1
|
Aqel S, Ahmad J, Saleh I, Fathima A, Al Thani AA, Mohamed WMY, Shaito AA. Advances in Huntington's Disease Biomarkers: A 10-Year Bibliometric Analysis and a Comprehensive Review. BIOLOGY 2025; 14:129. [PMID: 40001897 PMCID: PMC11852324 DOI: 10.3390/biology14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Neurodegenerative disorders (NDs) cause progressive neuronal loss and are a significant public health concern, with NDs projected to become the second leading global cause of death within two decades. Huntington's disease (HD) is a rare, progressive ND caused by an autosomal-dominant mutation in the huntingtin (HTT) gene, leading to severe neuronal loss in the brain and resulting in debilitating motor, cognitive, and psychiatric symptoms. Given the complex pathology of HD, biomarkers are essential for performing early diagnosis, monitoring disease progression, and evaluating treatment efficacy. However, the identification of consistent HD biomarkers is challenging due to the prolonged premanifest HD stage, HD's heterogeneous presentation, and its multiple underlying biological pathways. This study involves a 10-year bibliometric analysis of HD biomarker research, revealing key research trends and gaps. The study also features a comprehensive literature review of emerging HD biomarkers, concluding the need for better stratification of HD patients and well-designed longitudinal studies to validate HD biomarkers. Promising candidate wet HD biomarkers- including neurofilament light chain protein (NfL), microRNAs, the mutant HTT protein, and specific metabolic and inflammatory markers- are discussed, with emphasis on their potential utility in the premanifest HD stage. Additionally, biomarkers reflecting brain structural deficits and motor or behavioral impairments, such as neurophysiological (e.g., motor tapping, speech, EEG, and event-related potentials) and imaging (e.g., MRI, PET, and diffusion tensor imaging) biomarkers, are evaluated. The findings underscore that the discovery and validation of reliable HD biomarkers urgently require improved patient stratification and well-designed longitudinal studies. Reliable biomarkers, particularly in the premanifest HD stage, are crucial for optimizing HD clinical management strategies, enabling personalized treatment approaches, and advancing clinical trials of HD-modifying therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Jamil Ahmad
- Medical Education, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Aseela Fathima
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Al Thani
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 50728, Malaysia;
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Abdullah A. Shaito
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
- College of Medicine, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Voysey ZJ, Owen NE, Holbrook JA, Malpetti M, Le Draoulec C, Spindler LRB, Goodman AOG, Lazar AS, Barker RA. A 14-year longitudinal study of neurofilament light chain dynamics in premanifest and transitional Huntington's disease. J Neurol 2024; 271:7572-7582. [PMID: 39361164 PMCID: PMC11588772 DOI: 10.1007/s00415-024-12700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Growing evidence supports the value of neurofilament light (NfL) as a prognostic biomarker in premanifest Huntington's disease (HD). To date, however, there has been no longitudinal study exceeding 3 years examining either its serial dynamics or predictive power in HD. We aimed to conduct the first such study. METHODS Serum NfL was sampled using ultrasensitive immunoassay at four timepoints across a 14-year period in a cohort of HD gene carriers (n = 21) and controls (n = 14). Gene carriers were premanifest at baseline. Clinical features of HD were evaluated by Unified Huntington's Disease Rating Scale (UHDRS TMS), Montreal Cognitive Assessment (MoCA), Trail A/B task, Symbol Digit Modalities Task and semantic/phonemic fluency tasks. RESULTS 14/21 HD gene carriers converted to prodromal or manifest disease by the final timepoint ("converters"). At baseline and each subsequent timepoint, NfL levels were higher in converters than in non-converters and controls (p = < 0.001-0.03, ηp2 = 0.25-0.66). The estimated rate of change in NfL was higher in converters than in non-converters (p = 0.03) and controls (p = 0.001). Baseline NfL was able to discriminate converters from non-converters (area under curve = 1.000, p = 0.003). A higher rate of change in NfL was predictive of more severe motor (UHDRS-TMS p = 0.007, β = 0.711, R2 = 0.468) and cognitive deficits (MoCA p = 0.007, β = - 0.798, R2 = 0.604; Trail B, p = 0.007, β = 0.772, R2 = 0.567; phonemic fluency p = 0.035, β = - 0.632, R2 = 0.345). CONCLUSIONS Our data suggest that (1) NfL longitudinal dynamics in premanifest/transitional HD are non-constant; rising faster in those closer to disease onset, and (2) NfL can identify individuals at risk of conversion to manifest disease and predict clinical trajectory, > 10 years from disease onset.
Collapse
Affiliation(s)
- Z J Voysey
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | - N E Owen
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - J A Holbrook
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - M Malpetti
- Department of Clinical Neurosciences, Cambridge Centre for Frontotemporal Dementia and Related Disorders, University of Cambridge, Cambridge, UK
| | - C Le Draoulec
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - L R B Spindler
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - A O G Goodman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - A S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - R A Barker
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Anderson DG, Ferreira-Correia A, Rodrigues FB, Byrne LM, Wild EJ, Krause A. Comparative analysis of neurofilament light chain in Huntington's disease like 2 and Huntington's disease. J Huntingtons Dis 2024:18796397241300141. [PMID: 39973395 DOI: 10.1177/18796397241300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Huntington's disease-like 2 (HDL2) closely resembles Huntington's disease (HD) in clinical and pathological features. Neurofilament light chain (NfL) is an important biomarker in HD research and holds potential in HDL2. To evaluate NfL's utility in HDL2, a comparative analysis among HDL2 (n = 12), HD (n = 9), and unaffected controls (n = 9) was conducted. Employing a cross-sectional design, NfL levels were assessed in blood plasma. Concentrations were notably elevated in both HD and HDL2 groups compared to controls. HD patients displayed higher NfL levels than HDL2, possibly reflecting disease duration differences. NfL effectively distinguished HDL2 from controls, highlighting its promise as a possible biomarker in HDL2 research.
Collapse
Affiliation(s)
- David G Anderson
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Filipe B Rodrigues
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Caron NS, Byrne LM, Lemarié FL, Bone JN, Aly AEE, Ko S, Anderson C, Casal LL, Hill AM, Hawellek DJ, McColgan P, Wild EJ, Leavitt BR, Hayden MR. Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington's disease mice. Transl Neurodegener 2024; 13:50. [PMID: 39380076 PMCID: PMC11460072 DOI: 10.1186/s40035-024-00443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Therapeutic approaches aimed at lowering toxic mutant huntingtin (mHTT) levels in the brain can reverse disease phenotypes in animal models of Huntington's disease (HD) and are currently being evaluated in clinical trials. Sensitive and dynamic response biomarkers are needed to assess the efficacy of such candidate therapies. Neurofilament light chain (NfL) is a biomarker of neurodegeneration that increases in cerebrospinal fluid (CSF) and blood with progression of HD. However, it remains unknown whether NfL in biofluids could serve as a response biomarker for assessing the efficacy of disease-modifying therapies for HD. METHODS Longitudinal plasma and cross-sectional CSF samples were collected from the YAC128 transgenic mouse model of HD and wild-type (WT) littermate control mice throughout the natural history of disease. Additionally, biofluids were collected from YAC128 mice following intracerebroventricular administration of an antisense oligonucleotide (ASO) targeting the mutant HTT transgene (HTT ASO), at ages both before and after the onset of disease phenotypes. NfL concentrations in plasma and CSF were quantified using ultrasensitive single-molecule array technology. RESULTS Plasma and CSF NfL concentrations were significantly elevated in YAC128 compared to WT littermate control mice from 9 months of age. Treatment of YAC128 mice with either 15 or 50 µg HTT ASO resulted in a dose-dependent, allele-selective reduction of mHTT throughout the brain at a 3-month interval, which was sustained with high-dose HTT ASO treatment for up to 6 months. Lowering of brain mHTT prior to the onset of regional brain atrophy and HD-like motor deficits in this model had minimal effect on plasma NfL at either dose, but led to a dose-dependent reduction of CSF NfL. In contrast, initiating mHTT lowering in the brain after the onset of neuropathological and behavioural phenotypes in YAC128 mice resulted in a dose-dependent stabilization of NfL increases in both plasma and CSF. CONCLUSIONS Our data provide evidence that the response of NfL in biofluids is influenced by the magnitude of mHTT lowering in the brain and the timing of intervention, suggesting that NfL may serve as a promising exploratory response biomarker for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fanny L Lemarié
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey N Bone
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Austin M Hill
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - David J Hawellek
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Peter McColgan
- Roche Products Ltd., Welwyn Garden City, AL7 1TW, United Kingdom
| | - Edward J Wild
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
6
|
Öz F, Kaya İ, Tanır Y, Küçükgergin C, Aydın AF. Comparison of Serum Neurofilament Light Chain and Tau Protein Levels in Cases with Autism Spectrum Disorder and Their Healthy Siblings and Healthy Controls. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:502-511. [PMID: 39069690 PMCID: PMC11289602 DOI: 10.9758/cpn.23.1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 07/30/2024]
Abstract
Objective : There is a growing interest among clinicians and researchers in identifying potential biomarkers associated with autism. Neurofilament light chain (NfL) and Tau protein, which are proteins associated with neurodegeneration and neuroaxonal degeneration, are particularly promising potential biomarker candidates in this field. Methods : In this study, we compared serum NfL (sNfL) and serum Tau (sTau) levels in Autism spectrum disorder (ASD) patients, their healthy siblings (HS), and healthy controls (HC), aimed to investigate their relationship with ASD severity. Our study included 43 ASD-diagnosed participants, 43 HS participants and 42 HC participants. Clinical characteristics of the participants were assesed by Kiddie Schedule for Affective Disorders and Schizophrenia, Childhood Autism Rating Scale, Aberrant Behavior Checklist, and Strengths and Difficulties Questionnaire. Serum samples were subjected to analysis via enzyme-linked immunosorbent assay to quantitatively measure the levels of NfL and Tau protein. Results : sNfL levels in the ASD group were significantly higher than both of the control groups. Regarding sTau levels, no significant difference was found between study and control groups. In addition, NfL and Tau levels were not significantly correlated with ASD symptom severity. Conclusion : Our findings may indicate that the sNfl levels associated with neuroaxonal damage may constitue a potential clinical biomarker rather than being an endophenotype phenomena.
Collapse
Affiliation(s)
- Fırat Öz
- Departmant of Child and Adolescent Psychiatry, Siirt Training and Research Hospital, Siirt, Turkey
| | - İlyas Kaya
- Department of Child and Adolescent Psychiatry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Yaşar Tanır
- Department of Child and Adolescent Psychiatry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Canan Küçükgergin
- Departments of Medical Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Abdurrahman Fatih Aydın
- Departments of Medical Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Chen L, Yang G, Qu F. Aptamer-based sensors for fluid biopsies of protein disease markers. Talanta 2024; 276:126246. [PMID: 38796994 DOI: 10.1016/j.talanta.2024.126246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Fluid biopsy technology, characterized by its minimally invasive nature, speed, and continuity, has become a rapidly advancing and widely applied real-time diagnostic technique. Among various biomarkers, proteins represent the most abundant class of disease indicators. The sensitive and accurate detection of protein markers in bodily fluids is significantly influenced by the control exerted by recognition ligands. Aptamers, which are structurally dynamic functional oligonucleotides, exhibit high affinity, specific recognition of targets, and notable characteristics of high editability and modularity. These features make aptamer universal "recognition-capture" components, contribute to a significant leap in their applications within the biosensor domain. In this context, we provide a comprehensive review of the extensive application of aptamer-based biosensors in fluid biopsy. We systematically compile the characteristics and construction strategies of aptamer-based biosensors tailored for fluid biopsy, including aptamer sequences, affinity (KD), fluid background, sensing technologies, sensor construction strategies, incubation time, detection performance, and influencing factors. Furthermore, a comparative analysis of their advantages and disadvantages was conducted. In conclusion, we delineate and deliberate on prospective research trajectories and challenges that lie ahead in the realm of aptamer-based biosensors for fluid biopsy.
Collapse
Affiliation(s)
- Li Chen
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Feng Qu
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
8
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
9
|
Ates G, Taguchi T, Maher P. CMS121 Partially Attenuates Disease Progression in Mouse Models of Huntington's Disease. Mol Neurobiol 2024; 61:2165-2175. [PMID: 37864765 PMCID: PMC11191676 DOI: 10.1007/s12035-023-03711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
There are currently no drugs that meaningfully slow down the progression of Huntington's disease (HD). Moreover, drug candidates against a single molecular target have not had significant success. Therefore, a different approach to HD drug discovery is needed. Previously we showed that the flavonol fisetin is efficacious in mouse and fly models of HD (Hum. Mol. Gen. 20:261, 2011). It is also effective in animal models of Alzheimer's disease (AD), ischemic stroke, and the CNS complications of diabetes, all of which share some pathological features with HD. Potent derivatives of fisetin with improved pharmacology were made that maintain its multiple biological activities (J. Med. Chem. 55:378, 2012). From 160 synthetic fisetin derivatives, one, CMS121, was selected for further study in the context of HD based on pharmacological parameters and its efficacy in animal models of AD. Both R6/2 and YAC128 mouse models of HD were used in these studies. We examined motor function using multiple assays as well as survival. In the R6/2 mice, we also looked at the effects of CMS121 on striatal gene expression. In both models, we found a slowing of motor dysfunction and an increase in median life span. Interestingly, in the YAC128 mice, the effects on the slowing in motor function loss became increasingly more pronounced as the mice aged. CMS121 also reduced HD-driven changes in the expression of genes associated with the proteasome and oxidative phosphorylation. Overall, these results suggest that CMS121 could provide some benefits for HD patients, particularly with regard to increasing health span.
Collapse
Affiliation(s)
- Gamze Ates
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
- Vrije Universiteit Brussel, Ixelles, Belgium
| | - Taketo Taguchi
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Vidas-Guscic N, van Rijswijk J, Van Audekerke J, Jeurissen B, Nnah I, Tang H, Muñoz-Sanjuan I, Pustina D, Cachope R, Van der Linden A, Bertoglio D, Verhoye M. Diffusion MRI marks progressive alterations in fiber integrity in the zQ175DN mouse model of Huntington's disease. Neurobiol Dis 2024; 193:106438. [PMID: 38365045 DOI: 10.1016/j.nbd.2024.106438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease affecting motor and cognitive abilities. Multiple studies have found white matter anomalies in HD-affected humans and animal models of HD. The identification of sensitive white-matter-based biomarkers in HD animal models will be important in understanding disease mechanisms and testing the efficacy of therapeutic interventions. Here we investigated the progression of white matter deficits in the knock-in zQ175DN heterozygous (HET) mouse model of HD at 3, 6 and 11 months of age (M), reflecting different states of phenotypic progression. We compared findings from traditional diffusion tensor imaging (DTI) and advanced fixel-based analysis (FBA) diffusion metrics for their sensitivity in detecting white matter anomalies in the striatum, motor cortex, and segments of the corpus callosum. FBA metrics revealed progressive and widespread reductions of fiber cross-section and fiber density in myelinated bundles of HET mice. The corpus callosum genu was the most affected structure in HET mice at 6 and 11 M based on the DTI and FBA metrics, while the striatum showed the earliest progressive differences starting at 3 M based on the FBA metrics. Overall, FBA metrics detected earlier and more prominent alterations in myelinated fiber bundles compared to the DTI metrics. Luxol fast blue staining showed no loss in myelin density, indicating that diffusion anomalies could not be explained by myelin reduction but diffusion anomalies in HET mice were accompanied by increased levels of neurofilament light chain protein at 11 M. Altogether, our findings reveal progressive alterations in myelinated fiber bundles that can be measured using diffusion MRI, representing a candidate noninvasive imaging biomarker to study phenotype progression and the efficacy of therapeutic interventions in zQ175DN mice. Moreover, our study exposed higher sensitivity of FBA than DTI metrics, suggesting a potential benefit of adopting these advanced metrics in other contexts, including biomarker development in humans.
Collapse
Affiliation(s)
- Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; μNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium.
| | - Joëlle van Rijswijk
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; μNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; μNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- μNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium; Vision Lab, University of Antwerp, Antwerp, Belgium; Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Israel Nnah
- Charles River Laboratories, Shrewsbury, MA, United states
| | - Haiying Tang
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, United States
| | - Ignacio Muñoz-Sanjuan
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, United States
| | - Dorian Pustina
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, United States
| | - Roger Cachope
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, United States
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; μNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; μNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; μNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Abdelmoaty MM, Lu E, Kadry R, Foster EG, Bhattarai S, Mosley RL, Gendelman HE. Clinical biomarkers for Lewy body diseases. Cell Biosci 2023; 13:209. [PMID: 37964309 PMCID: PMC10644566 DOI: 10.1186/s13578-023-01152-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders characterized by pathologic aggregates of neural and glial α-synuclein (α-syn) in the form of Lewy bodies (LBs), Lewy neurites, and cytoplasmic inclusions in both neurons and glia. Two major classes of synucleinopathies are LB disease and multiple system atrophy. LB diseases include Parkinson's disease (PD), PD with dementia, and dementia with LBs. All are increasing in prevalence. Effective diagnostics, disease-modifying therapies, and therapeutic monitoring are urgently needed. Diagnostics capable of differentiating LB diseases are based on signs and symptoms which might overlap. To date, no specific diagnostic test exists despite disease-specific pathologies. Diagnostics are aided by brain imaging and cerebrospinal fluid evaluations, but more accessible biomarkers remain in need. Mechanisms of α-syn evolution to pathologic oligomers and insoluble fibrils can provide one of a spectrum of biomarkers to link complex neural pathways to effective therapies. With these in mind, we review promising biomarkers linked to effective disease-modifying interventions.
Collapse
Affiliation(s)
- Mai M Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Eugene Lu
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rana Kadry
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emma G Foster
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaurav Bhattarai
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
Hwang YS, Oh E, Kim M, Lee CY, Kim HS, Chung SJ, Sung YH, Yoon WT, Cho JH, Lee JH, Kim HJ, Chang HJ, Jeon B, Woo KA, Ko SB, Kwon KY, Moon J, Shin C, Kim YE, Lee JY. Plasma neurofilament light-chain and phosphorylated tau as biomarkers of disease severity in Huntington's disease: Korean cohort data. J Neurol Sci 2023; 452:120744. [PMID: 37541133 DOI: 10.1016/j.jns.2023.120744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE To investigate neurofilament light chain (NfL), phosphorylated tau (p-Tau) and total tau (t-Tau) as plasma markers for clinical severity in Korean Huntington's disease (HD) cohort. METHODS Genetically-confirmed 67 HD patients participated from 13 referral hospitals in South Korea. The subjects were evaluated with the Unified Huntington's Disease Rating Scale (UHDRS), total motor score (TMS) and total functional capacity (TFC), Mini-Mental Status Examination (K-MMSE), Montreal Cognitive Assessment (MoCA-K), and Beck's depression inventory (K-BDI). We measured plasma NfL, p-Tau and t-Tau concentrations using single-molecule array (SIMOA) assays. Stages of HD were classified based on UHDRS-TFC score and plasma markers were analyzed for correlation with clinical severity scales. RESULTS Plasma NfL was elevated in both 6 premanifest and 61 full manifest HD patients compared to the reference value, which increased further from premanifest to manifest HD groups. The NfL level was not significantly correlated with UHDRS TMS or TFC scores in manifest HD patients. Plasma p-Tau was also elevated in HD patients (p = 0.038). The level was the highest in stage III-V HD (n = 30) group (post-hoc p < 0.05). The p-Tau was correlated with UHDRS TFC scores (adjusted p = 0.002). Plasma t-Tau neither differed among the groups nor associated with any clinical variables. CONCLUSIONS This study supports plasma NfL being a biomarker for initial HD manifestation in Korean cohort, and a novel suggestion of plasma p-Tau as a potential biomarker reflecting the clinical severity in full-manifest HD.
Collapse
Affiliation(s)
- Yun Su Hwang
- Department of Neurology, Jeonbuk National University Medical School and Hospital & Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University College of Medicine and Hospital, Daejeon, Republic of Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital & Dementia and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Young Lee
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University, College of Medicine, Seoul, Republic of Korea
| | - Hyun Sook Kim
- Department of Neurology, Bundang Medical Center, CHA university School of Medicine, Seongnam, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hee Sung
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Won Tae Yoon
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Hwan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Movement Disorders Center, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Chang
- Department of Neurology, Movement Disorders Center, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University College of Medicine & Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Movement Disorders Center, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ah Woo
- Department of Neurology, Movement Disorders Center, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University College of Medicine & Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Seong Beom Ko
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyum-Yil Kwon
- Department of Neurology, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital & Dementia and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Genomic Medicine, College of medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chaewon Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea; Chungnam National University College of Medicine, Daejon, Republic of Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine & Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Walia N, Eratne D, Loi SM, Farrand S, Li QX, Malpas CB, Varghese S, Walterfang M, Evans AH, Parker S, Collins SJ, Masters CL, Velakoulis D. Cerebrospinal fluid neurofilament light and cerebral atrophy in younger-onset dementia and primary psychiatric disorders. Intern Med J 2023; 53:1564-1569. [PMID: 36314730 DOI: 10.1111/imj.15956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/03/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND AIMS Neurodegeneration underpins the pathological processes of younger-onset dementia (YOD) and has been implicated in primary psychiatric disorders (PSYs). Cerebrospinal fluid (CSF) neurofilament light (NfL) has been used to investigate neurodegeneration severity through correlation with structural brain changes in various conditions, but has seldom been evaluated in YOD and PSYs. METHODS This retrospective study included patients with YOD or PSYs with magnetic resonance imaging (MRI) of the brain and CSF NfL analysis. Findings from brain MRI were analysed using automated volumetry (volBrain) to measure white matter (WM), grey matter (GM) and whole brain (WB) volumes expressed as percentages of total intracranial volume. Correlations between NfL and brain volume measurements were computed whilst adjusting for age. RESULTS Seventy patients (47 with YOD and 23 with PSY) were identified. YOD types included Alzheimer disease and behavioural variant frontotemporal dementia. PSY included schizophrenia and major depressive disorder. MRI brain sequences were either fast spoiler gradient-echo (FSPGR) or magnetization-prepared rapid acquisition gradient-echo (MPRAGE). In the total cohort, higher NfL was associated with reduced WB in the FSPGR and MPRAGE sequences (r = -0.402 [95% confidence interval (CI), -0.593 to -0.147], P = 0.008 and r = -0.625 [95% CI, -0.828 to -0.395], P < 0.001, respectively). Higher NfL was related to reduced GM in FSPGR (r = 0.385 [95% CI, -0.649 to -0.014], P = 0.017) and reduced WM in MPRAGE (r = -0.650 [95% CI, -0.777 to -0.307], P < 0.001). Similar relationships were seen in YOD, but not in PSY. CONCLUSION Higher CSF NfL is related to brain atrophy in YOD, further supporting its use as a nonspecific marker of neurodegeneration severity.
Collapse
Affiliation(s)
- Nirbaanjot Walia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre & Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samantha M Loi
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre & Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Farrand
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre & Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qiao-Xin Li
- National Dementia and Diagnostics Laboratory, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charles B Malpas
- Clinical Outcomes Research Unit (CORe), Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Shiji Varghese
- National Dementia and Diagnostics Laboratory, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Walterfang
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre & Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew H Evans
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Shaun Parker
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Steven J Collins
- National Dementia and Diagnostics Laboratory, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L Masters
- National Dementia and Diagnostics Laboratory, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre & Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Mengel D, Wellik IG, Schuster KH, Jarrah SI, Wacker M, Ashraf NS, Öz G, Synofzik M, Costa MDC, McLoughlin HS. Blood levels of neurofilament light are associated with disease progression in a mouse model of spinocerebellar ataxia type 3. Dis Model Mech 2023; 16:dmm050144. [PMID: 37664882 PMCID: PMC10499033 DOI: 10.1242/dmm.050144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Increased neurofilament light (NfL; NEFL) protein in biofluids is reflective of neurodegeneration and has gained interest as a biomarker across neurodegenerative diseases. In spinocerebellar ataxia type 3 (SCA3), the most common dominantly inherited ataxia, patients exhibit progressive NfL increases in peripheral blood when becoming symptomatic, and NfL remains stably elevated throughout further disease course. However, progressive NfL changes are not yet validated in relevant preclinical SCA3 animal models, hindering its application as a biomarker during therapeutic development. We used ultra-sensitive single-molecule array (Simoa) to measure blood NfL over disease progression in YACQ84 mice, a model of SCA3, assessing relationships with measures of disease severity including age, CAG repeat size and magnetic resonance spectroscopy. YACQ84 mice exhibited plasma NfL increases that were concomitant with ataxia-related motor deficits as well as increased serum NfL, which correlated with previously established neurometabolite abnormalities, two relevant measures of disease in patients with SCA3. Our findings establish the progression of NfL increases in the preclinical YACQ84 mouse, further supporting the utility of blood NfL as a peripheral neurodegeneration biomarker and informing on coinciding timelines of different measures of SCA3 pathogenesis.
Collapse
Affiliation(s)
- David Mengel
- Research Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen 72076,Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen 72076, Germany
| | - Isabel G. Wellik
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kristen H. Schuster
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Sabrina I. Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Madeleine Wacker
- Research Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen 72076,Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen 72076, Germany
| | - Naila S. Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthis Synofzik
- Research Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen 72076,Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen 72076, Germany
| | | | | |
Collapse
|
15
|
van de Zande NA, Bulk M, Najac C, van der Weerd L, de Bresser J, Lewerenz J, Ronen I, de Bot ST. Study protocol of IMAGINE-HD: Imaging iron accumulation and neuroinflammation with 7T-MRI + CSF in Huntington's disease. Neuroimage Clin 2023; 39:103450. [PMID: 37327706 PMCID: PMC10509525 DOI: 10.1016/j.nicl.2023.103450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Strong evidence suggests a significant role for iron accumulation in the brain in addition to the well-documented neurodegenerative aspects of Huntington's disease (HD). The putative mechanisms by which iron is linked to the HD pathogenesis are multiple, including oxidative stress, ferroptosis and neuroinflammation. However, no previous study in a neurodegenerative disease has linked the observed increase of brain iron accumulation as measured by MRI with well-established cerebrospinal fluid (CSF) and blood biomarkers for iron accumulation, or with associated processes such as neuroinflammation. This study is designed to link quantitative data from iron levels and neuroinflammation metabolites obtained from 7T MRI of HD patients, with specific and well-known clinical biofluid markers for iron accumulation, neurodegeneration and neuroinflammation. Biofluid markers will provide quantitative measures of overall iron accumulation, neurodegeneration and neuroinflammation, while MRI measurements on the other hand will provide quantitative spatial information on brain pathology, neuroinflammation and brain iron accumulation, which will be linked to clinical outcome measures. METHODS This is an observational cross-sectional study, IMAGINE-HD, in HD gene expansion carriers and healthy controls. We include premanifest HD gene expansion carriers and patients with manifest HD in an early or moderate stage. The study includes a 7T MRI scan of the brain, clinical evaluation, motor, functional, and neuropsychological assessments, and sampling of CSF and blood for the detection of iron, neurodegenerative and inflammatory markers. Quantitative Susceptibility Maps will be reconstructed using T2* weighted images to quantify brain iron levels and Magnetic Resonance Spectroscopy will be used to obtain information about neuroinflammation by measuring cell-specific intracellular metabolites' level and diffusion. Age and sex matched healthy subjects are included as a control group. DISCUSSION Results from this study will provide an important basis for the evaluation of brain iron levels and neuroinflammation metabolites as an imaging biomarker for disease stage in HD and their relationship with the salient pathomechanisms of the disease on the one hand, and with clinical outcome on the other.
Collapse
Affiliation(s)
| | - Marjolein Bulk
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Baden-Württemberg, Germany.
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom.
| | | |
Collapse
|
16
|
Li XY, Bao YF, Xie JJ, Gao B, Qian SX, Dong Y, Wu ZY. Application Value of Serum Neurofilament Light Protein for Disease Staging in Huntington's Disease. Mov Disord 2023. [PMID: 37148558 DOI: 10.1002/mds.29430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Neurofilament light protein (NfL) has been proven to be a sensitive biomarker for Huntington's disease (HD). However, these studies did not include HD patients at advanced stages or with larger CAG repeats (>50), leading to a knowledge gap of the characteristics of NfL. METHODS Serum NfL (sNfL) levels were quantified using an ultrasensitive immunoassay. Participants were assessed by clinical scales and 7.0 T magnetic resonance imaging. Longitudinal samples and clinical data were obtained. RESULTS Baseline samples were available from 110 controls, 90 premanifest HD (pre-HD) and 137 HD individuals. We found levels of sNfL significantly increased in HD compared to pre-HD and controls (both P < 0.0001). The increase rates of sNfL were differed by CAG repeat lengths. However, there was no difference in sNfL levels in manifest HD from early to late stages. In addition, sNfL levels were associated with cognitive measures in pre-HD and manifest HD group, respectively. The increased levels of sNfL were also closely related to microstructural changes in white matter. In the longitudinal analysis, baseline sNfL did not correlate with subsequent clinical function decline. Random forest analysis revealed that sNfL had good power for predicting disease onset. CONCLUSIONS Although sNfL levels are independent of disease stages in manifest HD, it is still an optimal indicator for predicting disease onset and has potential use as a surrogate biomarker of treatment effect in clinical trials. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Gao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Xia Qian
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
17
|
Morena E, Romano C, Marconi M, Diamant S, Buscarinu MC, Bellucci G, Romano S, Scarabino D, Salvetti M, Ristori G. Peripheral Biomarkers in Manifest and Premanifest Huntington's Disease. Int J Mol Sci 2023; 24:ijms24076051. [PMID: 37047023 PMCID: PMC10094222 DOI: 10.3390/ijms24076051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Huntington's disease (HD) is characterized by clinical motor impairment (e.g., involuntary movements, poor coordination, parkinsonism), cognitive deficits, and psychiatric symptoms. An inhered expansion of the CAG triplet in the huntingtin gene causing a pathogenic gain-of-function of the mutant huntingtin (mHTT) protein has been identified. In this review, we focus on known biomarkers (e.g., mHTT, neurofilament light chains) and on new biofluid biomarkers that can be quantified in plasma or peripheral blood mononuclear cells from mHTT carriers. Circulating biomarkers may fill current unmet needs in HD management: better stratification of patients amenable to etiologic treatment; the initiation of preventive treatment in premanifest HD; and the identification of peripheral pathogenic central nervous system cascades.
Collapse
Affiliation(s)
- Emanuele Morena
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Carmela Romano
- Department of Human Neurosciences, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Martina Marconi
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Selene Diamant
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Maria Chiara Buscarinu
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Daniela Scarabino
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
18
|
Mengel D, Wellik IG, Schuster KH, Jarrah SI, Wacker M, Ashraf NS, Öz G, Synofzik M, do Carmo Costa M, McLoughlin HS. Blood neurofilament light chain levels are associated with disease progression in a transgenic SCA3 mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530463. [PMID: 36909535 PMCID: PMC10002656 DOI: 10.1101/2023.02.28.530463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Increased neurofilament light (NfL) protein in biofluids is reflective of neurodegeneration and has gained interest as a biomarker across neurodegenerative diseases. In spinocerebellar ataxia type 3 (SCA3), the most common dominantly inherited ataxia, patients exhibit progressive NfL increases in peripheral blood when becoming symptomatic, remaining stably elevated throughout further disease course. However, progressive NfL changes are not yet validated in relevant preclinical SCA3 animal models, hindering its application as a biomarker during therapeutic development. We used ultra-sensitive single-molecule array (Simoa) to measure blood NfL over disease progression in the YACQ84 mouse, assessing relationships with measures of disease severity including age, CAG repeat size, and magnetic resonance spectroscopy. We show that YACQ84 mice exhibit increased blood NfL, concomitant with ataxia-related motor deficits and correlated with neurometabolite abnormalities. Our findings establish natural history progression of NfL increases in the preclinical YACQ84 mouse, further supporting the utility of blood NfL as a peripheral neurodegeneration biomarker and informing coinciding timelines of different measures of SCA3 pathogenesis. Summary statement Peripheral blood of SCA3 YACQ84 mice exhibits increased abundance of neuronal-specific NfL protein directly associating with disease progression, providing an accessible disease biofluid biomarker to interrogate in preclinical therapeutic studies.
Collapse
Affiliation(s)
- David Mengel
- Research Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Isabel G. Wellik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Madeleine Wacker
- Research Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Naila S. Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Matthis Synofzik
- Research Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
19
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
20
|
Plasma TDP-43 Reflects Cortical Neurodegeneration and Correlates with Neuropsychiatric Symptoms in Huntington's Disease. Clin Neuroradiol 2022; 32:1077-1085. [PMID: 35238950 DOI: 10.1007/s00062-022-01150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Huntington's disease (HD) is a monogenic neurodegenerative disease with no effective treatment currently available. The pathological hallmark of HD is the aggregation of mutant huntingtin in the medium spiny neurons of the striatum, leading to severe subcortical atrophy. Cortical degeneration also occurs in HD from its very early stages, although its biological origin is poorly understood. Among the possible pathological mechanisms that could promote cortical damage in HD, the in vivo study of TDP-43 pathology remains to be explored, which was the main objective of this work. METHODS We investigated the clinical and structural brain correlates of plasma TDP-43 levels in a sample of 36 HD patients. Neuroimaging alterations were assessed both at the macrostructural (cortical thickness) and microstructural (intracortical diffusivity) levels. Importantly, we controlled for mutant huntingtin and tau biomarkers in order to assess the independent role of TDP-43 in HD neurodegeneration. RESULTS Plasma TDP-43 levels in HD specifically correlated with the presence and severity of apathy (p = 0.003). The TDP-43 levels also reflected cortical thinning and microstructural degeneration, especially in frontal and anterior-temporal regions (p < 0.05 corrected). These TDP-43-related brain alterations correlated, in turn, with the severity of cognitive, motor and behavioral symptoms. CONCLUSION Our results suggest that the presence of TDP-43 pathology in HD has an independent contribution to the severity of neuropsychiatric symptoms and frontotemporal degeneration. These findings point out the importance of TDP-43 as an additional pathological process to be taken into consideration in this devastating disorder.
Collapse
|
21
|
Caron NS, Haqqani AS, Sandhu A, Aly AE, Findlay Black H, Bone JN, McBride JL, Abulrob A, Stanimirovic D, Leavitt BR, Hayden MR. Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity. Brain Commun 2022; 4:fcac309. [PMID: 36523269 PMCID: PMC9746690 DOI: 10.1093/braincomms/fcac309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 08/27/2023] Open
Abstract
The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease. We conducted a hypothesis-driven analysis of 26 pre-specified protein analytes in CSF from 16 manifest Huntington disease subjects, eight premanifest Huntington disease mutation carriers and eight healthy control individuals using parallel-reaction monitoring mass spectrometry. In addition to reproducing reported changes in previously investigated CSF biomarkers (NEFL, PDYN, and PENK), we also identified novel exploratory CSF proteins (C1QB, CNR1, GNAL, IDO1, IGF2, and PPP1R1B) whose levels were altered in Huntington disease mutation carriers and/or across stages of disease. Moreover, we report strong associations of select CSF proteins with clinical measures of disease severity in manifest Huntington disease subjects (C1QB, CNR1, NEFL, PDYN, PPP1R1B, and TTR) and with years to predicted disease onset in premanifest Huntington disease mutation carriers (ALB, C4B, CTSD, IGHG1, and TTR). Using receiver operating characteristic curve analysis, we identified PENK as being the most discriminant CSF protein for stratifying Huntington disease mutation carriers from controls. We also identified exploratory multi-marker CSF protein panels that improved discrimination of premanifest Huntington disease mutation carriers from controls (PENK, ALB and NEFL), early/mid-stage Huntington disease from premanifest mutation carriers (PPP1R1B, TTR, CHI3L1, and CTSD), and late-stage from early/mid-stage Huntington disease (CNR1, PPP1R1B, BDNF, APOE, and IGHG1) compared with individual CSF proteins. In this study, we demonstrate that combinations of CSF proteins can outperform individual markers for stratifying individuals based on Huntington disease mutation status and disease severity. Moreover, we define exploratory multi-marker CSF protein panels that, if validated, may be used to improve the accuracy of disease-onset predictions, complement existing clinical and imaging biomarkers for monitoring the severity of Huntington disease, and potentially for assessing therapeutic response in clinical trials. Additional studies with CSF collected from larger cohorts of Huntington disease mutation carriers are needed to replicate these exploratory findings.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Akshdeep Sandhu
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amirah E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jeffrey N Bone
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
22
|
McColgan P, Gregory S, Zeun P, Zarkali A, Johnson EB, Parker C, Fayer K, Lowe J, Nair A, Estevez-Fraga C, Papoutsi M, Zhang H, Scahill RI, Tabrizi SJ, Rees G. Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain 2022; 145:3953-3967. [PMID: 35758263 PMCID: PMC9679168 DOI: 10.1093/brain/awac227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Upregulation of functional network connectivity in the presence of structural degeneration is seen in the premanifest stages of Huntington's disease (preHD) 10-15 years from clinical diagnosis. However, whether widespread network connectivity changes are seen in gene carriers much further from onset has yet to be explored. We characterized functional network connectivity throughout the brain and related it to a measure of disease pathology burden (CSF neurofilament light, NfL) and measures of structural connectivity in asymptomatic gene carriers, on average 24 years from onset. We related these measurements to estimates of cortical and subcortical gene expression. We found no overall differences in functional (or structural) connectivity anywhere in the brain comparing control and preHD participants. However, increased functional connectivity, particularly between posterior cortical areas, correlated with increasing CSF NfL level in preHD participants. Using the Allen Human Brain Atlas and expression-weighted cell-type enrichment analysis, we demonstrated that this functional connectivity upregulation occurred in cortical regions associated with regional expression of genes specific to neuronal cells. This relationship was validated using single-nucleus RNAseq data from post-mortem Huntington's disease and control brains showing enrichment of neuronal-specific genes that are differentially expressed in Huntington's disease. Functional brain networks in asymptomatic preHD gene carriers very far from disease onset show evidence of upregulated connectivity correlating with increased disease burden. These changes occur among brain areas that show regional expression of genes specific to neuronal GABAergic and glutamatergic cells.
Collapse
Affiliation(s)
- Peter McColgan
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah Gregory
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Paul Zeun
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Eileanoir B Johnson
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Christopher Parker
- Department of Computer Science and Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Kate Fayer
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jessica Lowe
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Akshay Nair
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Carlos Estevez-Fraga
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marina Papoutsi
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Hui Zhang
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Rachael I Scahill
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Geraint Rees
- University College London Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| |
Collapse
|
23
|
Pellegrini M, Bergonzoni G, Perrone F, Squitieri F, Biagioli M. Current Diagnostic Methods and Non-Coding RNAs as Possible Biomarkers in Huntington's Disease. Genes (Basel) 2022; 13:2017. [PMID: 36360254 PMCID: PMC9689996 DOI: 10.3390/genes13112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could be informative not only to follow disease progression and assess treatment efficacy in clinics, but also to aid in the development of new therapeutic approaches. This is especially important for neurological and genetic disorders, where the administration of appropriate treatment during the disease prodromal stage could significantly delay, if not halt, disease progression. In this review we focus on the current status of biomarkers in Huntington's Disease (HD), a fatal hereditary and degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the ongoing investigations on this topic.
Collapse
Affiliation(s)
- Miguel Pellegrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Marta Biagioli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
24
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
25
|
Papoutsi M, Flower M, Hensman Moss DJ, Holmans P, Estevez-Fraga C, Johnson EB, Scahill RI, Rees G, Langbehn D, Tabrizi SJ. Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington's disease. Brain Commun 2022; 4:fcac279. [PMID: 36519153 PMCID: PMC9732861 DOI: 10.1093/braincomms/fcac279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington's disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington's disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington's disease gene carriers and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared with non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, i.e. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington's disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than for non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington's disease and their effect on brain structure.
Collapse
Affiliation(s)
- Marina Papoutsi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
- Ixico plc, London, UK
| | - Michael Flower
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Davina J Hensman Moss
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Carlos Estevez-Fraga
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Eileanoir B Johnson
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael I Scahill
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Douglas Langbehn
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sarah J Tabrizi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
26
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
27
|
Byrne LM, Schultz JL, Rodrigues FB, van der Plas E, Langbehn D, Nopoulos PC, Wild EJ. Neurofilament Light Protein as a Potential Blood Biomarker for Huntington's Disease in Children. Mov Disord 2022; 37:1526-1531. [PMID: 35437792 PMCID: PMC9308659 DOI: 10.1002/mds.29027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Juvenile-onset Huntington's disease (JOHD) is a rare and particularly devastating form of Huntington's disease (HD) for which clinical diagnosis is challenging and robust outcome measures are lacking. Neurofilament light protein (NfL) in plasma has emerged as a prognostic biomarker for adult-onset HD. METHODS We performed a retrospective analysis of samples and data collected between 2009 and 2020 from the Kids-HD and Kids-JHD studies. Plasma samples from children and young adults with JOHD, premanifest HD (preHD) mutation carriers, and age-matched controls were used to quantify plasma NfL concentrations using ultrasensitive immunoassay. RESULTS We report elevated plasma NfL concentrations in JOHD and premanifest HD mutation-carrying children. In pediatric HD mutation carriers who were within 20 years of their predicted onset and patients with JOHD, plasma NfL level was associated with caudate and putamen volumes. CONCLUSIONS Quantifying plasma NfL concentration may assist clinical diagnosis and therapeutic trial design in the pediatric population. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lauren M. Byrne
- Huntington's Disease Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Jordan L. Schultz
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
- Department of NeurologyCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Filipe B. Rodrigues
- Huntington's Disease Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Ellen van der Plas
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Douglas Langbehn
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Peggy C. Nopoulos
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
- Department of NeurologyCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Edward J. Wild
- Huntington's Disease Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
28
|
Preventive Drugs for Huntington’s Disease: A Choice-Based Conjoint Survey of Patient Preferences. J Clin Transl Sci 2022; 6:e35. [PMID: 35433035 PMCID: PMC9003635 DOI: 10.1017/cts.2022.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: This research examined the perspective of the Huntington’s disease (HD) community regarding the use of predictive biomarkers as endpoints for regulatory approval of therapeutics to prevent or delay the onset of clinical HD in asymptomatic mutation carriers. Methods: An online, choice-based conjoint survey was shared with HD community members including untested at-risk individuals, presymptomatic mutation carriers, and symptomatic individuals. Across 15 scenarios, participants chose among two proposed therapies with differing degrees of biomarker improvement and side effects or a third option of no treatment. Results: Two hundred and thirty-eight responses were received. Attributes reflecting biomarker efficacy (e.g., prevention of brain atrophy on magnetic resonance imaging, reduced mutant huntingtin, or reduced inflammation biomarkers) had 3- to 7-fold greater importance than attributes representing side effects (e.g., increased risk of heart disease, cancer, and stroke over 20 years) and were more influential in directing choice of treatments. Reduction in mutant huntingtin protein was the most valued attribute overall. Multinomial logit model simulations based on survey responses demonstrated high interest among respondents (87–99% of the population) for drugs that might prevent or delay HD solely based upon biomarker evidence, even at the risk of serious side effects. Conclusion: These results indicate a strong desire among members of the HD community for preventive therapeutics and a willingness to accept significant side effects, even before the drug has been shown to definitively delay disease onset if the drug improves biomarker evidence of HD progression. Preferences of the HD community should inform regulatory policies for approving preventive therapies.
Collapse
|
29
|
Plasma neurofilament light chain as a biomarker in Wilson's disease. Parkinsonism Relat Disord 2021; 95:5-10. [PMID: 34942565 DOI: 10.1016/j.parkreldis.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Neurofilament light chain (NfL) was recently proposed as a promising blood biomarker for nervous system diseases, including Wilson's disease (WD). In this study, we investigated plasma NfL concentrations in patients with different types of WD and their correlations with clinical manifestations and brain atrophy. METHODS Seventy-five WD cases (54 neurological type, 21 hepatic type) and 27 age-matched healthy controls were included in this study. We compared plasma NfL concentrations between the different types and correlated them with Unified Wilson's Disease Rating Scale (UWDRS) scores. Patients were allocated to stable and unstable groups according to changes in UWDRS scores and clinical assessment. We compared the differences in plasma NfL concentrations between groups. Voxel-based morphometry (VBM) and FreeSurfer software were used to analyze MRI images. We investigated the correlation between plasma NfL concentrations and volume of gray matter, white matter, and several areas of interest in the brain MRI of 24 patients. RESULTS Plasma NfL concentrations were significantly higher in neurological type WD than in hepatic type WD (8.16 vs. 3.19 pg/mL, p < 0.001). Plasma NfL concentrations were positively correlated with UWDRS scores (r = 0.291, p = 0.035) in patients with neurological type WD. Plasma NfL was significantly higher in unstable patients than in stable patients (10.74 vs. 7.23 pg/mL, p = 0.004). Significant negative associations were found between plasma NfL level and the volumes of total gray matter, bilateral caudate nucleus, putamen, and nucleus accumbens. CONCLUSION Plasma NfL is valuable as a biomarker for neurological damage in patients with WD.
Collapse
|
30
|
Graham NSN, Zimmerman KA, Moro F, Heslegrave A, Maillard SA, Bernini A, Miroz JP, Donat CK, Lopez MY, Bourke N, Jolly AE, Mallas EJ, Soreq E, Wilson MH, Fatania G, Roi D, Patel MC, Garbero E, Nattino G, Baciu C, Fainardi E, Chieregato A, Gradisek P, Magnoni S, Oddo M, Zetterberg H, Bertolini G, Sharp DJ. Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury. Sci Transl Med 2021; 13:eabg9922. [PMID: 34586833 DOI: 10.1126/scitranslmed.abg9922] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Neil S N Graham
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Karl A Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy.,Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Dipartimento di Anestesia e Rianimazione, 20122, Milan, Italy
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Samia Abed Maillard
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Adriano Bernini
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - John-Paul Miroz
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Niall Bourke
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Amy E Jolly
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Emma-Jane Mallas
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Eyal Soreq
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Mark H Wilson
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London W6 8RF, UK.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Gavin Fatania
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Dylan Roi
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Maneesh C Patel
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Elena Garbero
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - Giovanni Nattino
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - Camelia Baciu
- Neurorianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milano 20162, Italy
| | - Enrico Fainardi
- Department of Experimental and Clinical Sciences, Careggi University Hospital, University of Firenze, Florence 50139, Italy
| | - Arturo Chieregato
- Neurorianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milano 20162, Italy
| | - Primoz Gradisek
- Clinical Department of Anaesthesiology and Intensive Therapy, University Medical Center, Ljubljana 1000, Slovenia
| | - Sandra Magnoni
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento 38122, Italy
| | - Mauro Oddo
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland.,Medical Direction, CHUV Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal 431 41, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
| | - Guido Bertolini
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK.,Centre for Injury Studies, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
31
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
32
|
Sampedro F, Kulisevsky J. Intracortical surface-based MR diffusivity to investigate neurologic and psychiatric disorders: a review. J Neuroimaging 2021; 32:28-35. [PMID: 34506674 DOI: 10.1111/jon.12930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows the quantification of water diffusivity within the cerebral cortex. Alterations in cortical mean diffusivity (MD) have been suggested to reflect microstructural damage. Interestingly, microstructural changes can be detected in the absence of macrostructural alterations such as cortical thinning or gray matter volume loss. However, volume-based neuroimaging techniques for the study of cortical MD have shown some limitations in terms of intersubject registration, partial volume correction, and smoothing artifacts. In this review, we summarize how a surface-based approach for the assessment of intracortical MD has not only overcome these technical limitations, but also provided important contributions to the fields of neurology and psychiatry. Since its proposal in 2018, the use of this neuroimaging technique has revealed cortical microstructural alterations in a wide range of clinical contexts, including Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and primary progressive aphasia. In most cases, the detection of early intracortical MD alterations preceded the identification of macrostructural changes. Importantly, microstructural damage significantly correlated with cognitive performance and biomarker measures, suggesting a potential role for its use in clinical trials as a sensitive imaging marker of neurodegeneration. Given that DTI is a widely available imaging modality, these encouraging results motivate further research using this novel neuroimaging metric in other clinical contexts. Overall, this technique has shed light into the key role of early cortical degeneration in many diseases where cortical involvement was previously thought to have limited clinical and biological significance.
Collapse
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
33
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
34
|
Zhu Y, Yang B, Wang F, Liu B, Li K, Yin K, Yin WF, Zhou C, Tian S, Ren H, Pang A, Yang X. Association between plasma neurofilament light chain levels and cognitive function in patients with Parkinson's disease. J Neuroimmunol 2021; 358:577662. [PMID: 34311152 DOI: 10.1016/j.jneuroim.2021.577662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023]
Abstract
This study investigated the potential association between levels of plasma neurofilament light chain (NfL) and cognitive function in patients suffering from Parkinson's disease (PD) in P.R. China.We collected a total of 168 participants (130 PD patients and 38 healthy controls),and evaluated the relationship of plasma NfL levels with cognitive dysfunction in PD patients. Our results shown that plasma NfL levels increased with an increase in cognitive impairment across the three groups of PD patients: PD with normal cognition (PD-NC), 17.9 ± 8.9 pg/ml; PD with mild cognitive impairment (PD-MCI),21.9 ± 10.3 pg/ml; and PD dementia (PDD), 35.7 ± 21.7 pg/ml. Higher MMSE scores were associated with lower plasma NfL levels (r = -0.49, 95% CI -0.61 to -0.34, p < 0.0001). Our results associating plasma NfL levels with cognitive dysfunction in PD are consistent with previous studies carried out in several countries/district, based on our meta-analysis.
Collapse
Affiliation(s)
- Yongyun Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Baiyuan Yang
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province 690041, PR China
| | - Fang Wang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Bin Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Kelu Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Kangfu Yin
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Wei Fang Yin
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Chuanbin Zhou
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Sijia Tian
- Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China.
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China.
| |
Collapse
|
35
|
Barro C, Zetterberg H. The blood biomarkers puzzle - A review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods 2021; 361:109281. [PMID: 34237384 DOI: 10.1016/j.jneumeth.2021.109281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Neurodegenerative diseases are heterogeneous in their cause and clinical presentation making clinical assessment and disease monitoring challenging. Because of this, there is an urgent need for objective tools such as fluid biomarkers able to quantitate different aspects of the disease. In the last decade, technological improvements and awareness of the importance of biorepositories led to the discovery of an evolving number of fluid biomarkers covering the main characteristics of neurodegenerative diseases such as neurodegeneration, protein aggregates and inflammation. The ability to quantitate each aspect of the disease at a high definition enables a more precise stratification of the patients at inclusion in clinical trials, hence reducing the noise that may hamper the detection of therapeutical efficacy and allowing for smaller but likewise powered studies, which particularly improves the ability to start clinical trials for rare neurological diseases. Moreover, the use of fluid biomarkers has the potential to support a targeted therapeutical intervention, as it is now emerging for the treatment of amyloid-beta deposition in patients suffering from Alzheimer's disease. Here we review the knowledge that evolved from the measurement of fluid biomarker proteins in neurodegenerative conditions.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
36
|
Figgie MP, Appleby BS. Clinical Use of Improved Diagnostic Testing for Detection of Prion Disease. Viruses 2021; 13:v13050789. [PMID: 33925126 PMCID: PMC8146465 DOI: 10.3390/v13050789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Prion diseases are difficult to recognize as many symptoms are shared among other neurologic pathologies and the full spectra of symptoms usually do not appear until late in the disease course. Additionally, many commonly used laboratory markers are non-specific to prion disease. The recent introduction of second-generation real time quaking induced conversion (RT-QuIC) has revolutionized pre-mortem diagnosis of prion disease due to its extremely high sensitivity and specificity. However, RT-QuIC does not provide prognostic data and has decreased diagnostic accuracy in some rarer, atypical prion diseases. The objective of this review is to provide an overview of the current clinical utility of fluid-based biomarkers, neurodiagnostic testing, and brain imaging in the diagnosis of prion disease and to suggest guidelines for their clinical use, with a focus on rarer prion diseases with atypical features. Recent advancements in laboratory-based testing and imaging criteria have shown improved diagnostic accuracy and prognostic potential in prion disease, but because these diagnostic tests are not sensitive in some prion disease subtypes and diagnostic test sensitivities are unknown in the event that CWD transmits to humans, it is important to continue investigations into the clinical utility of various testing modalities.
Collapse
Affiliation(s)
- Mark P. Figgie
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian S. Appleby
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
37
|
Schwarz AJ. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021; 18:686-708. [PMID: 33846962 PMCID: PMC8423963 DOI: 10.1007/s13311-021-01027-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Imaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect-especially with a clear relationship to dose-can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to "de-risk" the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer's disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.
Collapse
Affiliation(s)
- Adam J Schwarz
- Takeda Pharmaceuticals Ltd., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
38
|
Sampedro F, Pérez-Pérez J, Martínez-Horta S, Pérez-González R, Horta-Barba A, Campolongo A, Izquierdo C, Pagonabarraga J, Gómez-Ansón B, Kulisevsky J. Cortical microstructural correlates of plasma neurofilament light chain in Huntington's disease. Parkinsonism Relat Disord 2021; 85:91-94. [PMID: 33770670 DOI: 10.1016/j.parkreldis.2021.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is a severe neurodegenerative disorder with no effective treatment. Minimally-invasive biomarkers such as blood neurofilament light chain (NfL) in HD are therefore needed to quantitatively characterize neuronal loss. NfL levels in HD are known to correlate with disease progression and striatal atrophy, but whether they also reflect cortical degeneration remains elusive. METHODS In a sample of 35 HD patients, we characterized the cortical macro (cortical thickness) and microstructural (increased intracortical diffusivity) correlates of plasma NfL levels. We further investigated whether NfL-related cortical alterations correlated with clinical indicators of disease progression. RESULTS Increased plasma NfL levels in HD reflected posterior-cortical microstructural degeneration, but not reduced cortical thickness (p < 0.05, corrected). Importantly, these imaging alterations correlated, in turn, with more severe motor, cognitive and behavioral symptoms. CONCLUSION Plasma NfL levels may be useful for tracking clinically-meaningful cortical deterioration in HD. Additionally, our results further reinforce the role of intracortical diffusivity as a valuable imaging indicator in movement disorders.
Collapse
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jesus Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Rocío Pérez-González
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Beatriz Gómez-Ansón
- Neuroradiology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
39
|
Coarelli G, Darios F, Petit E, Dorgham K, Adanyeguh I, Petit E, Brice A, Mochel F, Durr A. Plasma neurofilament light chain predicts cerebellar atrophy and clinical progression in spinocerebellar ataxia. Neurobiol Dis 2021; 153:105311. [PMID: 33636389 DOI: 10.1016/j.nbd.2021.105311] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Neurofilament light chain (NfL) is a marker of brain atrophy and predictor of disease progression in rare diseases such as Huntington Disease, but also in more common neurological disorders such as Alzheimer's disease. The aim of this study was to measure NfL longitudinally in autosomal dominant spinocerebellar ataxias (SCAs) and establish correlation with clinical and imaging parameters. We enrolled 62 pathological expansions carriers (17 SCA1, 13 SCA2, 19 SCA3, and 13 SCA7) and 19 age-matched controls in a prospective biomarker study between 2011 and 2015 and followed for 24 months at the Paris Brain Institute. We performed neurological examination, brain 3 T MRI and plasma NfL measurements using an ultrasensitive single-molecule array at baseline and at the two-year follow-up visit. We evaluated NfL correlations with ages, CAG repeat sizes, clinical scores and volumetric brain MRIs. NfL levels were significantly higher in SCAs than controls at both time points (p < 0.001). Age-adjusted NfL levels were significantly correlated at baseline with clinical scores (p < 0.01). We identified optimal NfL cut-off concentrations to differentiate controls from carriers for each genotype (SCA1 16.87 pg/mL, SCA2, 19.1 pg/mL, SCA3 16.04 pg/mL, SCA7 16.67 pg/mL). For all SCAs, NfL concentration was stable over two years (p = 0.95) despite a clinical progression (p < 0.0001). Clinical progression between baseline and follow-up was associated with higher NfL concentrations at baseline (p = 0.04). Of note, all premanifest carriers with NfL levels close to cut off concentrations had signs of the disease at follow-up. For all SCAs, the higher the observed NfL, the lower the pons volume at baseline (p < 0.01) and follow-up (p = 0.02). Higher NfL levels at baseline in all SCAs predicted a decrease in cerebellar volume (p = 0.03). This result remained significant for SCA2 only among all genotypes (p = 0.02). Overall, plasma NfL levels at baseline in SCA expansion carriers predict cerebellar volume change and clinical score progression. NfL levels might help refine inclusion criteria for clinical trials in carriers with very subtle signs.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Frederic Darios
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Emilien Petit
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), F-75013 Paris, France
| | - Isaac Adanyeguh
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Elodie Petit
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexis Brice
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.
| |
Collapse
|
40
|
Przybyl L, Wozna-Wysocka M, Kozlowska E, Fiszer A. What, When and How to Measure-Peripheral Biomarkers in Therapy of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22041561. [PMID: 33557131 PMCID: PMC7913877 DOI: 10.3390/ijms22041561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: (L.P.); (A.F.)
| | - Magdalena Wozna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
- Correspondence: (L.P.); (A.F.)
| |
Collapse
|
41
|
Kang MS, Aliaga AA, Shin M, Mathotaarachchi S, Benedet AL, Pascoal TA, Therriault J, Chamoun M, Savard M, Devenyi GA, Mathieu A, Chakravarty MM, Sandelius Å, Blennow K, Zetterberg H, Soucy JP, Cuello AC, Massarweh G, Gauthier S, Rosa-Neto P. Amyloid-beta modulates the association between neurofilament light chain and brain atrophy in Alzheimer's disease. Mol Psychiatry 2021; 26:5989-6001. [PMID: 32591633 PMCID: PMC8758474 DOI: 10.1038/s41380-020-0818-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Neurofilament light chain (NFL) measurement has been gaining strong support as a clinically useful neuronal injury biomarker for various neurodegenerative conditions. However, in Alzheimer's disease (AD), its reflection on regional neuronal injury in the context of amyloid pathology remains unclear. This study included 83 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 73 AD subjects who were further classified based on amyloid-beta (Aβ) status as positive or negative (Aβ+ vs Aβ-). In addition, 13 rats (5 wild type and 8 McGill-R-Thy1-APP transgenic (Tg)) were examined. In the clinical study, reduced precuneus/posterior cingulate cortex and hippocampal grey matter density were significantly associated with increased NFL concentrations in cerebrospinal fluid (CSF) or plasma in MCI Aβ+ and AD Aβ+. Moreover, AD Aβ+ showed a significant association between the reduced grey matter density in the AD-vulnerable regions and increased NFL concentrations in CSF or plasma. Congruently, Tg rats recapitulated and validated the association between CSF NFL and grey matter density in the parietotemporal cortex, entorhinal cortex, and hippocampus in the presence of amyloid pathology. In conclusion, reduced grey matter density and elevated NFL concentrations in CSF and plasma are associated in AD-vulnerable regions in the presence of amyloid positivity in the AD clinical spectrum and amyloid Tg rat model. These findings further support the NFL as a neuronal injury biomarker in the research framework of AD biomarker classification and for the evaluation of therapeutic efficacy in clinical trials.
Collapse
Affiliation(s)
- Min Su Kang
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, McGill University, Montreal, QC Canada
| | - Arturo Aliaga Aliaga
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, McGill University, Montreal, QC Canada
| | - Monica Shin
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - Sulantha Mathotaarachchi
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - Andrea L. Benedet
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - Tharick A. Pascoal
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - Joseph Therriault
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - Mira Chamoun
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - Melissa Savard
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - Gabriel A. Devenyi
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Axel Mathieu
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biomedical Engineering, McGill University, Montreal, QC Canada
| | - Åsa Sandelius
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,grid.83440.3b0000000121901201UK Dementia Research Institute at UCL, London, UK ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Jean-Paul Soucy
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, McGill University, Montreal, QC Canada
| | - A. Claudio Cuello
- grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montreal, QC Canada
| | - Gassan Massarweh
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, McGill University, Montreal, QC Canada
| | - Serge Gauthier
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, McGill University, Montreal, QC Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studying in Aging, Montreal, QC, Canada. .,Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada. .,McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
42
|
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain 2020; 143:1975-1998. [PMID: 32408345 DOI: 10.1093/brain/awaa098] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Arie R Gafson
- Department of Brain Sciences, Imperial College, London, UK
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, Montpellier University, Montpellier, France
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Henrik Zetterberg
- University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute at Imperial College, London
| |
Collapse
|
43
|
Mitchell CT, Krier I, Arjomand J, Borowsky B, Tabrizi SJ, Leavitt BR, Luthi-Carter R. Longitudinal expression changes are weak correlates of disease progression in Huntington's disease. Brain Commun 2020; 2:fcaa172. [PMID: 33305259 PMCID: PMC7713990 DOI: 10.1093/braincomms/fcaa172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease is a severe but slowly progressive hereditary illness for which only symptomatic treatments are presently available. Clinical measures of disease progression are somewhat subjective and may require years to detect significant change. There is a clear need to identify more sensitive, objective and consistent measures to detect disease progression in Huntington's disease clinical trials. Whereas Huntington's disease demonstrates a robust and consistent gene expression signature in the brain, previous studies of blood cell RNAs have lacked concordance with clinical disease stage. Here we utilized longitudinally collected samples from a well-characterized cohort of control, Huntington's disease-at-risk and Huntington's disease subjects to evaluate the possible correlation of gene expression and disease status within individuals. We interrogated these data in both cross-sectional and longitudinal analyses. A number of changes in gene expression showed consistency within this study and as compared to previous reports in the literature. The magnitude of the mean disease effect over 2 years' time was small, however, and did not track closely with motor symptom progression over the same time period. We therefore conclude that while blood-derived gene expression indicators can be of value in understanding Huntington's disease pathogenesis, they are insufficiently sensitive to be of use as state biomarkers.
Collapse
Affiliation(s)
- Christopher T Mitchell
- University of Leicester, University Road, Leicester LE1 7RH, UK
- School of Medicine, King's College London, London, UK
| | - Irina Krier
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Sarah J Tabrizi
- UCL Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Dementia Research Institute at UCL, Huntington's Disease Centre, London WC1N 3BG, UK
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada 75Z 4H4
| | - Ruth Luthi-Carter
- University of Leicester, University Road, Leicester LE1 7RH, UK
- School of Medicine, King's College London, London, UK
| |
Collapse
|
44
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
45
|
Different Clinical Contexts of Use of Blood Neurofilament Light Chain Protein in the Spectrum of Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4667-4691. [PMID: 32772223 DOI: 10.1007/s12035-020-02035-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
One of the most pressing challenges in the clinical research of neurodegenerative diseases (NDDs) is the validation and standardization of pathophysiological biomarkers for different contexts of use (CoUs), such as early detection, diagnosis, prognosis, and prediction of treatment response. Neurofilament light chain (NFL) concentration is a particularly promising candidate, an indicator of axonal degeneration, which can be analyzed in peripheral blood with advanced ultrasensitive methods. Serum/plasma NFL concentration is closely correlated with cerebrospinal fluid NFL and directly reflects neurodegeneration within the central nervous system. Here, we provide an update on the feasible CoU of blood NFL in NDDs and translate recent findings to potentially valuable clinical practice applications. As NFL is not a disease-specific biomarker, however, blood NFL is an easily accessible biomarker with promising different clinical applications for several NDDs: (1) early detection and diagnosis (i.e., amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, atypical parkinsonisms, sporadic late-onset ataxias), (2) prognosis (Huntington's disease and Parkinson's disease), and (3) prediction of time to symptom onset (presymptomatic mutation carriers in genetic Alzheimer's disease and spinocerebellar ataxia type 3).
Collapse
|
46
|
Bartlett DM, Govus A, Rankin T, Lampit A, Feindel K, Poudel G, Teo WP, Lo J, Georgiou-Karistianis N, Ziman MR, Cruickshank TM. The effects of multidisciplinary rehabilitation on neuroimaging, biological, cognitive and motor outcomes in individuals with premanifest Huntington's disease. J Neurol Sci 2020; 416:117022. [PMID: 32688143 DOI: 10.1016/j.jns.2020.117022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a chronic, progressive neurodegenerative condition for which there are currently no proven disease-modifying therapies. Lifestyle factors have been shown to impact on the age of disease onset and progression of disease features. We therefore investigated the effects of a nine-month multidisciplinary rehabilitation intervention on neuroimaging, biological and clinical disease outcomes in individuals with premanifest HD. METHODS 31 individuals with premanifest HD participated in the study. Eighteen participants underwent a nine-month multidisciplinary rehabilitation intervention comprising aerobic and resistance exercise, computerised cognitive training, dual-task training and sleep hygiene and nutritional guidance. The remaining 13 participants were allocated to a standard care control group. Neuroimaging, biological, cognitive, motor and cardiorespiratory fitness data was collected. RESULTS Participants displayed good adherence (87%) and compliance (85%) to the intervention. Maintenance of the shape of the right putamen was observed in the intervention group when compared to the control group. The intervention group displayed significant improvements in verbal learning and memory, attention, cognitive flexibility and processing speed following the intervention when compared to the control group. Performance on the mini-social cognition and emotional assessment (mini-SEA) was maintained in the intervention group, but decreased in the control group. No changes were observed in serum neurofilament light protein levels, postural stability outcomes or cardiorespiratory fitness. CONCLUSION This study adds to the accumulating body of literature to suggest that multidisciplinary rehabilitation is of clinical benefit for individuals with HD. Large randomised controlled trials are necessary to determine the extent to which benefits occur across the spectrum of the disease.
Collapse
Affiliation(s)
- Danielle M Bartlett
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Andrew Govus
- School of Allied Health, Human Services & Sport, Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Timothy Rankin
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Centre for Sleep Science, School of Human Sciences, Faculty of Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Amit Lampit
- Department of Psychiatry, University of Melbourne, Victoria, Australia; Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Kirk Feindel
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Australia
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Wei-Peng Teo
- National Institute of Education, Nanyang Technological University, Singapore
| | - Johnny Lo
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, The Turner Institute of Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Mel R Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Travis M Cruickshank
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia.
| |
Collapse
|
47
|
Elevated serum neurofilament light chain in children autism spectrum disorder: A case control study. Neurotoxicology 2020; 80:87-92. [PMID: 32592719 DOI: 10.1016/j.neuro.2020.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We aimed to assess serum neurofilament light chain (sNfL) levels in autism spectrum disorder (ASD) and to investigate whether they are related to the severity of disease. METHODS The cohorts consisted of 166 children aged 3-8 (83 children diagnosed with ASD and 83 children with typically-developing). sNfL were analyzed using Single Molecule Array (Simoa) technology. ASD symptom severity was assessed according to the Chinese version of the Childhood Autism Rating Scale (CARS) score. RESULTS The mean age of those included ASD was 5.1 years (standard deviations [S.D.]: 1.7) and 78.3 % were boys. The mean (SD) sNfL concentrations were significantly (P < 0.001) higher in ASD than in TP children (10.2[5.0] pg/mL and 7.1[3.2]pg/mL). For each 1 pg/mL increase of sNfL, the risk of ASD would increase by 19 % (with the OR unadjusted of 1.19 [95 % CI 1.10-1.29], P < 0.001) and 11 % (with the OR adjusted of 1.11 [1.03-1.23], P < 0.001), respectively. sNfL concentrations in children with severe ASD were higher than in those children with mild-to-moderate ASD (12.4[5.1] pg/mL vs. 8.3[4.2]pg/mL; P < 0.001). Among ASD cases, each 1 pg/mL increase of sNfL is associated with 20 % higher unadjusted or 11 % higher adjusted odds, respectively, of severe (vs. mild-to-moderate) ASD. CONCLUSIONS The data showed that sNfL was elevated in ASD and related to symptom severity, suggesting that sNfL may play a role in ASD progression.
Collapse
|
48
|
Cruickshank T, Bartlett D, Govus A, Hannan A, Teo WP, Mason S, Lo J, Ziman M. The relationship between lifestyle and serum neurofilament light protein in Huntington's disease. Brain Behav 2020; 10:e01578. [PMID: 32181593 PMCID: PMC7218250 DOI: 10.1002/brb3.1578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Serum neurofilament light protein (NfL) is a promising marker of disease onset and progression in Huntington's disease (HD). This study investigated associations between lifestyle factors and NfL levels in HD mutation carriers compared to healthy age- and sex-matched controls. MATERIALS AND METHODS Participants included 29 HD mutation carriers and 15 healthy controls. Associations between serum NfL concentrations and lifestyle factors, including cardiorespiratory fitness, social network size and diversity, physical activity, cognitive reserve, smoking status, and alcohol consumption, were examined using a stepwise multivariable linear regression model. RESULTS Higher NfL levels were associated with lower cognitive reserve, social network size and diversity and cardiorespiratory fitness in HD mutation carriers. Group × lifestyle factor effects were observed between lower serum NfL levels and a greater social network diversity. CONCLUSION These findings highlight a relationship between lifestyle factors and NfL levels in HD mutations carriers; however, longitudinal studies are required to confirm if these observed relationships persist over time.
Collapse
Affiliation(s)
- Travis Cruickshank
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Danielle Bartlett
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Andrew Govus
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, VIC, Australia
| | - Anthony Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia.,Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, Nanyang, Singapore
| | - Sarah Mason
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Johnny Lo
- School of Science, Edith Cowan University, Perth, WA, Australia
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,School of Pathology and Laboratory Medicine, University Western Australia, Perth, WA, Australia
| |
Collapse
|
49
|
Gordon BA. Neurofilaments in disease: what do we know? Curr Opin Neurobiol 2020; 61:105-115. [PMID: 32151970 PMCID: PMC7198337 DOI: 10.1016/j.conb.2020.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Neurofilaments are proteins selectively expressed in the cytoskeleton of neurons, and increased levels are a marker of damage. Elevated neurofilament levels can serve as a marker of ongoing disease activity as well as a tool to measure response to therapeutic intervention. The potential utility of neurofilaments has drastically increased as recent advances have made it possible to measure levels in both the cerebrospinal fluid and blood. There is mounting evidence that neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (NfH) are abnormal in a host of neurodegenerative diseases. In this review we examine how both of these proteins behave across diseases and what we know about how these biomarkers relate to in vivo white matter pathology and each other.
Collapse
Affiliation(s)
- Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA.
| |
Collapse
|
50
|
Gonzalez-Alegre P. Recent advances in molecular therapies for neurological disease: triplet repeat disorders. Hum Mol Genet 2020; 28:R80-R87. [PMID: 31227833 DOI: 10.1093/hmg/ddz138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Triplet repeat diseases (TRDs) are caused by pathogenic expansions of trinucleotide sequence repeats within coding and non-coding regions of different genes. They are typically progressive, very disabling and frequently involve the nervous system. Currently available symptomatic therapies provide modest benefit at best. The development of interventions that interfere with the natural history of these diseases is a priority. A common pathogenic process shared by most TRDs is the presence of toxicity from the messenger RNA or protein encoded by the gene harboring the abnormal expansion. Strategies to interfere with the expression of these genes using different molecular approaches are being pursued and have reached the clinical stage. This review will summarize the significant progress made in this field in the last few years, focusing on three main areas: the discovery of biomarkers of disease progression and target engagement, advances in preclinical studies for the polyglutamine ataxias and the initial clinical application in myotonic dystrophy type 1 and Huntington's disease.
Collapse
Affiliation(s)
- Pedro Gonzalez-Alegre
- Department of Neurology, the University of Pennsylvania, Philadelphia, PA 19104, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|