we identify patients with TLE with intact vs impaired neurocognitive profiles and interrogate for the presence of both normative and highly individual intrinsic connectivity networks (ICNs)-all toward understanding the transition from impaired to intact neurocognitive status. METHODS This retrospective cross-sectional study included patients with TLE and matched healthy controls (HCs) from the Thomas Jefferson Comprehensive Epilepsy Center. Functional MRI data were decomposed using independent component analysis to obtain individualized ICNs. In this article, we calculated the degree of match between individualized ICNs and canonical ICNs (e.g., 17 resting-state networks by Yeo et al.) and divided each participant's ICNs into normative or non-normative status based on the degree of match. RESULTS 100 patients with TLE (mean age 42.0 [SD: 13.7] years, 47 women) and 92 HCs were included in this study. We found that the individualized networks matched to the canonical networks less well in the cognitively impaired (n = 24) compared with the cognitively intact (n = 63) patients with TLE by 2-way mixed-measures analysis of variance (impaired vs intact mean difference [MD] -0.165 [-0.317, -0.013], p = 0.028). The cognitively impaired patients showed significant abnormalities in the profiles of both normative (impaired vs intact MD -0.537 [-0.998, -0.076], p = 0.017, intact vs HC MD -0.221 [-0.536, 0.924], p = 0.220, and impaired vs HC MD -0.759 [-1.200, -0.319], p < 0.001) and non-normative networks (impaired vs intact MD 0.484 [0.030, 0.937], p = 0.033, intact vs HC MD 0.369 [0.059, 0.678], p = 0.014, and impaired vs HC MD 0.853 [0.419, 1.286], p < 0.001) while the intact patients showed abnormalities only in non-normative networks. At the same time, we found that normative networks held a strong, positive association with the neuropsychological measures, with this association negative in non-normative networks. DISCUSSION Our data demonstrated that significant cognitive deficits are associated with the status of both canonical and highly individual ICNs, making clear that the transition from intact to impaired cognitive status is not simply the result of disruption to normative brain networks.
Collapse
Affiliation(s)
- Qirui Zhang
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Stacy Hudgins
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Aaron F Struck
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Ankeeta Ankeeta
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Sam S Javidi
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Michael R Sperling
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Bruce P Hermann
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Joseph I Tracy
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
14
|
Larivière S, Schaper FLWVJ, Royer J, Rodríguez-Cruces R, Xie K, DeKraker J, Ngo A, Sahlas E, Chen J, Tavakol S, Drew W, Morton-Dutton M, Warren AEL, Baratono SR, Rolston JD, Weng Y, Bernasconi A, Bernasconi N, Concha L, Zhang Z, Frauscher B, Bernhardt BC, Fox MD. Brain Networks for Cortical Atrophy and Responsive Neurostimulation in Temporal Lobe Epilepsy. JAMA Neurol 2024; 81:2824204. [PMID: 39348148 PMCID: PMC11555549 DOI: 10.1001/jamaneurol.2024.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Importance Drug-resistant temporal lobe epilepsy (TLE) has been associated with hippocampal pathology. Most surgical treatment strategies, including resection and responsive neurostimulation (RNS), focus on this disease epicenter; however, imaging alterations distant from the hippocampus, as well as emerging data from responsive neurostimulation trials, suggest conceptualizing TLE as a network disorder. Objective To assess whether brain networks connected to areas of atrophy in the hippocampus align with the topography of distant neuroimaging alterations and RNS response. Design, Setting, and Participants This retrospective case-control study was conducted between July 2009 and June 2022. Data collection for this multicenter, population-based study took place across 4 tertiary referral centers in Montréal, Canada; Querétaro, México; Nanjing, China; and Salt Lake City, Utah. Eligible patients were diagnosed with TLE according to International League Against Epilepsy criteria and received either neuroimaging or neuroimaging and RNS to the hippocampus. Patients with encephalitis, traumatic brain injury, or bilateral TLE were excluded. Main Outcomes and Measures Spatial alignment between brain network topographies. Results Of the 110 eligible patients, 94 individuals diagnosed with TLE were analyzed (51 [54%] female; mean [SD] age, 31.3 [10.9] years). Hippocampal thickness maps in TLE were compared to 120 healthy control individuals (66 [55%] female; mean [SD] age, 29.8 [9.5] years), and areas of atrophy were identified. Using an atlas of normative connectivity (n = 1000), 2 brain networks were identified that were functionally connected to areas of hippocampal atrophy. The first network was defined by positive correlations to temporolimbic, medial prefrontal, and parietal regions, whereas the second network by negative correlations to frontoparietal regions. White matter changes colocalized to the positive network (t93 = -3.82; P = 2.44 × 10-4). In contrast, cortical atrophy localized to the negative network (t93 = 3.54; P = 6.29 × 10-3). In an additional 38 patients (20 [53%] female; mean [SD] age, 35.8 [11.3] years) treated with RNS, connectivity between the stimulation site and atrophied regions within the negative network was associated with seizure reduction (t212 = -2.74; P = .007). Conclusions and Relevance The findings in this study indicate that distributed pathology in TLE may occur in brain networks connected to the hippocampal epicenter. Connectivity to these same networks was associated with improvement following RNS. A network approach to TLE may reveal therapeutic targets outside the traditional target in the hippocampus.
Collapse
Affiliation(s)
- Sara Larivière
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | | | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - William Drew
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Mae Morton-Dutton
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Aaron E. L. Warren
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
- Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sheena R. Baratono
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - John D. Rolston
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
- Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, México
| | - Zhiqiang Zhang
- Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| |
Collapse
|
15
|
Dobson H, Al Maawali S, Malpas C, Santillo AF, Kang M, Todaro M, Watson R, Yassi N, Blennow K, Zetterberg H, Foster E, Neal A, Velakoulis D, O'Brien TJ, Eratne D, Kwan P. Elevated plasma neurofilament light and glial fibrillary acidic protein in epilepsy versus nonepileptic seizures and nonepileptic disorders. Epilepsia 2024; 65:2751-2763. [PMID: 39032019 DOI: 10.1111/epi.18065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVE Research suggests that recurrent seizures may lead to neuronal injury. Neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAP) levels increase in cerebrospinal fluid and blood in response to neuroaxonal damage, and they have been hypothesized as potential biomarkers for epilepsy. We examined plasma NfL and GFAP levels and their diagnostic utility in differentiating patients with epilepsy from those with psychogenic nonepileptic seizures (PNES) and other nonepileptic disorders. METHODS We recruited consecutive adults admitted for video-electroencephalographic monitoring and formal neuropsychiatric assessment. NfL and GFAP levels were quantified and compared between different patient groups and an age-matched reference cohort (n = 1926) and correlated with clinical variables in patients with epilepsy. RESULTS A total of 138 patients were included, of whom 104 were diagnosed with epilepsy, 22 with PNES, and 12 with other conditions. Plasma NfL and GFAP levels were elevated in patients with epilepsy compared to PNES, adjusted for age and sex (NfL p = .04, GFAP p = .04). A high proportion of patients with epilepsy (20%) had NfL levels above the 95th age-matched percentile compared to the reference cohort (5%). NfL levels above the 95th percentile of the reference cohort had a 95% positive predictive value for epilepsy. Patients with epilepsy who had NfL levels above the 95th percentile were younger than those with lower levels (37.5 vs. 43.8 years, p = .03). SIGNIFICANCE An elevated NfL or GFAP level in an individual patient may support an underlying epilepsy diagnosis, particularly in younger adults, and cautions against a diagnosis of PNES alone. Further examination of the association between NfL and GFAP levels and specific epilepsy subtypes or seizure characteristics may provide valuable insights into disease heterogeneity and contribute to the refinement of diagnosis, understanding pathophysiological mechanisms, and formulating treatment approaches.
Collapse
Affiliation(s)
- Hannah Dobson
- Department of Psychiatry, Alfred Health, Melbourne, Victoria, Australia
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Said Al Maawali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Charles Malpas
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Matthew Kang
- Department of Psychiatry, Alfred Health, Melbourne, Victoria, Australia
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Marian Todaro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Rosie Watson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nawaf Yassi
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Neurology, Melbourne Brain Centre at Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emma Foster
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew Neal
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence John O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Melbourne Brain Centre at Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Melbourne Brain Centre at Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Lee HM, Fadaie F, Gill RS, Caldairou B, Sziklas V, Crane J, Hong SJ, Bernhardt BC, Bernasconi A, Bernasconi N. MRI-Derived Modeling of Disease Progression Patterns in Patients With Temporal Lobe Epilepsy. Neurology 2024; 103:e209524. [PMID: 38981074 DOI: 10.1212/wnl.0000000000209524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Temporal lobe epilepsy (TLE) is assumed to follow a steady course that is similar across patients. To date, phenotypic and temporal diversities of TLE evolution remain unknown. In this study, we aimed at simultaneously characterizing these sources of variability based on cross-sectional data. METHODS We studied consecutive patients with TLE referred for evaluation by neurologists to the Montreal Neurological Institute epilepsy clinic, who underwent in-patient video EEG monitoring and multimodal imaging at 3 Tesla, comprising 3D T1 and fluid-attenuated inversion recovery and 2D diffusion-weighted MRI. The cohort included patients with drug-resistant epilepsy and patients with drug-responsive epilepsy. The neuropsychological evaluation included Wechsler Adult Intelligence Scale-III and Leonard tapping task. The control group consisted of participants without TLE recruited through advertisement and who underwent the same MRI acquisition as patients. Based on surface-based analysis of key MRI markers of pathology (gray matter morphology and white matter microstructure), the Subtype and Stage Inference algorithm estimated subtypes and stages of brain pathology to which individual patients were assigned. The number of subtypes was determined by running the algorithm 100 times and estimating mean and SD of disease trajectories and the consistency of patients' assignments based on 1,000 bootstrap samples. Effect of normal aging was subtracted from patients. We examined associations with clinical and cognitive parameters and utility for individualized predictions. RESULTS We studied 82 patients with TLE (52 female, mean age 35 ± 10 years; 11 drug-responsive) and 41 control participants (23 male, mean age 32 ± 8 years). Among 57 operated, 43/37/20 had Engel-I outcome/hippocampal sclerosis/hippocampal isolated gliosis, respectively. We identified 3 trajectory subtypes: S1 (n = 35), led by ipsilateral hippocampal atrophy and gliosis, followed by white-matter damage; S2 (n = 27), characterized by bilateral neocortical atrophy, followed by ipsilateral hippocampal atrophy and gliosis; and S3 (n = 20), typified by bilateral limbic white-matter damage, followed by bilateral hippocampal gliosis. Patients showed high assignability to their subtypes and stages (>90% bootstrap agreement). S1 had the highest proportions of patients with early disease onset (effect size d = 0.27 vs S2, d = 0.73 vs S3), febrile convulsions (χ2 = 3.70), drug resistance (χ2 = 2.94), a positive MRI (χ2 = 8.42), hippocampal sclerosis (χ2 = 7.57), and Engel-I outcome (χ2 = 1.51), pFDR < 0.05 across all comparisons. S2 and S3 exhibited the intermediate and lowest proportions, respectively. Verbal IQ and digit span were lower in S1 (d = 0.65 and d = 0.50, pFDR < 0.05) and S2 (d = 0.76 and d = 1.09, pFDR < 0.05), compared with S3. We observed progressive decline in sequential motor tapping in S1 and S3 (T = -3.38 and T = -4.94, pFDR = 0.027), compared with S2 (T = 2.14, pFDR = 0.035). S3 showed progressive decline in digit span (T = -5.83, p = 0.021). Supervised classifiers trained on subtype and stage outperformed subtype-only and stage-only models predicting drug response in 73% ± 1.0% (vs 70% ± 1.4% and 63% ± 1.3%) and 76% ± 1.6% for Engel-I outcome (vs 71% ± 0.8% and 72% ± 1.1%), pFDR < 0.05 across all comparisons. DISCUSSION Cross-sectional MRI-derived models provide reliable prognostic markers of TLE disease evolution, which follows distinct trajectories, each associated with divergent patterns of hippocampal and whole-brain structural alterations, as well as cognitive and clinical profiles.
Collapse
Affiliation(s)
- Hyo M Lee
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Fatemeh Fadaie
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ravnoor S Gill
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Benoit Caldairou
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Viviane Sziklas
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Joelle Crane
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Seok-Jun Hong
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (H.M.L., F.F., R.S.G., B.C., S.-J.H., A.B., N.B.), and Multimodal Imaging and Connectome Analysis Lab (B.C.B.), Montreal Neurological Institute (V.S., J.C.), Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Larivière S, Park BY, Royer J, DeKraker J, Ngo A, Sahlas E, Chen J, Rodríguez-Cruces R, Weng Y, Frauscher B, Liu R, Wang Z, Shafiei G, Mišić B, Bernasconi A, Bernasconi N, Fox MD, Zhang Z, Bernhardt BC. Connectome reorganization associated with temporal lobe pathology and its surgical resection. Brain 2024; 147:2483-2495. [PMID: 38701342 PMCID: PMC11224603 DOI: 10.1093/brain/awae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Bo-yong Park
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ruoting Liu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhengge Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bratislav Mišić
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
18
|
Leal-Conceição E, Muxfeldt Bianchin M, Vendramini Borelli W, Spencer Escobar V, Januário de Oliveira L, Bernardes Wagner M, Palmini A, Paglioli E, Radaelli G, Costa da Costa J, Wetters Portuguez M. Memory changes in patients with hippocampal sclerosis submitted to surgery to treat mesial temporal lobe epilepsy. Neurologia 2024; 39:399-407. [PMID: 38830719 DOI: 10.1016/j.nrleng.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/12/2021] [Indexed: 06/05/2024] Open
Abstract
PURPOSE This study was performed with the purpose of analysing the relationship between epileptological and surgical variables and post-operative memory performance, following surgery for refractory mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). METHODS Logical memory (LM) and visual memory (VM) scores for immediate and late follow-up of 201 patients operated for MTLE/HS were reviewed. Scores were standardized with a control group of 54 healthy individuals matched for age and education. The Reliable Change Index (RCI) was calculated to verify individual memory changes for late LM and VM scores. A multiple linear regression analysis was carried out with the RCI, using LM and VM scores as well as the clinical variables. RESULTS A total of 112 (56%) patients had right HS. The RCI of the right HS group demonstrated that 6 (7%) patients showed improvement while 5 (6%) patients showed decreased scores in late LM; for late VM, 7 (8%) patients presented improvement, and 2 (3%) patients showed poorer scores. RCI of the left HS group showed that 3 (3%) individuals showed improved scores, while scores of 5 (4%) patients worsened for late LM; for late VM, 3 (3%) patients presented higher scores and 6 (5%) showed lower scores. Left HS and advanced age at onset of the first epileptic seizure were predictors of late LM loss (p<.05). CONCLUSION Left MTLE/HS and seizure onset at advanced ages were predictive factors for the worsening of late LM. We observed poorer baseline LM function in the left HS group and improvement of LM in some patients who had resection of the right MTL. Patients in the right HS group showed a higher percentage of reliable post-operative improvement for both VM and LM scores.
Collapse
Affiliation(s)
- E Leal-Conceição
- Epilepsy Surgery Program, Neurology, Neurosurgery and Neuropsychology Services, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil; Faculty of Medicine, UFRGS, Porto Alegre, Brazil.
| | - M Muxfeldt Bianchin
- Neurology Services, Hospital de Clínicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculty of Medicine, UFRGS, Porto Alegre, Brazil
| | - W Vendramini Borelli
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil; School of Medicine, PUCRS, Porto Alegre, Brazil
| | - V Spencer Escobar
- Epilepsy Surgery Program, Neurology, Neurosurgery and Neuropsychology Services, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | | | | | - A Palmini
- Epilepsy Surgery Program, Neurology, Neurosurgery and Neuropsychology Services, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil; School of Medicine, PUCRS, Porto Alegre, Brazil
| | - E Paglioli
- Epilepsy Surgery Program, Neurology, Neurosurgery and Neuropsychology Services, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; School of Medicine, PUCRS, Porto Alegre, Brazil
| | - G Radaelli
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil; School of Medicine, PUCRS, Porto Alegre, Brazil
| | - J Costa da Costa
- Epilepsy Surgery Program, Neurology, Neurosurgery and Neuropsychology Services, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil; School of Medicine, PUCRS, Porto Alegre, Brazil
| | - M Wetters Portuguez
- Epilepsy Surgery Program, Neurology, Neurosurgery and Neuropsychology Services, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil; School of Medicine, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
19
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
20
|
Bernasconi A, Gill RS, Bernasconi N. The use of automated and AI-driven algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia. Epilepsia 2024. [PMID: 38642009 DOI: 10.1111/epi.17989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
In drug-resistant epilepsy, magnetic resonance imaging (MRI) plays a central role in detecting lesions as it offers unmatched spatial resolution and whole-brain coverage. In addition, the last decade has witnessed continued developments in MRI-based computer-aided machine-learning techniques for improved diagnosis and prognosis. In this review, we focus on automated algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia, particularly in cases deemed as MRI negative, with an emphasis on studies with histologically validated data. In addition, we discuss imaging-derived prognostic markers, including response to anti-seizure medication, post-surgical seizure outcome, and cognitive reserves. We also highlight the advantages and limitations of these approaches and discuss future directions toward person-centered care.
Collapse
Affiliation(s)
- Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ravnoor S Gill
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Chen J, Ngo A, Rodríguez-Cruces R, Royer J, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Alvim MKM, Bonilha L, Gleichgerrcht E, Focke NK, Kreilkamp B, Domin M, von Podewils F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, Bender B, O’Brien TJ, Sinclair B, Vivash L, Kwan P, Desmond PM, Lui E, Duma GM, Bonanni P, Ballerini A, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Lenge M, Guerrini R, Bartolini E, Hamandi K, Foley S, Rüber T, Bauer T, Weber B, Caldairou B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Pardoe H, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Arienzo D, Vos SB, Ryten M, Taylor PN, Duncan JS, Whelan CD, Galovic M, Winston GP, Thomopoulos SI, Thompson PM, Sisodiya SM, Labate A, McDonald CR, Caciagli L, Bernasconi N, Bernasconi A, Larivière S, Schrader D, Bernhardt BC. A WORLDWIDE ENIGMA STUDY ON EPILEPSY-RELATED GRAY AND WHITE MATTER COMPROMISE ACROSS THE ADULT LIFESPAN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583073. [PMID: 38496668 PMCID: PMC10942350 DOI: 10.1101/2024.03.02.583073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Objectives Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.
Collapse
Affiliation(s)
- Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S. Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Fernando Cendes
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L. Yasuda
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | - Marina K. M. Alvim
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K. Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Barbara Kreilkamp
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Epilepsy Center, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Germany
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Kwan
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia M. Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy Unit, Conegliano (TV), Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy Unit, Conegliano (TV), Italy
| | - Alice Ballerini
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Colin P. Doherty
- Department of Neurology, St James’ Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D. Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Rhys H. Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China
| | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | | | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Theodor Rüber
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J. A. Carr
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Eugenio Abela
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Mark P. Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Heath Pardoe
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Sean N. Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Donatello Arienzo
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Sjoerd B. Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Mina Ryten
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Bucks, UK
| | - Peter N. Taylor
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- CNNP Lab, ICOS group, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Christopher D. Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zürich, Zürich, Switzerland
| | - Gavin P. Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, ON, Canada
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Angelo Labate
- Neurophysiopathology and Movement Disorders Clinic, Regional Epilepsy Center, University of Messina, Italy
| | - Carrie R. McDonald
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Bucks, UK
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA, USA
| | - Dewi Schrader
- BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Delazer L, Bao H, Lauseker M, Stauner L, Nübling G, Conrad J, Noachtar S, Havla J, Kaufmann E. Association between retinal thickness and disease characteristics in adult epilepsy: A cross-sectional OCT evaluation. Epilepsia Open 2024; 9:236-249. [PMID: 37920967 PMCID: PMC10839337 DOI: 10.1002/epi4.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE Thinning of the peripapillary retinal nerve fiber layer (p-RNFL), as measured by optical coherence tomography (OCT), was recently introduced as a promising marker for cerebral neuronal loss in people with epilepsy (PwE). However, its clinical implication remains to be elucidated. We thus aimed to (1) systematically characterize the extent of the retinal neuroaxonal loss in a broad spectrum of unselected PwE and (2) to evaluate the main clinical determinants. METHODS In this prospective study, a spectral-domain OCT evaluation was performed on 98 well-characterized PwE and 85 healthy controls (HCs) (18-55 years of age). All inner retinal layers and the total macula volume were assessed. Group comparisons and linear regression analyses with stepwise backward selection were performed to identify relevant clinical and demographic modulators of the retinal neuroaxonal integrity. RESULTS PwE (age: 33.7 ± 10.6 years; 58.2% female) revealed a significant neuroaxonal loss across all assessed retinal layers (global pRNFL, P = 0.001, Δ = 4.24 μm; macular RNFL, P < 0.001, Δ = 0.05 mm3 ; ganglion cell inner plexiform layer, P < 0.001, Δ = 0.11 mm3 ; inner nuclear layer, INL, P = 0.03, Δ = 0.02 mm3 ) as well as significantly reduced total macula volumes (TMV, P < 0.001, Δ = 0.18 mm3 ) compared to HCs (age: 31.2 ± 9.0 years; 57.6% female). The extent of retinal neuroaxonal loss was associated with the occurrence and frequency of tonic-clonic seizures and the number of antiseizure medications, and was most pronounced in male patients. SIGNIFICANCE PwE presented an extensive retinal neuroaxonal loss, affecting not only the peripapillary but also macular structures. The noninvasive and economic measurement via OCT bears the potential to establish as a practical tool to inform patient management, as the extent of the retinal neuroaxonal loss reflects aspects of disease severity and sex-specific vulnerability. PLAIN LANGUAGE SUMMARY The retina is an extension of the brain and closely connected to it. Thus, cerebral alterations like atrophy reflect also on the retinal level. This is advantageous, as the retina is easily accessible and measureable with help of the optical coherence tomography. Here we report that adults with epilepsy have a significantly thinner retina than healthy persons. Especially people with many big seizures and a lot of medications have a thinner retina. We propose that measurement of the retina can be useful as a marker of disease severity and to inform patient management.
Collapse
Affiliation(s)
- Luisa Delazer
- Epilepsy Center, Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
| | - Han Bao
- Institute for Medical Information Processing, Biometry, and EpidemiologyLudwig Maximilians UniversityMunichGermany
- Institute for StatisticsMunichGermany
| | - Michael Lauseker
- Institute for Medical Information Processing, Biometry, and EpidemiologyLudwig Maximilians UniversityMunichGermany
| | - Livia Stauner
- Epilepsy Center, Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
| | - Georg Nübling
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
| | - Julian Conrad
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- Division for Neurodegenerative DiseasesUniversitätsmedizin Mannheim, University of HeidelbergHeidelbergGermany
| | - Soheyl Noachtar
- Epilepsy Center, Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
| | - Joachim Havla
- Institute of Clinical NeuroimmunologyLMU HospitalLMU Hospital, Ludwig Maximilians UniversityMunichGermany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
| |
Collapse
|
23
|
Granovetter MC, Maallo AMS, Patterson C, Glen D, Behrmann M. Morphometrics of the preserved post-surgical hemisphere in pediatric drug-resistant epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559189. [PMID: 37808659 PMCID: PMC10557613 DOI: 10.1101/2023.09.24.559189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Importance Structural integrity of cortex following cortical resection for epilepsy management has been previously characterized, but only in adult patients. Objective This study sought to determine whether morphometrics of the preserved hemisphere in pediatric cortical resection patients differ from non-neurological controls. Design This was a case-control study, from 2013-2022. Setting This was a single-site study. Participants 32 patients with childhood epilepsy surgery and 51 age- and gender-matched controls participated. Main Measures We quantified morphometrics of the preserved hemisphere at the level of gross anatomy (lateral ventricle size, volume of gray and white matter). Additionally, cortical thickness, volume, and surface area were measured for 34 cortical regions segmented with the Desikan-Killiany atlas, and, last, volumes of nine subcortical regions were also quantified. Results 13 patients with left hemisphere (LH) surgery and a preserved right hemisphere (RH) (median age/median absolute deviation of age: 15.7/1.7 yr; 6 females, 7 males) and 19 patients with RH surgery and a preserved LH (15.4/3.7 yr; 11 females, 8 males) were compared to 51 controls (14.8/4.9 yr; 24 females, 27 males). Patient groups had larger ventricles and reduced total white matter volume relative to controls, and only patients with a preserved RH, but not patients with a preserved LH, had reduced total gray matter volume relative to controls. Furthermore, patients with a preserved RH had lower cortical thickness and volume and greater surface area of several cortical regions, relative to controls. Patients with a preserved LH had no differences in thickness, volume, or area, of any of the 34 cortical regions, relative to controls. Moreover, both LH and RH patients showed reduced volumes in select subcortical structures, relative to controls. Conclusions and Relevance That left-sided, but not right-sided, resection is associated with more pronounced reduction in cortical thickness and volume and increased cortical surface area relative to typically developing, age-matched controls suggests that the preserved RH undergoes structural plasticity to an extent not observed in cases of right-sided pediatric resection. Future work probing the association of the current findings with neuropsychological outcomes will be necessary to understand the implications of these structural findings for clinical practice.
Collapse
Affiliation(s)
- Michael C. Granovetter
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
| | - Christina Patterson
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA 15213
| |
Collapse
|
24
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
25
|
Thompson SA. Kindling in humans: Does secondary epileptogenesis occur? Epilepsy Res 2023; 198:107155. [PMID: 37301727 DOI: 10.1016/j.eplepsyres.2023.107155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
The relevance of secondary epileptogenesis for human epilepsy remains a controversial subject decades after it was first described in animal models. Whether or not a previously normal brain region can become independently epileptogenic through a kindling-like process has not, and cannot, be definitely proven in humans. Rather than reliance on direct experimental evidence, attempts to answering this question must depend on observational data. In this review, observations based largely upon contemporary surgical series will advance the case for secondary epileptogenesis in humans. As will be argued, hypothalamic hamartoma-related epilepsy provides the strongest case for this process; all the stages of secondary epileptogenesis can be observed. Hippocampal sclerosis (HS) is another pathology where the question of secondary epileptogenesis frequently arises, and observations from bitemporal and dual pathology series are explored. The verdict here is far more difficult to reach, in large part because of the scarcity of longitudinal cohorts; moreover, recent experimental data have challenged the claim that HS is acquired consequent to recurrent seizures. Synaptic plasticity more than seizure-induced neuronal injury is the likely mechanism of secondary epileptogenesis. Postoperative running-down phenomenon provides the best evidence that a kindling-like process occurs in some patients, evidenced by its reversal. Finally, a network perspective of secondary epileptogenesis is considered, as well as the possible role for subcortical surgical interventions.
Collapse
Affiliation(s)
- Stephen A Thompson
- Department of Medicine (Neurology), McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
26
|
Zhang D, Tong Y, Hu Z, Wu G, He J, Fan Z, Wu D, Feng R, Lang L, Hu J, Chen L, Yu J. Deep learning and radiomics based automatic diagnosis of hippocampal sclerosis. Int J Neurosci 2023; 133:947-958. [PMID: 34963424 DOI: 10.1080/00207454.2021.2018428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/23/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Accurate and rapid segmentation of the hippocampus can help doctors perform intractable temporal lobe epilepsy (TLE) preoperative evaluations to identify good surgical candidates. This study aims to establish a radiomics system for the automatic diagnosis of hippocampal sclerosis with the help of machine learning. A total of 240 cases were analysed to develop a diagnostic model. First, an automatic hippocampal segmentation process was established that exploits a priori knowledge of the relatively fixed location of the hippocampus in brain partitions, as well as a deep-learning segmentation network based on an Attention U-net. Then, we extracted 527 radiomics features from each side of the segmented hippocampus. The iterative sparse representation based on feature selection and a support vector machine classifier were finally used to establish the diagnostic model of hippocampal sclerosis. The diagnostic model consists of two consecutive steps: distinguish hippocampal sclerosis (HS) from normal control (NC) and detect whether the HS is located on the left or right side. When the automatic diagnosis model identified HS and NC, the sensitivity and specificity reached 0.941 and 0.917 in the 10-fold cross-validation set and 0.920 and 0.909 in the independent testing set. When the diagnostic model detected HS lateralization, the sensitivity and specificity reached 0.923 and 0.920 in cross-validation and 0.909 and 0.929 in independent testing. Our results show that the developed radiomics model can help detect TLE patients with hippocampal sclerosis and has the potential to simplify preoperative evaluations and select surgical candidates.
Collapse
Affiliation(s)
- Dachuan Zhang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai Neurosurgical Clinical Center, Shanghai, China
| | - Zhaoyu Hu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Juanjuan He
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai Neurosurgical Clinical Center, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai Neurosurgical Clinical Center, Shanghai, China
| | - Dongyan Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai Neurosurgical Clinical Center, Shanghai, China
| | - Liqin Lang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai Neurosurgical Clinical Center, Shanghai, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai Neurosurgical Clinical Center, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai Neurosurgical Clinical Center, Shanghai, China
| | - Jinhua Yu
- AI Lab of Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging, Computing and Computer Assisted Intervention, Shanghai, China
| |
Collapse
|
27
|
Xiao F, Caciagli L, Wandschneider B, Sone D, Young AL, Vos SB, Winston GP, Zhang Y, Liu W, An D, Kanber B, Zhou D, Sander JW, Thom M, Duncan JS, Alexander DC, Galovic M, Koepp MJ. Identification of different MRI atrophy progression trajectories in epilepsy by subtype and stage inference. Brain 2023; 146:4702-4716. [PMID: 37807084 PMCID: PMC10629797 DOI: 10.1093/brain/awad284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 10/10/2023] Open
Abstract
Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics.
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Daichi Sone
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Alexandra L Young
- Centre for Medical Image Computing, Departments of Computer Science, Medical Physics, and Biomedical Engineering, UCL, London, WC1E 6BT, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sjoerd B Vos
- Centre for Medical Image Computing, Departments of Computer Science, Medical Physics, and Biomedical Engineering, UCL, London, WC1E 6BT, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Perth, WA 6009, Australia
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, K7L 3N6, Canada
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenyu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dongmei An
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baris Kanber
- Centre for Medical Image Computing, Departments of Computer Science, Medical Physics, and Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
- Stichting Epilepsie Instellingen Nederland – (SEIN), Heemstede, 2103SW, The Netherlands
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Departments of Computer Science, Medical Physics, and Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, CH-8091, Switzerland
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UCL-Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| |
Collapse
|
28
|
Kaestner E, Reyes A. Out of one, how many? Subtyping in epilepsy. Brain 2023; 146:4411-4413. [PMID: 37823432 PMCID: PMC10629763 DOI: 10.1093/brain/awad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
This scientific commentary refers to ‘Identification of different MRI atrophy progression trajectories in epilepsy by subtype and stage inference’ by Xiao et al. (https://doi.org/10.1093/brain/awad284).
Collapse
Affiliation(s)
- Erik Kaestner
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Anny Reyes
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Kiersnowski OC, Winston GP, Caciagli L, Biondetti E, Elbadri M, Buck S, Duncan JS, Thornton JS, Shmueli K, Vos SB. Quantitative susceptibility mapping identifies hippocampal and other subcortical grey matter tissue composition changes in temporal lobe epilepsy. Hum Brain Mapp 2023; 44:5047-5064. [PMID: 37493334 PMCID: PMC10502681 DOI: 10.1002/hbm.26432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is associated with widespread brain alterations. Using quantitative susceptibility mapping (QSM) alongside transverse relaxation rate (R 2 * ), we investigated regional brain susceptibility changes in 36 patients with left-sided (LTLE) or right-sided TLE (RTLE) secondary to hippocampal sclerosis, and 27 healthy controls (HC). We compared three susceptibility calculation methods to ensure image quality. Correlations of susceptibility andR 2 * with age of epilepsy onset, frequency of focal-to-bilateral tonic-clonic seizures (FBTCS), and neuropsychological test scores were examined. Weak-harmonic QSM (WH-QSM) successfully reduced noise and removed residual background field artefacts. Significant susceptibility increases were identified in the left putamen in the RTLE group compared to the LTLE group, the right putamen and right thalamus in the RTLE group compared to HC, and a significant susceptibility decrease in the left hippocampus in LTLE versus HC. LTLE patients who underwent epilepsy surgery showed significantly lower left-versus-right hippocampal susceptibility. SignificantR 2 * changes were found between TLE and HC groups in the amygdala, putamen, thalamus, and in the hippocampus. Specifically, decreased R2 * was found in the left and right hippocampus in LTLE and RTLE, respectively, compared to HC. Susceptibility andR 2 * were significantly correlated with cognitive test scores in the hippocampus, globus pallidus, and thalamus. FBTCS frequency correlated positively with ipsilateral thalamic and contralateral putamen susceptibility and withR 2 * in bilateral globi pallidi. Age of onset was correlated with susceptibility in the hippocampus and putamen, and withR 2 * in the caudate. Susceptibility andR 2 * changes observed in TLE groups suggest selective loss of low-myelinated neurons alongside iron redistribution in the hippocampi, predominantly ipsilaterally, indicating QSM's sensitivity to local pathology. Increased susceptibility andR 2 * in the thalamus and putamen suggest increased iron content and reflect disease severity.
Collapse
Affiliation(s)
- Oliver C. Kiersnowski
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
- Department of Medicine, Division of NeurologyQueen's UniversityKingstonCanada
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emma Biondetti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Department of Neuroscience, Imaging and Clinical SciencesInstitute for Advanced Biomedical Technologies, “D'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Maha Elbadri
- Department of NeurologyQueen Elizabeth HospitalBirminghamUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - John S. Thornton
- Neuroradiological Academic UnitUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Karin Shmueli
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Sjoerd B. Vos
- Neuroradiological Academic UnitUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Centre for Microscopy, Characterisation, and AnalysisThe University of Western AustraliaNedlandsAustralia
- Centre for Medical Image Computing, Computer Science departmentUniversity College LondonLondonUK
| |
Collapse
|
30
|
Pellinen J, Pardoe H, Sillau S, Barnard S, French J, Knowlton R, Lowenstein D, Cascino GD, Glynn S, Jackson G, Szaflarski J, Morrison C, Meador KJ, Kuzniecky R. Later onset focal epilepsy with roots in childhood: Evidence from early learning difficulty and brain volumes in the Human Epilepsy Project. Epilepsia 2023; 64:2761-2770. [PMID: 37517050 DOI: 10.1111/epi.17727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Visual assessment of magnetic resonance imaging (MRI) from the Human Epilepsy Project 1 (HEP1) found 18% of participants had atrophic brain changes relative to age without known etiology. Here, we identify the underlying factors related to brain volume differences in people with focal epilepsy enrolled in HEP1. METHODS Enrollment data for participants with complete records and brain MRIs were analyzed, including 391 participants aged 12-60 years. HEP1 excluded developmental or cognitive delay with intelligence quotient <70, and participants reported any formal learning disability diagnoses, repeated grades, and remediation. Prediagnostic seizures were quantified by semiology, frequency, and duration. T1-weighted brain MRIs were analyzed using Sequence Adaptive Multimodal Segmentation (FreeSurfer v7.2), from which a brain tissue volume to intracranial volume ratio was derived and compared to clinically relevant participant characteristics. RESULTS Brain tissue volume changes observable on visual analyses were quantified, and a brain tissue volume to intracranial volume ratio was derived to compare with clinically relevant variables. Learning difficulties were associated with decreased brain tissue volume to intracranial volume, with a ratio reduction of .005 for each learning difficulty reported (95% confidence interval [CI] = -.007 to -.002, p = .0003). Each 10-year increase in age at MRI was associated with a ratio reduction of .006 (95% CI = -.007 to -.005, p < .0001). For male participants, the ratio was .011 less than for female participants (95% CI = -.014 to -.007, p < .0001). There were no effects from seizures, employment, education, seizure semiology, or temporal lobe electroencephalographic abnormalities. SIGNIFICANCE This study shows lower brain tissue volume to intracranial volume in people with newly treated focal epilepsy and learning difficulties, suggesting developmental factors are an important marker of brain pathology related to neuroanatomical changes in focal epilepsy. Like the general population, there were also independent associations between brain volume, age, and sex in the study population.
Collapse
Affiliation(s)
- Jacob Pellinen
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Heath Pardoe
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Stefan Sillau
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Jacqueline French
- New York University Comprehensive Epilepsy Center, New York, New York, USA
| | - Robert Knowlton
- University of California, San Francisco, San Francisco, California, USA
| | - Daniel Lowenstein
- University of California, San Francisco, San Francisco, California, USA
| | | | - Simon Glynn
- University of Michigan, Ann Arbor, Michigan, USA
| | - Graeme Jackson
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | | | - Chris Morrison
- New York University Comprehensive Epilepsy Center, New York, New York, USA
| | - Kimford J Meador
- Stanford University Neuroscience Health Center, Palo Alto, California, USA
| | | |
Collapse
|
31
|
Akel S, Asztely F, Banote RK, Axelsson M, Zetterberg H, Zelano J. Neurofilament light, glial fibrillary acidic protein, and tau in a regional epilepsy cohort: High plasma levels are rare but related to seizures. Epilepsia 2023; 64:2690-2700. [PMID: 37469165 DOI: 10.1111/epi.17713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Higher levels of biochemical blood markers of brain injury have been described immediately after tonic-clonic seizures and in drug-resistant epilepsy, but the levels of such markers in epilepsy in general have not been well characterized. We analyzed neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau in a regional hospital-based epilepsy cohort and investigated what proportion of patients have levels suggesting brain injury, and whether certain epilepsy features are associated with high levels. METHODS Biomarker levels were measured in 204 patients with an epilepsy diagnosis participating in a prospective regional biobank study, with age and sex distribution correlating closely to that of all patients seen for epilepsy in the health care region. Absolute biomarker levels were assessed between two patient groups: patients reporting seizures within the 2 months preceding inclusion and patients who did not have seizures for more than 1 year. We also assessed the proportion of patients with above-normal levels of NfL. RESULTS NfL and GFAP, but not tau, increased with age. Twenty-seven patients had abnormally high levels of NfL. Factors associated with such levels were recent seizures (p = .010) and epileptogenic lesion on radiology (p = .001). Levels of NfL (p = .006) and GFAP (p = .032) were significantly higher in young patients (<65 years) with seizures ≤2 months before inclusion compared to those who reported no seizures for >1 year. NfL and GFAP correlated weakly with the number of days since last seizure (NfL: rs = -.228, p = .007; GFAP: rs = -.167, p = .048) in young patients. NfL also correlated weakly with seizure frequency in the last 2 months (rs = .162, p = .047). SIGNIFICANCE Most patients with epilepsy do not have biochemical evidence of brain injury. The association with seizures merits further study; future studies should aim for longitudinal sampling and examine whether individual variations in NfL or GFAP levels could reflect seizure activity.
Collapse
Affiliation(s)
- Sarah Akel
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Asztely
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
32
|
Filimonova EA, Pashkov AA, Moysak GI, Tropynina AY, Zhanaeva SY, Shvaikovskaya AA, Akopyan AA, Danilenko KV, Aftanas LI, Tikhonova MA, Rzaev JA. Brain but not serum BDNF levels are associated with structural alterations in the hippocampal regions in patients with drug-resistant mesial temporal lobe epilepsy. Front Neurosci 2023; 17:1217702. [PMID: 37539386 PMCID: PMC10395949 DOI: 10.3389/fnins.2023.1217702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Mesial temporal lobe epilepsy is the most common type of focal epilepsy, imposing a significant burden on the health care system worldwide. Approximately one-third of patients with this disease who do not adequately respond to pharmacotherapy are considered drug-resistant subjects. Despite having some clues of how such epileptic activity and resistance to therapy emerge, coming mainly from preclinical models, we still witness a scarcity of human data. To narrow this gap, in this study, we aimed to estimate the relationship between hippocampal and serum levels of brain-derived neurotrophic factor (BDNF), one of the main and most widely studied neurotrophins, and hippocampal subfield volumes in patients with drug-resistant mesial temporal epilepsy undergoing neurosurgical treatment. We found that hippocampal (but not serum) BDNF levels were negatively correlated with the contralateral volumes of the CA1 and CA4 subfields, presubiculum, subiculum, dentate gyrus, and molecular layer of the hippocampus. Taken together, these findings are generally in accordance with existing data, arguing for a proepileptic nature of BDNF effects in the hippocampus and related brain structures.
Collapse
Affiliation(s)
- Elena A. Filimonova
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton A. Pashkov
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Biomedical School, South Ural State University, Chelyabinsk, Russia
| | - Galina I. Moysak
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia Y. Tropynina
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Svetlana Y. Zhanaeva
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | | | - Anna A. Akopyan
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | | | - Lyubomir I. Aftanas
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Maria A. Tikhonova
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Jamil A. Rzaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
33
|
Tatum WO, Glauser T, Peters JM, Verma A, Weatherspoon S, Benbadis S, Becker DA, Puri V, Smith M, Misra SN, Rabinowicz AL, Carrazana E. Acute seizure therapies in people with epilepsy: Fact or fiction? A U.S. Perspective. Epilepsy Behav Rep 2023; 23:100612. [PMID: 37520180 PMCID: PMC10372156 DOI: 10.1016/j.ebr.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Patients with epilepsy (PWE) may experience seizure emergencies including acute repetitive seizures despite chronic treatment with daily antiseizure medications. Seizures may adversely impact routine daily activities and/or healthcare utilization and may impair the quality of life of patients with epilepsy and their caregivers. Seizures often occur at home, school, or work in a community setting. Appropriate treatment that is readily accessible for patients with seizure urgencies and emergencies is essential outside the hospital setting. When determining the best acute antiseizure therapy for PWE, clinicians need to consider all of the available rescue medications and their routes of administration including the safety and efficacy profiles. Benzodiazepines are a standard of care as a rescue therapy, yet there are several misconceptions about their use and safety. Reevaluating potential misconceptions and formulating best practices are necessary to maximize usage for each available option of acute therapy. We examine common beliefs associated with traditional use of acute seizure therapies to refute or support them based on the current level of evidence in the published literature.
Collapse
Affiliation(s)
- William O. Tatum
- Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224-1865, USA
| | - Tracy Glauser
- Comprehensive Epilepsy Center, Cincinnati Children’s Hospital, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jurriaan M. Peters
- Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amit Verma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, 6560 Fannin St., Ste 802, Houston, TX 77030, USA
| | - Sarah Weatherspoon
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, 848 Adams Ave., Memphis, TN 38103, USA
| | - Selim Benbadis
- Comprehensive Epilepsy Program, University of South Florida & Tampa General Hospital, 2 Tampa General Cir., Tampa, FL 33606, USA
| | - Danielle A. Becker
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Vinay Puri
- Norton Children’s Neuroscience Institute, affiliated with University of Louisville, 411 E. Chestnut St., Suite 645, Louisville, KY 40202, USA
| | - Michael Smith
- Department of Neurology, Rush University, 1725 W. Harrison St., Ste 885, Chicago, IL 60612, USA
| | - Sunita N. Misra
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
| | | | - Enrique Carrazana
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
34
|
Peng S, Wu X, Zheng Q, Xu J, Xie D, Zhou M, Wang M, Cheng Y, Ye L, Mo X, Feng Z. Downregulating NHE-1 decreases the apoptosis of hippocampal cells in epileptic model rats based on the NHE-1/calpain1 pathway. Heliyon 2023; 9:e18336. [PMID: 37539113 PMCID: PMC10395532 DOI: 10.1016/j.heliyon.2023.e18336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Seizure is associated with pathological changes of hippocampus, but the mechanism by which hippocampal neuronal apoptosis promotes epilepsy is unclear. Our previous study showed that the expression of NHE-1 was increased in epileptic model rats. Therefore, this study further explores the effect of NHE-1 on hippocampal cells apoptosis and seizure in lithium chloride-pilocarpine epileptic model rats. First, we established a lithium chloride-pilocarpine induced epileptic rat model and detected the expression of NHE-1, calpain1 and apoptosis in the hippocampus. Then, we further down-regulated NHE-1 to observe the expression of calpain1 and apoptosis in the hippocampus, as well as its effect on seizures in rats. We found that the expression of NHE-1 and calpain1 and apoptosis in the hippocampus was significant increased in the model group. After down-regulating NHE-1, the expression of calpain1 was decreased, and hippocampal cell apoptosis was alleviated. In addition, down-regulation of NHE-1 reduced the frequency and duration of seizures in epileptic rats. Therefore, hippocampal NHE-1 overexpression is closely related to the development of neuronal apoptosis in a rat model of epilepsy, and downregulating NHE-1 expression can reduce cell apoptosis. Moreover, the NHE-1/calpain1 signaling pathway may be an important mechanism leading to hippocampal cell apoptosis.
Collapse
Affiliation(s)
- Shuang Peng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Xuling Wu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Qian Zheng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, School of Basic Medicine,Guizhou Medical University, Guiyang, China
| | - Dongjun Xie
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lan Ye
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangang Mo
- Comprehensive Ward, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhanhui Feng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| |
Collapse
|
35
|
Arnold TC, Kini LG, Bernabei JM, Revell AY, Das SR, Stein JM, Lucas TH, Englot DJ, Morgan VL, Litt B, Davis KA. Remote effects of temporal lobe epilepsy surgery: Long-term morphological changes after surgical resection. Epilepsia Open 2023; 8:559-570. [PMID: 36944585 PMCID: PMC10235552 DOI: 10.1002/epi4.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Epilepsy surgery is an effective treatment for drug-resistant patients. However, how different surgical approaches affect long-term brain structure remains poorly characterized. Here, we present a semiautomated method for quantifying structural changes after epilepsy surgery and compare the remote structural effects of two approaches, anterior temporal lobectomy (ATL), and selective amygdalohippocampectomy (SAH). METHODS We studied 36 temporal lobe epilepsy patients who underwent resective surgery (ATL = 22, SAH = 14). All patients received same-scanner MR imaging preoperatively and postoperatively (mean 2 years). To analyze postoperative structural changes, we segmented the resection zone and modified the Advanced Normalization Tools (ANTs) longitudinal cortical pipeline to account for resections. We compared global and regional annualized cortical thinning between surgical treatments. RESULTS Across procedures, there was significant cortical thinning in the ipsilateral insula, fusiform, pericalcarine, and several temporal lobe regions outside the resection zone as well as the contralateral hippocampus. Additionally, increased postoperative cortical thickness was seen in the supramarginal gyrus. Patients treated with ATL exhibited greater annualized cortical thinning compared with SAH cases (ATL: -0.08 ± 0.11 mm per year, SAH: -0.01 ± 0.02 mm per year, t = 2.99, P = 0.006). There were focal postoperative differences between the two treatment groups in the ipsilateral insula (P = 0.039, corrected). Annualized cortical thinning rates correlated with preoperative cortical thickness (r = 0.60, P < 0.001) and had weaker associations with age at surgery (r = -0.33, P = 0.051) and disease duration (r = -0.42, P = 0.058). SIGNIFICANCE Our evidence suggests that selective procedures are associated with less cortical thinning and that earlier surgical intervention may reduce long-term impacts on brain structure.
Collapse
Affiliation(s)
- T. Campbell Arnold
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lohith G. Kini
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John M. Bernabei
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew Y. Revell
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neuroscience, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu R. Das
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Joel M. Stein
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Timothy H. Lucas
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neurosurgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dario J. Englot
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Victoria L. Morgan
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kathryn A. Davis
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
36
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541934. [PMID: 37292996 PMCID: PMC10245853 DOI: 10.1101/2023.05.23.541934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Caciagli
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Tai XY, Torzillo E, Lyall DM, Manohar S, Husain M, Sen A. Association of Dementia Risk With Focal Epilepsy and Modifiable Cardiovascular Risk Factors. JAMA Neurol 2023; 80:445-454. [PMID: 36972059 PMCID: PMC10043806 DOI: 10.1001/jamaneurol.2023.0339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023]
Abstract
Importance Epilepsy has been associated with cognitive impairment and potentially dementia in older individuals. However, the extent to which epilepsy may increase dementia risk, how this compares with other neurological conditions, and how modifiable cardiovascular risk factors may affect this risk remain unclear. Objective To compare the differential risks of subsequent dementia for focal epilepsy compared with stroke and migraine as well as healthy controls, stratified by cardiovascular risk. Design, Setting, and Participants This cross-sectional study is based on data from the UK Biobank, a population-based cohort of more than 500 000 participants aged 38 to 72 years who underwent physiological measurements and cognitive testing and provided biological samples at 1 of 22 centers across the United Kingdom. Participants were eligible for this study if they were without dementia at baseline and had clinical data pertaining to a history of focal epilepsy, stroke, or migraine. The baseline assessment was performed from 2006 to 2010, and participants were followed up until 2021. Exposures Mutually exclusive groups of participants with epilepsy, stroke, and migraine at baseline assessment and controls (who had none of these conditions). Individuals were divided into low, moderate, or high cardiovascular risk groups based on factors that included waist to hip ratio, history of hypertension, hypercholesterolemia, diabetes, and smoking pack-years. Main Outcomes and Measures Incident all-cause dementia; measures of executive function; and brain total hippocampal, gray matter, and white matter hyperintensity volumes. Results Of 495 149 participants (225 481 [45.5%] men; mean [SD] age, 57.5 [8.1] years), 3864 had a diagnosis of focal epilepsy only, 6397 had a history of stroke only, and 14 518 had migraine only. Executive function was comparable between participants with epilepsy and stroke and worse than the control and migraine group. Focal epilepsy was associated with a higher risk of developing dementia (hazard ratio [HR], 4.02; 95% CI, 3.45 to 4.68; P < .001), compared with stroke (HR, 2.56; 95% CI, 2.28 to 2.87; P < .001), or migraine (HR, 1.02; 95% CI, 0.85 to 1.21; P = .94). Participants with focal epilepsy and high cardiovascular risk were more than 13 times more likely to develop dementia (HR, 13.66; 95% CI, 10.61 to 17.60; P < .001) compared with controls with low cardiovascular risk. The imaging subsample included 42 353 participants. Focal epilepsy was associated with lower hippocampal volume (mean difference, -0.17; 95% CI, -0.02 to -0.32; t = -2.18; P = .03) and lower total gray matter volume (mean difference, -0.33; 95% CI, -0.18 to -0.48; t = -4.29; P < .001) compared with controls. There was no significant difference in white matter hyperintensity volume (mean difference, 0.10; 95% CI, -0.07 to 0.26; t = 1.14; P = .26). Conclusions and Relevance In this study, focal epilepsy was associated with a significant risk of developing dementia, to a greater extent than stroke, which was magnified substantially in individuals with high cardiovascular risk. Further findings suggest that targeting modifiable cardiovascular risk factors may be an effective intervention to reduce dementia risk in individuals with epilepsy.
Collapse
Affiliation(s)
- Xin You Tai
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Emma Torzillo
- Epilepsy Department, National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Donald M. Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
38
|
Jiang Y, Li W, Qin Y, Zhang L, Tong X, Xiao F, Jiang S, Li Y, Gong Q, Zhou D, An D, Yao D, Luo C. In vivo characterization of magnetic resonance imaging-based T1w/T2w ratios reveals myelin-related changes in temporal lobe epilepsy. Hum Brain Mapp 2023; 44:2323-2335. [PMID: 36692056 PMCID: PMC10028664 DOI: 10.1002/hbm.26212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of intractable epilepsy in adults. Although brain myelination alterations have been observed in TLE, it remains unclear how the myelination network changes in TLE. This study developed a novel method in characterization of myelination structural covariance network (mSCN) by T1-weighted and T2-weighted magnetic resonance imaging (MRI). The mSCNs were estimated in 42 left TLE (LTLE), 42 right TLE (RTLE) patients, and 41 healthy controls (HCs). The topology of mSCN was analyzed by graph theory. Voxel-wise comparisons of myelination laterality were also examined among the three groups. Compared to HC, both patient groups showed decreased myelination in frontotemporal regions, amygdala, and thalamus; however, the LTLE showed lower myelination in left medial temporal regions than RTLE. Moreover, the LTLE exhibited decreased global efficiency compared with HC and more increased connections than RTLE. The laterality in putamen was differently altered between the two patient groups: higher laterality at posterior putamen in LTLE and higher laterality at anterior putamen in RTLE. The putamen may play a transfer station role in damage spreading induced by epileptic seizures from the hippocampus. This study provided a novel workflow by combination of T1-weighted and T2-weighted MRI to investigate in vivo the myelin-related microstructural feature in epileptic patients first time. Disconnections of mSCN implicate that TLE is a system disorder with widespread disruptions at regional and network levels.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Le Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yunfang Li
- Southern Medical District, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
| |
Collapse
|
39
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2023; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Centre for Medical Image Computing, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
40
|
Adel SAA, Treit S, Abd Wahab W, Little G, Schmitt L, Wilman AH, Beaulieu C, Gross DW. Longitudinal hippocampal diffusion-weighted imaging and T2 relaxometry demonstrate regional abnormalities which are stable and predict subfield pathology in temporal lobe epilepsy. Epilepsia Open 2023; 8:100-112. [PMID: 36461649 PMCID: PMC9977756 DOI: 10.1002/epi4.12679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE High-resolution (1 mm isotropic) diffusion tensor imaging (DTI) of the hippocampus in temporal lobe epilepsy (TLE) patients has shown patterns of hippocampal subfield diffusion abnormalities, which were consistent with hippocampal sclerosis (HS) subtype on surgical histology. The objectives of this longitudinal imaging study were to determine the stability of focal hippocampus diffusion changes over time in TLE patients, compare diffusion and quantitative T2 abnormalities of the sclerotic hippocampus, and correlate presurgical mean diffusivity (MD) and T2 maps with postsurgical histology. METHODS Nineteen TLE patients and 19 controls underwent two high-resolution (1 mm isotropic) DTI and 1.1 × 1.1 × 1 mm3 T2 relaxometry scans (in a subset of 16 TLE patients and 9 controls) of the hippocampus at 3T, with a 2.6 ± 0.8 year inter-scan interval. Within-participant hippocampal volume, MD and T2 were compared between the scans. Contralateral hippocampal changes 2.3 ± 1.0 years after surgery and ipsilateral preoperative MD maps versus postoperative subfield histopathology were evaluated in eight patients who underwent surgical resection of the hippocampus. RESULTS Reduced volume and elevated MD and T2 of sclerotic hippocampi remained unchanged between longitudinal scans. Focal regions of elevated MD and T2 in bilateral hippocampi of HS TLE were detected consistently at both scans. Regions of high MD and T2 correlated and remained consistent over time. Volume, MD, and T2 remained unchanged in postoperative contralateral hippocampus. Regional elevations of MD identified subfield neuron loss on postsurgical histology with 88% sensitivity and 88% specificity. Focal T2 elevations identified subfield neuron loss with 75% sensitivity and 88% specificity. SIGNIFICANCE Diffusion and T2 abnormalities in ipsilateral and contralateral hippocampi remained unchanged between the scans suggesting permanent microstructural alterations. MD and T2 demonstrated good sensitivity and specificity to detect hippocampal subfield neuron loss on postsurgical histology, supporting the potential that high-resolution hippocampal DTI and T2 could be used to diagnose HS subtype before surgery.
Collapse
Affiliation(s)
- Seyed Amir Ali Adel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Wasan Abd Wahab
- Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Graham Little
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Department of Computer Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laura Schmitt
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Donald W Gross
- Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Relationship between visuoperceptual functions and parietal structural abnormalities in temporal lobe epilepsy. Brain Imaging Behav 2023; 17:35-43. [PMID: 36357555 DOI: 10.1007/s11682-022-00738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Progressive gray matter volume reductions beyond the epileptogenic area has been described in temporal lobe epilepsy. There is less evidence regarding correlations between gray and white matter volume changepres and multi-domain cognitive performance in this setting. We aimed to investigate correlations between volume changes in parietal structures and visuospatial performance in temporal lobe epilepsy patients. we performed a cross-sectional study comparing global and regional brain volume data from 34 temporal lobe epilepsy patients and 30 healthy controls. 3D T1-weighted sequences were obtained on a 3.0 T magnet, and data were analyzed using age and sex-adjusted linear regression models. Global and regional brain volumes and cortical thickness in patients were correlated with standardized visual memory, visuoperceptual, visuospatial, and visuoconstructive parameters obtained in a per-protocol neuropsychological assessment. temporal lobe epilepsy patients had smaller volume fractions of the deep gray matter structures, putamen and nucleus accumbens, and larger cerebrospinal fluid volume fraction than controls. Correlations were found between: 1) visual memory and precuneus and inferior parietal cortical thickness; 2) visuoperceptual performance and precuneus and supramarginal white matter volumes; 3) visuospatial skills and precuneus, postcentral, and inferior and superior parietal white matter volumes; 4) visuoconstructive performance and inferior parietal white matter volume. Brain volume loss is widespread in temporal lobe epilepsy. Volumetric reductions in parietal lobe structures were associated with visuoperceptual cognitive performance.
Collapse
|
42
|
Li Z, Jiang C, Gao Q, Xiang W, Qi Z, Peng K, Lin J, Wang W, Deng B, Wang W. The relationship between the interictal epileptiform discharge source connectivity and cortical structural couplings in temporal lobe epilepsy. Front Neurol 2023; 14:1029732. [PMID: 36846133 PMCID: PMC9948620 DOI: 10.3389/fneur.2023.1029732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Objective The objective of this study was to explore the relation between interictal epileptiform discharge (IED) source connectivity and cortical structural couplings (SCs) in temporal lobe epilepsy (TLE). Methods High-resolution 3D-MRI and 32-sensor EEG data from 59 patients with TLE were collected. Principal component analysis was performed on the morphological data on MRI to obtain the cortical SCs. IEDs were labeled from EEG data and averaged. The standard low-resolution electromagnetic tomography analysis was performed to locate the source of the average IEDs. Phase-locked value was used to evaluate the IED source connectivity. Finally, correlation analysis was used to compare the IED source connectivity and the cortical SCs. Results The features of the cortical morphology in left and right TLE were similar across four cortical SCs, which could be mainly described as the default mode network, limbic regions, connections bilateral medial temporal, and connections through the ipsilateral insula. The IED source connectivity at the regions of interest was negatively correlated with the corresponding cortical SCs. Significance The cortical SCs were confirmed to be negatively related to IED source connectivity in patients with TLE as detected with MRI and EEG coregistered data. These findings suggest the important role of intervening IEDs in treating TLE.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Che Jiang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Quwen Gao
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Xiang
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zijuan Qi
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Kairun Peng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China,Bingmei Deng ✉
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China,*Correspondence: Weimin Wang ✉
| |
Collapse
|
43
|
Bartoňová M, Tournier JD, Bartoň M, Říha P, Vojtíšek L, Mareček R, Doležalová I, Rektor I. White matter alterations in MR-negative temporal and frontal lobe epilepsy using fixel-based analysis. Sci Rep 2023; 13:19. [PMID: 36593331 PMCID: PMC9807578 DOI: 10.1038/s41598-022-27233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
This study focuses on white matter alterations in pharmacoresistant epilepsy patients with no visible lesions in the temporal and frontal lobes on clinical MRI (i.e. MR-negative) with lesions confirmed by resective surgery. The aim of the study was to extend the knowledge about group-specific neuropathology in MR-negative epilepsy. We used the fixel-based analysis (FBA) that overcomes the limitations of traditional diffusion tensor image analysis, mainly within-voxel averaging of multiple crossing fibres. Group-wise comparisons of fixel parameters between healthy controls (N = 100) and: (1) frontal lobe epilepsy (FLE) patients (N = 9); (2) temporal lobe epilepsy (TLE) patients (N = 13) were performed. A significant decrease of the cross-section area of the fixels in the superior longitudinal fasciculus was observed in the FLE. Results in TLE reflected widespread atrophy of limbic, thalamic, and cortico-striatal connections and tracts directly connected to the temporal lobe (such as the anterior commissure, inferior fronto-occipital fasciculus, uncinate fasciculus, splenium of corpus callosum, and cingulum bundle). Alterations were also observed in extratemporal connections (brainstem connection, commissural fibres, and parts of the superior longitudinal fasciculus). To our knowledge, this is the first study to use an advanced FBA method not only on the datasets of MR-negative TLE patients, but also MR-negative FLE patients, uncovering new common tract-specific alterations on the group level.
Collapse
Affiliation(s)
- Michaela Bartoňová
- grid.10267.320000 0001 2194 0956Central European Institute of Technology (CEITEC), Multimodal and Functional Neuroimaging Research Group, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Brno Epilepsy Center, First Department of Neurology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jacques-Donald Tournier
- grid.13097.3c0000 0001 2322 6764Centre for Medical Engineering, King’s College London, London, UK ,grid.13097.3c0000 0001 2322 6764Centre for the Developing Brain, King’s College London, London, UK
| | - Marek Bartoň
- grid.10267.320000 0001 2194 0956Central European Institute of Technology (CEITEC), Multimodal and Functional Neuroimaging Research Group, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Říha
- grid.10267.320000 0001 2194 0956Central European Institute of Technology (CEITEC), Multimodal and Functional Neuroimaging Research Group, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Brno Epilepsy Center, First Department of Neurology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubomír Vojtíšek
- grid.10267.320000 0001 2194 0956Central European Institute of Technology (CEITEC), Multimodal and Functional Neuroimaging Research Group, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Radek Mareček
- grid.10267.320000 0001 2194 0956Central European Institute of Technology (CEITEC), Multimodal and Functional Neuroimaging Research Group, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Irena Doležalová
- grid.10267.320000 0001 2194 0956Brno Epilepsy Center, First Department of Neurology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- grid.10267.320000 0001 2194 0956Central European Institute of Technology (CEITEC), Multimodal and Functional Neuroimaging Research Group, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Brno Epilepsy Center, First Department of Neurology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
44
|
Bank AM, Kuzniecky R, Knowlton RC, Cascino GD, Jackson G, Pardoe HR. Structural Neuroimaging in Adults and Adolescents With Newly Diagnosed Focal Epilepsy: The Human Epilepsy Project. Neurology 2022; 99:e2181-e2187. [PMID: 35985821 PMCID: PMC9651452 DOI: 10.1212/wnl.0000000000201125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Identification of an epileptogenic lesion on structural neuroimaging in individuals with focal epilepsy is important for management and treatment planning. The objective of this study was to determine the frequency of MRI-identified potentially epileptogenic structural abnormalities in a large multicenter study of adolescent and adult patients with newly diagnosed focal epilepsy. METHODS Patients with a new diagnosis of focal epilepsy enrolled in the Human Epilepsy Project observational cohort study underwent 3 T brain MRI using a standardized protocol. Imaging findings were classified as normal, abnormal, or incidental. Abnormal findings were classified as focal or diffuse and as likely epilepsy-related or of unknown relationship to epilepsy. Fisher exact tests were performed to determine whether abnormal imaging or abnormality type was associated with clinical characteristics. RESULTS A total of 418 participants were enrolled. Two hundred eighteen participants (59.3%) had no abnormalities detected, 149 (35.6%) had abnormal imaging, and 21 (5.0%) had incidental findings. Seventy-eight participants (18.7%) had abnormalities that were considered epilepsy-related, and 71 (17.0%) had abnormalities of unknown relationship to epilepsy. Older participants were more likely to have imaging abnormalities, while participants with focal and epilepsy-related imaging abnormalities were younger than those without these abnormalities. One hundred thirty-one participants (31.3%) had a family history of epilepsy. Epilepsy-related abnormalities were not associated with participant sex, family history of epilepsy, or seizure type. DISCUSSION We found that 1 in 5 patients with newly diagnosed focal epilepsy has an MRI finding that is likely causative and may alter treatment options. An additional 1 in 5 patients has abnormalities of unknown significance. This information is important for patient counseling, prognostication, and management.
Collapse
Affiliation(s)
- Anna M Bank
- From the Department of Neurology (A.M.B., R.K.), Lenox Hill Hospital/Northwell Health, New York City; Department of Neurology (A.M.B., R.K.), Zucker School of Medicine at Hofstra University, Hempstead, NY; Department of Neurology (R.C.K.), University of California, San Francisco; Department of Neurology (G.D.C.), Mayo Clinic, Rochester, MN; Florey Institute for Neuroscience and Mental Health (G.J.), Parkville, Australia; and Department of Neurology (H.R.P.), New York University School of Medicine
| | - Ruben Kuzniecky
- From the Department of Neurology (A.M.B., R.K.), Lenox Hill Hospital/Northwell Health, New York City; Department of Neurology (A.M.B., R.K.), Zucker School of Medicine at Hofstra University, Hempstead, NY; Department of Neurology (R.C.K.), University of California, San Francisco; Department of Neurology (G.D.C.), Mayo Clinic, Rochester, MN; Florey Institute for Neuroscience and Mental Health (G.J.), Parkville, Australia; and Department of Neurology (H.R.P.), New York University School of Medicine
| | - Robert C Knowlton
- From the Department of Neurology (A.M.B., R.K.), Lenox Hill Hospital/Northwell Health, New York City; Department of Neurology (A.M.B., R.K.), Zucker School of Medicine at Hofstra University, Hempstead, NY; Department of Neurology (R.C.K.), University of California, San Francisco; Department of Neurology (G.D.C.), Mayo Clinic, Rochester, MN; Florey Institute for Neuroscience and Mental Health (G.J.), Parkville, Australia; and Department of Neurology (H.R.P.), New York University School of Medicine
| | - Gregory D Cascino
- From the Department of Neurology (A.M.B., R.K.), Lenox Hill Hospital/Northwell Health, New York City; Department of Neurology (A.M.B., R.K.), Zucker School of Medicine at Hofstra University, Hempstead, NY; Department of Neurology (R.C.K.), University of California, San Francisco; Department of Neurology (G.D.C.), Mayo Clinic, Rochester, MN; Florey Institute for Neuroscience and Mental Health (G.J.), Parkville, Australia; and Department of Neurology (H.R.P.), New York University School of Medicine
| | - Graeme Jackson
- From the Department of Neurology (A.M.B., R.K.), Lenox Hill Hospital/Northwell Health, New York City; Department of Neurology (A.M.B., R.K.), Zucker School of Medicine at Hofstra University, Hempstead, NY; Department of Neurology (R.C.K.), University of California, San Francisco; Department of Neurology (G.D.C.), Mayo Clinic, Rochester, MN; Florey Institute for Neuroscience and Mental Health (G.J.), Parkville, Australia; and Department of Neurology (H.R.P.), New York University School of Medicine
| | - Heath R Pardoe
- From the Department of Neurology (A.M.B., R.K.), Lenox Hill Hospital/Northwell Health, New York City; Department of Neurology (A.M.B., R.K.), Zucker School of Medicine at Hofstra University, Hempstead, NY; Department of Neurology (R.C.K.), University of California, San Francisco; Department of Neurology (G.D.C.), Mayo Clinic, Rochester, MN; Florey Institute for Neuroscience and Mental Health (G.J.), Parkville, Australia; and Department of Neurology (H.R.P.), New York University School of Medicine
| |
Collapse
|
45
|
Kananen J, Järvelä M, Korhonen V, Tuovinen T, Huotari N, Raitamaa L, Helakari H, Väyrynen T, Raatikainen V, Nedergaard M, Ansakorpi H, Jacobs J, LeVan P, Kiviniemi V. Increased interictal synchronicity of respiratory related brain pulsations in epilepsy. J Cereb Blood Flow Metab 2022; 42:1840-1853. [PMID: 35570730 PMCID: PMC9536129 DOI: 10.1177/0271678x221099703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Respiratory brain pulsations have recently been shown to drive electrophysiological brain activity in patients with epilepsy. Furthermore, functional neuroimaging indicates that respiratory brain pulsations have increased variability and amplitude in patients with epilepsy compared to healthy individuals. To determine whether the respiratory drive is altered in epilepsy, we compared respiratory brain pulsation synchronicity between healthy controls and patients. Whole brain fast functional magnetic resonance imaging was performed on 40 medicated patients with focal epilepsy, 20 drug-naïve patients and 102 healthy controls. Cerebrospinal fluid associated respiratory pulsations were used to generate individual whole brain respiratory synchronization maps, which were compared between groups. Finally, we analyzed the seizure frequency effect and diagnostic accuracy of the respiratory synchronization defect in epilepsy. Respiratory brain pulsations related to the verified fourth ventricle pulsations were significantly more synchronous in patients in frontal, periventricular and mid-temporal regions, while the seizure frequency correlated positively with synchronicity. The respiratory brain synchronicity had a good diagnostic accuracy (ROCAUC = 0.75) in discriminating controls from medicated patients. The elevated respiratory brain synchronicity in focal epilepsy suggests altered physiological effect of cerebrospinal fluid pulsations possibly linked to regional brain water dynamics involved with interictal brain physiology.
Collapse
Affiliation(s)
- Janne Kananen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Timo Tuovinen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Tommi Väyrynen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Ville Raatikainen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA.,Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanna Ansakorpi
- Medical Research Center (MRC), Oulu, Finland.,Research Unit of Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Julia Jacobs
- Department of Pediatric Neurology and Muscular Disease, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Pierre LeVan
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC), Oulu, Finland
| |
Collapse
|
46
|
Iqbal S, Leon-Rojas JE, Galovic M, Vos SB, Hammers A, de Tisi J, Koepp MJ, Duncan JS. Volumetric analysis of the piriform cortex in temporal lobe epilepsy. Epilepsy Res 2022; 185:106971. [PMID: 35810570 PMCID: PMC10510027 DOI: 10.1016/j.eplepsyres.2022.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The piriform cortex, at the confluence of the temporal and frontal lobes, generates seizures in response to chemical convulsants and electrical stimulation. Resection of more than 50% of the piriform cortex in anterior temporal lobe resection for refractory temporal lobe epilepsy (TLE) was associated with a 16-fold higher chance of seizure freedom. The objectives of the current study were to implement a robust protocol to measure piriform cortex volumes and to quantify the correlation of these volumes with clinical characteristics of TLE. Sixty individuals with unilateral TLE (33 left) and 20 healthy controls had volumetric analysis of left and right piriform cortex and hippocampi. A protocol for segmenting and measuring the volumes of the piriform cortices was implemented, with good inter-rater and test-retest reliability. The right piriform cortex volume was consistently larger than the left piriform cortex in both healthy controls and patients with TLE. In controls, the mean volume of the right piriform cortex was 17.7% larger than the left, and the right piriform cortex extended a mean of 6 mm (Range: -4 to 12) more anteriorly than the left. This asymmetry was also seen in left and right TLE. In TLE patients overall, the piriform cortices were not significantly smaller than in controls. Hippocampal sclerosis was associated with decreased ipsilateral and contralateral piriform cortex volumes. The piriform cortex volumes, both ipsilateral and contralateral to the epileptic temporal lobe, were smaller with a longer duration of epilepsy. There was no significant association between piriform cortex volumes and the frequency of focal seizures with impaired awareness or the number of anti-seizure medications taken. Implementation of robust segmentation will enable consistent neurosurgical resection in anterior temporal lobe surgery for refractory TLE..
Collapse
Affiliation(s)
- Sabahat Iqbal
- UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Jose E Leon-Rojas
- UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, United Kingdom; Facultad de Ciencias Médicas de la Salud y de la Vida, Escuela de Medicina, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Marian Galovic
- UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, United Kingdom; Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| | - Sjoerd B Vos
- UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, United Kingdom; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Kings College, London, United Kingdom; Kings College London & Guys and St Thomas' PET Centre at St. Thomas' Hospital, United Kingdom
| | - Jane de Tisi
- UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Matthias J Koepp
- UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - John S Duncan
- UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, United Kingdom.
| |
Collapse
|
47
|
Lopez SM, Aksman LM, Oxtoby NP, Vos SB, Rao J, Kaestner E, Alhusaini S, Alvim M, Bender B, Bernasconi A, Bernasconi N, Bernhardt B, Bonilha L, Caciagli L, Caldairou B, Caligiuri ME, Calvet A, Cendes F, Concha L, Conde‐Blanco E, Davoodi‐Bojd E, de Bézenac C, Delanty N, Desmond PM, Devinsky O, Domin M, Duncan JS, Focke NK, Foley S, Fortunato F, Galovic M, Gambardella A, Gleichgerrcht E, Guerrini R, Hamandi K, Ives‐Deliperi V, Jackson GD, Jahanshad N, Keller SS, Kochunov P, Kotikalapudi R, Kreilkamp BAK, Labate A, Larivière S, Lenge M, Lui E, Malpas C, Martin P, Mascalchi M, Medland SE, Meletti S, Morita‐Sherman ME, Owen TW, Richardson M, Riva A, Rüber T, Sinclair B, Soltanian‐Zadeh H, Stein DJ, Striano P, Taylor P, Thomopoulos SI, Thompson PM, Tondelli M, Vaudano AE, Vivash L, Wang Y, Weber B, Whelan CD, Wiest R, Winston GP, Yasuda CL, McDonald CR, Alexander D, Sisodiya SM, Altmann A. Event-based modeling in temporal lobe epilepsy demonstrates progressive atrophy from cross-sectional data. Epilepsia 2022; 63:2081-2095. [PMID: 35656586 PMCID: PMC9540015 DOI: 10.1111/epi.17316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.
Collapse
Affiliation(s)
- Seymour M. Lopez
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Leon M. Aksman
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neil P. Oxtoby
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Sjoerd B. Vos
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Neuroradiological Academic Unit, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Jun Rao
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Erik Kaestner
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Saud Alhusaini
- Department of NeurologyAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
| | - Marina Alvim
- Department of Neurology and Neuroimaging LaboratoryUniversity of CampinasCampinasBrazil
| | - Benjamin Bender
- Department of Radiology, Diagnostic and Interventional NeuroradiologyUniversity Hospital TübingenTübingenGermany
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy LaboratoryMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy LaboratoryMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealQuebecCanada
| | | | - Lorenzo Caciagli
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealQuebecCanada
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Benoit Caldairou
- Neuroimaging of Epilepsy LaboratoryMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | - Angels Calvet
- Magnetic Resonance Image Core FacilityAugust Pi i Sunyer Biomedical Research Institute, University of BarcelonaBarcelonaSpain
| | - Fernando Cendes
- Department of Neurology and Neuroimaging LaboratoryUniversity of CampinasCampinasBrazil
| | - Luis Concha
- Institute of NeurobiologyNational Autonomous University of MexicoQuerétaroMexico
| | - Estefania Conde‐Blanco
- Epilepsy Program, Neurology DepartmentHospital Clinic of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research InstituteBarcelonaSpain
| | | | - Christophe de Bézenac
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Norman Delanty
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro SFI Research Centre for Rare and Chronic Neurological DiseasesDublinIreland
| | - Patricia M. Desmond
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Orrin Devinsky
- New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Martin Domin
- Functional Imaging Unit, Department of Diagnostic Radiology and NeuroradiologyGreifswald University MedicineGreifswaldGermany
| | - John S. Duncan
- Department of NeurologyEmory UniversityAtlantaUSA
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Niels K. Focke
- Department of NeurologyUniversity Medical CenterGöttingenGermany
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | - Marian Galovic
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Antonio Gambardella
- Neuroscience Research Center, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | | | - Renzo Guerrini
- Neuroscience DepartmentUniversity of FlorenceFlorenceItaly
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
- Wales Epilepsy Unit, Department of NeurologyUniversity Hospital of WalesCardiffUK
| | | | - Graeme D. Jackson
- Florey Institute of Neuroscience and Mental Health, Austin CampusHeidelbergVictoriaAustralia
- University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAustin HealthHeidelbergVictoriaAustralia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Simon S. Keller
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Raviteja Kotikalapudi
- Department of Radiology, Diagnostic and Interventional NeuroradiologyUniversity Hospital TübingenTübingenGermany
- Department of Clinical NeurophysiologyUniversity Hospital GöttingenGöttingenGermany
- Department of Neurology and EpileptologyHertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Barbara A. K. Kreilkamp
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Clinical NeurophysiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Angelo Labate
- Neuroscience Research Center, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealQuebecCanada
| | - Matteo Lenge
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesA. Meyer Children's Hospital, University of FlorenceFlorenceItaly
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery DepartmentA. Meyer Children's Hospital, University of FlorenceFlorenceItaly
| | - Elaine Lui
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Charles Malpas
- Department of NeurologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
- Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Pascal Martin
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Mario Mascalchi
- Mario Serio Department of Clinical and Experimental Medical SciencesUniversity of FlorenceFlorenceItaly
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Neurology Unit, OCB HospitalModena University HospitalModenaItaly
| | - Marcia E. Morita‐Sherman
- Department of NeurologyUniversity of CampinasCampinasBrazil
- Cleveland Clinic Neurological InstituteClevelandOhioUSA
| | - Thomas W. Owen
- School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | | | - Antonella Riva
- Giannina Gaslini Institute, Scientific Institute for Research and Health CareGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
| | - Theodor Rüber
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Ben Sinclair
- Department of Neuroscience, Central Clinical School, Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
- Departments of Medicine and Radiology, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Hamid Soltanian‐Zadeh
- Radiology and Research AdministrationHenry Ford Health SystemDetroitMichiganUSA
- School of Electrical and Computer EngineeringCollege of Engineering, University of TehranTehranIran
| | - Dan J. Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Pasquale Striano
- Giannina Gaslini Institute, Scientific Institute for Research and Health CareGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
| | - Peter N. Taylor
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Primary Care DepartmentLocal Health Authority of ModenaModenaItaly
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Neurology Unit, OCB HospitalModena University HospitalModenaItaly
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
- Departments of Medicine and Radiology, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Yujiang Wang
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition ResearchUniversity of BonnBonnGermany
| | - Christopher D. Whelan
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
| | - Roland Wiest
- Support Center for Advanced NeuroimagingUniversity Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
- Department of Medicine, Division of NeurologyQueen's UniversityKingstonOntarioCanada
| | - Clarissa Lin Yasuda
- Department of Neurology and Neuroimaging LaboratoryUniversity of CampinasCampinasBrazil
| | - Carrie R. McDonald
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
48
|
Larivière S, Royer J, Rodríguez-Cruces R, Paquola C, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Bonilha L, Gleichgerrcht E, Focke NK, Domin M, von Podewills F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, O'Brien TJ, Sinclair B, Vivash L, Desmond PM, Lui E, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Winston GP, Griffin A, Singh A, Tiwari VK, Kreilkamp BAK, Lenge M, Guerrini R, Hamandi K, Foley S, Rüber T, Weber B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Vos SB, Caciagli L, Duncan JS, Whelan CD, Thompson PM, Sisodiya SM, Bernasconi A, Labate A, McDonald CR, Bernasconi N, Bernhardt BC. Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression. Nat Commun 2022; 13:4320. [PMID: 35896547 PMCID: PMC9329287 DOI: 10.1038/s41467-022-31730-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewills
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Patricia M Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Colin P Doherty
- Department of Neurology, St James' Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rhys H Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China
| | - Gavin P Winston
- Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Aoife Griffin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | | | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Whales, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Theodor Rüber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J A Carr
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenio Abela
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, US
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Angelo Labate
- Neurology, BIOMORF Dipartment, University of Messina, Messina, Italy
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Gimenes C, Motta Pollo ML, Diaz E, Hargreaves EL, Boison D, Covolan L. Deep brain stimulation of the anterior thalamus attenuates PTZ kindling with concomitant reduction of adenosine kinase expression in rats. Brain Stimul 2022; 15:892-901. [PMID: 35690386 DOI: 10.1016/j.brs.2022.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an emerging therapy to provide seizure control in patients with refractory epilepsy, although its therapeutic mechanisms remain elusive. OBJECTIVE We tested the hypothesis that ANT-DBS might interfere with the kindling process using three experimental groups: PTZ, DBS-ON and DBS-OFF. METHODS 79 male rats were used in two experiments and exposed to chemical kindling with pentylenetetrazole (PTZ, 30 mg/kg i.p.), delivered three times a week for a total of 18 kindling days (KD). These animals were divided into two sets of three groups: PTZ (n = 26), DBS-ON (n = 28) and DBS-OFF (n = 25). ANT-DBS (130 Hz, 90 μs, and 200 μA) was paired with PTZ injections, while DBS-OFF group, although implanted remained unstimulated. After KD 18, the first set of PTZ-treated animals and an additional group of 11 naïve rats were euthanized for brain extraction to study adenosine kinase (ADK) expression. To observe possible long-lasting effects of ANT stimulation, the second set of animals underwent a 1-week treatment and stimulation-free period after KD 18 before a final PTZ challenge. RESULTS ANT-DBS markedly attenuated kindling progression in the DBS-ON group, which developed seizure scores of 2.4 on KD 13, whereas equivalent seizure scores were reached in the DBS-OFF and PTZ groups as early as KD5 and KD6, respectively. The incidence of animals with generalized seizures following 3 consecutive PTZ injections was 94%, 74% and 21% in PTZ, DBS-OFF and DBS-ON groups, respectively. Seizure scores triggered by a PTZ challenge one week after cessation of stimulation revealed lasting suppression of seizure scores in the DBS-ON group (2.7 ± 0.2) compared to scores of 4.5 ± 0.1 for the PTZ group and 4.3 ± 0.1 for the DBS-OFF group (P = 0.0001). While ANT-DBS protected hippocampal cells, the expression of ADK was decreased in the DBS-ON group compared to both PTZ (P < 0.01) and naïve animals (P < 0.01). CONCLUSIONS Our study demonstrates that ANT-DBS interferes with the kindling process and reduced seizure activity was maintained after a stimulation free period of one week. Our findings suggest that ANT-DBS might have additional therapeutic benefits to attenuate seizure progression in epilepsy.
Collapse
Affiliation(s)
- Christiane Gimenes
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Diaz
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Eric L Hargreaves
- Department of Neurosurgery, Jersey Shore University Medical Center, Hackensack Meridian Health Network, Neptune, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, USA
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Center for Research, Education and Innovation, Instituto Jô Clemente, Sao Paulo, Brazil.
| |
Collapse
|
50
|
Bernasconi A, Bernasconi N. The Role of MRI in the Treatment of Drug-Resistant Focal Epilepsy. Eur Neurol 2022; 85:333-341. [PMID: 35705017 DOI: 10.1159/000525262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epilepsy is a prevalent chronic condition affecting about 50 million people worldwide. A third of patients with focal epilepsy suffer from seizures unresponsive to medication. Uncontrolled seizures damage the brain, are associated with cognitive decline, and have negative impact on well-being. For these patients, the surgical resection of the brain region that gives rise to seizures is the most effective treatment. SUMMARY Magnetic resonance imaging (MRI) plays a central role in detecting epileptogenic brain lesions. In this review, we critically discuss advances in neuroimaging acquisition, analytical post-acquisition techniques, and machine leaning methods for the detection of epileptogenic lesions, prediction of clinical outcomes, and identification of disease subtypes. KEY MESSAGE MRI is a mandatory investigation for diagnosis and treatment of epilepsy, particularly when surgery is being considered. Continuous progress in imaging techniques, combined with machine learning, will continue to push the boundaries of lesion visibility and provide increasingly precise predictors of clinical outcomes. Current efforts aiming at strengthening the competences of epileptologists in neuroimaging will ultimately reduce the need for invasive diagnostics.
Collapse
Affiliation(s)
- Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory [NOEL] and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory [NOEL] and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|