1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Hicks AJ, Carrington H, Bura L, Yang A, Pesce R, Yew B, Dams-O'Connor K. Blood-Based Protein Biomarkers in the Chronic Phase of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2025; 42:759-797. [PMID: 40176450 DOI: 10.1089/neu.2024.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
There has been limited exploration of blood-based biomarkers in the chronic period following traumatic brain injury (TBI). Our objective was to conduct a systematic review of studies examining blood-based protein biomarkers with at least one sample collected 12 months post-TBI in adults (≥16 years). Database searches were conducted in Embase, MEDLINE, and Science Citation Index-Expanded on July 24, 2023. Risk of bias was assessed using modified Joanna Briggs Institute critical appraisal tools. Only 30 of 12,523 articles met inclusion criteria, with samples drawn from 12 months to 48 years. Higher quality evidence (low risk of bias; large samples) identified promising inflammatory biomarkers at 12 months post-injury in both moderate-severe TBI (GFAP) and mild TBI (eotaxin-1, IFN-y, IL-8, IL-9, IL-17A, MCP-1, MIP-1β, FGF-basic, and TNF-α). Studies with low risk of bias but smaller samples also suggest NSE, MME, and CRP may be informative, alongside protein variants for α-syn (10H, D5), amyloid-β (A4, C6T), TDP-43 (AD-TDP 1;2;3;9;11), and tau (D11C). Findings for NfL were inconclusive. Longitudinal data were mostly available for acute samples followed until 12 months post-injury, with limited evaluation of changes beyond 12 months. Associations of some blood-based biomarkers with cognitive, sleep, and functional outcomes were reported. The overall strength of the evidence in this review was limited by the risk of bias and small sample sizes. Replication is required within prospective longitudinal studies that move beyond 12 months post-injury. Novel efforts should be guided by promising neurodegenerative-disease markers and use panels to model polypathology.
Collapse
Affiliation(s)
- Amelia J Hicks
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Holly Carrington
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Bura
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rico Pesce
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
3
|
Hicks AJ, Plourde J, Selmanovic E, de Souza NL, Blennow K, Zetterberg H, Dams-O'Connor K. Trajectories of blood-based protein biomarkers in chronic traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322303. [PMID: 40034765 PMCID: PMC11875239 DOI: 10.1101/2025.02.16.25322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Blood-based protein biomarkers may provide important insights into the long-term neuropathology of traumatic brain injury (TBI). This is urgently required to identify mechanistic processes underlying post-traumatic neurodegeneration (PTND); a progressive post-recovery clinical decline experienced by a portion of TBI survivors. The aim of this study was to examine change over time in protein levels in a chronic TBI cohort. We selected six markers (Aβ 42 /Aβ 40 , GFAP, NfL, BD-tau, p-tau231, and p-tau181) with known importance in acute TBI and/or other neurodegenerative conditions. We used a longitudinal design with two time points approximately 3.5 years apart on average (SD 1.34). Proteins were measured in plasma using the ultrasensitive Single molecule array technology for 63 participants with mild to severe chronic TBI (sustained ≥ 1 year ago; M 28 years; SD 16.3 since their first blow to the head) from the Late Effects of TBI study (48% female; current age M 52 years; SD 13.4). Multivariate linear mixed effect models with adjustments for multiple comparisons were performed to examine trajectories in proteins over time with age and age squared as covariates. A series of sensitivity analyses were conducted to account for outliers and to explore effects of key covariates: sex, APOE ε4 carrier status, medical comorbidities, age at first blow to the head, time since first blow to the head, and injury severity. Over an average of 3.5 years, there were significant reductions in plasma Aβ 42 /Aβ 40 (β = -0.004, SE = 0.001, t = -3.75, q = .001) and significant increases in plasma GFAP (β = 12.96, SE = 4.41, t = 2.94, q = .01). There were no significant changes in NFL, BD-tau, p-tau231, or p-tau181. Both plasma Aβ 42 /Aβ 40 and GFAP have been associated with brain amyloidosis, suggesting a role for Aβ mis-metabolism and aggregation in the long-term neuropathological consequences of TBI. These findings are hypothesis generating for future studies exploring the diverse biological mechanisms of PTND.
Collapse
|
4
|
Panayi N, Schulz P, He P, Hanna B, Lifshitz J, Rowe RK, Sierks MR. Traumatic Brain Injury in Mice Generates Early-Stage Alzheimer's Disease Related Protein Pathology that Correlates with Neurobehavioral Deficits. Mol Neurobiol 2024; 61:7567-7582. [PMID: 38411868 DOI: 10.1007/s12035-024-04035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Traumatic brain injury (TBI) increases the long-term risk of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we demonstrate that protein variant pathology generated in brain tissue of an experimental TBI mouse model is similar to protein variant pathology observed during early stages of AD, and that subacute accumulation of AD associated variants of amyloid beta (Aβ) and tau in the TBI mouse model correlated with behavioral deficits. Male C57BL/6 mice were subjected to midline fluid percussion injury or to sham injury, after which sensorimotor function (rotarod, neurological severity score), cognitive deficit (novel object recognition), and affective deficits (elevated plus maze, forced swim task) were assessed post-injury (DPI). Protein pathology at 7, 14, and 28 DPI was measured in multiple brain regions using an immunostain panel of reagents selectively targeting different neurodegenerative disease-related variants of Aβ, tau, TDP-43, and alpha-synuclein. Overall, TBI resulted in sensorimotor deficits and accumulation of AD-related protein variant pathology near the impact site, both of which returned to sham levels by 14 DPI. Individual mice, however, showed persistent behavioral deficits and/or accumulation of toxic protein variants at 28 DPI. Behavioral outcomes of each mouse were correlated with levels of seven different protein variants in ten brain regions at specific DPI. Out of 21 significant correlations between protein variant levels and behavioral deficits, 18 were with variants of Aβ or tau. Correlations at 28 DPI were all between a single Aβ or tau variant, both of which are strongly associated with human AD cases. These data provide a direct mechanistic link between protein pathology resulting from TBI and the hallmarks of AD.
Collapse
Affiliation(s)
- Nicholas Panayi
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Brandon Hanna
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA.
| |
Collapse
|
5
|
Rowe RK, Schulz P, He P, Mannino GS, Opp MR, Sierks MR. Acute sleep deprivation in mice generates protein pathology consistent with neurodegenerative diseases. Front Neurosci 2024; 18:1436966. [PMID: 39114483 PMCID: PMC11303328 DOI: 10.3389/fnins.2024.1436966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Insufficient or disturbed sleep is strongly associated with adverse health conditions, including various neurodegenerative disorders. While the relationship between sleep and neurodegenerative disease is likely bidirectional, sleep disturbances often predate the onset of other hallmark clinical symptoms. Neuronal waste clearance is significantly more efficient during sleep; thus, disturbed sleep may lead to the accumulation of neuronal proteins that underlie neurodegenerative diseases. Key pathological features of neurodegenerative diseases include an accumulation of misfolded or misprocessed variants of amyloid beta (Aβ), tau, alpha synuclein (α-syn), and TarDNA binding protein 43 (TDP-43). While the presence of fibrillar protein aggregates of these neuronal proteins are characteristic of neurodegenerative diseases, the presence of small soluble toxic oligomeric variants of these different proteins likely precedes the formation of the hallmark aggregates. Methods We hypothesized that sleep deprivation would lead to accumulation of toxic oligomeric variants of Aβ, tau, α-syn, and TDP-43 in brain tissue of wild-type mice. Adult mice were subjected to 6 h of sleep deprivation (zeitgeber 0-6) for 5 consecutive days or were left undisturbed as controls. Following sleep deprivation, brains were collected, and protein pathology was assessed in multiple brain regions using an immunostain panel of reagents selectively targeting neurodegenerative disease-related variants of Aβ, tau, α-syn, and TDP-43. Results Overall, sleep deprivation elevated levels of all protein variants in at least one of the brain regions of interest. The reagent PDTDP, targeting a TDP-43 variant present in Parkinson's disease, was elevated throughout the brain. The cortex, caudoputamen, and corpus callosum brain regions showed the highest accumulation of pathology following sleep deprivation. Discussion These data provide a direct mechanistic link between sleep deprivation, and the hallmark protein pathologies of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Grant S. Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael R. Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Janković T, Pilipović K. Single Versus Repetitive Traumatic Brain Injury: Current Knowledge on the Chronic Outcomes, Neuropathology and the Role of TDP-43 Proteinopathy. Exp Neurobiol 2023; 32:195-215. [PMID: 37749924 PMCID: PMC10569144 DOI: 10.5607/en23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death and disability in adults and thus an important public health problem. Following TBI, secondary pathophysiological processes develop over time and condition the development of different neurodegenerative entities. Previous studies suggest that neurobehavioral changes occurring after a single TBI are the basis for the development of Alzheimer's disease, while repetitive TBI is considered to be a contributing factor for chronic traumatic encephalopathy development. However, pathophysiological processes that determine the evolvement of a particular chronic entity are still unclear. Human post-mortem studies have found combinations of amyloid, tau, Lewi bodies, and TAR DNA-binding protein 43 (TDP-43) pathologies after both single and repetitive TBI. This review focuses on the pathological changes of TDP-43 after single and repetitive brain traumas. Numerous studies have shown that TDP-43 proteinopathy noticeably occurs after repetitive head trauma. A relatively small number of available preclinical research on single brain injury are not in complete agreement with the results from the human samples, which makes it difficult to draw specific conclusions. Also, as TBI is considered a heterogeneous type of injury, different experimental trauma models and injury intensities may cause differences in the cascade of secondary injury, which should be considered in future studies. Experimental and post-mortem studies of TDP-43 pathobiology should be carried out, preferably in the same laboratories, to determine its involvement in the development of neurodegenerative conditions after one and repetitive TBI, especially in the context of the development of new therapeutic options.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
7
|
Panayi N, Schulz P, He P, Hanna B, Lifshitz J, Rowe R, Sierks MR. Traumatic brain injury in mice generates early-stage Alzheimer's disease related protein pathology that correlates with neurobehavioral deficits. RESEARCH SQUARE 2023:rs.3.rs-2865501. [PMID: 37205508 PMCID: PMC10187431 DOI: 10.21203/rs.3.rs-2865501/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Traumatic brain injury (TBI) increases the long-term risk of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we demonstrate that protein variant pathology generated in brain tissue of an experimental TBI mouse model is similar to protein variant pathology observed in human ADbrains, and that subacute accumulation of two AD associated variants of amyloid beta (Aβ) and tau in the TBI mouse model correlated with behavioral deficits. Male C57BL/6 mice were subjected to midline fluid percussion injury or to sham injury, after which sensorimotor function (rotarod, neurological severity score), cognitive deficit (novel object recognition), and affective deficits (elevated plus maze, forced swim task) were assessed at different days post-injury (DPI). Protein pathology at 7, 14, and 28 DPI was measured in multiple brain regions using an immunostain panel of reagents selectively targeting different neurodegenerative disease-related variants of Aβ, tau, TDP-43, and alpha-synuclein. Overall, TBI resulted in sensorimotor deficits and accumulation of AD-related protein variant pathology near the impact site, both of which returned to sham levels by 14 DPI. Individual mice, however, showed persistent behavioral deficits and/or accumulation of selected toxic protein variants at 28 DPI. Behavioral outcomes of each mouse were correlated with levels of seven different protein variants in ten brain regions at specific DPI. Out of 21 significant correlations between protein variant levels and behavioral deficits, 18 were with variants of Aβ or tau. Correlations at 28 DPI were all between a single Aβ or tau variant, both of which are strongly associated with human AD cases. These data provide a direct mechanistic link between protein pathology resulting from TBI and the hallmarks of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan Lifshitz
- University of Arizona College of Pharmacy: The University of Arizona College of Medicine Phoenix
| | - Rachel Rowe
- University of Colorado at Boulder: University of Colorado Boulder
| | | |
Collapse
|
8
|
Cho HJ, Schulz P, Venkataraman L, Caselli RJ, Sierks MR. Sex-Specific Multiparameter Blood Test for the Early Diagnosis of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232415670. [PMID: 36555310 PMCID: PMC9779188 DOI: 10.3390/ijms232415670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Blood-based biomarkers are needed for the early diagnosis of Alzheimer's disease (AD). We analyzed longitudinal human plasma samples from AD and control cases to identify biomarkers for the early diagnosis of AD. Plasma samples were grouped based on clinical diagnosis at the time of collection: AD, mild cognitive impairment (MCI), and pre-symptomatic (preMCI). Samples were analyzed by ELISA using a panel of reagents against nine different AD-related amyloid-β (Aβ), tau, or TDP-43 variants. Receiver operating characteristic (ROC) curves of different biomarker panels for different diagnostic sample groups were determined. Analysis of all of the samples gave a sensitivity of 92% and specificity of 76% for the diagnosis of AD. Early-stage diagnosis of AD, utilizing only the preMCI and MCI samples, identified 88% of AD cases. Using sex-biased biomarker panels, early diagnosis of AD cases improved to 96%. Using the sex-biased panels, we also identified 6 of the 25 control group cases as being at high risk of AD, which is consistent with what is expected given the advanced age of the control cases. Specific AD-associated protein variants are effective blood-based biomarkers for the early diagnosis of AD. Notably, significant differences were observed in biomarker profiles for the early detection of male and female AD cases.
Collapse
Affiliation(s)
- Hyung Joon Cho
- Department of Internal Medicine, The University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Philip Schulz
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Lalitha Venkataraman
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | | | - Michael R. Sierks
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-2828; Fax: +1-480-727-9321
| |
Collapse
|
9
|
Walker A, Chapin B, Abisambra J, DeKosky ST. Association between single moderate to severe traumatic brain injury and long-term tauopathy in humans and preclinical animal models: a systematic narrative review of the literature. Acta Neuropathol Commun 2022; 10:13. [PMID: 35101132 PMCID: PMC8805270 DOI: 10.1186/s40478-022-01311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The initiation, anatomic pattern, and extent of tau spread in traumatic brain injury (TBI), and the mechanism by which TBI leads to long-term tau pathology, remain controversial. Some studies suggest that moderate to severe TBI is sufficient to promote tau pathology; however, others suggest that it is simply a consequence of aging. We therefore conducted a systematic narrative review of the literature addressing whether a single moderate to severe head injury leads to long-term development of tauopathy in both humans and animal models. METHODS Studies considered for inclusion in this review assessed a single moderate to severe TBI, assessed tau pathology at long-term timepoints post-injury, comprised experimental or observational studies, and were peer-reviewed and published in English. Databases searched included: PUBMED, NCBI-PMC, EMBASE, Web of Science, Academic Search Premiere, and APA Psychnet. Search results were uploaded to Covidence®, duplicates were removed, and articles underwent an abstract and full-text screening process. Data were then extracted and articles assessed for risk of bias. FINDINGS Of 4,150 studies screened, 26 were eligible for inclusion, of which 17 were human studies, 8 were preclinical animal studies, and 1 included both human and preclinical animal studies. Most studies had low to moderate risk of bias. Most human and animal studies (n = 12 and 9, respectively) suggested that a single moderate to severe TBI resulted in greater development of long-term tauopathy compared to no history of head injury. This conclusion should be interpreted with caution, however, due to several limitations: small sample sizes; inconsistencies in controlling for confounding factors that may have affected tau pathology (e.g., family history of dementia or neurological illnesses, apolipoprotein E genotype, etc.), inclusion of mostly males, and variation in reporting injury parameters. INTERPRETATION Results indicate that a single moderate to severe TBI leads to greater chronic development of tauopathy compared to no history of head injury. This implies that tau pathology induced may not be transient, but can progressively develop over time in both humans and animal models. Targeting these tau changes for therapeutic intervention should be further explored to elucidate if disease progression can be reversed or mitigated.
Collapse
Affiliation(s)
- Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Ben Chapin
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Steven T DeKosky
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Dennis EL, Baron D, Bartnik‐Olson B, Caeyenberghs K, Esopenko C, Hillary FG, Kenney K, Koerte IK, Lin AP, Mayer AR, Mondello S, Olsen A, Thompson PM, Tate DF, Wilde EA. ENIGMA brain injury: Framework, challenges, and opportunities. Hum Brain Mapp 2022; 43:149-166. [PMID: 32476212 PMCID: PMC8675432 DOI: 10.1002/hbm.25046] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide, but the heterogeneous nature of TBI with respect to injury severity and health comorbidities make patient outcome difficult to predict. Injury severity accounts for only some of this variance, and a wide range of preinjury, injury-related, and postinjury factors may influence outcome, such as sex, socioeconomic status, injury mechanism, and social support. Neuroimaging research in this area has generally been limited by insufficient sample sizes. Additionally, development of reliable biomarkers of mild TBI or repeated subconcussive impacts has been slow, likely due, in part, to subtle effects of injury and the aforementioned variability. The ENIGMA Consortium has established a framework for global collaboration that has resulted in the largest-ever neuroimaging studies of multiple psychiatric and neurological disorders. Here we describe the organization, recent progress, and future goals of the Brain Injury working group.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - David Baron
- Western University of Health SciencesPomonaCaliforniaUSA
| | - Brenda Bartnik‐Olson
- Department of RadiologyLoma Linda University Medical CenterLoma LindaCaliforniaUSA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityBurwoodVictoriaAustralia
| | - Carrie Esopenko
- Department of Rehabilitation and Movement SciencesRutgers Biomedical Health SciencesNewarkNew JerseyUSA
| | - Frank G. Hillary
- Department of PsychologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Social Life and Engineering Sciences Imaging CenterUniversity ParkPennsylvaniaUSA
| | - Kimbra Kenney
- Department of NeurologyUniformed Services University of the Health SciencesBethesdaMarylandUSA
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Inga K. Koerte
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Alexander P. Lin
- Center for Clinical SpectroscopyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew R. Mayer
- Mind Research NetworkAlbuquerqueNew MexicoUSA
- Department of Neurology and PsychiatryUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional ImagingUniversity of MessinaMessinaItaly
| | - Alexander Olsen
- Department of PsychologyNorwegian University of Science and TechnologyTrondheimNorway
- Department of Physical Medicine and RehabilitationSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Paul M. Thompson
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
- Department of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and OphthalmologyUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - David F. Tate
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
| | - Elisabeth A. Wilde
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
| |
Collapse
|
11
|
Zhou Y, Chen Q, Wang Y, Wu H, Xu W, Pan Y, Gao S, Dong X, Zhang JH, Shao A. Persistent Neurovascular Unit Dysfunction: Pathophysiological Substrate and Trigger for Late-Onset Neurodegeneration After Traumatic Brain Injury. Front Neurosci 2020; 14:581. [PMID: 32581697 PMCID: PMC7296179 DOI: 10.3389/fnins.2020.00581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents one of the major causes of death worldwide and leads to persisting neurological deficits in many of the survivors. One of the most significant long-term sequelae deriving from TBI is neurodegenerative disease, which is a group of incurable diseases that impose a heavy socio-economic burden. However, mechanisms underlying the increased susceptibility of TBI to neurodegenerative disease remain elusive. The neurovascular unit (NVU) is a functional unit composed of neurons, neuroglia, vascular cells, and the basal lamina matrix. The key role of NVU dysfunction in many central nervous system diseases has been revealed. Studies have proved the presence of prolonged structural and functional abnormalities of the NVU after TBI. Moreover, growing evidence suggests impaired NVU function is also implicated in neurodegenerative diseases. Therefore, we propose the Neurovascular Unit Dysfunction (NVUD) Hypothesis, in which the persistent NVU dysfunction is thought to underlie the development of post-TBI neurodegeneration. We deduce NVUD Hypothesis through relational inference and supporting evidence, and suggest continued NVU abnormalities following TBI serve as the pathophysiological substrate and trigger yielding chronic neuroinflammation, proteinopathies and oxidative stress, consequently leading to the progression of neurodegenerative diseases. The NVUD Hypothesis may provide potential treatment and prevention strategies for TBI and late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|