1
|
Luders E, Poromaa IS, Kurth F. The neuroanatomy of menopause. Horm Behav 2025; 172:105749. [PMID: 40334636 DOI: 10.1016/j.yhbeh.2025.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
Sex hormones are known to affect brain structure. Given that menopause is marked by a significant decline in female sex hormones, there might be structural brain alterations around menopause. The aim of this article is to provide a narrative review on what we know today with respect to links between brain anatomy and menopause, while also considering potential effects of menopausal hormone therapy (MHT). The review is focused on neuroimaging studies analyzing the macro-anatomy or micro-anatomy of the human brain as based on structural magnetic resonance imaging (MRI) or diffusion tensor imaging (DTI). Out of the 32 studies reviewed here, 22 studies revealed at least some findings that suggest beneficial effects of estrogen. However, overall, findings are rather mixed pointing to both beneficial and adverse effects (or to no effects at all). The nature of the effects seemed to be unrelated to the spatial scales applied, the morphometric measures obtained, and the brain tissues targeted. Nevertheless, there were some intriguing effects in terms of the study design: Cross-sectionally, there seemed to be a trend for beneficial effects in small-scale studies and for adverse effects in large-scale studies. Longitudinally, there seemed to be a trend for beneficial effects in purely observational studies and for beneficial as well as adverse effects in controlled clinical trials. With particular respect to MHT, early treatment (short after the onset of menopause) might be more beneficial than later treatment. However, overall, data are insufficient to draw final conclusions and further research is required.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Women's and Children's Health, Uppsala University, Uppsala 75237, Sweden; Swedish Collegium for Advanced Study (SCAS), Uppsala 75238, Sweden; School of Psychology, University of Auckland, Auckland 1010, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles 90033, USA.
| | | | - Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand; Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
2
|
Cowell PE, Wadnerkar Kamble M, Maitreyee R, Varley RA. Cognitive strategy in verbal fluency: sex differences, menstrual cycle, and menopause effects. Cogn Process 2025:10.1007/s10339-025-01265-w. [PMID: 40186722 DOI: 10.1007/s10339-025-01265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/24/2025] [Indexed: 04/07/2025]
Abstract
Cognitive sex differences are shaped by hormone effects on brain development, organisation, structure, function, and ageing. In human speech and language, sex differences and hormone effects are typically studied in the form of performance-based differences (via measures of central tendency) with little attention given to underlying cognitive strategy. This study presents data from 126 healthy adults, aged 20-79 years, from three studies of letter based verbal fluency. Comparisons were conducted based on sex, menstrual cycle phase, and menopause stage to examine total words produced, plus switching and clustering strategy use. The investigation probed differences in performance, underlying cognitive strategies, and correlations between performance and strategy. For performance, there were no statistically significant sex or menopause group differences in total words, number of switches and cluster size. Menstrual cycle differences were significant for switches and cluster size, but not total words. However, there were large effect sizes for correlations between total word performance and strategy measures in some groups; these correlations formed patterns which differed as a function of sex, menstrual cycle phase, and menopausal stage. Words produced were highly correlated with switching in younger women at higher hormone menstrual cycle phases. Correlations between total words and both strategies were moderate and equivalent in older premenopausal and perimenopausal women. Postmenopausal women showed a pattern of higher correlation between total words and cluster size which was observed in younger women at the lower hormone cycle phase, and men. This study illustrates the impact of hormones and sex differences on strategy use in verbal fluency-underscoring the value of comparisons in strategy use between women at different reproductive life stages.
Collapse
Affiliation(s)
- Patricia E Cowell
- School of Allied Health Professions, Nursing and Midwifery, University of Sheffield, Sheffield, UK.
| | | | - Ramya Maitreyee
- School of Allied Health Professions, Nursing and Midwifery, University of Sheffield, Sheffield, UK
- Institute of Health Sciences, Bhubaneswar, India
| | - Rosemary A Varley
- Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
3
|
Jauregi‐Zinkunegi A, Gleason CE, Bendlin B, Okonkwo O, Hermann BP, Blennow K, Zetterberg H, Hogervorst E, Johnson SC, Langhough R, Mueller KD, Bruno D. Menopausal hormone therapy is associated with worse levels of Alzheimer's disease biomarkers in APOE ε4-carrying women: An observational study. Alzheimers Dement 2025; 21:e14456. [PMID: 39783876 PMCID: PMC11848176 DOI: 10.1002/alz.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Menopausal hormone therapy (MHT), along with the apolipoprotein E (APOE) ε4 allele, has been suggested as a possible risk factor for Alzheimer's disease (AD). However, the relationship between MHT and cerebrospinal fluid (CSF) biomarkers is unknown: we investigated this association, and whether APOE ε4 carrier status moderates it. METHODS In an observational study of 136 cognitively unimpaired female participants (Mage = 66.0; standard deviation = 6.3), we examined whether MHT use alone or in interaction with APOE ε4 carrier status was associated with CSF levels of phosphorylated tau (p-tau), amyloid beta (Aβ)40, Aβ42, p-tau/Aβ42, and Aβ42/40 ratios. RESULTS Significant interactions were found between APOE ε4 and MHT use for CSF biomarkers. APOE ε4 carriers who were MHT users showed worse levels of CSF p-tau/Aβ42 and Aβ42/40 ratios than all other users and non-users. DISCUSSION The presence of both APOE ε4 and MHT may be associated with elevated amyloid deposition and AD pathology in this sample of participants who demonstrated high familial AD risk. HIGHLIGHTS Significant interactions were found between apolipoprotein E (APOE) ε4 and menopausal hormone therapy (MHT) use for cerebrospinal fluid (CSF) phosphorylated tau (p-tau)/amyloid beta (Aβ)42 and Aβ42/40 ratios. APOE ε4 carriers who were MHT users showed worse levels of CSF biomarkers than non-users and non-carriers, both users and non-users. Younger age at MHT initiation was associated with worse levels of the p-tau/Aβ42 and Aβ42/40 ratios in carriers only. The presence of both APOE ε4 carriage and MHT use may be associated with elevated amyloid deposition and AD pathology. Further studies with larger sample sizes are necessary to confirm the differences observed in the current study.
Collapse
Affiliation(s)
| | - Carey E. Gleason
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Geriatric Research, Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Barbara Bendlin
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseInstitute of Neurology, UCLLondonUK
- UK Dementia Research Institute, UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Science ParkHong KongChina
| | - Eef Hogervorst
- School of Sports Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Geriatric Research, Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Rebecca Langhough
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Kimberly D. Mueller
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Communication Sciences and DisordersUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Davide Bruno
- School of PsychologyLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
4
|
O'Mahony C, Hidalgo-Lanussa O, Barreto GE. Unveiling FOXO3's metabolic contribution to menopause and Alzheimer's disease. Exp Gerontol 2025; 200:112679. [PMID: 39778695 DOI: 10.1016/j.exger.2025.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The increasing prevalence of Alzheimer's disease (AD) calls for a comprehensive exploration of its complex etiology, with a focus on sex-specific vulnerability, particularly the heightened susceptibility observed in postmenopausal women. Neurometabolic alterations during the endocrine transition emerge as early indicators of AD pathology, including reduced glucose metabolism and increased amyloid-beta (Aβ) deposition. The fluctuating endocrine environment, marked by declining estradiol levels and reduced estrogen receptor beta (ERβ) activity, further exacerbates this process. In this context, here we explore the potential of forkhead box O3 (FOXO3) as a critical mediator linking metabolic disturbances to hormonal decline. We propose that FOXO3 plays a key role in the intersection of menopause and AD, given its dysregulation in both AD patients and postmenopausal women, modulating cellular metabolism through interactions with the AMPK/AKT/PI3K pathways. This relationship highlights the intersection between hormonal changes and increased AD susceptibility. This review aims to open a discussion on FOXO3's contribution to the metabolic dysregulation seen in menopause and its impact on the progression of AD. Understanding the functional role of FOXO3 in menopause-associated metabolic changes could lead to targeted therapeutic strategies, offering novel insights for managing for this condition.
Collapse
Affiliation(s)
- Christopher O'Mahony
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Oscar Hidalgo-Lanussa
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
5
|
Schroeder RA, Thurston RC, Wu M, Aizenstein HJ, Derby CA, Maki PM. Endogenous Estrogens and Brain Activation During Verbal Memory Encoding and Recognition in the Postmenopause. J Clin Endocrinol Metab 2025; 110:452-461. [PMID: 39026459 DOI: 10.1210/clinem/dgae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT Changes in verbal memory have been reliably reported across the menopause transition. To understand the role of endogenous estrogens in verbal memory performance, this study assessed the associations of endogenous estradiol and estrone with brain network connectivity during a verbal memory fMRI task. OBJECTIVE Determine associations of endogenous estrogens with memory systems in the postmenopausal brain and evaluate clinical significance. METHODS In the MsBrain cohort (n = 199, mean age 59.3 ± 3.9 years, 83.9% White), we examined the cross-sectional association of serum estradiol (E2) and estrone (E1), measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS), during a functional magnetic resonance imaging (fMRI) task of word encoding and recognition. To characterize the clinical significance of those associations, we examined the magnitude of activation in relation to a neuropsychological measures of memory and affect. RESULTS Endogenous E2 was positively associated with activation in temporal and frontal cortices during encoding and negatively associated with one prefrontal region during recognition (P < .05). Activation in the left inferior frontal gyrus was associated with memory performance (β [SE] = 0.004 [0.002]; P < .05), and anxiety (β [SE] = -0.100 [0.050]; P < .05). The left middle frontal gyrus was associated with memory performance (β [SE] = 0.006 [0.002]; P < .01), depression, and anxiety. The left superior temporal gyrus (STG) was associated with depression (β [SE] = -0.083 [0.036]; P < .05) and anxiety (β [SE] = -0.134 [0.058]; P < .05). E1 was positively associated with activation in a range of brain areas including bilateral STG and right superior frontal gyrus during encoding (P < .05). Activation of the left insula and precentral gyrus were associated with symptoms of depression and anxiety. None related to memory. CONCLUSION The function of brain areas critical to memory performance varies with estrogen levels in the postmenopause, even though those levels are low. Higher levels of E2 may facilitate memory performance through enhanced function of temporal and frontal cortices during encoding of verbal material.
Collapse
Affiliation(s)
- Rachel A Schroeder
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rebecca C Thurston
- Departments of Psychiatry, Psychology, Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Howard J Aizenstein
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carol A Derby
- Departments of Neurology and Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pauline M Maki
- Departments of Psychiatry, Psychology and Obstetrics & Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Kara F, Tosakulwong N, Lesnick TG, Fought AJ, Kendell-Thomas J, Kapoor E, Faubion LL, Schwarz CG, Senjem ML, Fields JA, Min PH, Lowe VJ, Jack CR, Bailey KR, James TT, Lobo RA, Manson JE, Pal L, Hammers DB, Malek-Ahmadi M, Cedars MI, Naftolin FN, Santoro N, Miller VM, Harman SM, Dowling NM, Gleason CE, Kantarci K. Associations of blood pressure with white matter hyperintensities later in life; influence of short-term menopausal hormone therapy. Menopause 2025; 32:12-22. [PMID: 39729067 PMCID: PMC11896108 DOI: 10.1097/gme.0000000000002481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/15/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To assess the association of systolic and diastolic blood pressure (SBP and DBP) in recently menopausal women with white matter hyperintensity (WMH) volume later in life and determine whether short-term menopausal hormone therapy (mHT) modifies these associations. METHODS Kronos Early Estrogen Prevention Study (KEEPS) was a multicenter, randomized, double-blinded, placebo-controlled 4-year mHT trial (oral conjugated equine estrogens or transdermal 17β-estradiol). KEEPS continuation was an observational follow-up of the participants 10 years after the end of mHT. The associations between KEEPS baseline blood pressure (BP) with KEEPS continuation WMH volume were examined adjusting for covariates in model 1 (age, total intracranial volume, study site, mHT type) and model 2 (additionally conventional CVD risk factors). Interaction terms (BP × mHT type) were added into the linear regression models. RESULTS The mean ± SD ages of participants were 53 (±2) years at KEEPS baseline and 67 (±2) years at KEEPS continuation. Elevated BP at KEEPS baseline was associated with greater WMH volume measured 14 years later (model 1: SBP: β = 0.01 [95% CI, 0.001-0.01] and DBP: β = 0.01 [95% CI, 0.003-0.03]) and after additionally adjusting for CVD risk factors (model 2). We did not find any evidence that mHT versus placebo modified these associations. Topographically, higher BP was associated with greater periventricular WMH in the frontal and parietal lobes. CONCLUSION Our findings suggest the importance of maintaining normal BP in recently postmenopausal women with low CVD risk, irrespective of short-term mHT usage, to potentially reduce the risk of WMH later in life.
Collapse
Affiliation(s)
- Firat Kara
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| | | | | | - Angela J. Fought
- Department of Quantitative Health Sciences Mayo Clinic, Rochester, MN
| | | | - Ekta Kapoor
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | - Paul H. Min
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| | - Val J. Lowe
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| | | | - Kent R. Bailey
- Department of Quantitative Health Sciences Mayo Clinic, Rochester, MN
| | - Taryn T. James
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Rogerio A. Lobo
- Department of Obstetrics and Gynecology, Columbia University, New York City, NY
| | - JoAnn E. Manson
- Department of Epidemiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lubna Pal
- Department of Obstetrics and Gynecology, Yale University, New Haven, CT
| | | | | | - Marcelle I. Cedars
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA
| | | | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO
| | | | | | - N. Maritza Dowling
- Department of Biostatistics, George Washington University, Washington, DC
| | - Carey E. Gleason
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kejal Kantarci
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Gleason CE, Dowling NM, Kara F, James TT, Salazar H, Ferrer Simo CA, Harman SM, Manson JE, Hammers DB, Naftolin FN, Pal L, Miller VM, Cedars MI, Lobo RA, Malek-Ahmadi M, Kantarci K. Long-term cognitive effects of menopausal hormone therapy: Findings from the KEEPS Continuation Study. PLoS Med 2024; 21:e1004435. [PMID: 39570992 PMCID: PMC11581397 DOI: 10.1371/journal.pmed.1004435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Findings from Kronos Early Estrogen Prevention Study (KEEPS)-Cog trial suggested no cognitive benefit or harm after 48 months of menopausal hormone therapy (mHT) initiated within 3 years of final menstrual period. To clarify the long-term effects of mHT initiated in early postmenopause, the observational KEEPS Continuation Study reevaluated cognition, mood, and neuroimaging effects in participants enrolled in the KEEPS-Cog and its parent study the KEEPS approximately 10 years after trial completion. We hypothesized that women randomized to transdermal estradiol (tE2) during early postmenopause would show cognitive benefits, while oral conjugated equine estrogens (oCEE) would show no effect, compared to placebo over the 10 years following randomization in the KEEPS trial. METHODS AND FINDINGS The KEEPS-Cog (2005-2008) was an ancillary study to the KEEPS (NCT00154180), in which participants were randomized into 3 groups: oCEE (Premarin, 0.45 mg/d), tE2 (Climara, 50 μg/d) both with micronized progesterone (Prometrium, 200 mg/d for 12 d/mo) or placebo pills and patch for 48 months. KEEPS Continuation (2017-2022), an observational, longitudinal cohort study of KEEPS clinical trial, involved recontacting KEEPS participants approximately 10 years after the completion of the 4-year clinical trial to attend in-person research visits. Seven of the original 9 sites participated in the KEEPS Continuation, resulting in 622 women of original 727 being invited to return for a visit, with 299 enrolling across the 7 sites. KEEPS Continuation participants repeated the original KEEPS-Cog test battery which was analyzed using 4 cognitive factor scores and a global cognitive score. Cognitive data from both KEEPS and KEEPS Continuation were available for 275 participants. Latent growth models (LGMs) assessed whether baseline cognition and cognitive changes during KEEPS predicted cognitive performance at follow-up, and whether mHT randomization modified these relationships, adjusting for covariates. Similar health characteristics were observed at KEEPS randomization for KEEPS Continuation participants and nonparticipants (i.e., women not returning for the KEEPS Continuation). The LGM revealed significant associations between intercepts and slopes for cognitive performance across almost all domains, indicating that cognitive factor scores changed over time. Tests assessing the effects of mHT allocation on cognitive slopes during the KEEPS and across all years of follow-up including the KEEPS Continuation visit were all statistically nonsignificant. The KEEPS Continuation study found no long-term cognitive effects of mHT, with baseline cognition and changes during KEEPS being the strongest predictors of later performance. Cross-sectional comparisons confirmed that participants assigned to mHT in KEEPS (oCEE and tE2 groups) performed similarly on cognitive measures to those randomized to placebo, approximately 10 years after completion of the randomized treatments. These findings suggest that mHT poses no long-term cognitive harm; conversely, it provides no cognitive benefit or protective effects against cognitive decline. CONCLUSIONS In these KEEPS Continuation analyses, there were no long-term cognitive effects of short-term exposure to mHT started in early menopause versus placebo. These data provide reassurance about the long-term neurocognitive safety of mHT for symptom management in healthy, recently postmenopausal women, while also suggesting that mHT does not improve or preserve cognitive function in this population.
Collapse
Affiliation(s)
- Carey E. Gleason
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial VA Hospital, Madison, Wisconsin, United States of America
| | - N. Maritza Dowling
- Department of Acute & Chronic Care, George Washington University, Washington, DC, United States of America
| | - Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Taryn T. James
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Hector Salazar
- Department of Health and Community Systems, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, United States of America
| | - Carola A. Ferrer Simo
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sherman M. Harman
- Phoenix VA Health Care System, Phoenix, Arizona, United States of America
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut, United States of America
| | - Virginia M. Miller
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Marcelle I. Cedars
- Department of Obstetrics and Gynecology, University of California, San Francisco, California, United States of America
| | - Rogerio A. Lobo
- Department of Obstetrics and Gynecology, Columbia University, New York, New York State, United States of America
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
8
|
Kloske CM, Belloy ME, Blue EE, Bowman GR, Carrillo MC, Chen X, Chiba‐Falek O, Davis AA, Paolo GD, Garretti F, Gate D, Golden LR, Heinecke JW, Herz J, Huang Y, Iadecola C, Johnson LA, Kanekiyo T, Karch CM, Khvorova A, Koppes‐den Hertog SJ, Lamb BT, Lawler PE, Guen YL, Litvinchuk A, Liu C, Mahinrad S, Marcora E, Marino C, Michaelson DM, Miller JJ, Morganti JM, Narayan PS, Naslavsky MS, Oosthoek M, Ramachandran KV, Ramakrishnan A, Raulin A, Robert A, Saleh RNM, Sexton C, Shah N, Shue F, Sible IJ, Soranno A, Strickland MR, TCW J, Thierry M, Tsai L, Tuckey RA, Ulrich JD, van der Kant R, Wang N, Wellington CL, Weninger SC, Yassine HN, Zhao N, Bu G, Goate AM, Holtzman DM. Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference. Alzheimers Dement 2024; 20:6590-6605. [PMID: 39031528 PMCID: PMC11497726 DOI: 10.1002/alz.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. METHODS In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. RESULTS This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. DISCUSSION Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. HIGHLIGHTS APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.
Collapse
Affiliation(s)
| | - Michael E. Belloy
- Department of Neurology and Neurological SciencesStanford University, StanfordPalo AltoCaliforniaUSA
- NeuroGenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
| | - Elizabeth E. Blue
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Institute for Public Health GeneticsUniversity of WashingtonSeattleWashingtonUSA
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Xiaoying Chen
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Ornit Chiba‐Falek
- Division of Translational Brain SciencesDepartment of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Albert A. Davis
- Department of Neurology Hope Center for Neurological Disorders Washington University School of MedicineSt. LouisMissouriUSA
| | | | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's DiseaseNew YorkNew YorkUSA
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David Gate
- The Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lesley R. Golden
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Jay W. Heinecke
- Department of MedicineUniversity of Washington, UV MedicineSeattleWashingtonUSA
| | - Joachim Herz
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Yadong Huang
- Gladstone Institute of Neurological DiseaseGladstone InstitutesSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Lance A. Johnson
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Takahisa Kanekiyo
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Celeste M. Karch
- Department of PsychiatryWashington University in St LouisSt. LouisMissouriUSA
| | - Anastasia Khvorova
- RNA Therapeutic InstituteUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Sascha J. Koppes‐den Hertog
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute Indiana University School of MedicineIndianapolisIndianaUSA
| | - Paige E. Lawler
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
- The Tracy Family SILQ CenterWashington University School of MedicineIndianapolisIndianaUSA
| | - Yann Le Guen
- Department of Neurology and Neurological SciencesStanford UniversityPalo AltoCaliforniaUSA
- Institut du Cerveau–Paris Brain Institute–ICMParisFrance
| | - Alexandra Litvinchuk
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Chia‐Chen Liu
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | | | - Edoardo Marcora
- Department of Genetics and Genomic SciencesNash Family Department of NeuroscienceIcahn Genomics Institute; Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Justin J. Miller
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
| | - Josh M. Morganti
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Priyanka S. Narayan
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Neurological Disorders and StrokeCenter for Alzheimer's and Related Dementias (CARD)National Institutes of HealthMarylandUSA
| | - Michel S. Naslavsky
- Human Genome and Stem‐cell Research CenterBiosciences InstituteUniversity of São PauloRua do MataoSão PauloBrazil
- Hospital Israelita Albert EinsteinAvenida Albert EinsteinSão PauloBrazil
| | - Marlies Oosthoek
- Neurochemistry LaboratoryDepartment of Laboratory MedicineVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Kapil V. Ramachandran
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeuroscienceColumbia University Vagelos College of Physicians and SurgeonsNew YorkUSA
| | - Abhirami Ramakrishnan
- The Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Aiko Robert
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Rasha N. M. Saleh
- Norwich Medical SchoolUniversity of East Anglia, UK Clinical and Chemical PathologyNorfolkUK
- Faculty of MedicineAlexandria UniversityAlexandria GovernorateEgypt
| | | | | | | | | | - Andrea Soranno
- Washington University in Saint Louis, St. Louis, Missouri, USASt. LouisMissouriUSA
| | - Michael R. Strickland
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
| | - Julia TCW
- Department of PharmacologyPhysiology & BiophysicsChobanian and Avedisian School of MedicineBoston UniversityBostonMassachusettsUSA
- Bioinformatics ProgramFaculty of Computing & Data SciencesBoston UniversityBostonMassachusettsUSA
| | - Manon Thierry
- Center for Cognitive NeurologyDepartment of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Li‐Huei Tsai
- Picower Institute for Learning and MemoryDepartment of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan A. Tuckey
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsMedical Scientist Training ProgramUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jason D. Ulrich
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Rik van der Kant
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Na Wang
- Mayo Clinic RochesterRochesterMinnesotaUSA
| | - Cheryl L. Wellington
- Djavad Mowafaghian Centre for Brain Health Department of Pathology and Laboratory Medicine International Collaboration on Repair Discoveries School of Biomedical Engineering University of British ColumbiaVancouverCanada
| | | | - Hussein N. Yassine
- Department of NeurologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Na Zhao
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Guojun Bu
- Division of Life ScienceHong Kong University of Science and TechnologyClear Water BayKowloonHong Kong
| | - Alison M. Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
9
|
Puri TA, Lieblich SE, Ibrahim M, Galea LAM. Pregnancy history and estradiol influence spatial memory, hippocampal plasticity, and inflammation in middle-aged rats. Horm Behav 2024; 165:105616. [PMID: 39168073 DOI: 10.1016/j.yhbeh.2024.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Pregnancy and motherhood can have long-term effects on cognition and brain aging in both humans and rodents. Estrogens are related to cognitive function and neuroplasticity. Estrogens can improve cognition in postmenopausal women, but the evidence is mixed, partly due to differences in age of initiation, type of menopause, dose, formulation and route of administration. Additionally, past pregnancy influences brain aging and cognition as a younger age of first pregnancy in humans is associated with poorer aging outcomes. However, few animal studies have examined specific features of pregnancy history or the possible mechanisms underlying these changes. We examined whether maternal age at first pregnancy and estradiol differentially affected hippocampal neuroplasticity, inflammation, spatial reference cognition, and immediate early gene activation in response to spatial memory retrieval in middle-age. Thirteen-month-old rats (who were nulliparous (never mothered) or previously primiparous (had a litter) at three or seven months) received daily injections of estradiol (or vehicle) for sixteen days and were tested on the Morris Water Maze. An older age of first pregnancy was associated with impaired spatial memory but improved performance on reversal training, and increased number of new neurons in the ventral hippocampus. Estradiol decreased activation of new neurons in the dorsal hippocampus, regardless of parity history. Estradiol also decreased the production of anti-inflammatory cytokines based on age of first pregnancy. This work suggests that estradiol affects neuroplasticity and neuroinflammation in middle age, and that age of first pregnancy can have long lasting effects on hippocampus structure and function.
Collapse
Affiliation(s)
- Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Muna Ibrahim
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada; Center for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Rueda Beltz C, Muñoz Vargas BA, Davila Neri I, Diaz Quijano DM. Neuroprotective effect of hormone replacement therapy: a review of the literature. Climacteric 2024; 27:351-356. [PMID: 38863238 DOI: 10.1080/13697137.2024.2354759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/31/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Menopause is a physiological period characterized by the cessation of ovarian activity. Sequential changes during this transition affect multiple systems, including the brain. Sixty percent of women experience cognitive impairment. The objective of this review is to show the neuroprotective effect of hormone replacement therapy (HRT) through the different scales and whether there is a benefit of this in women. METHOD A search was conducted in six databases. Eligibility criteria included women within 10 years of menopause, receiving HRT controlled with placebo, studies lasting more than 6 months and women without a history of chronic underlying pathology. RESULTS A total of nine randomized controlled trials met the inclusion criteria. Regarding memory, two studies reported better performance of HRT with a significant odds ratio (OR) of 0.67; regarding attention, one study reported potential improvement in women receiving HRT with a significant OR of 0.87; and neuroimaging assessment found an increase in ventricular volume compared to placebo over a 3-year period. CONCLUSIONS The early initiation of menopausal HRT in healthy women appears to yield a positive effect on certain cognitive aspects, such as attention and cortical volume in the central nervous system. These findings should be confirmed through future prospective studies.
Collapse
Affiliation(s)
- Camilo Rueda Beltz
- Department of Gynecological Endocrinology, University of La Sabana, Bogotá, Colombia
| | | | | | | |
Collapse
|
11
|
Lymer J, Bergman H, Yang S, Mallick R, Galea LAM, Choleris E, Fergusson D. The effects of estrogens on spatial learning and memory in female rodents - A systematic review and meta-analysis. Horm Behav 2024; 164:105598. [PMID: 38968677 DOI: 10.1016/j.yhbeh.2024.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Estrogens have inconsistent effects on learning and memory in both the clinical and preclinical literature. Preclinical literature has the advantage of investigating an array of potentially important factors contributing to the varied effects of estrogens on learning and memory, with stringently controlled studies. This study set out to identify specific factors in the animal literature that influence the effects of estrogens on cognition, for possible translation back to clinical practice. The literature was screened and studies meeting strict inclusion criteria were included in the analysis. Eligible studies included female ovariectomized rodents with an adequate vehicle for the estrogen treatment, with an outcome of spatial learning and memory in the Morris water maze. Training days of the Morris water maze were used to assess acquisition of spatial learning, and the probe trial was used to evaluate spatial memory recall. Continuous outcomes were pooled using a random effects inverse variance method and reported as standardized mean differences with 95 % confidence intervals. Subgroup analyses were developed a priori to assess important factors. The overall analysis favoured treatment for the later stages of training and for the probe trial. Factors including the type of estrogen, route, schedule of administration, age of animals, timing relative to ovariectomy, and duration of treatment were all found to be important. The subgroup analyses showed that chronic treatment with 17β-estradiol, either cyclically or continuously, to young animals improved spatial recall. These results, observed in animals, can inform and guide further clinical research on hormone replacement therapy for cognitive benefits.
Collapse
Affiliation(s)
- Jennifer Lymer
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| | - Hailey Bergman
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Sabrina Yang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | | | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Dean Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Wugalter KA, Schroeder RA, Thurston RC, Wu M, Aizenstein HJ, Cohen AD, Kamboh MI, Karikari TK, Derby CA, Maki PM. Associations of endogenous estrogens, plasma Alzheimer's disease biomarkers, and APOE4 carrier status on regional brain volumes in postmenopausal women. Front Aging Neurosci 2024; 16:1426070. [PMID: 39044806 PMCID: PMC11263297 DOI: 10.3389/fnagi.2024.1426070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Background Women carrying the APOE4 allele are at greater risk of developing Alzheimer's disease (AD) from ages 65-75 years compared to men. To better understand the elevated risk conferred by APOE4 carrier status among midlife women, we investigated the separate and interactive associations of endogenous estrogens, plasma AD biomarkers, and APOE4 carrier status on regional brain volumes in a sample of late midlife postmenopausal women. Methods Participants were enrolled in MsBrain, a cohort study of postmenopausal women (n = 171, mean age = 59.4 years, mean MoCA score = 26.9; race = 83.2% white, APOE4 carriers = 40). Serum estrone (E1) and estradiol (E2) levels were assessed using liquid chromatography-tandem mass spectrometry. APOE genotype was determined using TaqMan SNP genotyping assays. Plasma AD biomarkers were measured using single molecule array technology. Cortical volume was measured and segmented by FreeSurfer software using individual T1w MPRAGE images. Multiple linear regression models were conducted to determine whether separate and interactive associations between endogenous estrogen levels, plasma AD biomarkers (Aβ42/Aβ40, Aβ42/p-tau181), and APOE4 carrier status predict regional brain volume (21 regions per hemisphere, selected a priori); and, whether significant interactive associations between estrogens and AD biomarkers on brain volume differed by APOE4 carrier status. Results There was no main effect of APOE4 carrier status on regional brain volumes, endogenous estrogen levels, or plasma AD biomarkers. Estrogens did not associate with regional brain volumes, except for positive associations with left caudal middle frontal gyrus and fusiform volumes. The interactive association of estrogens and APOE4 carrier status on brain volume was not significant for any region. The interactive association of estrogens and plasma AD biomarkers predicted brain volume of several regions. Higher E1 and E2 were more strongly associated with greater regional brain volumes among women with a poorer AD biomarker profile (lower Aβ42/40, lower Aβ42/p-tau181 ratios). In APOE4-stratified analyses, these interactions were driven by non-APOE4 carriers. Conclusion We demonstrate that the brain volumes of postmenopausal women with poorer AD biomarker profiles benefit most from higher endogenous estrogen levels. These findings are driven by non-APOE4 carriers, suggesting that APOE4 carriers may be insensitive to the favorable effects of estrogens on brain volume in the postmenopause.
Collapse
Affiliation(s)
- Katrina A. Wugalter
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rachel A. Schroeder
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rebecca C. Thurston
- Departments of Psychiatry, Epidemiology, Psychology, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Ilyas Kamboh
- Departments of Psychiatry, Human Genetics, and Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas K. Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carol A. Derby
- The Saul R. Korey Department of Neurology, Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pauline M. Maki
- Departments of Psychiatry, Psychology and Obstetrics & Gynecology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Lee JK, Raghavan S, Christenson LR, Frank RD, Kantarci K, Rocca WA, Vemuri P, Mielke MM. Longitudinal associations of reproductive factors and exogeneous estrogens with neuroimaging biomarkers of Alzheimer's disease and cerebrovascular disease. Alzheimers Dement 2024; 20:4613-4624. [PMID: 38859736 PMCID: PMC11247693 DOI: 10.1002/alz.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Female-specific reproductive factors and exogeneous estrogen use are associated with cognition in later life. However, the underlying mechanisms are not understood. The present study aimed to investigate the effect of reproductive factors on neuroimaging biomarkers of Alzheimer's disease (AD) and cerebrovascular pathologies. METHODS We evaluated 389 females (median age of 71.7 years) enrolled in the Mayo Clinic Study of Aging with reproductive history data and longitudinal magnetic resonance imaging (MRI) scans. We used linear mixed effect models to examine the associations between reproductive factors and changes in neuroimaging measures. RESULTS Ever hormonal contraception (HC) use was longitudinally associated with higher fractional anisotropy across the corpus callosum, lower white matter hyperintensity (WMH) volume, and greater cortical thickness in an AD meta-region of interest (ROI). The initiation of menopausal hormone therapy (MHT) > 5 years post menopause was associated with higher WMH volume. DISCUSSION HC use and initiation of MHT >5 years post menopause were generally associated with neuroimaging biomarkers of cerebrovascular pathologies. HIGHLIGHTS Hormonal contraception use was associated with better brain white matter (WM) integrity. Initiation of menopausal hormone therapy >5 years post menopause was associated with worsening brain WM integrity. Hormonal contraception use was associated with greater cortical thickness. Ages at menarche and menopause and number of pregnancies were not associated with imaging measures. There were few associations between reproductive factors or exogenous estrogens and amyloid or tau PET.
Collapse
Affiliation(s)
- Jillian K Lee
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Luke R Christenson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan D Frank
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter A Rocca
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Women's Health Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
14
|
Nathoo N, Neyal N, Kantarci OH, Zeydan B. Imaging phenotypic differences in multiple sclerosis: at the crossroads of aging, sex, race, and ethnicity. Front Glob Womens Health 2024; 5:1412482. [PMID: 39006184 PMCID: PMC11245741 DOI: 10.3389/fgwh.2024.1412482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Clear sex differences are observed in clinical and imaging phenotypes of multiple sclerosis (MS), which evolve significantly over the age spectrum, and more specifically, during reproductive milestones such as pregnancy and menopause. With neuroimaging being an outcome measure and also a key subclinical biomarker of subsequent clinical phenotype in MS, this comprehensive review aims to provide an overview of sex and hormone differences in structural and functional imaging biomarkers of MS, including lesion burden and location, atrophy, white matter integrity, functional connectivity, and iron distribution. Furthermore, how therapies aimed at altering sex hormones can impact imaging of women and men with MS over the lifespan is discussed. This review also explores the key intersection between age, sex, and race/ethnicity in MS, and how this intersection may affect imaging biomarkers of MS.
Collapse
Affiliation(s)
- Nabeela Nathoo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Nur Neyal
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Orhun H Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Burcu Zeydan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- Women's Health Research Center, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Rocca WA, Kantarci K, Faubion SS. Risks and benefits of hormone therapy after menopause for cognitive decline and dementia: A conceptual review. Maturitas 2024; 184:108003. [PMID: 38649310 PMCID: PMC11095817 DOI: 10.1016/j.maturitas.2024.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE The effects on the brain of hormone therapy after the onset of menopause remain uncertain. The effects may be beneficial, neutral, or harmful. We provide a conceptual review of the evidence. METHODS We 1) provide a brief history of the evidence, 2) discuss some of the interpretations of the evidence, 3) discuss the importance of age at menopause, type of menopause, and presence of vasomotor symptoms, and 4) provide some clinical recommendations. RESULTS The evidence and the beliefs about hormone therapy and dementia have changed over the last 30 years or more. Five recent observation studies suggested that hormone therapy is associated with an increased risk of dementia, and the association appears not to change with the timing of initiation of therapy. These harmful associations may be explained by a causal effect of hormone therapy on the brain or by several confounding mechanisms. We suggest that the use of hormone therapy should be customized for different subgroups of women. It may be important to subgroup women based on age at onset of menopause, type of menopause, and presence or absence of vasomotor symptoms. In addition, the effects may vary by type, dose, route, and duration of administration of estrogens and by the concurrent use of progestogens. DISCUSSION The relation of hormone therapy with the risk of dementia is complex. Hormone therapy may have beneficial, neutral, or harmful effects on the brain. Hormone therapy should be guided by the clinical characteristics of the women being treated.
Collapse
Affiliation(s)
- Walter A Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States; Women's Health Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| | - Kejal Kantarci
- Women's Health Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States; Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, United States.
| | - Stephanie S Faubion
- Division of General Internal Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, United States; Center for Women's Health, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
16
|
Balu D, Valencia-Olvera AC, Deshpande A, Narayanam S, Konasani S, Pattisapu S, York JM, Thatcher GRJ, LaDu MJ, Tai LM. Estradiol improves behavior in FAD transgenic mice that express APOE3 but not APOE4 after ovariectomy. Front Endocrinol (Lausanne) 2024; 15:1374825. [PMID: 38742194 PMCID: PMC11089251 DOI: 10.3389/fendo.2024.1374825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aβ in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aβ in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aβ pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aβ pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aβ pathology, APOE impacts the response to E2 supplementation post-menopause.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashwini Deshpande
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Saharsh Narayanam
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Sravya Konasani
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Shreya Pattisapu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jason M. York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Oltra J, Habich A, Schwarz CG, Nedelska Z, Przybelski SA, Inguanzo A, Diaz‐Galvan P, Lowe VJ, Oppedal K, Gonzalez MC, Philippi N, Blanc F, Barkhof F, Lemstra AW, Hort J, Padovani A, Rektorova I, Bonanni L, Massa F, Kramberger MG, Taylor J, Snædal JG, Walker Z, Antonini A, Dierks T, Segura B, Junque C, Westman E, Boeve BF, Aarsland D, Kantarci K, Ferreira D. Sex differences in brain atrophy in dementia with Lewy bodies. Alzheimers Dement 2024; 20:1815-1826. [PMID: 38131463 PMCID: PMC10947875 DOI: 10.1002/alz.13571] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Sex influences neurodegeneration, but it has been poorly investigated in dementia with Lewy bodies (DLB). We investigated sex differences in brain atrophy in DLB using magnetic resonance imaging (MRI). METHODS We included 436 patients from the European-DLB consortium and the Mayo Clinic. Sex differences and sex-by-age interactions were assessed through visual atrophy rating scales (n = 327; 73 ± 8 years, 62% males) and automated estimations of regional gray matter volume and cortical thickness (n = 165; 69 ± 9 years, 72% males). RESULTS We found a higher likelihood of frontal atrophy and smaller volumes in six cortical regions in males and thinner olfactory cortices in females. There were significant sex-by-age interactions in volume (six regions) and cortical thickness (seven regions) across the entire cortex. DISCUSSION We demonstrate that males have more widespread cortical atrophy at younger ages, but differences tend to disappear with increasing age, with males and females converging around the age of 75. HIGHLIGHTS Male DLB patients had higher odds for frontal atrophy on radiological visual rating scales. Male DLB patients displayed a widespread pattern of cortical gray matter alterations on automated methods. Sex differences in gray matter measures in DLB tended to disappear with increasing age.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology UnitDepartment of MedicineInstitute of NeuroscienceUniversity of BarcelonaBarcelonaCataloniaSpain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Annegret Habich
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- University Hospital of Psychiatry and Psychotherapy Bern, University of BernBernSwitzerland
| | | | - Zuzana Nedelska
- Memory ClinicDepartment of NeurologyCharles University2nd Faculty of Medicine and Motol University HospitalPragueCzech Republic
| | | | - Anna Inguanzo
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Ketil Oppedal
- Center for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Stavanger Medical Imaging Laboratory (SMIL)Department of RadiologyStavanger University HospitalStavangerNorway
- The Norwegian Centre for Movement DisordersStavanger University HospitalStavangerNorway
| | - Maria C. Gonzalez
- Center for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Stavanger Medical Imaging Laboratory (SMIL)Department of RadiologyStavanger University HospitalStavangerNorway
- The Norwegian Centre for Movement DisordersStavanger University HospitalStavangerNorway
- Department of Quality and Health TechnologyFaculty of Health SciencesUniversity of StavangerStavangerNorway
| | - Nathalie Philippi
- Geriatrics and Neurology UnitsResearch and Resources Memory Center (CM2R)Hôpitaux Universitaires de StrasbourgStrasbourgFrance
- ICube Laboratory (CNRS, UMR 7357)StrasbourgFrance
| | - Frederic Blanc
- Geriatrics and Neurology UnitsResearch and Resources Memory Center (CM2R)Hôpitaux Universitaires de StrasbourgStrasbourgFrance
- ICube Laboratory (CNRS, UMR 7357)StrasbourgFrance
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine (AMC)Amsterdam UMC, Vrije UniversiteitAmsterdamthe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing (CMIC)University College LondonLondonUK
| | - Afina W. Lemstra
- Alzheimer Center AmsterdamNeurologyVrije Universiteit Amsterdam, Amsterdam UMC location VumcAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VumcAmsterdamThe Netherlands
| | - Jakub Hort
- Memory ClinicDepartment of NeurologyCharles University2nd Faculty of Medicine and Motol University HospitalPragueCzech Republic
| | - Alessandro Padovani
- Neurology UnitDepartment of Clinical and Experimental Sciences (DSCS)University of BresciaBresciaItaly
| | - Irena Rektorova
- Brain and Mind ResearchCentral European Institute of Technology (CEITET)Masaryk UniversityBrnoCzech Republic
| | - Laura Bonanni
- Department of Medicine and Aging Sciences University G. d'Annunzio of Chieti‐Pescara ChietiChietiItaly
| | - Federico Massa
- Department of NeuroscienceRehabilitationOphthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | | | - John‐Paul Taylor
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | | | - Zuzana Walker
- Division of PsychiatryUniversity College LondonLondonUK
- St Margaret's HospitalEssex Partnership University NHS Foundation TrustEssexUK
| | - Angelo Antonini
- Parkinson and Movement Disorders UnitStudy Center on Neurodegeneration (CESNE)PadovaItaly
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy Bern, University of BernBernSwitzerland
| | - Barbara Segura
- Medical Psychology UnitDepartment of MedicineInstitute of NeuroscienceUniversity of BarcelonaBarcelonaCataloniaSpain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED: CB06/05/0018‐ISCIII)BarcelonaCataloniaSpain
| | - Carme Junque
- Medical Psychology UnitDepartment of MedicineInstitute of NeuroscienceUniversity of BarcelonaBarcelonaCataloniaSpain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED: CB06/05/0018‐ISCIII)BarcelonaCataloniaSpain
| | - Eric Westman
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | | | - Dag Aarsland
- Center for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology & Neuroscience (IoPPN)King's College LondonLondonUK
| | | | - Daniel Ferreira
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
- Facultad de Ciencias de la SaludUniversidad Fernando Pessoa CanariasLas PalmasEspaña
| |
Collapse
|
18
|
Kantarci K, Tosakulwong N, Lesnick TG, Kara F, Kendall-Thomas J, Kapoor E, Fields JA, James TT, Lobo RA, Manson JE, Pal L, Hammers DB, Malek-Ahmadi M, Cedars MI, Naftolin FN, Santoro N, Miller VM, Harman SM, Dowling NM, Gleason CE. Cardiometabolic outcomes in Kronos Early Estrogen Prevention Study continuation: 14-year follow-up of a hormone therapy trial. Menopause 2024; 31:10-17. [PMID: 37989141 PMCID: PMC10756493 DOI: 10.1097/gme.0000000000002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/06/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE This study aimed to determine long-term cardiometabolic effects of hormone therapies initiated within 3 years of onset of menopause after a 14-year follow-up study of participants of the Kronos Early Estrogen Prevention Study (KEEPS). METHODS KEEPS was a multisite clinical trial that recruited recently menopausal women with good cardiovascular health for randomization to oral conjugated equine estrogens (Premarin, 0.45 mg/d) or transdermal 17β-estradiol (Climara, 50 μg/d) both with micronized progesterone (Prometrium, 200 mg/d) for 12 d/mo, or placebo pills and patch for 4 years. KEEPS continuation recontacted KEEPS participants 14 years after randomization and 10 years after the completion of the 4-year clinical trial to attend in-person clinic visits. RESULTS Participants of KEEPS continuation (n = 299 of the 727 KEEPS participants; 41%) had an average age of 67 years (range, 58-73 y). Measurements of systolic and diastolic blood pressures, waist-to-hip ratio, fasting levels of glucose, insulin, lipid profiles, and homeostasis model assessment of insulin resistance were not different among the treatment groups at either KEEPS baseline or at KEEPS continuation visits, or for change between these two visits. The frequency of self-reported diabetes ( P = 0.007) and use of diabetes medications was higher in the placebo than the oral conjugated equine estrogens ( P = 0.045) or transdermal 17β-estradiol ( P = 0.02) groups, but these differences were not supported by the laboratory measurements of glycemia or insulin resistance. CONCLUSIONS There was no evidence of cardiovascular and/or metabolic benefits or adverse effects associated with 4 years use of oral or transdermal forms of hormone therapy by recently menopausal women with good cardiovascular health after 10 years.
Collapse
Affiliation(s)
- Kejal Kantarci
- From the Department of Radiology Mayo Clinic, Rochester, MN
| | | | | | - Firat Kara
- From the Department of Radiology Mayo Clinic, Rochester, MN
| | | | - Ekta Kapoor
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | - Taryn T. James
- Department of Medicine, University of Wisconsin, Madison, WI
| | - Rogerio A. Lobo
- Department of Obstetrics and Gynecology, Columbia University, New York City, NY
| | - JoAnn E. Manson
- Department of Epidemiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lubna Pal
- Department of Obstetrics and Gynecology, Yale University, New Haven, CT
| | | | | | - Marcelle I. Cedars
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA
| | | | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO
| | | | - Sherman M. Harman
- Department of Medicine, Phoenix VA Health, University of Arizona College of Medicine, Phoenix, AZ
| | - N. Maritza Dowling
- Department of Biostatistics, The George Washington University, Washington, DC
| | | |
Collapse
|
19
|
Brouillard A, Davignon LM, Turcotte AM, Marin MF. Morphologic alterations of the fear circuitry: the role of sex hormones and oral contraceptives. Front Endocrinol (Lausanne) 2023; 14:1228504. [PMID: 38027091 PMCID: PMC10661904 DOI: 10.3389/fendo.2023.1228504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Endogenous sex hormones and oral contraceptives (OCs) have been shown to influence key regions implicated in fear processing. While OC use has been found to impact brain morphology, methodological challenges remain to be addressed, such as avoiding selection bias between OC users and non-users, as well as examining potential lasting effects of OC intake. Objective We investigated the current and lasting effects of OC use, as well as the interplay between the current hormonal milieu and history of hormonal contraception use on structural correlates of the fear circuitry. We also examined the role of endogenous and exogenous sex hormones within this network. Methods We recruited healthy adults aged 23-35 who identified as women currently using (n = 62) or having used (n = 37) solely combined OCs, women who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary endogenous sex hormones and current users' salivary ethinyl estradiol (EE) were assessed using liquid chromatography - tandem mass spectrometry. Using structural magnetic resonance imaging, we extracted surface-based gray matter volumes (GMVs) and cortical thickness (CT) for regions of interest of the fear circuitry. Exploratory whole-brain analyses were conducted with surface-based and voxel-based morphometry methods. Results Compared to men, all three groups of women exhibited a larger GMV of the dorsal anterior cingulate cortex, while only current users showed a thinner ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never users exhibited a thicker right anterior insular cortex than past users. While associations with endogenous sex hormones remain unclear, we showed that EE dosage in current users had a greater influence on brain anatomy compared to salivary EE levels and progestin androgenicity, with lower doses being associated with smaller cortical GMVs. Discussion Our results highlight a sex difference for the dorsal anterior cingulate cortex GMV (a fear-promoting region), as well as a reduced CT of the ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC use. Precisely, this finding was driven by lower EE doses. These findings may represent structural vulnerabilities to anxiety and stress-related disorders. We showed little evidence of durable anatomical effects, suggesting that OC intake can (reversibly) affect fear-related brain morphology.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | | | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
20
|
Brown A, Gervais NJ, Rieck J, Almey A, Gravelsins L, Reuben R, Karkaby L, Rajah MN, Grady C, Einstein G. Women's Brain Health: Midlife Ovarian Removal Affects Associative Memory. Mol Neurobiol 2023; 60:6145-6159. [PMID: 37423941 PMCID: PMC10533588 DOI: 10.1007/s12035-023-03424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Women with early bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) have greater Alzheimer's disease (AD) risk than women in spontaneous/natural menopause (SM), but early biomarkers of this risk are not well-characterized. Considering associative memory deficits may presage preclinical AD, we wondered if one of the earliest changes might be in associative memory and whether younger women with BSO had changes similar to those observed in SM. Women with BSO (with and without 17β-estradiol replacement therapy (ERT)), their age-matched premenopausal controls (AMC), and older women in SM completed a functional magnetic resonance imaging face-name associative memory task shown to predict early AD. Brain activation during encoding was compared between groups: AMC (n=25), BSO no ERT (BSO; n=15), BSO+ERT (n=16), and SM without hormone therapy (n=16). Region-of-interest analyses revealed AMC did not contribute to functional group differences. BSO+ERT had higher hippocampal activation than BSO and SM. This hippocampal activation correlated positively with urinary metabolite levels of 17β-estradiol. Multivariate partial least squares analyses showed BSO+ERT had a different network-level activation pattern than BSO and SM. Thus, despite being approximately 10 years younger, women with BSO without ERT had similar brain function to those with SM, suggesting early 17β-estradiol loss may lead to an altered functional brain phenotype which could influence late-life AD risk, making face-name encoding a potential biomarker for midlife women with increased AD risk. Despite similarities in activation, BSO and SM groups showed opposite within-hippocampus connectivity, suggesting menopause type is an important consideration when assessing brain function.
Collapse
Affiliation(s)
- Alana Brown
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - Nicole J Gervais
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Jenny Rieck
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Anne Almey
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura Gravelsins
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Rebekah Reuben
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laurice Karkaby
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - M Natasha Rajah
- Departments of Psychiatry and Douglas Research Centre, McGill University, Montreal, H4H 1R3, Canada
| | - Cheryl Grady
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Gillian Einstein
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
21
|
Nerattini M, Jett S, Andy C, Carlton C, Zarate C, Boneu C, Battista M, Pahlajani S, Loeb-Zeitlin S, Havryulik Y, Williams S, Christos P, Fink M, Brinton RD, Mosconi L. Systematic review and meta-analysis of the effects of menopause hormone therapy on risk of Alzheimer's disease and dementia. Front Aging Neurosci 2023; 15:1260427. [PMID: 37937120 PMCID: PMC10625913 DOI: 10.3389/fnagi.2023.1260427] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Despite a large preclinical literature demonstrating neuroprotective effects of estrogen, use of menopausal hormone therapy (HT) for Alzheimer's disease (AD) risk reduction has been controversial. Herein, we conducted a systematic review and meta-analysis of HT effects on AD and dementia risk. Methods Our systematic search yielded 6 RCT reports (21,065 treated and 20,997 placebo participants) and 45 observational reports (768,866 patient cases and 5.5 million controls). We used fixed and random effect meta-analysis to derive pooled relative risk (RR) and 95% confidence intervals (C.I.) from these studies. Results Randomized controlled trials conducted in postmenopausal women ages 65 and older show an increased risk of dementia with HT use compared with placebo [RR = 1.38, 95% C.I. 1.16-1.64, p < 0.001], driven by estrogen-plus-progestogen therapy (EPT) [RR = 1.64, 95% C.I. 1.20-2.25, p = 0.002] and no significant effects of estrogen-only therapy (ET) [RR = 1.19, 95% C.I. 0.92-1.54, p = 0.18]. Conversely, observational studies indicate a reduced risk of AD [RR = 0.78, 95% C.I. 0.64-0.95, p = 0.013] and all-cause dementia [RR = .81, 95% C.I. 0.70-0.94, p = 0.007] with HT use, with protective effects noted with ET [RR = 0.86, 95% C.I. 0.77-0.95, p = 0.002] but not with EPT [RR = 0.910, 95% C.I. 0.775-1.069, p = 0.251]. Stratified analysis of pooled estimates indicates a 32% reduced risk of dementia with midlife ET [RR = 0.685, 95% C.I. 0.513-0.915, p = 0.010] and non-significant reductions with midlife EPT [RR = 0.775, 95% C.I. 0.474-1.266, p = 0.309]. Late-life HT use was associated with increased risk, albeit not significant [EPT: RR = 1.323, 95% C.I. 0.979-1.789, p = 0.069; ET: RR = 1.066, 95% C.I. 0.996-1.140, p = 0.066]. Discussion These findings support renewed research interest in evaluating midlife estrogen therapy for AD risk reduction.
Collapse
Affiliation(s)
- Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Michael Battista
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Yelena Havryulik
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
22
|
Itoh N, Itoh Y, Meyer CE, Suen TT, Cortez-Delgado D, Rivera Lomeli M, Wendin S, Somepalli SS, Golden LC, MacKenzie-Graham A, Voskuhl RR. Estrogen receptor beta in astrocytes modulates cognitive function in mid-age female mice. Nat Commun 2023; 14:6044. [PMID: 37758709 PMCID: PMC10533869 DOI: 10.1038/s41467-023-41723-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Menopause is associated with cognitive deficits and brain atrophy, but the brain region and cell-specific mechanisms are not fully understood. Here, we identify a sex hormone by age interaction whereby loss of ovarian hormones in female mice at midlife, but not young age, induced hippocampal-dependent cognitive impairment, dorsal hippocampal atrophy, and astrocyte and microglia activation with synaptic loss. Selective deletion of estrogen receptor beta (ERβ) in astrocytes, but not neurons, in gonadally intact female mice induced the same brain effects. RNA sequencing and pathway analyses of gene expression in hippocampal astrocytes from midlife female astrocyte-ERβ conditional knock out (cKO) mice revealed Gluconeogenesis I and Glycolysis I as the most differentially expressed pathways. Enolase 1 gene expression was increased in hippocampi from both astrocyte-ERβ cKO female mice at midlife and from postmenopausal women. Gain of function studies showed that ERβ ligand treatment of midlife female mice reversed dorsal hippocampal neuropathology.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cassandra E Meyer
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy Takazo Suen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Diego Cortez-Delgado
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Sophia Wendin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sri Sanjana Somepalli
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lisa C Golden
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rhonda R Voskuhl
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Ramli NZ, Yahaya MF, Mohd Fahami NA, Abdul Manan H, Singh M, Damanhuri HA. Brain volumetric changes in menopausal women and its association with cognitive function: a structured review. Front Aging Neurosci 2023; 15:1158001. [PMID: 37818479 PMCID: PMC10561270 DOI: 10.3389/fnagi.2023.1158001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
The menopausal transition has been proposed to put women at risk for undesirable neurological symptoms, including cognitive decline. Previous studies suggest that alterations in the hormonal milieu modulate brain structures associated with cognitive function. This structured review provides an overview of the relevant studies that have utilized MRI to report volumetric differences in the brain following menopause, and its correlations with the evaluated cognitive functions. We performed an electronic literature search using Medline (Ovid) and Scopus to identify studies that assessed the influence of menopause on brain structure with MRI. Fourteen studies met the inclusion criteria. Brain volumetric differences have been reported most frequently in the frontal and temporal cortices as well as the hippocampus. These regions are important for higher cognitive tasks and memory. Additionally, the deficit in verbal and visuospatial memory in postmenopausal women has been associated with smaller regional brain volumes. Nevertheless, the limited number of eligible studies and cross-sectional study designs warrant further research to draw more robust conclusions.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Azlina Mohd Fahami
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
25
|
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Division of Neuroradiology, Mayo Clinic Rochester, Rochester, MN, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Sochocka M, Karska J, Pszczołowska M, Ochnik M, Fułek M, Fułek K, Kurpas D, Chojdak-Łukasiewicz J, Rosner-Tenerowicz A, Leszek J. Cognitive Decline in Early and Premature Menopause. Int J Mol Sci 2023; 24:6566. [PMID: 37047549 PMCID: PMC10095144 DOI: 10.3390/ijms24076566] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Early and premature menopause, or premature ovarian insufficiency (POI), affects 1% of women under the age of 40 years. This paper reviews the main aspects of early and premature menopause and their impact on cognitive decline. Based on the literature, cognitive complaints are more common near menopause: a phase marked by a decrease in hormone levels, especially estrogen. A premature reduction in estrogen puts women at a higher risk for cardiovascular disease, parkinsonism, depression, osteoporosis, hypertension, weight gain, midlife diabetes, as well as cognitive disorders and dementia, such as Alzheimer's disease (AD). Experimental and epidemiological studies suggest that female sex hormones have long-lasting neuroprotective and anti-aging properties. Estrogens seem to prevent cognitive disorders arising from a cholinergic deficit in women and female animals in middle age premature menopause that affects the central nervous system (CNS) directly and indirectly, both transiently and in the long term, leads to cognitive impairment or even dementia, mainly due to the decrease in estrogen levels and comorbidity with cardiovascular risk factors, autoimmune diseases, and aging. Menopausal hormone therapy from menopause to the age of 60 years may provide a "window of opportunity" to reduce the risk of mild cognitive impairment (MCI) and AD in later life. Women with earlier menopause should be taken care of by various specialists such as gynecologists, endocrinologists, neurologists, and psychiatrists in order to maintain their mental health at the highest possible level.
Collapse
Affiliation(s)
- Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | | | - Michał Ochnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | | | - Anna Rosner-Tenerowicz
- 2nd Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
27
|
Abstract
Multiple sclerosis is a disease that tends to affect women during their childbearing years. Although relapse risk decreases during pregnancy, patients should still be optimized on disease-modifying therapy before and after pregnancy to minimize gaps in treatment. Exclusive breastfeeding may reduce the chances of disease relapse postpartum, and many disease-modifying therapies are considered to be safe while breastfeeding. Treatments for other neuroimmunologic disorders such as neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, neurosarcoidosis, and central nervous system vasculitis may require rituximab before and prednisone or intravenous immunoglobulin therapy during pregnancy.
Collapse
|
28
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
29
|
Oltra J, Habich A, Schwarz CG, Nedelska Z, Przybelski SA, Inguanzo A, Diaz-Galvan P, Lowe VJ, Oppedal K, Blanc F, Lemstra AW, Hort J, Padovani A, Rektorova I, Bonanni L, Massa F, Kramberge MG, Taylor JP, Snædal J, Walker Z, Antonini A, Segura B, Junque C, Westman E, Boeve BF, Aarsland D, Kantarci K, Ferreira D. Sex differences in brain atrophy in dementia with Lewy bodies. RESEARCH SQUARE 2023:rs.3.rs-2516427. [PMID: 36747755 PMCID: PMC9901042 DOI: 10.21203/rs.3.rs-2516427/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background and objectives Sex is an important contributing factor to neuroimaging phenotypes in brain disorders. However, little is known about the contribution of sex differences to the neurodegeneration in dementia with Lewy bodies (DLB). We investigated sex differences in probable DLB patients by using both visual rating scales of lobar atrophy and automated estimations of regional atrophy. Methods We included 442 probable DLB patients from the European-DLB consortium and the Mayo Clinic who have magnetic resonance imaging (MRI) data available. We assessed sex differences and the sex-by-age interaction in two largely independent samples through visual rating scales of lobar atrophy (n = 333; mean age 73 ± 8 years, 62% males) and automated regional estimations of gray matter (GM) volume and mean cortical thickness (CTh) (n = 165; mean age 69 ± 9 years, 72% males). We used binary logistic regression and ANOVA for statistical analysis. Results We found a statistically significantly higher likelihood of frontal atrophy measured by the global cortical atrophy-frontal subscale (GCA-F) in males (40% of males had an abnormal GCA-F score versus 29% of females, P-value = 0.006). Using automated estimations, we found smaller GM volumes in 6 cortical regions in males compared with females, as well as smaller GM volume in the entorhinal cortex and thinner olfactory cortices in females, compared with males. The sex-by-age interaction showed statistically significant results in 6 cortical volumes and 7 mean CTh estimations (P-value ≤ 0.05), accentuated in the right middle frontal gyrus (FDR-adjusted P-value = 0.047). These cross-sectional interactions indicated that while females have statistically significantly less atrophy than males at younger ages, differences become non-significant at older ages, with females showing the same level of atrophy than males around the age of 75. Conclusions This study demonstrates sex differences on brain atrophy in probable DLB. While male DLB patients have a more widespread pattern of cortical atrophy at younger ages, these sex differences tend to disappear with increasing age. Longitudinal studies will help establish these cross-sectional findings and inform on sex and age considerations to the use of MRI in clinical routine, as the field moves towards precision medicine.
Collapse
|
30
|
Zacharia LC, Eleftheriou C, Gkretsi V. Effects of 2-methoxyestradiol on hydrogen peroxide induced neuronal cell death and tau hyperphosphorylation. Life Sci 2022; 309:121047. [DOI: 10.1016/j.lfs.2022.121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
|
31
|
Quinn JF, Kelly MJ, Harris CJ, Hack W, Gray NE, Kulik V, Bostick Z, Brumbach BH, Copenhaver PF. The novel estrogen receptor modulator STX attenuates Amyloid-β neurotoxicity in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Dis 2022; 174:105888. [PMID: 36209948 PMCID: PMC10108899 DOI: 10.1016/j.nbd.2022.105888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Based on previous evidence that the non-steroidal estrogen receptor modulator STX mitigates the effects of neurotoxic Amyloid-β (Aβ) in vitro, we have evaluated its neuroprotective benefits in a mouse model of Alzheimer's disease. Cohorts of 5XFAD mice, which begin to accumulate cerebral Aβ at two months of age, were treated with orally-administered STX starting at 6 months of age for two months. After behavioral testing to evaluate cognitive function, biochemical and immunohistochemical assays were used to analyze key markers of mitochondrial function and synaptic integrity. Oral STX treatment attenuated Aβ-associated mitochondrial toxicity and synaptic toxicity in the brain, as previously documented in cultured neurons. STX also moderately improved spatial memory in 5XFAD mice. In addition, STX reduced markers for reactive astrocytosis and microgliosis surrounding amyloid plaques, and also unexpectedly reduced overall levels of cerebral Aβ in the brain. The neuroprotective effects of STX were more robust in females than in males. These results suggest that STX may have therapeutic potential in Alzheimer's Disease.
Collapse
Affiliation(s)
- Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America; Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center, Portland, OR, United States of America.
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, OHSU, Portland, OR, United States of America
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Veronika Kulik
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Zoe Bostick
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| | - Barbara H Brumbach
- Biostatistics and Design Program, OHSU-PSU School of Public Health, Portland, OR, United States of America
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| |
Collapse
|
32
|
Juutinen L, Ahinko K, Tinkanen H, Rosti-Otajärvi E, Sumelahti ML. Menopausal symptoms and hormone therapy in women with multiple sclerosis: A baseline-controlled study. Mult Scler Relat Disord 2022; 67:104098. [PMID: 35994896 DOI: 10.1016/j.msard.2022.104098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Depression, sleep disturbances, and cognitive difficulties impair the quality of life in people with multiple sclerosis (MS). Similar symptoms are also frequent during the menopausal transition. In clinical practice, it is important to consider the multifactorial causes of these overlapping symptoms and the potential benefits of menopausal hormone therapy (MHT). The objective of this study was to evaluate vasomotor symptoms (VMS), mood, sleep, and cognition of menopausal women with and without MS at baseline and during one year of MHT. METHODS In this prospective baseline-controlled study, peri- and early postmenopausal participants with (n=14) and without (n=13) MS received MHT containing 1 or 2 mg of estradiol and cyclical 10 mg dydrogesterone for one year. VMS frequency, depressive symptoms (measured by Beck Depression Inventory), insomnia severity (Insomnia Severity Index), and cognitive performance (Paced Auditory Serial Addition Test; PASAT, Symbol Digit Modalities Test; SDMT) were evaluated at baseline and at 3 and 12 months of treatment. Differences in the outcome measures between groups at baseline were assessed using the Mann-Whitney U test. Changes during follow-up compared to baseline within groups were evaluated by Wilcoxon Signed Ranks Test. P < 0.05 was considered for statistical significance. MS activity was monitored by clinical assessment and brain MRI at baseline and at 12 months. RESULTS Depressive symptoms were more common in MS group, while vasomotor and insomnia symptoms were equally common. During follow-up with MHT, VMS frequency decreased in both groups. Depressive symptoms decreased at 3 months (p = 0.031 with MS; p = 0.024 without MS) and the reduction was sustained at 12 months (p = 0.017; p = 0.042, respectively). Alleviation in insomnia symptoms was seen in participants without MS at 3 months (p = 0.029) and in those participants with MS suffering insomnia at baseline (p = 0.016 at 3 months; p = 0.047 at 12 months). Both groups improved their performance in PASAT, but no significant change was observed in SDMT. MS activity at baseline was mainly stable, and no increase in activity was detected during MHT. CONCLUSION Improvements in vasomotor, depressive, and insomnia symptoms observed during one year of MHT are encouraging and suggest that larger placebo-controlled studies of MHT in women with MS are warranted. Cognitive implications were inconclusive because the findings in PASAT likely result from practice effect. MHT did not show any adverse effect on MS activity and increasing safety data will hopefully facilitate patient recruitment for future studies.
Collapse
Affiliation(s)
- Laura Juutinen
- Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Arvo Building, Arvo Ylpön katu 34, 33520 Tampere, Finland; Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, FI-33521 Tampere, Finland.
| | - Katja Ahinko
- Department of Obstetrics and Gynecology, Tampere University Hospital, P.O. Box 2000, FI-33521 Tampere, Finland
| | - Helena Tinkanen
- Department of Obstetrics and Gynecology, Tampere University Hospital, P.O. Box 2000, FI-33521 Tampere, Finland
| | - Eija Rosti-Otajärvi
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, FI-33521 Tampere, Finland; Department of Rehabilitation and psychosocial support, Tampere University Hospital, P.O. Box 2000, FI-33521 Tampere, Finland
| | - Marja-Liisa Sumelahti
- Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Arvo Building, Arvo Ylpön katu 34, 33520 Tampere, Finland
| |
Collapse
|
33
|
Jett S, Schelbaum E, Jang G, Boneu Yepez C, Dyke JP, Pahlajani S, Diaz Brinton R, Mosconi L. Ovarian steroid hormones: A long overlooked but critical contributor to brain aging and Alzheimer's disease. Front Aging Neurosci 2022; 14:948219. [PMID: 35928995 PMCID: PMC9344010 DOI: 10.3389/fnagi.2022.948219] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian hormones, particularly 17β-estradiol, are involved in numerous neurophysiological and neurochemical processes, including those subserving cognitive function. Estradiol plays a key role in the neurobiology of aging, in part due to extensive interconnectivity of the neural and endocrine system. This aspect of aging is fundamental for women's brains as all women experience a drop in circulating estradiol levels in midlife, after menopause. Given the importance of estradiol for brain function, it is not surprising that up to 80% of peri-menopausal and post-menopausal women report neurological symptoms including changes in thermoregulation (vasomotor symptoms), mood, sleep, and cognitive performance. Preclinical evidence for neuroprotective effects of 17β-estradiol also indicate associations between menopause, cognitive aging, and Alzheimer's disease (AD), the most common cause of dementia affecting nearly twice more women than men. Brain imaging studies demonstrated that middle-aged women exhibit increased indicators of AD endophenotype as compared to men of the same age, with onset in perimenopause. Herein, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining cognition in women, with evidence implicating menopause-related declines in 17β-estradiol in cognitive aging and AD risk. We will review research focused on the role of endogenous and exogenous estrogen exposure as a key underlying mechanism to neuropathological aging in women, with a focus on whether brain structure, function and neurochemistry respond to hormone treatment. While still in development, this research area offers a new sex-based perspective on brain aging and risk of AD, while also highlighting an urgent need for better integration between neurology, psychiatry, and women's health practices.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
34
|
Jett S, Malviya N, Schelbaum E, Jang G, Jahan E, Clancy K, Hristov H, Pahlajani S, Niotis K, Loeb-Zeitlin S, Havryliuk Y, Isaacson R, Brinton RD, Mosconi L. Endogenous and Exogenous Estrogen Exposures: How Women's Reproductive Health Can Drive Brain Aging and Inform Alzheimer's Prevention. Front Aging Neurosci 2022; 14:831807. [PMID: 35356299 PMCID: PMC8959926 DOI: 10.3389/fnagi.2022.831807] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 01/14/2023] Open
Abstract
After advanced age, female sex is the major risk factor for late-onset Alzheimer's disease (AD), the most common cause of dementia affecting over 24 million people worldwide. The prevalence of AD is higher in women than in men, with postmenopausal women accounting for over 60% of all those affected. While most research has focused on gender-combined risk, emerging data indicate sex and gender differences in AD pathophysiology, onset, and progression, which may help account for the higher prevalence in women. Notably, AD-related brain changes develop during a 10-20 year prodromal phase originating in midlife, thus proximate with the hormonal transitions of endocrine aging characteristic of the menopause transition in women. Preclinical evidence for neuroprotective effects of gonadal sex steroid hormones, especially 17β-estradiol, strongly argue for associations between female fertility, reproductive history, and AD risk. The level of gonadal hormones to which the female brain is exposed changes considerably across the lifespan, with relevance to AD risk. However, the neurobiological consequences of hormonal fluctuations, as well as that of hormone therapies, are yet to be fully understood. Epidemiological studies have yielded contrasting results of protective, deleterious and null effects of estrogen exposure on dementia risk. In contrast, brain imaging studies provide encouraging evidence for positive associations between greater cumulative lifetime estrogen exposure and lower AD risk in women, whereas estrogen deprivation is associated with negative consequences on brain structure, function, and biochemistry. Herein, we review the existing literature and evaluate the strength of observed associations between female-specific reproductive health factors and AD risk in women, with a focus on the role of endogenous and exogenous estrogen exposures as a key underlying mechanism. Chief among these variables are reproductive lifespan, menopause status, type of menopause (spontaneous vs. induced), number of pregnancies, and exposure to hormonal therapy, including hormonal contraceptives, hormonal therapy for menopause, and anti-estrogen treatment. As aging is the greatest risk factor for AD followed by female sex, understanding sex-specific biological pathways through which reproductive history modulates brain aging is crucial to inform preventative and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Niharika Malviya
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Jahan
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Katherine Clancy
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Kellyann Niotis
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Yelena Havryliuk
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
35
|
Bove R, Anderson A, Rowles W, Rankin KA, Hills NK, Carleton M, Cooper J, Cree BA, Gelfand JM, Graves J, Henry RG, Krysko KM, Rush G, Zamvil SS, Joffe H, Chan JR, Green A. A Hormonal therapy for menopausal women with MS: A Phase Ib/IIa Randomized Controlled Trial. Mult Scler Relat Disord 2022; 61:103747. [DOI: 10.1016/j.msard.2022.103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022]
|
36
|
Aleknaviciute J, Evans TE, Aribas E, de Vries MW, Steegers EAP, Ikram MA, Tiemeier H, Kavousi M, Vernooij MW, Kushner SA. Long-term association of pregnancy and maternal brain structure: the Rotterdam Study. Eur J Epidemiol 2022; 37:271-281. [PMID: 34989970 PMCID: PMC9110529 DOI: 10.1007/s10654-021-00818-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
The peripartum period is the highest risk interval for the onset or exacerbation of psychiatric illness in women’s lives. Notably, pregnancy and childbirth have been associated with short-term structural and functional changes in the maternal human brain. Yet the long-term effects of pregnancy on maternal brain structure remain unknown. We investigated a large population-based cohort to examine the association between parity and brain structure. In total, 2,835 women (mean age 65.2 years; all free from dementia, stroke, and cortical brain infarcts) from the Rotterdam Study underwent magnetic resonance imaging (1.5 T) between 2005 and 2015. Associations of parity with global and lobar brain tissue volumes, white matter microstructure, and markers of vascular brain disease were examined using regression models. We found that parity was associated with a larger global gray matter volume (β = 0.14, 95% CI = 0.09–0.19), a finding that persisted following adjustment for sociodemographic factors. A non-significant dose-dependent relationship was observed between a higher number of childbirths and larger gray matter volume. The gray matter volume association with parity was globally proportional across lobes. No associations were found regarding white matter volume or integrity, nor with markers of cerebral small vessel disease. The current findings suggest that pregnancy and childbirth are associated with robust long-term changes in brain structure involving a larger global gray matter volume that persists for decades. Future studies are warranted to further investigate the mechanism and physiological relevance of these differences in brain morphology.
Collapse
Affiliation(s)
- Jurate Aleknaviciute
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, 3000 CA, Rotterdam, The Netherlands
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Elif Aribas
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands
| | - Merel W de Vries
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, 3000 CA, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Child Psychiatry, Sophia Children's Hospital, Erasmus University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. .,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Exploring the sex and gender correlates of cognitive sex differences. Acta Psychol (Amst) 2021; 221:103452. [PMID: 34801881 DOI: 10.1016/j.actpsy.2021.103452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/06/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
The correlates of cognitive sex differences are yet to be fully understood. Many biological and psychosocial factors modulate these cognitive abilities leading to mixed results in the scientific literature. The current study aims to explore the different parameters potentially influencing cognitive abilities acting in synergy. Sex and gender correlates of cognitive functioning were assessed in a sample of individuals ages 18 to 45 years (N = 87) from diverse sexual orientations. Sex hormones were assessed via saliva samples at four timepoints throughout the testing. Gender roles, sexual orientation and socio-demographics were measured via self-report questionnaires. Participants completed mental rotation and verbal fluency tasks. Men performed better than women at mental rotation, while no significant difference was found for verbal fluency. Significant positive associations were observed between estradiol and word fluency for the naturally cycling women compared to the women using oral contraception. While controlling for sex hormones, a significant interaction effect of sex by gender roles was identified for mental rotation among masculine women. These exploratory results suggest an effect principally driven by sex and sex hormones on cognitive performance that will need to be furthered with larger studies.
Collapse
|
38
|
Stefanidou M, O’Donnell A, Himali JJ, DeCarli C, Satizabal C, Beiser AS, Seshadri S, Zaldy T. Bone Mineral Density Measurements and Association With Brain Structure and Cognitive Function: The Framingham Offspring Cohort. Alzheimer Dis Assoc Disord 2021; 35:291-297. [PMID: 33973881 PMCID: PMC8608007 DOI: 10.1097/wad.0000000000000453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bone mineral density (BMD) is a potential surrogate marker of lifetime estrogen exposure previously linked to increased risk of Alzheimer dementia among elderly women. We examine the association between BMD in the "young old" with imaging biomarkers of brain aging and cognitive performance. METHODS Offspring participants (N=1905, mean age 66) of a population-based cohort who had BMD, brain imaging and detailed cognitive assessment were included in the study. Sex-stratified, linear, and logistic regression models were used for analysis. RESULTS Higher femoral neck BMD was associated with lower white matter hyperintensity burden and better performance on Trails B-A in both sexes, even after adjustment for cerebrovascular risk factors. Among women, the positive association with Trails B-A performance was seen only in APOE4 allele carriers. Higher BMD measurements were linked to better visual reproductions test performance in men. Finally, among women, higher femoral trochanter BMD was associated with better logical memory and Hooper visual organization test performance. CONCLUSION Among the "young old," higher BMD is associated with less white matter hyperintensity burden and better, domain-specific, cognitive performance. This suggests that lifetime estrogen exposure may modulate the degree of cumulative vascular brain injury independent of cerebrovascular risk factors.
Collapse
Affiliation(s)
- Maria Stefanidou
- The Framingham Heart Study, Framingham
- Department of Neurology, Boston University School of Medicine
| | - Adrienne O’Donnell
- The Framingham Heart Study, Framingham
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jayandra J. Himali
- The Framingham Heart Study, Framingham
- Department of Neurology, Boston University School of Medicine
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX
| | | | - Claudia Satizabal
- The Framingham Heart Study, Framingham
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
| | - Alexa S. Beiser
- The Framingham Heart Study, Framingham
- Department of Neurology, Boston University School of Medicine
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham
- Department of Neurology, Boston University School of Medicine
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
| | - Tan Zaldy
- Division of Geriatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA
| |
Collapse
|
39
|
André G. [Menopause hormone therapy and cognition. Postmenopausal women management: CNGOF and GEMVi clinical practice guidelines]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2021; 49:448-454. [PMID: 33757928 DOI: 10.1016/j.gofs.2021.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The results of the WHI, which reported a doubling of the risk of Alzheimer's disease (AD) and a decline in cognitive function in women who were given menopause hormone therapy (MHT), have raised concerns on the deleterious impact of MHT on the central nervous system. Such as for the cardiovascular system, the very late age of initiation of treatment and the nature of the molecules have led to conclusions that cannot be extended to women in their fifties, at the onset of their menopause which is the usual age of MHT initiation. The molecules, which are used in France, 17-beta estradiol and natural progesterone (or its isomer, dydrogesterone) are very different from the equine conjugated estrogens and medroxyprogesterone acetate used in the WHI. It can now be stated that if MHT is started within the window of opportunity (i.e. before the age of 60 or within the first 10years after the beginning of menopause) no deleterious effect on cognition is observed. Moreover, cognition remains relatively stable at the beginning of menopause since the cognitive reserve as well as the different compensation circuits allow compensation for estrogen deficiency. This does not in any way prejudge a possible positive effect of MHT on AD, which is very difficult to demonstrate, as the age of onset of this dementia is very late, 20 or 30years after the initiation of treatment.
Collapse
Affiliation(s)
- G André
- 15, boulevard Ohmacht, 67000 Strasbourg, France.
| |
Collapse
|
40
|
Gong B, Wu C. The mediating and moderating effects of depression on the relationship between cognitive function and difficulty in activities of daily living among postmenopausal women. Menopause 2021; 28:667-677. [PMID: 33857954 DOI: 10.1097/gme.0000000000001773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cognitive function and depression impact critically the daily functioning of menopausal women. This study aimed to explore the mediating and moderating effects of depressive symptoms on the association between cognitive function and activities of daily living (ADL) difficulty in postmenopausal women. METHODS A total of 2,596 postmenopausal women from the China Health and Retirement Longitudinal Study completed the Chinese version of the Mini-Mental State Examination, basic ADL (BADL) and instrumental ADL (IADL) scales, and 10-item Short-Form Center for Epidemiological Studies Depression. We constructed structural equation modeling to examine the association between cognitive function, depressive symptoms, and BADL/IADL difficulty. RESULTS The prevalence of BADL/IADL difficulty in postmenopausal women was 22.5% and 31.5%, respectively. After adjustments for demographic and health-related covariates, cognitive decline (contributed by four cognitive dimensions with different weights) was significantly associated with BADL/IADL difficulty (contributed by six-item daily activities with different weights). Depressive symptoms mediated and explained 28.8% and 23.2% of cognitive function associations with BADL and IADL difficulty, respectively. The Johnson-Neyman technique identified a threshold of eight and four for depressive symptoms, beyond which the protective effect of cognitive function on BADL and IADL emerged. CONCLUSIONS Depressive symptoms mediated and moderated the association between cognition and BADL/IADL difficulty in postmenopausal women. Compared with BADL, IADL may be more sensitive to changes in cognitive function. More strength should be put on developing comprehensive intervention techniques focusing on simultaneous intervention of multidimensional cognitive function and depression to maintain and improve the quality of life of postmenopausal women.
Collapse
Affiliation(s)
- Bingyan Gong
- Peking University School of Nursing, Beijing, China
| | | |
Collapse
|
41
|
Leeners B, Krüger T, Geraedts K, Tronci E, Mancini T, Ille F, Egli M, Röblitz S, Wunder D, Saleh L, Schippert C, Hengartner MP. Cognitive function in association with high estradiol levels resulting from fertility treatment. Horm Behav 2021; 130:104951. [PMID: 33561436 DOI: 10.1016/j.yhbeh.2021.104951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
The putative association between hormones and cognitive performance is controversial. While there is evidence that estradiol plays a neuroprotective role, hormone treatment has not been shown to improve cognitive performance. Current research is flawed by the evaluation of combined hormonal effects throughout the menstrual cycle or in the menopausal transition. The stimulation phase of a fertility treatment offers a unique model to study the effect of estradiol on cognitive function. This quasi-experimental observational study is based on data from 44 women receiving IVF in Zurich, Switzerland. We assessed visuospatial working memory, attention, cognitive bias, and hormone levels at the beginning and at the end of the stimulation phase of ovarian superstimulation as part of a fertility treatment. In addition to inter-individual differences, we examined intra-individual change over time (within-subject effects). The substantial increases in estradiol levels resulting from fertility treatment did not relate to any considerable change in cognitive functioning. As the tests applied represent a broad variety of cognitive functions on different levels of complexity and with various brain regions involved, we can conclude that estradiol does not show a significant short-term effect on cognitive function.
Collapse
Affiliation(s)
- Brigitte Leeners
- Department of Reproductive Endocrinology, University hospital Zürich, 8910 Zurich, Frauenklinikstr. 10, Switzerland.
| | - Tillmann Krüger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover, Hannover, Germany.
| | - Kirsten Geraedts
- Department of Reproductive Endocrinology, University hospital Zürich, 8910 Zurich, Frauenklinikstr. 10, Switzerland.
| | - Enrico Tronci
- Department of Computer Science, University of Roma "La Sapienza", Roma, Italy.
| | - Toni Mancini
- Department of Computer Science, University of Roma "La Sapienza", Roma, Italy.
| | - Fabian Ille
- Center of Competence in Aerospace Biomedical Science & Technology, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland.
| | - Marcel Egli
- Center of Competence in Aerospace Biomedical Science & Technology, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland.
| | - Susanna Röblitz
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Dorothea Wunder
- Center for Reproductive Medicine and Gynecological Endocrinology, Lausanne, Switzerland.
| | - Lanja Saleh
- Institute of Clinical Chemistry, University hospital Zürich, Zürich, Switzerland.
| | - Cordula Schippert
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany.
| | - Michael P Hengartner
- Department of Applied Psychology, Zurich University for Applied Sciences (ZHAW), Zürich, Switzerland.
| |
Collapse
|
42
|
Bove R, Okai A, Houtchens M, Elias-Hamp B, Lugaresi A, Hellwig K, Kubala Havrdová E. Effects of Menopause in Women With Multiple Sclerosis: An Evidence-Based Review. Front Neurol 2021; 12:554375. [PMID: 33815241 PMCID: PMC8017266 DOI: 10.3389/fneur.2021.554375] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Over two thirds of all individuals who develop multiple sclerosis (MS) will be women prior to the age of menopause. Further, an estimated 30% of the current MS population consists of peri- or postmenopausal women. The presence of MS does not appear to influence age of menopausal onset. In clinical practice, symptoms of MS and menopause can frequently overlap, including disturbances in cognition, mood, sleep, and bladder function, which can create challenges in ascertaining the likely cause of symptoms to be treated. A holistic and comprehensive approach to address these common physical and psychological changes is often suggested to patients during menopause. Although some studies have suggested that women with MS experience reduced relapse rates and increased disability progression post menopause, the data are not consistent enough for firm conclusions to be drawn. Mechanisms through which postmenopausal women with MS may experience disability progression include neuroinflammation and neurodegeneration from age-associated phenomena such as immunosenescence and inflammaging. Additional effects are likely to result from reduced levels of estrogen, which affects MS disease course. Following early retrospective studies of women with MS receiving steroid hormones, more recent interventional trials of exogenous hormone use, albeit as oral contraceptive, have provided some indications of potential benefit on MS outcomes. This review summarizes current research on the effects of menopause in women with MS, including the psychological impact and symptoms of menopause on disease worsening, and the treatment options. Finally, we highlight the need for more inclusion of MS patients from underrepresented racial and geographic groups in clinical trials, including among menopausal women.
Collapse
Affiliation(s)
- Riley Bove
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Annette Okai
- Multiple Sclerosis Treatment Center of Dallas, Dallas, TX, United States
| | - Maria Houtchens
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, United States
| | - Birte Elias-Hamp
- Neurological Private Practice, Institute of Neuroimmunology and Multiple Sclerosis, Hamburg, Germany
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Kerstin Hellwig
- Department of Neurology, Ruhr University Bochum and St. Josef-Hospital, Bochum, Germany
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Medical Faculty, General University Hospital, Charles University, Prague, Czechia
| |
Collapse
|
43
|
Reuben R, Karkaby L, McNamee C, Phillips NA, Einstein G. Menopause and cognitive complaints: are ovarian hormones linked with subjective cognitive decline? Climacteric 2021; 24:321-332. [PMID: 33719785 DOI: 10.1080/13697137.2021.1892627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Subjective cognitive decline (SCD) and the loss of ovarian hormones after menopause have been independently linked to later-life Alzheimer's disease (AD). The objective of this review was to determine whether menopause and the loss of ovarian hormones contribute to cognitive complaints and SCD in women. This would suggest that SCD at the menopausal transition might be an important marker of eventual cognitive decline and AD. We conducted a literature search using PubMed, PsycINFO and Web of Science in July 2020. All English-language studies assessing SCD and cognitive complaints with respect to menopause and ovarian hormones were included. A total of 19 studies were included. Studies found that cognitive complaints increased across the menopause transition and were associated with reductions in attention, verbal and working memory, and medial temporal lobe volume. Women taking estrogen-decreasing treatments also had increased cognitive complaints and reduced working memory and executive function. The current literature provides impetus for further research on whether menopause and the loss of ovarian hormones are associated with cognitive complaints and SCD. Clinicians may take particular note of cognitive complaints after menopause or ovarian hormone loss, as they might presage future cognitive decline.
Collapse
Affiliation(s)
- R Reuben
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - L Karkaby
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Tema Genus, Linköping University, Linköping, Sweden
| | - C McNamee
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - N A Phillips
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - G Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Tema Genus, Linköping University, Linköping, Sweden.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Li Y, Dreher JC. A review of the impact of hormone therapy on prefrontal structure and function at menopause. Climacteric 2021; 24:340-349. [PMID: 33703983 DOI: 10.1080/13697137.2021.1889500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The menopause transition arises mainly from a decline in ovarian function characterized by a decrease in levels of ovarian estrogens (estradiol) and progesterone in women. Menopausal hormone therapy (MHT) has been used to counteract menopause-associated symptoms in postmenopausal women. With the development of advanced brain imaging methods, understanding MHT-related effects on brain structures and functions could help advance our understanding of the biological consequence of MHT-related effects on behavior, thereby contributing to developing new strategies for optimizing brain health during the menopause transition. This review focuses on the human research related to the impact of MHT on structural and functional organization of the prefrontal cortex in postmenopausal women. Although such MHT-related effects on brain structures and functions have only begun to be understood, it may be useful to examine present findings to identify areas for future research.
Collapse
Affiliation(s)
- Y Li
- Reward, Competition and Social Neuroscience Laboratory, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - J-C Dreher
- Reward, Competition and Social Neuroscience Laboratory, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China.,Neuroeconomics Laboratory, Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France
| |
Collapse
|
45
|
Guo J, Yang G, He Y, Xu H, Fan H, An J, Zhang L, Zhang R, Cao G, Hao D, Yang H. Involvement of α7nAChR in the Protective Effects of Genistein Against β-Amyloid-Induced Oxidative Stress in Neurons via a PI3K/Akt/Nrf2 Pathway-Related Mechanism. Cell Mol Neurobiol 2021; 41:377-393. [PMID: 33215356 PMCID: PMC11448600 DOI: 10.1007/s10571-020-01009-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Abnormal excessive production and deposition of β-amyloid (Aβ) peptides in selectively susceptible brain regions are thought to be a key pathogenic mechanism underlying Alzheimer's disease (AD), resulting in memory deficits and cognitive impairment. Genistein is a phytoestrogen with great promise for counteracting diverse Aβ-induced insults, including oxidative stress and mitochondrial dysfunction. However, the exact molecular mechanism or mechanisms underlying the neuroprotective effects of genistein against Aβ-induced insults are largely uncharacterized. To further elucidate the possible mechanism(s) underlying these protective effects, we investigated the neuroprotective effects of genistein against Aβ-induced oxidative stress mediated by orchestrating α7 nicotinic acetylcholine receptor (α7nAChR) signaling in rat primary hippocampal neurons. Genistein significantly increased cell viability, reduced the number of apoptotic cells, decreased accumulation of reactive oxygen species (ROS), decreased contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), upregulated BCL-2 expression, and suppressed Caspase-3 activity occurring after treatment with 25 μM Aβ25-35. Simultaneously, genistein markedly inhibited the decreases in α7nAChR mRNA and protein expression in cells treated with Aβ25-35. In addition, α7nAChR signaling was intimately involved in the genistein-mediated activation of phosphatidylinositol 3-kinase (PI3K)/Akt and Nrf2/keap1 signaling. Thus, α7nAChR activity together with the PI3K/Akt/Nrf2 signaling cascade likely orchestrates the molecular mechanism underlying the neuroprotective effects of genistein against Aβ-induced oxidative injury.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Guoqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yuqing He
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiming Xu
- Stem Cell Research Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Hong Fan
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Guihua Cao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710069, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
46
|
Reduced [ 18F]flortaucipir retention in white matter hyperintensities compared to normal-appearing white matter. Eur J Nucl Med Mol Imaging 2021; 48:2283-2294. [PMID: 33475761 DOI: 10.1007/s00259-021-05195-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE Recent research has suggested the use of white matter (WM) reference regions for longitudinal tau-PET imaging. However, tau tracers display affinity for the β-sheet structure formed by myelin, and thus WM lesions might influence tracer retention. Here, we explored whether the tau-sensitive tracer [18F]flortaucipir shows reduced retention in WM hyperintensities (WMH) and how this retention changes over time. METHODS We included 707 participants from the Alzheimer's Disease Neuroimaging Initiative with available [18F]flortaucipir-PET and structural and FLAIR MRI scans. WM segments and WMH were automatically delineated in the structural MRI and FLAIR scans, respectively. [18F]flortaucipir standardized uptake value ratios (SUVR) of WMH and normal-appearing WM (NAWM) were calculated using the inferior cerebellar grey matter as reference region, and a 3-mm erosion was applied to the combined NAWM and WMH masks to avoid partial volume effects. Longitudinal [18F]flortaucipir SUVR changes in NAWM and WMH were estimated using linear mixed models. The percent variance of WM-referenced cortical [18F]flortaucipir SUVRs explained by longitudinal changes in the WM reference region was estimated with the R2 coefficient. RESULTS Compared to NAWM, WMH areas displayed significantly reduced [18F]flortaucipir SUVR, independent of cognitive impairment or Aβ status (mean difference = 0.14 SUVR, p < 0.001). Older age was associated with lower [18F]flortaucipir SUVR in both NAWM (- 0.002 SUVR/year, p = 0.005) and WMH (- 0.004 SUVR/year, p < 0.001). Longitudinally, [18F]flortaucipir SUVR decreased in NAWM (- 0.008 SUVR/year, p = 0.03) and even more so in WMH (- 0.02 SUVR/year, p < 0.001). Between 17% and 66% of the variance of longitudinal changes in cortical WM-referenced [18F]flortaucipir SUVRs were explained by longitudinal changes in the reference region. CONCLUSIONS [18F]flortaucipir retention in the WM decreases over time and is influenced by the presence of WMH, supporting the hypothesis that [18F]flortaucipir retention in the WM is partially myelin-dependent. These findings have implications for the use of WM reference regions for [18F]flortaucipir-PET imaging.
Collapse
|
47
|
Brain functional changes in perimenopausal women: an amplitude of low-frequency fluctuation study. ACTA ACUST UNITED AC 2021; 28:384-390. [PMID: 33438891 PMCID: PMC8284389 DOI: 10.1097/gme.0000000000001720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Objective: To evaluate the effects of sex hormones on amplitude of low-frequency fluctuation (ALFF) in brain regions related to cognition in perimenopausal women. Methods: This cross-sectional study involved 25 perimenopausal women and 25 premenopausal women who underwent behavioral evaluations, sex hormone level measurements, and functional magnetic resonance imaging (fMRI). All data and ALFF analyses were preprocessed using the Data Processing Assistant for Resting-State fMRI. Statistical analyses were performed using the Resting-State fMRI Data Analysis Toolkit to explore the differences in ALFF between perimenopausal and premenopausal women. The gray matter volume (GMV) values extracted from brain regions (regions of interest) with significantly different ALFF values between the perimenopausal and premenopausal groups were compared. We analyzed the correlations of the ALFF and GMV values of these regions of interest with the results of behavioral evaluations and sex hormone levels in the two groups. Results: Compared with the premenopausal group, the perimenopausal group showed significant ALFF increase in the left gyrus rectus. Regions with decreased ALFF in the perimenopausal group included the left superior temporal gyrus, left inferior frontal gyrus, and left insula. The GMV values of the left gyrus rectus and left superior temporal gyrus were reduced in perimenopausal women. Furthermore, the estradiol level was negatively correlated with the ALFF value of the left gyrus rectus in perimenopausal women. Conclusions: The ALFF and GMV values of certain brain regions related to cognitive function were changed in perimenopausal women. Such functional brain alterations may provide more information regarding the mechanism of cognitive dysfunction in perimenopausal women.
Collapse
|
48
|
Jayachandran M, Lahr BD, Bailey KR, Miller VM, Kantarci K. Menopausal hormone therapy, blood thrombogenicity, and development of white matter hyperintensities in women of the Kronos Early Estrogen Prevention Study. ACTA ACUST UNITED AC 2021; 27:305-310. [PMID: 31934946 PMCID: PMC7050795 DOI: 10.1097/gme.0000000000001465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Supplemental Digital Content is available in the text Objective: Development of white matter hyperintensities (WMH) in the brain is associated with blood thrombogenicity in recently menopausal women. This study examined the influence of menopausal hormone treatments (MHTs) on this association. Methods: Measures of blood thrombogenicity were examined in women of the Kronos Early Estrogen Prevention Study (n = 95) who had brain magnetic resonance imaging before and during the 48 months of randomization to transdermal 17β-estradiol (n = 30), oral conjugated equine estrogen (n = 29) both with progesterone for 12 days per month or placebo pills and patch (n = 36). Principal components (PCs) analysis was used to reduce the dimensionality of 14 markers of platelet activation and blood thrombogenicity. The first 5 PCs were assessed for association with treatment and changes in WMH. Within-person slopes were obtained to capture the extent of WMH change for each woman. Results: WMH increased in all groups over the 48 months (P = 0.044). The partial effect of PC1, representing an average of six thrombogenicity variables (microvesicles derived from endothelium, leukocytes, and monocytes, and positive for tissue factor and adhesion molecules) on WMH was significant (P = 0.003). PC3, reflecting a contrast of platelet microaggregates and adenosine triphosphate secretion versus total platelet count, differed across groups (P = 0.006) with higher scores in the oral conjugated equine estrogen group. The global association between PCs and WMH increase, however, did not differ significantly by MHT (P = 0.207 for interaction between MHT and PC's). Conclusion: In recently menopausal women, the type of MHT did not significantly influence the association of markers of blood thrombogenicity with development of WMH in the brain.
Collapse
Affiliation(s)
- Muthuvel Jayachandran
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.,Department of Surgery, Mayo Clinic, Rochester, MN
| | - Brian D Lahr
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Kent R Bailey
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Virginia M Miller
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.,Department of Surgery, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
49
|
Barnes JN, Charkoudian N. Integrative cardiovascular control in women: Regulation of blood pressure, body temperature, and cerebrovascular responsiveness. FASEB J 2020; 35:e21143. [PMID: 33151577 DOI: 10.1096/fj.202001387r] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Over the past several decades, it has become increasingly clear that women have distinct cardiovascular profiles compared to men. In this review, our goal is to provide an overview of the literature regarding the influences of female sex and reproductive hormones (primarily estradiol) on mechanisms of cardiovascular control relevant to regulation of blood pressure, body temperature, and cerebral blood flow. Young women tend to have lower resting blood pressure compared with men. This sex difference is reversed at menopause, when women develop higher sympathetic nerve activity and the risk of systemic hypertension increases sharply as postmenopausal women age. Vascular responses to thermal stress, including cutaneous vasodilation and vasoconstriction, are also affected by reproductive hormones in women, where estradiol appears to promote vasodilation and heat dissipation. The influence of reproductive hormones on cerebral blood flow and sex differences in the ability of the cerebral vasculature to increase its blood flow (cerebrovascular reactivity) are relatively new areas of investigation. Sex and hormonal influences on integrative blood flow regulation have further implications during challenges to physiological homeostasis, including exercise. We propose that increasing awareness of these sex-specific mechanisms is important for optimizing health care and promotion of wellness in women across the life span.
Collapse
Affiliation(s)
- Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisha Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
50
|
Cognitive markers of dementia risk in middle-aged women with bilateral salpingo-oophorectomy prior to menopause. Neurobiol Aging 2020; 94:1-6. [DOI: 10.1016/j.neurobiolaging.2020.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
|