1
|
Fung WH, van Lingen MR, Broos JY, Lam KH, van Dam M, Fung WK, Noteboom S, Koubiyr I, de Vries HE, Jasperse B, Teunissen CE, Giera M, Killestein J, Hulst HE, Strijbis EMM, Schoonheim MM, Kooij G. 9-HODE associates with thalamic atrophy and predicts white matter damage in multiple sclerosis. Mult Scler Relat Disord 2024; 92:105946. [PMID: 39447246 DOI: 10.1016/j.msard.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by extensive tissue damage leading to a range of complex symptoms, including physical disability and cognitive dysfunction. Recent work has indicated the clinical relevance of bioactive lipid mediators (LMs), which are known to orchestrate inflammation and its resolution and are deregulated in MS. However, it is unknown whether LM profiles relate to white matter (WM) damage. OBJECTIVES To investigate the potential association between plasma-derived LMs and MRI-quantified WM damage using fractional anisotropy (FA) and grey matter (GM) atrophy in dimethyl fumarate-treated relapsing remitting MS (RRMS) patients. METHODS Severity of FA-based WM damage and GM atrophy was determined in RRMS patients (n = 28) compared to age- and sex-matched controls (n = 31) at treatment initiation (baseline) and after 6 months. Plasma LMs were assessed using HPLC-MS/MS and baseline LMs were correlated to changes in FA and brain volumes. RESULTS We observed significant WM damage in RRMS patients (mean age 41.4 [SD 9.1]) at baseline and follow-up (z-score=-0.33 and 0.31, respectively) compared to controls (mean age 41.9 [SD 9.5]; p < 0.001 for both comparisons). Patients with severe WM damage showed a decline of thalamic volume (p = 0.02), and this decline correlated (r = 0.51, p < 0.001) with lower baseline levels of 9-HODE. This LM also predicted FA worsening (beta = 0.14, p < 0.001) over time at 6 months. CONCLUSION Despite the relatively small sample size, lower baseline levels of the LM 9-HODE correlated with more thalamic atrophy and predicted subsequent worsening of WM damage in RRMS patients.
Collapse
Affiliation(s)
- Wing Hee Fung
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Marike R van Lingen
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jelle Y Broos
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Leiden University Medical Centre (LUMC), Center of Proteomics and Metabolomics, Leiden, the Netherlands
| | - Ka-Hoo Lam
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Maureen van Dam
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wing Ka Fung
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Samantha Noteboom
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ismail Koubiyr
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Helga E de Vries
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bas Jasperse
- MS Center Amsterdam, Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- MS Center Amsterdam, Neurochemistry Laboratory, Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martin Giera
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke E Hulst
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gijs Kooij
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Noteboom S, Strijbis EMM, Coerver EME, Colato E, van Kempen ZLE, Jasperse B, Vrenken H, Killestein J, Schoonheim MM, Steenwijk MD. Long-term neuroprotective effects of natalizumab and fingolimod in multiple sclerosis: Evidence from real-world clinical data. Mult Scler Relat Disord 2024; 87:105670. [PMID: 38772150 DOI: 10.1016/j.msard.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND The long-term effect of high efficacy disease modifying therapy (DMT) on neurodegeneration in people with multiple sclerosis (pwMS) is largely unknown. The aim of this study was to evaluate the long-term effect of natalizumab (NTZ) or fingolimod (FTY) therapy on the evolution of brain atrophy compared to moderate efficacy DMT in a real-world clinical setting. METHODS A total of 438 pwMS with 2,439 MRI exams during treatment were analyzed: 252 pwMS treated with moderate efficacy DMT, 130 with NTZ and 56 with FTY. Evolution of brain atrophy was analyzed over an average follow-up of 6.6 years after treatment initiation. Brain segmentation was performed on clinical 3D-FLAIRs using SynthSeg and regional brain volume changes over time were compared between the treatment groups. RESULTS Total brain, white matter and deep gray matter atrophy rates did not differ between moderate efficacy DMTs, NTZ and FTY. Annualized ventricle growth rates were lower in pwMS treated with NTZ (1.1 %/year) compared with moderate efficacy DMT (2.4 %/year, p < 0.001) and similar to FTY (2.0 %/year, p = 0.051). Cortical atrophy rates were lower in NTZ (-0.08 %/year) compared with moderate efficacy DMT (-0.16 %/year, p = 0.048). CONCLUSION In a real-world clinical setting, pwMS treated with NTZ had slower ventricular expansion and cortical atrophy compared to those treated with moderate efficacy DMT.
Collapse
Affiliation(s)
- S Noteboom
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands.
| | - E M M Strijbis
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - E M E Coerver
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - E Colato
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University college London, UK
| | - Z L E van Kempen
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - B Jasperse
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - H Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - J Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - M M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - M D Steenwijk
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Prajapati A, Mehan S, Khan Z, Chhabra S, Das Gupta G. Purmorphamine, a Smo-Shh/Gli Activator, Promotes Sonic Hedgehog-Mediated Neurogenesis and Restores Behavioural and Neurochemical Deficits in Experimental Model of Multiple Sclerosis. Neurochem Res 2024; 49:1556-1576. [PMID: 38160216 DOI: 10.1007/s11064-023-04082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is a pathological condition characterized by the demyelination of nerve fibers, primarily attributed to the destruction of oligodendrocytes and subsequent motor neuron impairment. Ethidium bromide (EB) is a neurotoxic compound that induces neuronal degeneration, resulting in demyelination and symptoms resembling those observed in experimental animal models of multiple sclerosis (MS). The neurotoxic effects induced by EB in multiple sclerosis (MS) are distinguished by the death of oligodendrocytes, degradation of myelin basic protein (MBP), and deterioration of axons. Neurological complications related to MS have been linked to alterations in the signaling pathway known as smo-shh. Purmorphine (PUR) is a semi-synthetic compound that exhibits potent Smo-shh agonistic activity. It possesses various pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects. Hence, the current investigation was conducted to assess the neuroprotective efficacy of PUR (at doses of 5 and 10 mg/kg, administered intraperitoneally) both individually and in conjunction with Fingolimod (FING) (at a dose of 0.5 mg/kg, administered intraperitoneally) in the experimental model of MS induced by EB. The administration of EB was conducted via the intracerebropeduncle route (ICP) over a period of seven days in the brain of rats. The Wistar rats were allocated into six groups using randomization, each consisting of eight rats (n = 8 per group). The experimental groups in this study were categorized as follows: (I) Sham Control, (II) Vehicle Control, (III) PUR per se, (IV) EB, (V) EB + PUR5, (VI) EB + PUR10, (VII) EB + FING 0.5, and (VIII) EB + PUR10 + FING 0.5. On the final day of the experimental timeline, all animal subjects were euthanized, and subsequent neurochemical estimations were conducted on cerebrospinal fluid, blood plasma, and brain tissue samples. In addition, we conducted neurofilament (NFL) analysis and histopathological examination. We utilized the luxol myelin stain to understand better the degeneration associated with MS and its associated neurological complications. The findings of our study indicate that the activation of SMO-Shh by PUR has a mitigating effect on neurobehavioral impairments induced by EB, as well as a restorative effect on cellular and neurotransmitter abnormalities in an experimental model of MS.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| |
Collapse
|
5
|
Ananthavarathan P, Sahi N, Chard DT. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev Neurother 2024; 24:201-216. [PMID: 38235594 DOI: 10.1080/14737175.2024.2304116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. AREAS COVERED The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. EXPERT OPINION Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Nitin Sahi
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Declan T Chard
- Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK
| |
Collapse
|
6
|
Storelli L, Pagani E, Pantano P, Gallo A, De Stefano N, Rocca MA, Filippi M. Quantification of Thalamic Atrophy in MS: From the Multicenter Italian Neuroimaging Network Initiative Data Set to Clinical Application. AJNR Am J Neuroradiol 2023; 44:1399-1404. [PMID: 38050001 PMCID: PMC10714850 DOI: 10.3174/ajnr.a8050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND AND PURPOSE Thalamic atrophy occurs from the earliest phases of MS; however, this measure is not included in clinical practice. Our purpose was to obtain a reliable segmentation of the thalamus in MS by comparing existing automatic methods cross-sectionally and longitudinally. MATERIALS AND METHODS MR images of 141 patients with relapsing-remitting MS (mean age, 38 years; range, 19-58 years; 95 women) and 69 healthy controls (mean age, 36 years; range, 22-69 years; 47 women) were retrieved from the Italian Neuroimaging Network Initiative repository: T1WI, T2WI, and DWI at baseline and after 1 year (136 patients, 31 healthy controls). Three segmentation software programs (FSL-FIRST, FSL-MIST, FreeSurfer) were compared. At baseline, agreement among pipelines, correlations with age, disease duration, clinical score, and T2-hyperintense lesion volume were evaluated. Effect sizes in differentiating patients and controls were assessed cross-sectionally and longitudinally. Variability of longitudinal changes in controls and sample sizes were assessed. False discovery rate-adjusted P < .05 was considered significant. RESULTS At baseline, FSL-FIRST and FSL-MIST showed the highest agreement in the results of thalamic volume (R = 0.87, P < .001), with the highest effect size for FSL-MIST (Cohen d = 1.11); correlations with demographic and clinical variables were comparable for all software. Longitudinally, FSL-MIST showed the lowest variability in estimating thalamic volume changes for healthy controls (SD = 1.07%), the highest effect size (Cohen d = 0.44), and the smallest sample size at 80% power level (15 subjects per group). CONCLUSIONS Multimodal segmentation by FSL-MIST increased the robustness of the results with better capability to detect small variations in thalamic volumes.
Collapse
Affiliation(s)
- Loredana Storelli
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences (P.P.), Sapienza University of Rome, Rome, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico NEUROMED (P.P.), Pozzilli, Isernia, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences and 3T MRI-Center (A.G.), University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience (N.D.S), University of Siena, Siena, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit (M.A.R., M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University (M.A.R., M.F.), Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit (M.A.R., M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University (M.A.R., M.F.), Milan, Italy
- Neurorehabilitation Unit (M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service (M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute Milan, Italy
| |
Collapse
|
7
|
Nakamura K, Zheng Y, Mahajan KR, Cohen JA, Fox RJ, Ontaneda D. Effect of ibudilast on thalamic magnetization transfer ratio and volume in progressive multiple sclerosis. Mult Scler 2023; 29:1257-1265. [PMID: 37537928 PMCID: PMC11130979 DOI: 10.1177/13524585231187289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND Thalamic volume (TV) is a sensitive biomarker of disease burden of injury in multiple sclerosis (MS) and appears to reflect overall lesion loads. Ibudilast showed significant treatment effect on brain atrophy and magnetization transfer ratio (MTR) of normal-appearing brain tissue but not in new/enlarging T2 lesion in the SPRINT-MS randomized clinical trial. OBJECTIVE To evaluate the effect of ibudilast on thalamic tissue integrity and volume in the SPRINT-MS. METHODS A total of 255 participants with progressive MS were randomized to oral ibudilast or placebo, and thalamic MTR and normalized TV over 96 weeks were quantified. Mixed-effect modeling assessed treatment effects on the thalamic MTR and TV, separately. Similarly, the measures were compared between the participants with confirmed disability progression (CDP). RESULTS Ibudilast's treatment effect was observed compared to placebo for thalamic MTR (p = 0.03) but not for TV (p = 0.68) while TV correlated with T2 lesion volume (p < 0.001). CDP associated with thalamic MTR (p = 0.04) but not with TV (p = 0.7). CONCLUSION Ibudilast showed an effect on thalamic MTR, which was associated with CDP, suggesting a clinically relevant effect on thalamic tissue integrity. However, the treatment effect was not observed in TV, suggesting that thalamic atrophy is more closely associated with global inflammatory activity than local tissue integrity. CLINICALTRIALS.GOV NCT01982942.
Collapse
|
8
|
Jakimovski D, Silva D, Dwyer MG, Weinstock-Guttman B, Benedict RH, Riolo J, Zivadinov R. Therapy effect on AI-derived thalamic atrophy using clinical routine MRI protocol: A longitudinal, multi-center, propensity-matched multiple sclerosis study. Mult Scler Relat Disord 2023; 74:104708. [PMID: 37084495 DOI: 10.1016/j.msard.2023.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND The effect of disease modifying therapies (DMTs) on brain atrophy in persons with multiple sclerosis (pwMS) is typically investigated in highly standardized clinical trial settings or single-center academic institutions. We aimed at utilizing artificial intelligence (AI)-based volumetric analysis on routine unstandardized T2-FLAIR scans in determining the effect of DMTs on lateral ventricular volume (LVV) and thalamic volume (TV) changes in pwMS. METHODS The DeepGRAI (Deep Gray Rating via Artificial Intelligence) registry is a multi-center, longitudinal, observational, real-word study with a convenience sample of 1002 relapsing-remitting (RR) pwMS from 30 United States sites. Brain MRI exams acquired as part of the routine clinical management were collected at baseline and on average at 2.6-years follow-up. The MRI scans were acquired either on 1.5T or 3T scanners with no prior harmonization. TV was determined using the DeepGRAI tool and lateral ventricular volume LVV was measured using NeuroSTREAM software. RESULTS After propensity matching based on baseline age, disability and time of follow-up, untreated pwRRMS had significantly greater TV change when compared to treated pwRRMS (-1.2% vs. -0.3%, p = 0.044). PwRRMS treated with high-efficacy DMTs had significant and two-fold lower% LVV change when compared to pwRRMS treated on moderate-efficacy DMTs (3.5% vs. 7.0%, p = 0.001). PwRRMS who stopped DMT during the follow-up had significantly greater annualized% TV change compared to pwRRMS who remained on their DMT (-0.73% vs. -0.14%, p = 0.012) and significantly greater annualized% LVV change (3.4% vs. 1.7%, p = 0.047). These findings were also observed in a propensity analysis that additionally incorporated matching for scanner model at both baseline and follow-up visits. CONCLUSIONS LVV and TV measured on T2-FLAIR scans can detect treatment-induced short-term neurodegenerative changes measured in a real-word unstandardized, multicenter, clinical routine setting.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine, and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA
| | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine, and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA; Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA
| | - Ralph Hb Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA
| | - Jon Riolo
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine, and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA; Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, NY, USA.
| |
Collapse
|
9
|
Cortese R, Battaglini M, Sormani MP, Luchetti L, Gentile G, Inderyas M, Alexandri N, De Stefano N. Reduction in grey matter atrophy in patients with relapsing multiple sclerosis following treatment with cladribine tablets. Eur J Neurol 2023; 30:179-186. [PMID: 36168741 PMCID: PMC10091690 DOI: 10.1111/ene.15579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Measures of atrophy in the whole brain can be used to reliably assess treatment effect in clinical trials of patients with multiple sclerosis (MS). Trials assessing the effect of treatment on grey matter (GM) and white matter (WM) atrophy are very informative, but hindered by technical limitations. This study aimed to measure GM and WM volume changes, using a robust longitudinal method, in patients with relapsing MS randomized to cladribine tablets 3.5 mg/kg or placebo in the CLARITY study. METHODS We analysed T1-weighted magnetic resonance sequences using SIENA-XL, from 0 to 6 months (cladribine, n = 267; placebo, n = 265) and 6 to 24 months (cladribine, n = 184; placebo, n = 186). Mean percentage GM and WM volume changes (PGMVC and PWMVC) were compared using a mixed-effect model. RESULTS More GM and WM volume loss was found in patients taking cladribine versus those taking placebo in the first 6 months of treatment (PGMVC: cladribine: -0.53 vs. placebo: -0.25 [p = 0.045]; PWMVC: cladribine: -0.49 vs. placebo: -0.34 [p = 0.137]), probably due to pseudoatrophy. However, over the period 6 to 24 months, GM volume loss was significantly lower in patients on cladribine than in those on placebo (PGMVC: cladribine: -0.90 vs. placebo: -1.27 [p = 0.026]). In this period, volume changes in WM were similar in the two treatment arms (p = 0.52). CONCLUSIONS After a short period of pseudoatrophy, treatment with cladribine 3.5 mg/kg significantly reduced GM atrophy in comparison with placebo. This supports the relevance of GM damage in MS and may have important implications for physical and cognitive disability progression.
Collapse
Affiliation(s)
- Rosa Cortese
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa and Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maira Inderyas
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Al-Iedani O, Lea R, Ribbons K, Ramadan S, Lechner-Scott J. Neurometabolic changes in multiple sclerosis: Fingolimod versus beta interferon or glatiramer acetate therapy. J Neuroimaging 2022; 32:1109-1120. [PMID: 35922880 DOI: 10.1111/jon.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Fingolimod has been shown to be more effective in reducing relapse rate and disability than injectable therapies in clinical trials. An increase in N-acetylaspartate (NAA) as measured by MR spectroscopy is correlated with maintaining axonal metabolic functions. This study compared the neurometabolic and volumetric changes in relapsing-remitting multiple sclerosis (RRMS) patients on fingolimod or injectable therapies with healthy controls (HCs). METHODS Ninety-eight RRMS (52 on fingolimod, 46 on injectable therapies (27 on glatiramer acetate and 19 on interferon) were age and sex-matched to 51 HCs. RRMS patients underwent cognitive, fatigue, and mental health assessments, as well as an Expanded disability status scale (EDSS). MRI/S was acquired from the hippocampus, posterior cingulate gyrus (PCG), and prefrontal cortex (PFC). Volumetric and neurometabolic measures were compared across cohorts using a univariate general linear model and correlated with clinical severity and neuropsychological scores. RESULTS Clinical parameters, MR-volumetric, and neurometabolic profiles showed no differences between treatment groups (p > .05). Compared to HCs, both RRMS cohorts showed volume changes in white matter (-13%), gray matter (-16%), and cerebral spinal fluid (CSF) (+17-23%), as well as reduced NAA (-17%, p = .001, hippocampus), (-7%, p = .001, PCG), and (-9%, p = .001, PFC). MRI/S metrics in three regions were moderately correlated with cognition and fatigue functions. CONCLUSION While both treatment arms showed overall similar volumetric and neurometabolic profiles, longitudinal studies are warranted to clarify neurometabolic changes and associations with treatment efficacy.
Collapse
Affiliation(s)
- Oun Al-Iedani
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Rodney Lea
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Ribbons
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Saadallah Ramadan
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
11
|
Niiranen M, Koikkalainen J, Lötjönen J, Selander T, Cajanus A, Hartikainen P, Simula S, Vanninen R, Remes AM. Grey matter atrophy in patients with benign multiple sclerosis. Brain Behav 2022; 12:e2679. [PMID: 35765699 PMCID: PMC9304852 DOI: 10.1002/brb3.2679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Brain atrophy appears during the progression of multiple sclerosis (MS) and is associated with the disability caused by the disease. METHODS We investigated global and regional grey matter (GM) and white matter (WM) volumes, WM lesion load, and corpus callosum index (CCI), in benign relapsing-remitting MS (BRRMS, n = 35) with and without any treatment and compared those to aggressive relapsing-remitting MS (ARRMS, n = 46). Structures were analyzed by using an automated MRI quantification tool (cNeuro®). RESULTS The total brain and cerebral WM volumes were larger in BRRMS than in ARRMS (p = .014, p = .017 respectively). In BRRMS, total brain volumes, regional GM volumes, and CCI were found similar whether or not disease-modifying treatment (DMT) was used. The total (p = .033), as well as subcortical (p = .046) and deep WM (p = .041) lesion load volumes were larger in BRRMS patients without DMT. Cortical GM volumes did not differ between BRRMS and ARRMS, but the volumes of total brain tissue (p = .014) and thalami (p = .003) were larger in patients with BRRMS compared to ARRMS. A positive correlation was found between CCI and whole-brain volume in both BRRMS (r = .73, p < .001) and ARRMS (r = .80, p < .01). CONCLUSIONS Thalamic volume is the most prominent measure to differentiate BRRMS and ARRMS. Validation of automated quantification of CCI provides an additional applicable MRI biomarker to detect brain atrophy in MS.
Collapse
Affiliation(s)
- Marja Niiranen
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Tuomas Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Päivi Hartikainen
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sakari Simula
- Department of Neurology, Mikkeli Central Hospital, Mikkeli, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine - Radiology, University of Eastern Finland, Kuopio, Finland.,Department of Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
12
|
Marastoni D, Crescenzo F, Pisani AI, Zuco C, Schiavi G, Benedetti G, Ricciardi GK, Montemezzi S, Pizzini FB, Tamanti A, Calabrese M. Two years' effect of dimethyl fumarate on focal and diffuse gray matter pathology in multiple sclerosis. Mult Scler 2022; 28:2090-2098. [PMID: 35765211 DOI: 10.1177/13524585221104014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Data on the effect of dimethyl fumarate (DMF) on focal and diffuse gray matter (GM) damage, a relevant pathological substrate of multiple sclerosis (MS)-related disability are lacking. OBJECTIVE To evaluate the DMF effect on cortical lesions (CLs) accumulation and global and regional GM atrophy in subjects with relapsing-remitting MS. METHODS A total of 148 patients (mean age 38.1 ± 9.7 years) treated with DMF ended a 2-year longitudinal study. All underwent regular Expanded Disability Status Scale (EDSS assessment), and at least two 3T-magnetic resonance imaging (MRI) at 3 and 24 months after DMF initiation. CLs and changes in global and regional atrophy of several brain regions were compared with 47 untreated age and sex-matched patients. RESULTS DMF-treated patients showed lower CLs accumulation (median 0[0-3] vs 2[0-7], p < 0.001) with respect to controls. Global cortical thickness (p < 0.001) and regional thickness and volume were lower in treated group (cerebellum, hippocampus, caudate, and putamen: p < 0.001; thalamus p = 0.03). Lower relapse rate (14% vs 40%, p < 0.001), EDSS change (0.2 ± 0.4 vs 0.4 ± 0.9, p < 0.001), and new WM lesions (median 0[0-5] vs 2[0-6], p < 0.001) were reported. No severe adverse drug reactions occurred. CONCLUSIONS Beyond the well-known effect on disease activity, these results provide evidence of the effect of DMF through reduced progression of focal and diffuse GM damage.
Collapse
Affiliation(s)
- Damiano Marastoni
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Anna I Pisani
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carmela Zuco
- Neurology Unit, "Carlo Poma" Hospital, ASST Mantua, Mantua, Italy
| | - Gianmarco Schiavi
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Benedetti
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe K Ricciardi
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | - Stefania Montemezzi
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | - Francesca B Pizzini
- Radiology Unit, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Arnold DL, Sprenger T, Bar-Or A, Wolinsky JS, Kappos L, Kolind S, Bonati U, Magon S, van Beek J, Koendgen H, Bortolami O, Bernasconi C, Gaetano L, Traboulsee A. Ocrelizumab reduces thalamic volume loss in patients with RMS and PPMS. Mult Scler 2022; 28:1927-1936. [PMID: 35672926 PMCID: PMC9493406 DOI: 10.1177/13524585221097561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In multiple sclerosis (MS), thalamic integrity is affected directly by demyelination and neuronal loss, and indirectly by gray/white matter lesions outside the thalamus, altering thalamic neuronal projections. Objective: To assess the efficacy of ocrelizumab compared with interferon beta-1a (IFNβ1a)/placebo on thalamic volume loss and the effect of switching to ocrelizumab on volume change in the Phase III trials in relapsing MS (RMS, OPERA I/II; NCT01247324/NCT01412333) and in primary progressive MS (PPMS, ORATORIO; NCT01194570). Methods: Thalamic volume change was computed using paired Jacobian integration and analyzed using an adjusted mixed-effects repeated measurement model. Results: Over the double-blind period, ocrelizumab treatment significantly reduced thalamic volume loss with the largest effect size (Cohen’s d: RMS: 0.561 at week 96; PPMS: 0.427 at week 120) compared with whole brain, cortical gray matter, and white matter volume loss. At the end of up to 7 years of follow-up, patients initially randomized to ocrelizumab still showed less thalamic volume loss than those switching from IFNβ1a ( p < 0.001) or placebo ( p < 0.001). Conclusion: Ocrelizumab effectively reduced thalamic volume loss compared with IFNβ1a/placebo. Early treatment effects on thalamic tissue preservation persisted over time. Thalamic volume loss could be a potential sensitive marker of persisting tissue damage.
Collapse
Affiliation(s)
- Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada/NeuroRx Research, Montreal, QC, Canada
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany/Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry S Wolinsky
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | | | | | - Johan van Beek
- F. Hoffmann-La Roche Ltd, Basel, Switzerland/Biogen, Baar, Switzerland
| | - Harold Koendgen
- F. Hoffmann-La Roche Ltd, Basel, Switzerland/UCB Farchim SA, Bulle, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
15
|
Ziemssen T, Arnold DL, Alvarez E, Cross AH, Willi R, Li B, Kukkaro P, Kropshofer H, Ramanathan K, Merschhemke M, Kieseier B, Su W, Häring DA, Hauser SL, Kappos L, Kuhle J. Prognostic Value of Serum Neurofilament Light Chain for Disease Activity and Worsening in Patients With Relapsing Multiple Sclerosis: Results From the Phase 3 ASCLEPIOS I and II Trials. Front Immunol 2022; 13:852563. [PMID: 35432382 PMCID: PMC9009385 DOI: 10.3389/fimmu.2022.852563] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Objective This study aims to confirm the prognostic value of baseline serum neurofilament light chain (sNfL) for on-study disease activity and worsening in patients with relapsing MS (RMS). Background Previous post-hoc studies suggested that sNfL could be a prognostic biomarker in RMS. In the phase 3 ASCLEPIOS I/II trials in which ofatumumab demonstrated better efficacy outcomes than teriflunomide, treatment with ofatumumab also led to significantly reduced sNfL levels compared to teriflunomide treatment. Design/Methods In this study, we report protocol-planned analyses from the pooled ASCLEPIOS I/II trials (N=1882). Per protocol, patients were stratified by median baseline sNfL levels (9.3 pg/ml) into high (>median) and low (≤median) categories to prognosticate: annualized rate of new/enlarging T2 (neT2) lesions in year 1 and 2, annualized relapse rate, annual percentage change in whole brain (WB) and regional brain volume [thalamus, white matter (WM), cortical gray matter (cGM)], and disability outcomes. Similar analyses were performed for the recently diagnosed (within 3 years), treatment-naive patients (no prior disease-modifying therapy) subgroup. Results High versus low sNfL at baseline was prognostic of increased on-study T2 lesion formation at year 1 (relative increase: ofatumumab +158%; teriflunomide +69%, both p<0.001), which persisted in year 2 (+65%, p=0.124; +46%, p=0.003); of higher annual percentage change of WB volume (ofatumumab, −0.32% vs. −0.24%, p=0.044, and teriflunomide, −0.43% vs. −0.29%, p=0.002), thalamic volume (−0.56% vs. −0.31%, p=0.047 and −0.94% vs. −0.49%, p<0.001), and WM volume (−0.30% vs. −0.19%, p=0.083 and −0.38% vs. −0.18%, p=0.003) but not of cGM volume (−0.39% vs. −0.32%, p=0.337 and −0.49% vs. −0.46%, p=0.563). A single sNfL assessment at baseline was not prognostic for on-study relapses or disability worsening. Results were similar in the subgroup of recently diagnosed, treatment-naive patients. Conclusion This study confirms that baseline sNfL levels are prognostic of future on-study lesion formation and whole brain and regional atrophy in all RMS patients, including recently diagnosed, treatment-naive patients.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl-Gustav Carus, Dresden, Germany
- *Correspondence: Tjalf Ziemssen,
| | - Douglas L. Arnold
- Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- NeuroRx Research, Montreal, QC, Canada
| | - Enrique Alvarez
- Department of Neurology, Rocky Mountain MS Center at the University of Colorado, Aurora, CO, United States
| | - Anne H. Cross
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, United States
| | | | - Bingbing Li
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | | | | | | | | | - Wendy Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | - Stephen L. Hauser
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic and MS Center, Department of Head, Spine and Neuromedicine, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and MS Center, Department of Head, Spine and Neuromedicine, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Arnold DL, Piani-Meier D, Bar-Or A, Benedict RH, Cree BA, Giovannoni G, Gold R, Vermersch P, Arnould S, Dahlke F, Hach T, Ritter S, Karlsson G, Kappos L, Fox RJ. Effect of siponimod on magnetic resonance imaging measures of neurodegeneration and myelination in secondary progressive multiple sclerosis: Gray matter atrophy and magnetization transfer ratio analyses from the EXPAND phase 3 trial. Mult Scler 2022; 28:1526-1540. [PMID: 35261318 PMCID: PMC9315182 DOI: 10.1177/13524585221076717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) measurements of gray matter (GM) atrophy and magnetization transfer ratio (MTR; correlate of myelination) may provide better insights than conventional MRI regarding brain tissue integrity/myelination in multiple sclerosis (MS). OBJECTIVE To examine the effect of siponimod in the EXPAND trial on whole-brain and GM atrophy, newly formed normalized magnetization transfer ratio (nMTR) lesions, and nMTR-assessed integrity of normal-appearing brain tissue (NABT), cortical GM (cGM), and normal-appearing white matter (NAWM). METHODS Patients with secondary progressive multiple sclerosis (SPMS) received siponimod (2 mg/day; n =1037) or placebo (n = 523). Endpoints included percentage change from baseline to months 12/24 in whole-brain, cGM, and thalamic volumes; change in nMTR from baseline to months 12/24 in NABT, cGM, and NAWM; MTR recovery in newly formed lesions. RESULTS Compared with placebo, siponimod significantly reduced progression of whole-brain and GM atrophy over 12/24 months, and was associated with improvements in brain tissue integrity/myelination within newly formed nMTR lesions and across NABT, cGM, and NAWM over 24 months. Effects were consistent across age, disease duration, inflammatory activity subgroups, and disease severity. CONCLUSION Siponimod reduced brain tissue damage in patients with SPMS as evidenced by objective measures of brain tissue integrity/myelination. This is consistent with central nervous system (CNS) effects observed in preclinical models. ClinicalTrials.gov number: NCT01665144.
Collapse
Affiliation(s)
- Douglas L Arnold
- NeuroRx, Montreal, QC, Canada/Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bruce Ac Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ralf Gold
- Department of Neurology, St Josef-Hospital/Ruhr-University Bochum, Bochum, Germany
| | - Patrick Vermersch
- Univ. Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Sophie Arnould
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Frank Dahlke
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Thomas Hach
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Shannon Ritter
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Göril Karlsson
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and MS Center, Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital, University of Basel, Basel, Switzerland
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
17
|
The effect of gadolinium-based contrast-agents on automated brain atrophy measurements by FreeSurfer in patients with multiple sclerosis. Eur Radiol 2022; 32:3576-3587. [PMID: 34978580 PMCID: PMC9038813 DOI: 10.1007/s00330-021-08405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine whether reliable brain atrophy measures can be obtained from post-contrast 3D T1-weighted images in patients with multiple sclerosis (MS) using FreeSurfer. METHODS Twenty-two patients with MS were included, in which 3D T1-weighted MR images were obtained during the same scanner visit, with the same acquisition protocol, before and after administration of gadolinium-based contrast agents (GBCAs). Two FreeSurfer versions (v.6.0.1 and v.7.1.1.) were applied to calculate grey matter (GM) and white matter (WM) volumes and global and regional cortical thickness. The consistency between measures obtained in pre- and post-contrast images was assessed by intra-class correlation coefficient (ICC), the difference was investigated by paired t-tests, and the mean percentage increase or decrease was calculated for total WM and GM matter volume, total deep GM and thalamus volume, and mean cortical thickness. RESULTS Good to excellent reliability was found between all investigated measures, with ICC ranging from 0.926 to 0.996, all p values < 0.001. GM volumes and cortical thickness measurements were significantly higher in post-contrast images by 3.1 to 17.4%, while total WM volume decreased significantly by 1.7% (all p values < 0.001). CONCLUSION The consistency between values obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable brain atrophy measurements from T1-weighted images acquired after administration of GBCAs, using FreeSurfer. However, absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly. Potential systematic effects, possibly dependent on GBCA dose or the delay time after contrast injection, should be investigated. TRIAL REGISTRATION Clinical trials.gov. identifier: NCT00360906. KEY POINTS • The influence of gadolinium-based contrast agents (GBCAs) on atrophy measurements is still largely unknown and challenges the use of a considerable source of historical and prospective real-world data. • In 22 patients with multiple sclerosis, the consistency between brain atrophy measurements obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable atrophy measurements in T1-weighted images acquired after administration of GBCAs, using FreeSurfer. • Absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly, and measurements extracted from certain regions (e.g., the temporal pole) should be interpreted with caution.
Collapse
|
18
|
Jiang H, Joshi S, Liu H, Mansor S, Qiu L, Zhao H, Whitehead T, Gropler RJ, Wu GF, Cross AH, Benzinger TLS, Shoghi KI, Perlmutter JS, Tu Z. In Vitro and In Vivo Investigation of S1PR1 Expression in the Central Nervous System Using [ 3H]CS1P1 and [ 11C]CS1P1. ACS Chem Neurosci 2021; 12:3733-3744. [PMID: 34516079 PMCID: PMC8605766 DOI: 10.1021/acschemneuro.1c00492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is ubiquitously expressed among all tissues and plays key roles in many physiological and cellular processes. In the central nervous system (CNS), S1PR1 is expressed in different types of cells including neurons, astrocytes, and oligodendrocyte precursor cells. S1PR1 has been recognized as a novel therapeutic target in multiple sclerosis and other diseases. We previously reported a promising S1PR1-specific radioligand, [11C]CS1P1 (previously named [11C]TZ3321), which is under clinical investigation for human use. In the current study, we performed a detailed characterization of [3H]CS1P1 for its binding specificity to S1PR1 in CNS using autoradiography and immunohistochemistry in human and rat CNS tissues. Our data indicate that [3H]CS1P1 binds to S1PR1 in human frontal cortex tissue with a Kd of 3.98 nM and a Bmax of 172.5 nM. The distribution of [3H]CS1P1 in human and rat CNS tissues is consistent with the distribution of S1PR1 detected by immunohistochemistry studies. Our microPET studies of [11C]CS1P1 in a nonhuman primate (NHP) show a standardized uptake value of 2.4 in the NHP brain, with test-retest variability of 0.23% among six different NHPs. Radiometabolite analysis in the plasma samples of NHP and rat, as well as in rat brain samples, showed that [11C]CS1P1 was stable in vivo. Kinetic modeling studies using a two-compartment tissue model showed that the positron emission tomography (PET) data fit the model well. Overall, our study provides a detailed characterization of [3H]CS1P1 binding to S1PR1 in the CNS. Combined with our microPET studies in the NHP brain, our data suggest that [11C]CS1P1 is a promising radioligand for PET imaging of S1PR1 in the CNS.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Syahir Mansor
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Lin Qiu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Timothy Whitehead
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Gregory F. Wu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Anne H. Cross
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Kooresh I. Shoghi
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| |
Collapse
|
19
|
Ontaneda D, Raza PC, Mahajan KR, Arnold DL, Dwyer MG, Gauthier SA, Greve DN, Harrison DM, Henry RG, Li DKB, Mainero C, Moore W, Narayanan S, Oh J, Patel R, Pelletier D, Rauscher A, Rooney WD, Sicotte NL, Tam R, Reich DS, Azevedo CJ. Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain 2021; 144:1974-1984. [PMID: 33757115 PMCID: PMC8370433 DOI: 10.1093/brain/awab132] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although multiple sclerosis has traditionally been considered a white matter disease, extensive research documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been associated with clinical and cognitive disability. Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey matter. Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging perspective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey matter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities towards better methods, analysis, and interpretation of results.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Praneeta C Raza
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Kedar R Mahajan
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Roland G Henry
- Department of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
- The UC San Francisco and Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA
| | - David K B Li
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Alexander Rauscher
- Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roger Tam
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
20
|
Brisset JC, Vukusic S, Cotton F. Update on brain MRI for the diagnosis and follow-up of MS patients. Presse Med 2021; 50:104067. [PMID: 33989722 DOI: 10.1016/j.lpm.2021.104067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022] Open
Abstract
Over the past decades, MRI has become a major tool in the diagnosis and the follow-up of patients with multiple sclerosis (MS), especially for monitoring the effectiveness of therapy. The recent international recommendations issued for the standardization of neurological and radiological clinical practices converge on many points. In this setting, recommendations made by the "Observatoire français de la sclérose en plaques", the French MS registry, can be distinguished by its interdisciplinary complementarity, its longevity, its size, and its positions in direct connection with the clinic. Hence, after suspicions of gadolinium deposition in the brain, with multiple warning from the American and European health authorities, a national consultation took place and resulted in limitation to useful injections. The precautionary principle prevailing, the patient receives a limited quantity of contrast product even if no clinically harmful manifestation has been detected to date. The result of this round table bringing together neurologists and neuroradiologists from specialized centers was published in the form of a recommendation in early 2020. The interest of this project also lies in the constant improvement of the management of patients with MS and the possibility of developing advanced techniques to assist the clinician. The aim of this review is to explain to the neurologist, the interest of following this imaging protocol both in his/her clinical practice and in the possibilities that this opens up.
Collapse
Affiliation(s)
- Jean-Christophe Brisset
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 et CNRS UMR 5292, 69003 Lyon, France
| | - Sandra Vukusic
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 et CNRS UMR 5292, 69003 Lyon, France; Hospices Civils de Lyon, Service de Neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, 69677 Bron, France; Université de Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Francois Cotton
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 et CNRS UMR 5292, 69003 Lyon, France; Eugène Devic EDMUS Foundation Against Multiple Sclerosis (a government approved foundation), 69677 Bron, France; Inserm, UJM-Saint-Étienne, CNRS, CREATIS UMR 5220, U1206, INSA-Lyon, University Lyon, Université Claude-Bernard Lyon 1, 69495 Pierre-Bénite, France.
| | | |
Collapse
|
21
|
Dwyer M, Lyman C, Ferrari H, Bergsland N, Fuchs TA, Jakimovski D, Schweser F, Weinstock-Guttmann B, Benedict RHB, Riolo J, Silva D, Zivadinov R. DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, feasible, and clinically relevant thalamic atrophy measurement on clinical quality T2-FLAIR MRI in multiple sclerosis. Neuroimage Clin 2021; 30:102652. [PMID: 33872992 PMCID: PMC8080069 DOI: 10.1016/j.nicl.2021.102652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thalamic volume loss is a key marker of neurodegeneration in multiple sclerosis (MS). T2-FLAIR MRI is a common denominator in clinical routine MS imaging, but current methods for thalamic volumetry are not applicable to it. OBJECTIVE To develop and validate a robust algorithm to measure thalamic volume using clinical routine T2-FLAIR MRI. METHODS A dual-stage deep learning approach based on 3D U-net (DeepGRAI - Deep Gray Rating via Artificial Intelligence) was created and trained/validated/tested on 4,590 MRI exams (4288 2D-FLAIR, 302 3D-FLAIR) from 59 centers (80/10/10 train/validation/test split). As training/test targets, FIRST was used to generate thalamic masks from 3D T1 images. Masks were reviewed, corrected, and aligned into T2-FLAIR space. Additional validation was performed to assess inter-scanner reliability (177 subjects at 1.5 T and 3 T within one week) and scan-rescan-reliability (5 subjects scanned, repositioned, and then re-scanned). A longitudinal dataset including assessment of disability and cognition was used to evaluate the predictive value of the approach. RESULTS DeepGRAI automatically quantified thalamic volume in approximately 7 s per case, and has been made publicly available. Accuracy on T2-FLAIR relative to 3D T1 FIRST was 99.4% (r = 0.94, p < 0.001,TPR = 93.0%, FPR = 0.3%). Inter-scanner error was 3.21%. Scan-rescan error with repositioning was 0.43%. DeepGRAI-derived thalamic volume was associated with disability (r = -0.427,p < 0.001) and cognition (r = -0.537,p < 0.001), and was a significant predictor of longitudinal cognitive decline (R2 = 0.081, p = 0.024; comparatively, FIRST-derived volume was R2 = 0.080, p = 0.025). CONCLUSIONS DeepGRAI provides fast, reliable, and clinically relevant thalamic volume measurement on multicenter clinical-quality T2-FLAIR images. This indicates potential for real-world thalamic volumetry, as well as quantification on legacy datasets without 3D T1 imaging.
Collapse
Affiliation(s)
- Michael Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Cassondra Lyman
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Hannah Ferrari
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttmann
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ralph H B Benedict
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jon Riolo
- Bristol Myers Squibb, Summit, NJ, USA
| | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
22
|
Uher T, Krasensky J, Malpas C, Bergsland N, Dwyer MG, Kubala Havrdova E, Vaneckova M, Horakova D, Zivadinov R, Kalincik T. Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e979. [PMID: 33727311 PMCID: PMC7984675 DOI: 10.1212/nxi.0000000000000979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/05/2021] [Indexed: 11/15/2022]
Abstract
Objective To describe the dynamics of brain volume loss (BVL) at different stages of relapsing-remitting multiple sclerosis (RRMS), to describe the association between BVL and clinical measures, and to investigate an effect of treatment escalation on the rate of BVL. Methods Together, 1903 patients predominantly with RRMS from the Avonex-Steroids-Azathioprine cohort (N = 166), the study of early IFN-β1a treatment cohort (N = 180), and the quantitative MRI cohort (N = 1,557) with ≥2 MRI scans and ≥1-year of follow-up were included. Brain MRI scans (N = 7,203) were performed using a single 1.5-T machine. Relationships between age or disease duration and global and tissue-specific BVL rates were analyzed using mixed models. Results Age was not associated with the rate of BVL (β = −0.003; Cohen f2 = 0.0005; adjusted p = 0.39). Although disease duration was associated with the rate of BVL, its effect on the BVL rate was minimal (β = −0.012; Cohen f2 = 0.004; adjusted p = 4 × 10−5). Analysis of association between tissue-specific brain volume changes and age (β = −0.019 to −0.011; adjusted p = 0.028–1.00) or disease duration (β = −0.028 to −0.008; adjusted p = 0.16–0.96) confirmed these results. Although increase in the relapse rate (β = 0.10; adjusted p = 9 × 10−9), Expanded Disability Status Scale (EDSS; β = 0.17; adjusted p = 8 × 10−5), and EDSS change (β = 0.15; adjusted p = 2 × 10−5) were associated with accelerated rate of BVL, their effect on the rate of BVL was minimal (all Cohen f2 ≤ 0.007). In 94 patients who escalated therapy, the rate of BVL decreased following treatment escalation by 0.29% (β = −0.29; Cohen f2 = 0.133; p = 5.5 × 10−8). Conclusions The rate of BVL is relatively stable throughout the course of RRMS. The accelerated BVL is weakly associated with concurrent higher disease activity, and timely escalation to high-efficacy immunotherapy helps decrease the rate of BVL.
Collapse
Affiliation(s)
- Tomas Uher
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia.
| | - Jan Krasensky
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Charles Malpas
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Niels Bergsland
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Michael G Dwyer
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Eva Kubala Havrdova
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Manuela Vaneckova
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Dana Horakova
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Robert Zivadinov
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| | - Tomas Kalincik
- From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
| |
Collapse
|
23
|
Bernitsas E, Kopinsky H, Lichtman-Mikol S, Razmjou S, Santiago-Martinez C, Yarraguntla K, Bao F. Multimodal MRI Response to Fingolimod in Multiple Sclerosis: A Nonrandomized, Single Arm, Observational Study. J Neuroimaging 2020; 31:379-387. [PMID: 33368776 DOI: 10.1111/jon.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Fingolimod has a favorable effect on conventional MRI measures; however, its neuroprotective effect is not clear. We aim to investigate changes of conventional and advanced MRI measures in lesions and normal-appearing white matter (NAWM) over 2 years in fingolimod-treated patients. METHODS Fifty relapsing-remitting multiple sclerosis patients and 27 healthy controls were enrolled in the study and underwent baseline, 1-year, and 2-year 3T MRI scans. T2 lesion volume, whole brain volume, cortical gray matter volume, white matter volume, corpus callosum area, percentage brain volume change (PBVC), Expanded Disability Status Scale, gadolinium-enhancing lesions, PBVC, magnetization transfer ratio (MTR), and diffusion tensor imaging metrics (fractional anisotropy [FA] and median diffusivity [MD]) in lesions and NAWM were calculated. Longitudinal changes were examined using one-way repeated measures ANOVA. Bonferroni correction for multiple testing was used when appropriate. RESULTS Conventional MRI measures were unchanged in both groups. Lesion MTR increased significantly (P < .001), but NAWM-MTR remained unchanged. Lesion FA improved significantly in year 1 (P = .003) and over the study duration (P = .05). Lesion MD changed significantly from baseline to year 1 (P < .001) and remained stable over 2 years. NAWM-FA was significant from baseline to year 1 (P = .002) and from baseline to year 2 (P < .001). NAWM-MD was significant only from baseline to year 1 (P = .001). CONCLUSIONS These findings suggest a possible neuroreparative effect of fingolimod on the MS lesions and NAWM. Larger and longer randomized studies are required to confirm these results.
Collapse
Affiliation(s)
- Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Hannah Kopinsky
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | | | - Sarah Razmjou
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | | | - Kalyan Yarraguntla
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Fen Bao
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
24
|
Measures of Thalamic Integrity are Associated with Cognitive Functioning in Fingolimod-treated Multiple Sclerosis Patients. Mult Scler Relat Disord 2020; 47:102635. [PMID: 33260053 DOI: 10.1016/j.msard.2020.102635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/25/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cognitive impairment is common in relapsing-remitting multiple sclerosis (RRMS) and multiple domains are affected, including information processing speed, episodic memory, and executive function. Damage to the thalamus appears to be related to cognitive functioning in MS. Fingolimod is a disease-modifying therapy for RRMS, which has been shown to have a protective effect on thalamic volume. OBJECTIVE To determine the relationship between cognitive measures and the thalamus in fingolimod-treated RRMS patients and healthy controls using ultra high-field magnetic resonance imaging (MRI). METHODS Fingolimod-treated RRMS and healthy participants were recruited from a single center to undergo neuropsychological testing and 7 tesla MRI. These assessments were performed at baseline, 6 months, and 12 months. The neuropsychological testing included the Brief Visuospatial Memory Test-Revised (BVMTR), the Symbol Digit Modalities Test (SDMT), the Selective Reminding Test (SRT), and the Delis-Kaplan Executive Function System (DKEFS). MRI metrics included thalamic volume, thalamic myelin density, thalamic axon density, T2 lesion volume, brain parenchymal fraction, and cortical thickness. Mixed-effects linear regression was used to determine the relationship between MRI parameters and neuropsychological test performance over time. Rates of change in patients and controls were compared using two-sample t-tests. RESULTS We enrolled 15 RRMS patients and 5 healthy controls. Controls performed better than patients at baseline, but this difference was only significant for the letter fluency subtest of the DKEFS and for long-term storage as assessed by the SRT. Thalamic volume and thalamic myelin density were significantly associated with visuospatial (BVMTR) and verbal memory (SRT). Thalamic volume alone was also associated with inhibitory control (Color word interference subtest of the DKEFS) and cognitive flexibility (Number letter switching subtest of the DKEFS), whereas thalamic myelin density alone was associated with semantic knowledge (Verbal fluency subtest of the DKEFS). There were no significant changes in the rates of change in neurometric test performance or MRI metrics between patients and controls from baseline to 6 months and baseline to 12 months. CONCLUSIONS Thalamic injury is associated with cognitive performance in several domains. Fingolimod-treated RRMS patients evolved similarly to healthy controls over one year with regards to neuropsychological test performance and changes on MRI.
Collapse
|
25
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
26
|
Häring DA, Kropshofer H, Kappos L, Cohen JA, Shah A, Meinert R, Leppert D, Tomic D, Kuhle J. Long-term prognostic value of longitudinal measurements of blood neurofilament levels. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e856. [PMID: 32817406 PMCID: PMC7428358 DOI: 10.1212/nxi.0000000000000856] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/19/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess the long-term prognostic value of an integral of longitudinal measurements of plasma neurofilament light chain levels (NfLlong) over 12 and 24 months vs single neurofilament light chain (NfL) measurements in patients with relapsing-remitting MS (RRMS) and its additional value when combined with clinical and MRI measures. METHODS This analysis included continuously fingolimod-treated patients with RRMS from the 24-month FTY720 Research Evaluating Effects of Daily Oral therapy in Multiple Sclerosis (FREEDOMS)/12-month Trial Assessing Injectable Interferon vs FTY720 Oral in Relapsing-Remitting Multiple Sclerosis (TRANSFORMS) phase 3 trials and their long-term extension, LONGTERMS. Patients were classified into high (≥30 pg/mL, n = 110) and low (<30 pg/mL, n = 164) NfL categories based on the baseline (BL) NfL value or the geometric mean NfLlong calculated over 12 and 24 months to predict disability-related outcomes and brain volume loss (BVL). The additional prognostic value of NfL was quantified using the area under the receiver operating characteristic (ROC) curve. RESULTS A single high (vs low) NfL measure at BL was prognostic of a higher risk of reaching Expanded Disability Status Scale (EDSS) score ≥4 earlier (hazard ratio [HR] = 2.19; 95% CI = 1.21-3.97) and higher BVL over 120 months (difference: -1.12%; 95% CI = -2.07 to -0.17). When NfLlong was measured over 24 months, high NfL was associated with a higher risk of reaching EDSS score ≥4 (HR = 7.91; 95% CI = 2.99-20.92), accelerated 6-month confirmed disability worsening (HR = 3.14; 95% CI = 1.38-7.11), and 20% worsening in the Timed 25-Foot Walk Test (HR = 3.05; 95% CI = 1.38-6.70). Area under the ROC curve was consistently highest in models combining NfL with clinical and MRI measures. CONCLUSIONS NfLlong had a higher prognostic value than single NfL assessments on long-term outcomes in RRMS. Combining it with clinical and MRI measures increased sensitivity and specificity to predict long-term disease outcomes. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that NfLlong was more strongly associated with long-term outcomes than single NfL assessments in patients with RRMS.
Collapse
Affiliation(s)
- Dieter A Häring
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - Harald Kropshofer
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - Ludwig Kappos
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - Jeffrey A Cohen
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - Anuja Shah
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - Rolf Meinert
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - David Leppert
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - Davorka Tomic
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany
| | - Jens Kuhle
- From the Novartis Pharma AG (D.A.H., H.K., D.T.), Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (L.K., D.L., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Department of Neurology (J.A.C.), Mellen MS Center, Neurological Institute, Cleveland Clinic, OH; Novartis Healthcare Pvt. Ltd. (A.S.), Hyderabad, India; and DATAMAP GmbH (R.M.), Freiburg, Germany.
| |
Collapse
|
27
|
Hänninen K, Viitala M, Paavilainen T, Karhu JO, Rinne J, Koikkalainen J, Lötjönen J, Soilu-Hänninen M. Thalamic Atrophy Predicts 5-Year Disability Progression in Multiple Sclerosis. Front Neurol 2020; 11:606. [PMID: 32760339 PMCID: PMC7373757 DOI: 10.3389/fneur.2020.00606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose: Thalamus is among the first brain regions to become atrophic in multiple sclerosis (MS). We studied whether thalamic atrophy predicts disability progression at 5 years in a cohort of Finnish MS patients. Methods: Global and regional brain volumes were measured from 24 newly diagnosed relapsing MS (RMS) patients 6 months after initiation of therapy and from 36 secondary progressive MS (SPMS) patients. The patients were divided into groups based on baseline whole brain parenchymal (BP) and thalamic atrophy. Standard scores (z scores) were computed by comparing individual brain volumes with healthy controls. A z score cutoff of −1.96 was applied to separate atrophic from normal brain volumes. The Expanded Disability Status Scale (EDSS), brain magnetic resonance imaging (MRI) findings, and relapses were assessed at baseline and at 2 years and EDSS progression at 5 years. Results: Baseline thalamus volume predicted disability in 5 years in a logistic regression model (p = 0.031). At 5 years, EDSS was same or better in 12 of 18 patients with no brain atrophy at baseline but only in 5 of 18 patients with isolated thalamic atrophy [odds ratio (OR) (95% CI) = 5.2 (1.25, 21.57)]. The patients with isolated thalamic atrophy had more escalations of disease-modifying therapies during follow-up. Conclusion: Patients with thalamic atrophy at baseline were at a higher risk for 5-year EDSS increase than patients with no identified brain atrophy. Brain volume measurement at a single time point could help predict disability progression in MS and complement clinical and routine MRI evaluation in therapeutic decision-making.
Collapse
Affiliation(s)
- Katariina Hänninen
- Neurocenter, Turku University Hospital, University of Turku, Turku, Finland
| | - Matias Viitala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.,StellarQ Ltd., Turku, Finland
| | | | - Jari O Karhu
- Medical Imaging Centre of Southwest Finland, Turku, Finland
| | - Juha Rinne
- Neurocenter, Turku University Hospital, University of Turku, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
28
|
Mahajan KR, Nakamura K, Cohen JA, Trapp BD, Ontaneda D. Intrinsic and Extrinsic Mechanisms of Thalamic Pathology in Multiple Sclerosis. Ann Neurol 2020; 88:81-92. [PMID: 32286701 PMCID: PMC8291218 DOI: 10.1002/ana.25743] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Thalamic atrophy is among the earliest brain changes detected in patients with multiple sclerosis (MS) and the degree of thalamic atrophy is a strong predictor of disability progression. The causes of thalamic atrophy are not fully understood. Here, we investigate the contributions of thalamic demyelinated lesions, thalamic neuronal loss, and cerebral white matter (WM) lesions to thalamic volume. METHODS We used postmortem in situ magnetic resonance imaging (MRI) scans of 95 subjects with MS to correlate thalamic lesion volumes with global MRI metrics. We histologically characterized thalamic demyelination patterns and compared neuronal loss and neuritic pathology in the thalami with the extremes of volume. RESULTS Grossly apparent thalamic discolorations in cm-thick brain slices were T2/fluid-attenuated inversion recovery (FLAIR) hyperintense, T1-hypointense, and appeared as perivascular demyelinated lesions with dystrophic neurons/axons. Subependymal demyelinated lesions with axonal loss and microglial/macrophage activation were also observed. The 12 subjects with the least thalamic volume had a 17.6% reduction of median neuronal density in the dorsomedial/ventrolateral and pulvinar nuclei compared with the 14 subjects with the greatest thalamic volume (p = 0.03). After correcting for age, disease duration, sex, and T2 lesion volume, the total (p = 0.20), ovoid (p = 0.31), or subependymal (p = 0.44) MRI thalamic lesion volumes correlated with thalamic volume. Thalamic volume correlated with cerebral T2 lesion volume (Spearman's rho = -0.65, p < 0.001; p < 0.0001 after correcting for age, disease duration, and sex). INTERPRETATION Our findings suggest the degeneration of efferent/afferent thalamic projections and/or a neurodegenerative process as greater contributors to thalamic atrophy than thalamic demyelinating lesions. ANN NEUROL 2020 ANN NEUROL 2020;88:81-92.
Collapse
Affiliation(s)
- Kedar R. Mahajan
- Mellen Center for MS Treatment and Research, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jeffrey A. Cohen
- Mellen Center for MS Treatment and Research, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bruce D. Trapp
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for MS Treatment and Research, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
29
|
Tavazzi E, Zivadinov R, Dwyer MG, Jakimovski D, Singhal T, Weinstock-Guttman B, Bergsland N. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Rev Neurother 2020; 20:821-834. [PMID: 32306772 DOI: 10.1080/14737175.2020.1757435] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Conventional imaging measures remain a key clinical tool for the diagnosis multiple sclerosis (MS) and monitoring of patients. However, most measures used in the clinic show unsatisfactory performance in predicting disease progression and conversion to secondary progressive MS. AREAS COVERED Sophisticated imaging techniques have facilitated the identification of imaging biomarkers associated with disease progression, such as global and regional brain volume measures, and with conversion to secondary progressive MS, such as leptomeningeal contrast enhancement and chronic inflammation. The relevance of emerging imaging approaches partially overcoming intrinsic limitations of traditional techniques is also discussed. EXPERT OPINION Imaging biomarkers capable of detecting tissue damage early on in the disease, with the potential to be applied in multicenter trials and at an individual level in clinical settings, are strongly needed. Several measures have been proposed, which exploit advanced imaging acquisitions and/or incorporate sophisticated post-processing, can quantify irreversible tissue damage. The progressively wider use of high-strength field MRI and the development of more advanced imaging techniques will help capture the missing pieces of the MS puzzle. The ability to more reliably identify those at risk for disability progression will allow for earlier intervention with the aim to favorably alter the disease course.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, The State University of New York , Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Tarun Singhal
- PET Imaging Program in Neurologic Diseases and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi , Milan, Italy
| |
Collapse
|
30
|
Preziosa P, Rocca MA, Pagani E, Storelli L, Rodegher M, Moiola L, Filippi M. Two-year regional grey and white matter volume changes with natalizumab and fingolimod. J Neurol Neurosurg Psychiatry 2020; 91:493-502. [PMID: 32111638 DOI: 10.1136/jnnp-2019-322439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To compare the efficacy of fingolimod and natalizumab in preventing regional grey matter (GM) and white matter (WM) atrophy in relapsing-remitting multiple sclerosis (RRMS) over 2 years. METHODS Patients with RRMS starting fingolimod (n=25) or natalizumab (n=30) underwent clinical examination and 3T MRI scans at baseline (month (M) 0), M6, M12 and M24. Seventeen healthy controls were also scanned at M0 and M24. Tensor-based morphometry and SPM12 were used to assess the longitudinal regional GM/WM volume changes. RESULTS At M0, no clinical or GM/WM volume differences were found between treatment groups. At M24, both drugs reduced relapse rate (p<0.001 for both) and stabilised disability. At M6 vs M0, both groups experienced significant atrophy of several areas in the cortex, deep GM nuclei and supratentorial WM. Significant bilateral cerebellar GM and WM atrophy occurred in fingolimod patients only. At M12 vs M6 and M24 vs M12, further supratentorial GM and WM atrophy occurred in both groups. Bilateral GM/WM cerebellar atrophy continued to progress in fingolimod patients only. Compared with natalizumab, fingolimod-treated patients showed a significant cerebellar GM/WM atrophy, mainly at M6 vs M0, but still occurring up to M24. Compared with fingolimod, natalizumab-treated patients had a small number of areas of GM atrophy in temporo-occipital regions at the different time-points. CONCLUSIONS Natalizumab and fingolimod are associated with heterogeneous temporal and regional patterns of GM and WM atrophy progression. Compared with natalizumab, fingolimod-treated patients experience accelerated GM and WM atrophy in the cerebellum, while both drugs show minimal regional volumetric differences in supratentorial regions.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Gaetano L, Magnusson B, Kindalova P, Tomic D, Silva D, Altermatt A, Magon S, Müller-Lenke N, Radue EW, Leppert D, Kappos L, Wuerfel J, Häring DA, Sprenger T. White matter lesion location correlates with disability in relapsing multiple sclerosis. Mult Scler J Exp Transl Clin 2020; 6:2055217320906844. [PMID: 32128236 PMCID: PMC7031799 DOI: 10.1177/2055217320906844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Lesion location is a prognostic factor of disease progression and disability accrual. Objective To investigate lesion formation in 11 brain regions, assess correlation between lesion location and physical and cognitive disability measures and investigate treatment effects by region. Methods In 2355 relapsing–remitting multiple sclerosis patients from the FREEDOMS and FREEDOMS II studies, we extracted T2-weighted lesion number, volume and density for each brain region; we investigated the (Spearman) correlation in lesion formation between brain regions, studied association between location and disability (at baseline and change over 2 years) using linear/logistic regression and assessed the regional effects of fingolimod versus placebo in negative binomial models. Results At baseline, the majority of lesions were found in the supratentorial brain. New and enlarging lesions over 24 months developed mainly in the frontal and sublobar regions and were substantially correlated to pre-existing lesions at baseline in the supratentorial brain (p = 0.37–0.52), less so infratentorially (p = −0.04–0.23). High sublobar lesion density was consistently and significantly associated with most disability measures at baseline and worsening of physical disability over 24 months. The treatment effect of fingolimod 0.5 mg was consistent across the investigated areas and tracts. Conclusion These results highlight the role of sublobar lesions for the accrual of disability in relapsing–remitting multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland
| | | | | | | |
Collapse
|
32
|
Magon S, Tsagkas C, Gaetano L, Patel R, Naegelin Y, Amann M, Parmar K, Papadopoulou A, Wuerfel J, Stippich C, Kappos L, Chakravarty MM, Sprenger T. Volume loss in the deep gray matter and thalamic subnuclei: a longitudinal study on disability progression in multiple sclerosis. J Neurol 2020; 267:1536-1546. [PMID: 32040710 DOI: 10.1007/s00415-020-09740-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Volume loss in the deep gray matter (DGM) has been reported in patients with multiple sclerosis (MS) already at early stages of the disease and is thought to progress throughout the disease course. OBJECTIVE To investigate the impact and predictive value of volume loss in DGM and thalamic subnuclei on disability worsening in patients MS over a 6-year follow-up period. METHODS Hundred and seventy-nine patients with RRMS (132 women; median Expanded Disability Status Scale, EDSS: 2.5) and 50 with SPMS (27 women; median EDSS: 4.5) were included in the study. Patients underwent annual EDSS assessments and annual MRI at 1.5 T. DGM/thalamic subnuclei volumes were identified on high-resolution T1-weighted. A hierarchical linear mixed model for each anatomical DGM area and each thalamic subnucleus was performed to investigate the associations with disability scores. Cox regression was used to estimate the predictive properties of volume loss in DGM and thalamic subnuclei on disease worsening. RESULTS In the whole sample and in RRMS, volumes of the thalamus and the striatum were associated with the EDSS; however, only thalamic volume loss was associated with EDSS change at follow-up. Regarding thalamic subnuclei, volume loss in the anterior nucleus, the pulvinar and the ventral anterior nucleus was associated with EDSS change in the whole cohort. A trend was observed for the ventral lateral nucleus. Volume loss in the anterior and ventral anterior nuclei was associated with EDSS change over time in patients with RRMS. Moreover, MS phenotype and annual rates of volume loss in the thalamus and ventral lateral nucleus were predictive of disability worsening. CONCLUSION These results highlight the relevance of volume loss in the thalamus as a key metric for predicting disability worsening as assessed by EDSS (in RRMS). Moreover, the volume loss in specific nuclei such as the ventral lateral nucleus seems to play a role in disability worsening.
Collapse
Affiliation(s)
- Stefano Magon
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Medical Image Analysis Center AG, Basel, Switzerland.
| | - Charidimos Tsagkas
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland
| | - Laura Gaetano
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland
| | - Raihaan Patel
- Cerebral Imaging Centre-Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Yvonne Naegelin
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Amann
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Image Analysis Center AG, Basel, Switzerland
| | - Athina Papadopoulou
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Wuerfel
- Medical Image Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Christoph Stippich
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - M Mallar Chakravarty
- Cerebral Imaging Centre-Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Till Sprenger
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| |
Collapse
|
33
|
Preziosa P, Rocca MA, Riccitelli GC, Moiola L, Storelli L, Rodegher M, Comi G, Signori A, Falini A, Filippi M. Effects of Natalizumab and Fingolimod on Clinical, Cognitive, and Magnetic Resonance Imaging Measures in Multiple Sclerosis. Neurotherapeutics 2020; 17:208-217. [PMID: 31452082 PMCID: PMC7007466 DOI: 10.1007/s13311-019-00781-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Studies comparing the effects of natalizumab and fingolimod in relapsing-remitting multiple sclerosis (RRMS) are limited. We aimed to compare natalizumab and fingolimod effects on clinical, neuropsychological, and MRI measures in RRMS patients after 2 years of treatment. RRMS patients starting natalizumab (n = 30) or fingolimod (n = 25) underwent neurologic, neuropsychological, and brain MRI assessments at baseline, month (M) 6, M12, and M24. Volumes of lesions, brain, gray matter (GM), white matter (WM), and deep GM were measured. Fifteen healthy controls (HC) were also scanned at baseline and M24. Treatment groups were matched for baseline variables. At M24 versus baseline, both drugs reduced the relapse rate (p value < 0.001), stabilized disability, and improved cognitive function (fingolimod: p value = 0.03; natalizumab: p value = 0.01), without between-group differences. The natalizumab group had a higher proportion of freedom from MRI activity (67% vs 36%, p value = 0.02) and no evidence of disease activity-3 (NEDA-3) (57% vs 28%, p value = 0.04). At M24 vs M6, brain (- 0.35%, p value = 0.002 [fingolimod]; - 0.42%, p value < 0.001 [natalizumab]), GM (- 0.62%, p value < 0.001 [fingolimod]; - 0.64%, p value < 0.001 [natalizumab]), and WM (- 0.98%, p value < 0.001 [fingolimod]; - 0.99%, p value < 0.001 [natalizumab]) atrophy progressed at higher rates than in HC, but similarly between treatment groups, whereas only the natalizumab group showed deep GM atrophy (- 0.79%, p value = 0.02) (p value vs fingolimod not significant). In both groups, atrophy progression was correlated with lesion accumulation (r from - 0.49 to - 0.36, p values from 0.013 to 0.05), whereas no correlation was found between clinical and MRI changes. Natalizumab and fingolimod reduce disease activity and improve cognition in RRMS. Natalizumab seems superior to limit lesion accumulation, whereas both drugs similarly modify atrophy progression.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Gianna C Riccitelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Lucia Moiola
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Mariaemma Rodegher
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Giancarlo Comi
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Via Pastore, 1, Genoa, 16132, Italy
| | - Andrea Falini
- Department of Neuroradiology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy.
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy.
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| |
Collapse
|
34
|
Yazdi A, Ghasemi‐Kasman M, Javan M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: An overview on remyelination process. J Neurosci Res 2019; 98:524-536. [DOI: 10.1002/jnr.24509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Ghasemi‐Kasman
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
- Neuroscience Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
35
|
Bartels F, Nobis K, Cooper G, Wendel E, Cleaveland R, Bajer-Kornek B, Blaschek A, Schimmel M, Blankenburg M, Baumann M, Karenfort M, Finke C, Rostásy K. Childhood multiple sclerosis is associated with reduced brain volumes at first clinical presentation and brain growth failure. Mult Scler 2019; 25:927-936. [DOI: 10.1177/1352458519829698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Paediatric multiple sclerosis (pedMS) patients at a single site were shown to have reduced brain volumes and failure of age-expected brain growth compared to healthy controls. However, the precise time of onset of brain volume loss remains unclear. Objective: To longitudinally study brain volumes in a multi-centre European cohort at first presentation and after 2 years. Methods: Brain volumes of high-resolution magnetic resonance imaging (MRI) data from 37 pedMS patients at first presentation prior to steroid therapy and at 2-year follow-up ( n = 21) were compared to matched longitudinal MRI data from the NIH Paediatric MRI Data Repository. Results: Patients showed significantly reduced whole brain, grey and white matter and increased ventricular volumes at initial presentation and at follow-up compared to controls. Over 2 years, patients exhibited significant reduction of whole brain and white matter volumes, accompanied by increased ventricular volume. Brain volume loss at follow-up correlated with a higher number of infratentorial lesions, relapses and an increased Expanded Disability Status Scale (EDSS) score. Conclusions: In pedMS patients, brain volume loss is present already at first clinical presentation and accelerated over 2 years. Increased disease activity is associated with more severe brain volume loss. MRI brain volume change might serve as an outcome parameter in future prospective pedMS studies.
Collapse
Affiliation(s)
- Frederik Bartels
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany/ Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Nobis
- Department of Paediatric Neurology, Children’s Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Graham Cooper
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Wendel
- Department of Paediatric Neurology, Olgahospital, Stuttgart, Germany
| | - Robert Cleaveland
- Department of Paediatric Neurology, Children’s Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | | | - Astrid Blaschek
- Department of Paediatric Neurology and Developmental Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Mareike Schimmel
- Department of Paediatric Neurology, Children’s Hospital Augsburg, Augsburg, Germany
| | - Markus Blankenburg
- Department of Paediatric Neurology, Children’s Hospital Datteln, Witten/Herdecke University, Datteln, Germany/ Department of Paediatric Neurology, Olgahospital, Stuttgart, Germany
| | - Matthias Baumann
- Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Karenfort
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children’s Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Carsten Finke
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany/ Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kevin Rostásy
- Department of Paediatric Neurology, Children’s Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| |
Collapse
|
36
|
Zivadinov R, Bergsland N, Carl E, Ramasamy DP, Hagemeier J, Dwyer MG, Lizarraga AA, Kolb C, Hojnacki D, Weinstock-Guttman B. Effect of Teriflunomide and Dimethyl Fumarate on Cortical Atrophy and Leptomeningeal Inflammation in Multiple Sclerosis: A Retrospective, Observational, Case-Control Pilot Study. J Clin Med 2019; 8:jcm8030344. [PMID: 30870983 PMCID: PMC6463015 DOI: 10.3390/jcm8030344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Pathologic changes in cortical gray matter (GM) and leptomeninges contribute to disability worsening in patients with multiple sclerosis (MS), but there is little evidence whether disease-modifying treatments can slow down cortical pathology in MS. Objectives: To investigate the effect of teriflunomide (TFM) and dimethyl fumarate (DMF) in reducing cortical pathology, as determined by percentage cortical volume change (PCVC) and leptomeningeal contrast enhancement (LMCE) on MRI. Methods: This was a retrospective, single-center, observational study that selected 60 TFM- and 60 DMF-treated MS patients over 24 months. Results: TFM had a lower rate of PCVC compared to DMF over 24 months (−0.2% vs. −2.94%, p = 0.004). Similar results were observed for percentage GM volume change over 0–12 (p = 0.044) and 0–24 (−0.44% vs. −3.12%, p = 0.015) months. No significant differences were found between the TFM and DMF groups in the frequency and number of LMCE foci over the follow-up. TFM showed a numerically lower rate of whole brain atrophy over 24 months (p = 0.077), compared to DMF. No significant clinical or MRI lesion differences between TFM and DMF were detected over follow-up. Conclusions: These findings suggest that TFM has a superior effect on the preservation of cortical GM volume, compared to DMF.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Ellen Carl
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Alexis A Lizarraga
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Channa Kolb
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - David Hojnacki
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
37
|
Correale J, Marrodan M, Ysrraelit MC. Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines 2019; 7:biomedicines7010014. [PMID: 30791637 PMCID: PMC6466454 DOI: 10.3390/biomedicines7010014] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple Sclerosis (MS) is a major cause of neurological disability, which increases predominantly during disease progression as a result of cortical and grey matter structures involvement. The gradual accumulation of disability characteristic of the disease seems to also result from a different set of mechanisms, including in particular immune reactions confined to the Central Nervous System such as: (a) B-cell dysregulation, (b) CD8+ T cells causing demyelination or axonal/neuronal damage, and (c) microglial cell activation associated with neuritic transection found in cortical demyelinating lesions. Other potential drivers of neurodegeneration are generation of oxygen and nitrogen reactive species, and mitochondrial damage, inducing impaired energy production, and intra-axonal accumulation of Ca2+, which in turn activates a variety of catabolic enzymes ultimately leading to progressive proteolytic degradation of cytoskeleton proteins. Loss of axon energy provided by oligodendrocytes determines further axonal degeneration and neuronal loss. Clearly, these different mechanisms are not mutually exclusive and could act in combination. Given the multifactorial pathophysiology of progressive MS, many potential therapeutic targets could be investigated in the future. This remains however, an objective that has yet to be undertaken.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, FLENI, Buenos Aires 1428, Argentina.
| | | | | |
Collapse
|
38
|
Sotirchos ES, Gonzalez-Caldito N, Dewey BE, Fitzgerald KC, Glaister J, Filippatou A, Ogbuokiri E, Feldman S, Kwakyi O, Risher H, Crainiceanu C, Pham DL, Van Zijl PC, Mowry EM, Reich DS, Prince JL, Calabresi PA, Saidha S. Effect of disease-modifying therapies on subcortical gray matter atrophy in multiple sclerosis. Mult Scler 2019; 26:312-321. [PMID: 30741108 DOI: 10.1177/1352458519826364] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The effects of disease-modifying therapies (DMTs) on region-specific brain atrophy in multiple sclerosis (MS) are unclear. OBJECTIVE To determine the effects of higher versus lower efficacy DMTs on rates of brain substructure atrophy in MS. METHODS A non-randomized, observational cohort of people with MS followed with annual brain magnetic resonance imaging (MRI) was evaluated retrospectively. Whole brain, subcortical gray matter (GM), cortical GM, and cerebral white matter (WM) volume fractions were obtained. DMTs were categorized as higher (DMT-H: natalizumab and rituximab) or lower (DMT-L: interferon-beta and glatiramer acetate) efficacy. Follow-up epochs were analyzed if participants had been on a DMT for ⩾6 months prior to baseline and had at least one follow-up MRI while on DMTs in the same category. RESULTS A total of 86 DMT epochs (DMT-H: n = 32; DMT-L: n = 54) from 78 participants fulfilled the study inclusion criteria. Mean follow-up was 2.4 years. Annualized rates of thalamic (-0.15% vs -0.81%; p = 0.001) and putaminal (-0.27% vs -0.73%; p = 0.001) atrophy were slower during DMT-H compared to DMT-L epochs. These results remained significant in multivariate analyses including demographics, clinical characteristics, and T2 lesion volume. CONCLUSION DMT-H treatment may be associated with slower rates of subcortical GM atrophy, especially of the thalamus and putamen. Thalamic and putaminal volumes are promising imaging biomarkers in MS.
Collapse
Affiliation(s)
- Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Blake E Dewey
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Glaister
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Angeliki Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Ogbuokiri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sydney Feldman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ohemaa Kwakyi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hunter Risher
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Dzung L Pham
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.,Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Peter C Van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel S Reich
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.,Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Rocca MA, Preziosa P, Filippi M. Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 2018; 19:835-866. [PMID: 30500303 DOI: 10.1080/14737175.2019.1555038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Advances in magnetic resonance imaging (MRI) technology and analyses are improving our understanding of the pathophysiology of multiple sclerosis (MS). Due to their ability to grade the presence of irreversible tissue loss, microstructural tissue abnormalities, metabolic changes and functional plasticity, the application of these techniques is also expanding our knowledge on the efficacy and mechanisms of action of different pharmacological and rehabilitative treatments. Areas covered: This review discusses recent findings derived from the application of advanced MRI techniques to evaluate the structural and functional substrates underlying the effects of pharmacologic and rehabilitative treatments in patients with MS. Current applications as outcome in clinical trials and observational studies, their interpretation and possible pitfalls in their use are discussed. Finally, how these techniques could evolve in the future to improve monitoring of disease progression and treatment response is examined. Expert commentary: The number of treatments currently available for MS is increasing. The application of advanced MRI techniques is providing reliable and specific measures to better understand the targets of different treatments, including neuroprotection, tissue repair, and brain plasticity. This is a fundamental progress to move toward personalized medicine and individual treatment selection.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
40
|
Schoonheim MM, Geurts JJG. What Causes Deep Gray Matter Atrophy in Multiple Sclerosis? AJNR Am J Neuroradiol 2018; 40:107-108. [PMID: 30591510 DOI: 10.3174/ajnr.a5942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- M M Schoonheim
- Department of Anatomy and Neurosciences MS Center Amsterdam Amsterdam Neuroscience Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam, the Netherlands
| | - J J G Geurts
- Department of Anatomy and Neurosciences MS Center Amsterdam Amsterdam Neuroscience Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam, the Netherlands
| |
Collapse
|
41
|
Vural A, Okar S, Kurne A, Sayat-Gürel G, Acar NP, Karabulut E, Oğuz KK, Kadayıfçılar S, Karabudak R. Retinal degeneration is associated with brain volume reduction and prognosis in radiologically isolated syndrome. Mult Scler 2018; 26:38-47. [DOI: 10.1177/1352458518817987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The extent of neurodegeneration in the earliest stages of central nervous system (CNS) demyelination is not known. Optical coherence tomography (OCT) is a powerful tool to study neurodegeneration in demyelinating disorders. Objectives: To study neuroaxonal loss in the retina of individuals with radiologically isolated syndrome (RIS) and investigate whether OCT measurements are associated with brain volumetrics and clinical conversion to multiple sclerosis (MS). Methods: Subjects fulfilling the Okuda criteria for RIS ( n = 15 patients, 30 eyes) and age- and sex-matched healthy controls (HC) underwent spectral-domain OCT and magnetic resonance imaging for volumetric measurement of brain structures. Results: Macular ganglion cell-inner plexiform layer (mGCIPL), macular retinal nerve fiber layer (mRNFL), and temporal peripapillary RNFL (pRNFL) thickness; normalized total brain volume (nTBV); and normalized thalamic volume (nTV) were reduced in RIS compared to HC. mGCIPL, mRNFL, and pRNFL measurements were associated with nTBV, nTV, and normalized gray and white matter volumes in the RIS group. pRNFL was thinner in individuals with RIS who converted to MS in 5 years. Conclusions: Retinal neurodegeneration can be detected in the papillomacular region in the earliest stages of CNS demyelination and reflects global disease processes in the brain. OCT can be potentially useful for predicting prognosis in RIS.
Collapse
Affiliation(s)
- Atay Vural
- Department of Neurology, Hacettepe University, Ankara, Turkey
- Department of Neurology, Koç University Hospital, Koç University, İstanbul, Turkey
| | - Serhat Okar
- Department of Neurology, Hacettepe University, Ankara, Turkey
| | - Aslı Kurne
- Department of Neurology, Hacettepe University, Ankara, Turkey
| | | | | | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | | | | | - Rana Karabudak
- Department of Neurology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
42
|
Puthenparampil M, Cazzola C, Zywicki S, Federle L, Stropparo E, Anglani M, Rinaldi F, Perini P, Gallo P. NEDA-3 status including cortical lesions in the comparative evaluation of natalizumab versus fingolimod efficacy in multiple sclerosis. Ther Adv Neurol Disord 2018; 11:1756286418805713. [PMID: 30386435 PMCID: PMC6204617 DOI: 10.1177/1756286418805713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Cortical lesions (CLs) are typical of multiple sclerosis (MS) and have been recently incorporated in MS diagnostic criteria. Thus, the ‘no evidence of disease activity’ (NEDA) definition should now include CLs. The aim of this study was to evaluate the NEDA3 + CL status in natalizumab- or fingolimod-treated relapsing remitting MS (RMS) patients. Methods: Natalizumab- or fingolimod-treated RMS patients were enrolled in a 2-year longitudinal study based on clinical and magnetic resonance imaging (MRI) evaluations performed respectively biannually and annually. CLs were detected by double inversion recovery. The NEDA3 + CL condition was evaluated at baseline (T0) and at the end of the first (T1) and second (T2) year. Results: Of the 137 RMS patients included in the study, 86 were propensity-matched. At T2, the annualized relapse rate was lower on natalizumab (p = 0.021), but the effect on white matter lesions (p = 0.29) and the proportion of NEDA-3 patients (p = 0.14) were similar in the two treatment arms. At T2, 11.6% natalizumab- and 62.8% fingolimod-treated patients had new CLs (p < 0.001) and a higher proportion of natalizumab-treated patients (55.8% versus 11.6%, p < 0.001) achieved the NEDA3 + CL status (hazard ratio 5.2, p < 0.001). Conclusion: The incorporation of CLs in the NEDA-3 definition highlighted the higher efficacy of natalizumab versus fingolimod in suppressing disease activity in RMS patients.
Collapse
Affiliation(s)
- Marco Puthenparampil
- Multiple Sclerosis Centre, Department of Neuroscience DNS, Univeristà Degli Studi di Padova, Via Giustinaini 2, 35128, Padova, Italy
| | - Chiara Cazzola
- Multiple Sclerosis Centre, Department of Neuroscience DNS, University of Padua, Padua, Italy
| | - Sofia Zywicki
- Multiple Sclerosis Centre, Department of Neuroscience DNS, University of Padua, Padua, Italy
| | - Lisa Federle
- Multiple Sclerosis Centre, Ospedale San Bortolo, ULSS8 Berica, Vicenza, Italy
| | - Erica Stropparo
- Multiple Sclerosis Centre, Department of Neuroscience DNS, University of Padua, Padua, Italy
| | | | | | - Paola Perini
- Neurology Clinic, University Hospital of Padua, Padova, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre, Department of Neuroscience DNS, University of Padua, Padua, Italy
| |
Collapse
|
43
|
Crocker CE, Tibbo PG. Confused Connections? Targeting White Matter to Address Treatment Resistant Schizophrenia. Front Pharmacol 2018; 9:1172. [PMID: 30405407 PMCID: PMC6201564 DOI: 10.3389/fphar.2018.01172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Despite development of comprehensive approaches to treat schizophrenia and other psychotic disorders and improve outcomes, there remains a proportion (approximately one-third) of patients who are treatment resistant and will not have remission of psychotic symptoms despite adequate trials of pharmacotherapy. This level of treatment response is stable across all stages of the spectrum of psychotic disorders, including early phase psychosis and chronic schizophrenia. Our current pharmacotherapies are beneficial in decreasing positive symptomology in most cases, however, with little to no impact on negative or cognitive symptoms. Not all individuals with treatment resistant psychosis unfortunately, even benefit from the potential pharmacological reductions in positive symptoms. The existing pharmacotherapy for psychosis is targeted at neurotransmitter receptors. The current first and second generation antipsychotic medications all act on dopamine type 2 receptors with the second generation drugs also interacting significantly with serotonin type 1 and 2 receptors, and with varying pharmacodynamic profiles overall. This focus on developing dopaminergic/serotonergic antipsychotics, while beneficial, has not reduced the proportion of patients experiencing treatment resistance to date. Another pharmacological approach is imperative to address treatment resistance both for response overall and for negative symptoms in particular. There is research suggesting that changes in white matter integrity occur in schizophrenia and these may be more associated with cognition and even negative symptomology. Here we review the evidence that white matter abnormalities in the brain may be contributing to the symptomology of psychotic disorders. Additionally, we propose that white matter may be a viable pharmacological target for pharmacoresistant schizophrenia and discuss current treatments in development for schizophrenia that target white matter.
Collapse
Affiliation(s)
- Candice E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Diagnostic Imaging, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
44
|
Bajrami A, Pitteri M, Castellaro M, Pizzini F, Romualdi C, Montemezzi S, Monaco S, Calabrese M. The effect of fingolimod on focal and diffuse grey matter damage in active MS patients. J Neurol 2018; 265:2154-2161. [PMID: 29938336 DOI: 10.1007/s00415-018-8952-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The mechanism of action of fingolimod within the central nervous system and its efficacy in reducing/preventing both focal and diffuse grey matter (GM) damage in active multiple sclerosis (MS) are not completely understood. METHODS In this longitudinal, 2-year prospective, phase IV, single-blind study, 40 MS patients treated with fingolimod and 39 untreated age, gender, and disability-matched MS patients were enrolled. Each patient underwent a neurological examination every 6 months and a 3T MRI at the beginning of the treatment and after 24 months. The accumulation of new cortical lesions (CLs) and the progression of regional GM atrophy were compared between the two groups. RESULTS At the end of the study (T24), the percentage of patients with new CLs (13.5 vs. 89%, p < 0.001) and the percentage of GM volume change was lower in the treated group (p < 0.001). The regional analysis revealed that the treated group had also less volume loss in thalamus, caudatus, globus pallidus, cingulate cortex, and hippocampus (p < 0.001), as well as in, cerebellum, superior frontal gyrus, and insular-long gyrus (p < 0.05). Patients with no evidence of disease activity were 60% in the treated group and 10% in the untreated group (p < 0.001). CONCLUSIONS These results suggest a possible protective effect of fingolimod on focal and diffuse GM damage.
Collapse
Affiliation(s)
- Albulena Bajrami
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Marco Pitteri
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Marco Castellaro
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Francesca Pizzini
- Neuroradiology and Radiology Units, Department of Diagnostic and Pathology, University Hospital of Verona, Verona, Italy
| | | | - Stefania Montemezzi
- Neuroradiology and Radiology Units, Department of Diagnostic and Pathology, University Hospital of Verona, Verona, Italy
| | - Salvatore Monaco
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma, Piazzale L.A. Scuro, 10, 37134, Verona, Italy.
| |
Collapse
|
45
|
Zivadinov R, Medin J, Khan N, Korn JR, Bergsland N, Dwyer MG, Chitnis T, Naismith RT, Alvarez E, Kinkel P, Cohan S, Hunter SF, Silva D, Weinstock-Guttman B. Fingolimod's Impact on MRI Brain Volume Measures in Multiple Sclerosis: Results from MS-MRIUS. J Neuroimaging 2018; 28:399-405. [DOI: 10.1111/jon.12518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Buffalo, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences; University at Buffalo, The State University of New York; Buffalo NY
- Center for Biomedical Imaging, Clinical Translational Science Institute; University at Buffalo, The State University of New York; Buffalo NY
| | | | | | | | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Buffalo, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences; University at Buffalo, The State University of New York; Buffalo NY
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Buffalo, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences; University at Buffalo, The State University of New York; Buffalo NY
| | - Tanuja Chitnis
- Partners MS Center, Brigham and Women's Hospital; Boston MA
| | | | - Enrique Alvarez
- Department of Neurology; University of Colorado School of Medicine; CO
| | | | | | | | | | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences; University at Buffalo, The State University of New York; Buffalo NY
| | | |
Collapse
|
46
|
Schoonheim MM, Ciccarelli O. The value of including thalamic atrophy as a clinical trial endpoint in multiple sclerosis. Neurology 2018. [PMID: 29540583 DOI: 10.1212/wnl.0000000000005279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Menno M Schoonheim
- From the Department of Anatomy and Neurosciences (M.M.S.), Amsterdam Neuroscience, MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neuroinflammation (O.C.), UCL Institute of Neurology, University College London; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, UK.
| | - Olga Ciccarelli
- From the Department of Anatomy and Neurosciences (M.M.S.), Amsterdam Neuroscience, MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neuroinflammation (O.C.), UCL Institute of Neurology, University College London; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, UK
| |
Collapse
|