1
|
Blauenfeldt RA, Waller J, Drasbek KR, Bech JN, Hvas AM, Larsen JB, Andersen MN, Nielsen MC, Kjølhede M, Kjeldsen M, Gude MF, Khan MB, Baban B, Andersen G, Hess DC. Effect of Remote Ischemic Conditioning on the Form and Function of Red Blood Cells in Patients With Acute Ischemic Stroke. Stroke 2025; 56:603-612. [PMID: 39882626 PMCID: PMC11850200 DOI: 10.1161/strokeaha.124.048976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is a simple and low-cost intervention that is thought to increase collateral blood flow through the vasodilatory effects of nitric oxide (NO) produced by the endothelium and red blood cells (RBCs). This study aims to investigate whether RIC affects RBC deformability and levels of NO and nitrite in patients with ischemic stroke. METHODS This is a predefined substudy to the RESIST (Remote Ischemic Conditioning in Patients With Acute Stroke Trial) randomized clinical trial conducted in Denmark. RIC was started in the ambulance and continued at the hospital for seven days. Blood samples were collected at different time points: prehospital in the ambulance, in-hospital upon arrival, 2 hours postadmission, and 24 hours postadmission. RBC deformability and erythrocyte aggregation rate were assessed using ektacytometry, NO using flowcytometry, and nitrite content using ozone chemiluminescence. RESULTS Of 1500 prehospital randomized patients, 486 patients were included in this study between July 28, 2020, and November 11, 2023, and had blood samples taken. Of these, 249 (51%) had AIS, and here RIC treatment was not associated with increased RBC maximal deformability (RIC, 0.549; sham, 0.548; P=0.31), RBC NO (RIC, 35 301 median fluorescence intensity; sham, 34979 median fluorescence intensity; P=0.89), or nitrite (RIC, 0.036 µmol/L; sham, 0.034 µmol/L; P=0.38), but RIC treatment was associated with a significantly reduced aggregation pressure and a slower erythrocyte aggregation rate (RIC, 323.76 millipascal; sham, 352.74 millipascal; P=0.0113). CONCLUSIONS Prehospital and in-hospital RIC significantly reduced erythrocyte aggregation rate in patients with acute ischemic stroke, while there was no change in RBC deformability, NO content, or whole blood nitrite levels. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03481777.
Collapse
Affiliation(s)
- Rolf Ankerlund Blauenfeldt
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jennifer Waller
- Department of Family and Community Medicine, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| | - Kim Ryun Drasbek
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jesper Nørgaard Bech
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- University Clinic in Nephrology and Hypertension, Gødstrup Regional Hospital, Herning, Denmark
| | - Anne-Mette Hvas
- Center for Thrombosis and Hemostasis, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Julie Brogaard Larsen
- Center for Thrombosis and Hemostasis, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Nørgaard Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Marlene Christina Nielsen
- Center for Thrombosis and Hemostasis, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Kjølhede
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Mathilde Kjeldsen
- University Clinic in Nephrology and Hypertension, Gødstrup Regional Hospital, Herning, Denmark
| | - Martin Faurholdt Gude
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Pre-hospital Emergency Medical Services, Central Denmark Region, Aarhus, Denmark
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| | - Grethe Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David Charles Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| |
Collapse
|
2
|
Si XK, Xue S, Zhou X, Guo YN, Du WY, Qu Y, Sun X, Guo ZN. Cerebral autoregulation in patients with acute lacunar infarction: a reliable predictor of outcome. Ann Clin Transl Neurol 2025. [PMID: 39932917 DOI: 10.1002/acn3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/02/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE To further investigate the association between dynamic cerebral autoregulation (dCA) and the outcomes in patients with acute lacunar infarction. METHODS Patients were prospectively and consecutively enrolled at The First Hospital of Jilin University between 2016 and 2023. dCA was monitored at 1-3 and 7-10 days after the stroke. The outcomes were evaluated using a 3-month modified Rankin Scale score. Binary and ordered logistic regression were employed to analyze the relationship between dCA parameters and outcomes. dCA-based nomogram models were also developed to assess the predictive value of dCA for these patients. RESULTS Overall, 332 patients were included in analysis. dCA showed no significant differences between bilateral cerebral hemispheres, as well as two measurement time points (all P > 0.05). Regression analyses showed that dCA at 1-3 and 7-10 days were independently associated with the outcomes of patients with acute lacunar infarction after adjusting for confounders (all P < 0.05). Incorporating dCA parameters into conventional risk factors enhanced the risk-predictive ability of a 3-month unfavorable outcome, significantly improving the area under the receiver operating characteristic curve from 0.798(95% confidence interval [CI], 0.748-0.848) to 0.829(95% CI, 0.783-0.875) (P = 0.046). INTERPRETATION dCA remained consistent in bilateral cerebral hemispheres within acute and subacute periods among patients with lacunar infarction. It was independently associated with 3-month outcomes and could be regarded as a reliable predictor for discriminating outcome.
Collapse
Affiliation(s)
- Xiang-Kun Si
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Song Xue
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Xin Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Ya-Nan Guo
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Wen-Yu Du
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Alhashimi A, Kamarova M, Baig SS, Nair KPS, Wang T, Redgrave J, Majid A, Ali AN. Remote ischaemic conditioning for neurological disorders-a systematic review and narrative synthesis. Syst Rev 2024; 13:308. [PMID: 39702489 DOI: 10.1186/s13643-024-02725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Remote ischaemic conditioning (RIC) refers to the use of controlled transient ischemic and reperfusion cycles, commonly of the upper or lower limb, to mitigate cellular damage from ischaemic injury. Preclinical studies demonstrate that RIC may have a neuroprotective effect and therefore could represent a novel therapeutic option in the management of neurological disorders. The aim of this review is to comprehensively describe the current clinical evidence of RIC in neurological disorders. METHODS A computerised search of EMBASE and OVID MEDLINE was conducted from 2002 to October 2023 for randomised controlled trials (RCTs) investigating RIC in neurological diseases. RESULTS A total of 46 different RCTs in 12 different neurological disorders (n = 7544) were included in the analysis. Conditions included acute ischaemic stroke, symptomatic intracranial stenosis and vascular cognitive impairment. The most commonly used RIC protocol parameters in the selected studies were as follows: cuff pressure at 200 mmHg (27 trials), 5-min cycle length (42 trials), 5 cycles of ischaemia and reperfusion (24 trials) and the application to the upper limb unilaterally (23 trials). CONCLUSIONS The comprehensive analysis of the included studies reveals promising results regarding the safety and therapeutic effect of RIC as an option for managing neurological diseases. Particularly, the strongest evidence supports its potential use in chronic stroke patients and vascular cognitive impairment. The neuroprotective effects of RIC, as demonstrated in preclinical studies, suggest that this therapeutic approach could extend its benefits to various other diseases affecting the nervous system. However, to establish the efficacy of RIC across different neurological disorders, further trials with larger sample sizes and more diverse patient populations are warranted. Upcoming trials are expected to provide valuable evidence that will not only confirm the efficacy of RIC in neurological disease management but also help identify the most optimal RIC regimen for specific conditions.
Collapse
Affiliation(s)
| | - Marharyta Kamarova
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Sheharyar S Baig
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | | | - Tao Wang
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Jessica Redgrave
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Ali N Ali
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
Liu QY, Cui Y, Li W, Qiu J, Nguyen TN, Chen HS. Effect of remote ischemic preconditioning on cerebral circulation time in severe carotid artery stenosis: Results from the RIC-CCT trial. Cell Rep Med 2024; 5:101796. [PMID: 39471820 PMCID: PMC11604480 DOI: 10.1016/j.xcrm.2024.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
In patients with severe internal carotid artery stenosis (sICAS), cerebral circulation time (CCT) is associated with cerebral hyperperfusion syndrome. This study aims to investigate the effect of remote ischemic preconditioning (RIC) on CCT in patients with sICAS. Patients are randomly assigned to the RIC group (RIC twice daily, for 2-4 days before carotid artery stenting [CAS] as an adjunct to standard medical therapy) and the control group. The results show that RIC produces a significant decrease in CCT of the stenosis side (sCCT) from baseline to pre-CAS, and the occurrence of contrast staining on brain computed tomography (CT) is lower in RIC versus control group after CAS. In addition, significant changes in some serum biomarkers suggest that anti-neuroinflammation, anti-oxidative stress, protecting endothelial injury, and improving cerebral autoregulation may be associated with the effect of RIC. These findings provide supporting evidence that RIC can modulate cerebral circulation in patients with sICAS. This study was registered at ClinicalTrials.gov (NCT05451030).
Collapse
Affiliation(s)
- Quan-Ying Liu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Wei Li
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Jing Qiu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Thanh N Nguyen
- Department of Neurology, Radiology, Boston Medical Center, Boston, MA, USA
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China.
| |
Collapse
|
5
|
Zhu J, Xu N, Lin H, Deng L, Xie B, Jiang X, Liao R, Yang C. Remote ischemic preconditioning plays a neuroprotective role in cerebral ischemia-reperfusion mice by inhibiting mitophagy. Heliyon 2024; 10:e39076. [PMID: 39640619 PMCID: PMC11620096 DOI: 10.1016/j.heliyon.2024.e39076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Remote ischemic preconditioning (RIPC) represents a clinically feasible method for safeguarding vital organs against ischemic injury. However, its specific role in cerebral ischemia-reperfusion (I/R) injury remains to be definitively elucidated. In this study, we investigated the neuroprotective effects of RIPC on mice at 7 days post-cerebral I/R and its involvement in mitophagy and mitochondrial dysfunction. Cerebral I/R led to impaired brain function, as well as structural and functional damage to mitochondria. Notably, RIPC treatment ameliorated the neurological dysfunction induced by cerebral I/R. Compared with the I/R group, the expression levels of NeuN, MBP, PDH, and Tom20 were significantly elevated in the RIPC + I/R group. Furthermore, mitochondria in the RIPC + I/R group exhibited more intact structure compared to those in the I/R group. In mice subjected to I/R injury, RIPC treatment markedly increased ATP content, ADP content, TAN level and glucose uptake while upregulating expression levels of Parkin, Pink1 and P62 proteins; it also reduced both the volume of ischemic foci and the number of mitochondrial autophagosomes along with decreasing LC3B II/I ratio. In conclusion, RIPC may exert a neuroprotective role by inhibiting excessive mitophagy during subacute stages following an ischemic stroke.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Na Xu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Heng Lin
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqian Jiang
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Runde Liao
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chaoxian Yang
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Kakarla R, Bhangoo G, Pandian J, Shuaib A, Kate MP. Remote Ischemic Conditioning to Reduce Perihematoma Edema in Patients with Intracerebral Hemorrhage (RICOCHET): A Randomized Control Trial. J Clin Med 2024; 13:2696. [PMID: 38731225 PMCID: PMC11084750 DOI: 10.3390/jcm13092696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Early perihematomal edema (PHE) growth is associated with worse functional outcomes at 90 days. Remote Ischemic conditioning (RIC) may reduce perihematomal inflammation if applied early to patients with intracerebral hemorrhage (ICH). We hypothesize that early RIC, delivered for seven days in patients with spontaneous ICH, may reduce PHE growth. Methods: ICH patients presenting within 6 h of symptom onset and hematoma volume < 60 milliliters (mL) were randomized to an RIC + standard care or standard care (SC) group. The primary outcome measure was calculated edema extension distance (EED), with the cm assessed on day seven. Results: Sixty patients were randomized with a mean ± SD age of 57.5 ± 10.8 years, and twenty-two (36.7%) were female. The relative baseline median PHE were similar (RIC group 0.75 (0.5-0.9) mL vs. SC group 0.91 (0.5-1.2) mL, p = 0.30). The median EEDs at baseline were similar (RIC group 0.58 (0.3-0.8) cm vs. SC group 0.51 (0.3-0.8) cm, p = 0.76). There was no difference in the median day 7 EED (RIC group 1.1 (0.6-1.2) cm vs. SC group 1 (0.9-1.2) cm, p = 0.75). Conclusions: Early RIC therapy delivered daily for seven days was feasible. However, no decrease in EED was noted with the intervention.
Collapse
Affiliation(s)
- Raviteja Kakarla
- Department of Neurology, Rangaraya Medical College, Kakinada 533003, India;
| | - Gurpriya Bhangoo
- Faculty of Nursing, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Jeyaraj Pandian
- Department of Neurology, Christian Medical College, Ludhiana 141008, India;
| | - Ashfaq Shuaib
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Mahesh P. Kate
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| |
Collapse
|
7
|
Guo Z, Qu Y, Shen Z, Liu J, Wang Z, Sun Y, Zhang K, Chang J, Si X, Jin H, Sun X, Yang Y. Cerebral autoregulation: A reliable predictor of prognosis in patients receiving intravenous thrombolysis. CNS Neurosci Ther 2024; 30:e14748. [PMID: 38727518 PMCID: PMC11086020 DOI: 10.1111/cns.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS To investigate the characteristics of dynamic cerebral autoregulation (dCA) after intravenous thrombolysis (IVT) and assess the relationship between dCA and prognosis. METHODS Patients with unilateral acute ischemic stroke receiving IVT were prospectively enrolled; those who did not were selected as controls. All patients underwent dCA measurements, by quantifying the phase difference (PD) and gain, at 1-3 and 7-10 days after stroke onset. Simultaneously, two dCA-based nomogram models were established to verify the predictive value of dCA for patients with mild-to-moderate stroke. RESULTS Finally, 202 patients who received IVT and 238 who did not were included. IVT was positively correlated with higher PD on days 1-3 and 7-10 after stroke onset. PD values in both sides at 1-3 days after stroke onset and in the affected side at 7-10 days after onset were independent predictors of unfavorable outcomes in patients who received IVT. Additionally, in patients with mild-to-moderate stroke who received IVT, the dCA-based nomogram models significantly improved the risk predictive ability for 3-month unfavorable outcomes. CONCLUSION IVT has a positive effect on dCA in patients with acute stroke; furthermore, dCA may be useful to predict the prognosis of patients with IVT.
Collapse
Affiliation(s)
- Zhen‐Ni Guo
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Neuroscience Research Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yang Qu
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Zi‐Duo Shen
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhong‐Xiu Wang
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying‐Ying Sun
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ke‐Jia Zhang
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Junlei Chang
- Center for Protein and Cell‐based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiang‐Kun Si
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hang Jin
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Xin Sun
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yi Yang
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Neuroscience Research Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
8
|
Zhang W, Du L, Chen G, Du B, Zhang L, Zheng J. Remote ischaemic preconditioning for transcatheter aortic valve replacement: a protocol for a systematic review with meta-analysis and trial sequential analysis. BMJ Open 2024; 14:e080200. [PMID: 38670623 PMCID: PMC11057288 DOI: 10.1136/bmjopen-2023-080200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) has become an important treatment in patients with aortic valve disease with the continuous advancement of technology and the improvement of outcomes. However, TAVR-related complications still increase patient morbidity and mortality. Remote ischaemic preconditioning (RIPC) is a simple procedure that provides perioperative protection for many vital organs. However, the efficiency of RIPC on TAVR remains unclear based on inconsistent conclusions from different clinical studies. Therefore, we will perform a protocol for a systematic review and meta-analysis to identify the efficiency of RIPC on TAVR. METHODS AND ANALYSIS English databases (PubMed, Web of Science, Ovid Medline, Embase and Cochrane Library), Chinese electronic databases (Wanfang Database, VIP Database and China National Knowledge Infrastructure) and trial registry databases will be searched from inception to December 2023 to identify randomised controlled trials of RIPC on TAVR. We will calculate mean differences or standardised mean differences with 95% CIs for continuous data, and the risk ratio (RR) with 95% CIs for dichotomous data by Review Manager version 5.4. Fixed-effects model or random-effects model will be used according to the degree of statistical heterogeneity assessed by the I-square test. We will evaluate the risk of bias using the Cochrane risk-of-bias tool 2 and assess the evidence quality of each outcome by the Grading of Recommendations Assessment, Development and Evaluation. The robustness of outcomes will be evaluated by trial sequential analysis. In addition, we will evaluate the publication bias of outcomes by Funnel plots and Egger's regression test. ETHICS AND DISSEMINATION Ethical approval was not required for this systematic review protocol. The results will be disseminated through peer-reviewed publications. PROSPERO REGISTRATION NUMBER CRD42023462926.
Collapse
Affiliation(s)
- Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Du
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Guo Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianqiao Zheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Nadareishvili Z, Bath PM, England TJ. Remote Ischemic Conditioning for Secondary Stroke Prevention: Time for a Clinical Trial? Neurology 2024; 102:e208072. [PMID: 38457765 DOI: 10.1212/wnl.0000000000208072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 03/10/2024] Open
Affiliation(s)
- Zurab Nadareishvili
- From the Department of Neurology and Rehabilitation (Z.N.), The George Washington University School of Medicine and Health Sciences, Washington, DC; Comprehensive Stroke Center (Z.N.), VHC Health, Arlington, VA; and Stroke Trials Unit (P.M.B., T.J.E.), Mental Health and Clinical Neuroscience, University of Nottingham, United Kingdom
| | - Philip M Bath
- From the Department of Neurology and Rehabilitation (Z.N.), The George Washington University School of Medicine and Health Sciences, Washington, DC; Comprehensive Stroke Center (Z.N.), VHC Health, Arlington, VA; and Stroke Trials Unit (P.M.B., T.J.E.), Mental Health and Clinical Neuroscience, University of Nottingham, United Kingdom
| | - Timothy J England
- From the Department of Neurology and Rehabilitation (Z.N.), The George Washington University School of Medicine and Health Sciences, Washington, DC; Comprehensive Stroke Center (Z.N.), VHC Health, Arlington, VA; and Stroke Trials Unit (P.M.B., T.J.E.), Mental Health and Clinical Neuroscience, University of Nottingham, United Kingdom
| |
Collapse
|
10
|
Keevil H, Phillips BE, England TJ. Remote ischemic conditioning for stroke: A critical systematic review. Int J Stroke 2024; 19:271-279. [PMID: 37466245 PMCID: PMC10903142 DOI: 10.1177/17474930231191082] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Remote ischemic conditioning (RIC) is the application of brief periods of ischemia to an organ or tissue with the aim of inducing protection from ischemia in a distant organ. It was first developed as a cardioprotective strategy but has been increasingly investigated as a neuroprotective intervention. The mechanisms by which RIC achieves neuroprotection are incompletely understood. Preclinical studies focus on the hypothesis that RIC can protect the brain from ischemia reperfusion (IR) injury following the restoration of blood flow after occlusion of a large cerebral artery. However, increasingly, a role of chronic RIC (CRIC) is being investigated as a means of promoting recovery following an ischemic insult to the brain. The recent publication of two large, randomized control trials has provided promise that RIC could improve functional outcomes after acute ischemic stroke, and that there may be a role for CRIC in the prevention of recurrent stroke. Although less developed, there is also proof-of-concept to suggest that RIC may be used to reduce vasospasm after subarachnoid hemorrhage or improve cognitive outcomes in vascular dementia. As a cheap, well-tolerated and almost universally applicable intervention, the motivation for investigating possible benefit of RIC in patients with cerebrovascular disease is great. In this review, we shall review the current evidence for RIC as applied to cerebrovascular disease.
Collapse
Affiliation(s)
- Harry Keevil
- Stroke Trials Unit, Division of Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, and NIHR Nottingham Biomedical Research Centre, Division of Injury, Recovery & Inflammation Sciences, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, and NIHR Nottingham Biomedical Research Centre, Division of Injury, Recovery & Inflammation Sciences, University of Nottingham, Nottingham, UK
| | - Timothy J England
- Stroke Trials Unit, Division of Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Department of Stroke, University Hospitals of Derby and Burton, Derby, UK
| |
Collapse
|
11
|
Yao M, Liang D, Zeng X, Xie X, Gao J, Huang L. Dynamic Changes and Clinical Significance of Plasma Galectin-3 in Patients with Acute Ischemic Stroke Undergoing Endovascular Therapy. J Inflamm Res 2024; 17:1377-1387. [PMID: 38444639 PMCID: PMC10913805 DOI: 10.2147/jir.s455401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose Galectin-3 is a key regulator of microglial proliferation and activation and may have dual and time-dependent effects on ischemic stroke. This study aimed to prospectively investigate the dynamic changes in Galectin-3 levels in patients with acute ischemic stroke receiving endovascular therapy and its clinical significance. Patients and Methods A total of 105 patients with acute ischemic stroke who underwent endovascular therapy were prospectively enrolled. Plasma Galectin-3 was quantitatively detected by an enzyme-linked immunosorbent assay before the operation and at 1 day, 3 days and 7 days after the operation. A linear mixed-effect model, Pearson correlation analysis and receiver operating characteristic (ROC) curve analysis were used to evaluate the dynamic changes in the plasma Galectin-3 concentration and its relationship with clinical outcomes. Results Increases in plasma Galectin-3 levels at 1 day and 3 days after surgery were associated with early neurological deterioration and death (both P <0.05). Increased Galectin-3 levels before surgery and at 1 day and 3 days after surgery were associated with poor prognosis (P <0.05). Pearson correlation analysis revealed that Galectin-3 levels before surgery (r =0.318, P =0.002), at 1 day (r =0.318, P =0.001), 3 days (r =0.429, P < 0.001) and 7 days after surgery (r =0.340, P =0.001) were positively correlated with NIHSS scores. The ROC curve results showed that Galectin-3 concentration had a certain predictive value for death at 1 day (AUC=0.707, P=0.013), 3 days (AUC=0.708, P=0.016) and 7 days after the operation (AUC=0.708, P=0.016), but this predictive value was lower than that of the NIHSS score. Conclusion In acute ischemic stroke patients receiving endovascular therapy, an increase in the plasma Galectin-3 levels were associated with death, poor prognosis, and early neurological deterioration. Galectin-3 levels were significantly correlated with the NIHSS score and had a certain predictive value for death.
Collapse
Affiliation(s)
- Mingzheng Yao
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Dan Liang
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, People’s Republic of China
| | - Xiuli Zeng
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Xiaomei Xie
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Jiali Gao
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Li’an Huang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Jiao X, Liu M, Li R, Li J, Wang L, Niu G, Wang L, Ji X, Lv C, Guo X. Helpful to Live Healthier? Intermittent Hypoxic/Ischemic Training Benefits Vascular Homeostasis and Lipid Metabolism with Activating SIRT1 Pathways in Overweight/Obese Individuals. Obes Facts 2024; 17:131-144. [PMID: 38185107 PMCID: PMC10987187 DOI: 10.1159/000536093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION The present study aimed to investigate whether and how normobaric intermittent hypoxic training (IHT) or remote ischemic preconditioning (RIPC) plus normoxic training (RNT) has a synergistic protective effect on lipid metabolism and vascular function compared with normoxic training (NT) in overweight or obese adults. METHODS A total of 37 overweight or obese adults (36.03 ± 10.48 years) were randomly assigned to 3 groups: NT group (exercise intervention in normoxia), IHT group (exercise intervention in normobaric hypoxic chamber), and RNT group (exercise intervention in normoxia + RIPC twice daily). All participants carried out the same 1-h exercise intervention for a total of 4 weeks, 5 days per week. Physical fitness parameters were evaluated at pre- and postexercise intervention. RESULTS After training, all three groups had a significantly decreased body mass index (p < 0.05). The IHT group had reduced body fat percentage, visceral fat mass (p < 0.05), blood pressure (p < 0.01), left ankle-brachial index (ABI), maximal heart rate (HRmax) (p < 0.05), expression of peroxisome proliferator-activated receptor-γ (PPARγ) (p < 0.01) and increased expression of SIRT1 (p < 0.05), VEGF (p < 0.01). The RNT group had lowered waist-to-hip ratio, visceral fat mass, blood pressure (p < 0.05), and HRmax (p < 0.01). CONCLUSION IHT could effectively reduce visceral fat mass and improve vascular elasticity in overweight or obese individuals than pure NT with the activation of SIRT1-related pathways. And RNT also produced similar benefits on body composition and vascular function, which were weaker than those of IHT but stronger than NT. Given the convenience and economy of RNT, both intermittent hypoxic and ischemic training have the potential to be successful health promotion strategies for the overweight/obese population.
Collapse
Affiliation(s)
- Xueqiao Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Moqi Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guowei Niu
- Department of Medicine, Beijing Xiaotangshan Hospital, Beijing, China
| | - Liming Wang
- Department of Medicine, Beijing Xiaotangshan Hospital, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunmei Lv
- Department of Medicine, Beijing Xiaotangshan Hospital, Beijing, China
| | - Xiuhai Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Shen ZD, Qu Y, Zhang P, Wang G, Wang Y, Yang Y, Xu B, Guo ZN. Dynamic Cerebral Autoregulation After Carotid Endarterectomy. J Endovasc Ther 2023:15266028231213608. [PMID: 38014769 DOI: 10.1177/15266028231213608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Studies have shown that dynamic cerebral autoregulation (dCA) is impaired in patients with severe internal carotid artery (ICA) stenosis and that carotid endarterectomy (CEA) may improve dCA in these patients. However, the time course of dCA changes in patients after CEA remains unclear. Therefore, this study aimed to investigate the effects of CEA on the dCA in patients with carotid artery stenosis at different time points. METHODS This prospective study enrolled 44 patients (19 symptomatic stenosis patients and 25 asymptomatic stenosis patients) who underwent CEA and 44 age- and sex-matched controls. In the CEA group, the patients underwent dCA measurements at baseline, within 3 days, and 1 month after CEA. Transfer function parameters, phase difference (PD), and gain were used to quantify dCA. Changes in dCA before and after CEA were analyzed in detail. RESULTS The bilateral PD of the patients before CEA was significantly lower than that of the control group. This damage did not improve within 3 days after surgery. One month after surgery, the PD on the affected side of the patients significantly improved compared with before surgery and reached the level of the control group. The PD of affected side across time points in symptomatic and asymptomatic stenosis patients is consistent with that in all patients. CONCLUSIONS The dCA level did not improve immediately after CEA but significantly improved 1 month after surgery. This suggests that the occurrence of stroke should be considered in the acute period after CEA surgery, and its preventive effect on stroke may be effective after 1 month. CLINICAL IMPACT We found the dCA level did not improve immediately after CEA but significantly improved 1 month after surgury. This suggests that the occuttencce of stroke and surgical complications (such as cerebral hyperperfusion syndrome) associated with impaired dCA in the acute phase after CEA surgery should be of particular concern.
Collapse
Affiliation(s)
- Zi-Duo Shen
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Guibin Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - You Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Baofeng Xu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Yu L, Zhang Z, Chen H, Wang M, Mao W, Hu J, Zuo D, Lv B, Wu W, Qi S, Cui G. Remote limb ischemic postconditioning inhibits microglia pyroptosis by modulating HGF after acute ischemia stroke. Bioeng Transl Med 2023; 8:e10590. [PMID: 38023701 PMCID: PMC10658568 DOI: 10.1002/btm2.10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 12/01/2023] Open
Abstract
The repetitive inflation-deflation of a blood pressure cuff on a limb is known as remote limb ischemic postconditioning (RIPostC). It prevents brain damage induced by acute ischemia stroke (AIS). Pyroptosis, executed by the pore-forming protein gasdermin D (GSDMD), is a type of regulated cell death triggered by proinflammatory signals. It contributes to the pathogenesis of ischemic brain injury. However, the effects of RIPostC on pyroptosis following AIS remain largely unknown. In our study, linear correlation analysis confirmed that serum GSDMD levels in AIS patients upon admission were positively correlated with NIHSS scores. RIPostC treatment significantly reduced GSDMD level compared with patients without RIPostC at 3 days post-treatment. Besides, middle cerebral artery occlusion (MCAO) surgery was performed on C57BL/6 male mice and RIPostC was induced immediately after MCAO. We found that RIPostC suppressed the activation of NLRP3 inflammasome to reduce the maturation of GSDMD, leading to decreased pyroptosis in microglia after AIS. Hepatocyte growth factor (HGF) was identified using the high throughput screening. Importantly, HGF siRNA, exogenous HGF, and ISG15 siRNA were used to reveal that HGF/ISG15 is a possible mechanism of RIPostC regulation in vivo and in vitro.
Collapse
Affiliation(s)
- Lu Yu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Zuohui Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Hao Chen
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Miao Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Wenqi Mao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Jinxia Hu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Dandan Zuo
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Bingchen Lv
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Weifeng Wu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory DiagnosticsXuzhou Medical UniversityXuzhouChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
15
|
Guo Z, Qu Y, Gao Y, Xing Y, Ma H, Liu J, Guo Y, Chang J, Zhang P, Jin H, Sun X, Han K, Hu H, He Q, Simpson DM, Yang Y. Changes in cerebral autoregulation, stroke-related blood biomarkers, and autonomic regulation after patent foramen ovale closure in severe migraine patients. CNS Neurosci Ther 2023; 29:3031-3042. [PMID: 37157233 PMCID: PMC10493653 DOI: 10.1111/cns.14244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS This study aimed to investigate changes in dynamic cerebral autoregulation (dCA), 20 stroke-related blood biomarkers, and autonomic regulation after patent foramen ovale (PFO) closure in severe migraine patients. METHODS Patent foramen ovale severe migraine patients, matched non-PFO severe migraine patients, and healthy controls were included. dCA and autonomic regulation were evaluated in each participant at baseline, and within 48-h and 30 days after closure in PFO migraineurs. A panel of stroke-related blood biomarkers was detected pre-surgically in arterial-and venous blood, and post-surgically in the arterial blood in PFO migraineurs. RESULTS Forty-five PFO severe migraine patients, 50 non-PFO severe migraine patients, and 50 controls were enrolled. The baseline dCA function of PFO migraineurs was significantly lower than that of non-PFO migraineurs and controls but was rapidly improved with PFO closure, remaining stable at 1-month follow-up. Arterial blood platelet-derived growth factor-BB (PDGF-BB) levels were higher in PFO migraineurs than in controls, which was immediately and significantly reduced after closure. No differences in autonomic regulation were observed among the three groups. CONCLUSION Patent foramen ovale closure can improve dCA and alter elevated arterial PDGF-BB levels in migraine patients with PFO, both of which may be related to the preventive effect of PFO closure on stroke occurrence/recurrence.
Collapse
Affiliation(s)
- Zhen‐Ni Guo
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Neuroscience Research CentreThe First Hospital of Jilin UniversityChangchunChina
| | - Yang Qu
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yongsheng Gao
- Department of Cardiac SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Yingqi Xing
- Center for Neurovascular Ultrasound, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hongyin Ma
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yu‐Zhu Guo
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Junlei Chang
- Center for Protein and Cell‐Based DrugsInstitute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peng Zhang
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hang Jin
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Xin Sun
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ke Han
- Cerebrovascular Disease Research Center, Department of Neurology, Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Han‐Hwa Hu
- Cerebrovascular Treatment and Research Center, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Qianyan He
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | | | - Yi Yang
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Neuroscience Research CentreThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
16
|
Gao L, Sun X, Pan M, Zhang W, Zhu D, Lu Z, Wang K, Dong Y, Guan Y. Ischemic Preconditioning Provides Neuroprotection by Inhibiting NLRP3 Inflammasome Activation and Cell Pyroptosis. Brain Sci 2023; 13:897. [PMID: 37371374 DOI: 10.3390/brainsci13060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing evidence has demonstrated that ischemic preconditioning (IPC) increases cerebral tolerance to subsequent prolonged ischemic insults. However, the exact mechanisms underlying the process have not been fully explored. In the current study, we aim to investigate whether NLRP3 inflammasome and cell pyroptosis are involved in the neuroprotective mechanism of IPC after ischemic stroke. In vitro, IPC was set up by exposing BV-2 cells to 10 min of oxygen-glucose deprivation (OGD). In vivo, IPC was performed by a transient cerebral ischemia of 10 min occlusion of the middle cerebral artery (MCA) in mice. We found that the NLRP3 inflammasome was activated and cell pyroptosis was induced at 6 h and 24 h post-stroke in an ischemic brain. IPC treatment increased cell viability under OGD state, reduced the infarct size, and attenuated the neurological deficits of mice. However, the effects NLRP3 inflammasome activation and pyroptosis after stroke were attenuated by IPC, which decreased the expression of NLRP3, ASC, cleaved caspase 1, and GSDMD-N and reduced the production of IL-1β and IL-18. In addition, confocal immunofluorescence staining of Annexin V-mCherry and SYTOX green was inhibited by IPC. These findings suggest a more enhanced link between IPC and inflammatory signature and cell death, highlighting that the NLRP3 inflammasome may act as a promising target for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xin Sun
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Meibo Pan
- Department Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenrui Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Desheng Zhu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhongjiao Lu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kan Wang
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yinfeng Dong
- Department Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
17
|
Guo ZN, Abuduxukuer R, Zhang P, Wang C, Yang Y. Safety and efficacy of remote ischemic conditioning combined with endovascular thrombectomy for acute ischemic stroke due to large vessel occlusion of anterior circulation: A multicenter, randomized, parallel-controlled clinical trial (SERIC-EVT): Study protocol. Int J Stroke 2023; 18:484-489. [PMID: 35971654 DOI: 10.1177/17474930221121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RATIONALE/AIM Many patients undergoing successful recanalization after endovascular thrombectomy (EVT) do not have a good outcome; additional neuroprotection might benefit this group. Remote ischemic conditioning (RIC) stimulates endogenous protective mechanisms and may have a neuroprotective in acute brain ischemia. The safety and efficacy of RIC combined with endovascular thrombectomy (SERIC-EVT) trial is investigating the safety and efficacy of RIC for patients with acute ischemic stroke (AIS) who underwent EVT due to large vessel occlusion of the anterior circulation. METHODS SERIC-EVT is a multicenter, randomized, parallel-controlled, and blinded endpoint clinical trial. Patients are recruited from 10 hospitals in Jilin Province, Northeast China. Patients with anterior circulation AIS undergoing EVT due to large vessel occlusion are randomized in a 1:1 ratio to RIC or sham-RIC. Participants will receive standard medical treatment and an inflation pressure of 200 mmHg (RIC group) or 60 mmHg (sham-RIC group) twice daily for seven consecutive days. STUDY OUTCOMES The primary outcome is the proportion of patients with modified Rankin Scale (mRS) score of 0-2 on day 90. Secondary outcome measures include the National Institute of Health Stroke Scale, Barthel Index, and mRS scores obtained at 24 h, 7 days, 30 ± 3 days, and 90 ± 3 days post-EVT, recanalization rate, expanded Thrombolysis in Cerebral Infarction score, and symptomatic intracranial hemorrhage post-EVT. Mortality and all adverse events, including skin changes and pain scores, within the first 90 days will be used as safety outcome measures. SAMPLE SIZE ESTIMATES Based on previous studies, we estimate a 14% difference in functional independence (the mRS ⩽2) between RIC and sham-RIC groups. Considering a significance level of 5% and power of 80%, and one-fifth of patients lost to follow up, the planned sample size is 498 patients (249 per group). DISCUSSION RIC might be a strategy that improves 3-month clinical outcomes in AIS patients who have undergone EVT due to large vessel occlusion of anterior circulation. SERIC-EVT will determine whether this is the case.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
18
|
Abuduxukuer R, Guo ZN, Zhang P, Qu Y, Yang Y. Safety and efficacy of remote ischemic conditioning combined with intravenous thrombolysis for acute ischemic stroke: A multicenter, randomized, parallel-controlled clinical trial (SERIC-IVT) Study design and protocol. Int J Stroke 2023; 18:370-374. [PMID: 35619218 DOI: 10.1177/17474930221104991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Remote ischemic conditioning (RIC) combined with intravenous thrombolysis (IVT) may improve functional outcomes in patients with acute ischemic stroke (AIS). AIM To assess the efficacy and safety of RIC combined with IVT for AIS. METHODS AND DESIGN SERIC-IVT is a multicenter, randomized, parallel-controlled, blinded endpoint clinical trial. A total of 558 patients with AIS who underwent IVT therapy will be randomly assigned 1:1 to receive RIC or sham-RIC plus standard medical therapy. The cuff pressures of the RIC group and the sham-RIC group will be 200 mm Hg and 60 mm Hg, respectively, performed twice a day for seven consecutive days. STUDY OUTCOMES The primary efficacy outcome is the proportion of patients with a favorable functional outcome as defined as a modified Rankin Scale ⩽ 1 at 90 days. Safety outcomes include mortality and adverse events within 90 days. SAMPLE SIZE ESTIMATES A sample size of 558 patients with AIS (279 in each group) will allow detection of a shift of 13.14% toward favorable functional outcome at 90 days (modified Rankin Scale ⩽ 1) with 5% significance and 80% power. DISCUSSION RIC is a promising adjuvant treatment for AIS. SERIC-IVT will inform on whether RIC treatment combined with IVT improves functional outcomes in AIS patients and identify any safety issues.
Collapse
Affiliation(s)
- Reziya Abuduxukuer
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China.,Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China.,Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
19
|
Liang D, Zeng X, Yao M, Li F, Lin J, Zhang L, Liu J, Huang L. Dynamic changes in the glycocalyx and clinical outcomes in patients undergoing endovascular treatments for large vessel occlusion. Front Neurol 2023; 14:1046915. [PMID: 36779062 PMCID: PMC9909103 DOI: 10.3389/fneur.2023.1046915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Purpose We aimed to verify the prognostic value of the glycocalyx as a marker of blood-brain barrier damage in patients with acute ischemic stroke undergoing endovascular therapy. Methods We recruited patients with large vessel occlusion who were undergoing recanalization and tested their glycocalyx at multiple time points. On the basis of the 90-day follow-up data, the patients were divided into a survivor group and a nonsurvivor group. In addition, neurological function was tracked, and patients were divided into a neurological deterioration group and a group without neurological deterioration. Associations between outcomes and dynamic changes in the glycocalyx were determined using a linear mixed model, and significant factors were used as covariates. Results Nonsurvivors and patients with neurological deterioration had significantly higher syndecan-1 concentrations than survivors and patients without neurological deterioration, and syndecan-1 tended to decline after endovascular therapy (p < 0.05). The increased level of syndecan-1 at 36 h after endovascular treatment was positively correlated with the National Institute of Health Stroke Scale score for neurological deterioration (r = 0.702, p = 0.005). However, there was no significant difference in the level of hyaluronic acid or heparan sulfate in the plasma of patients with different clinical outcomes. Conclusion Pre-reperfusion syndecan-1 levels in patients with large vessel occlusion stroke are associated with 90-day mortality and the re-degradation of syndecan-1 is positively associated with neurological deterioration.
Collapse
Affiliation(s)
- Dan Liang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China,Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Xiuli Zeng
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingzheng Yao
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Fei Li
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jiaxing Lin
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jialin Liu
- Department of Neurology, Meizhou People's Hospital, Meizhou, China
| | - Li'an Huang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China,*Correspondence: Li'an Huang ✉
| |
Collapse
|
20
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022. [PMID: 36149520 DOI: 10.1007/s00421-022-05041-y.pmid:36149520;pmcid:pmc9613570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Amorim S, Felício AC, Aagaard P, Suetta C, Blauenfeldt RA, Andersen G. Effects of remote ischemic conditioning on cognitive performance: A systematic review. Physiol Behav 2022; 254:113893. [PMID: 35780946 DOI: 10.1016/j.physbeh.2022.113893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
The aging process leads to subtle decline in cognitive function, and in some overt dementia. Like physical activity Remote Ischemic Conditioning (RIC) may ameliorate these changes on cognitive impairment in humans. The purpose of this study was to compared the effects of single, repeated short-term and long-term treatment RIC, and analyze its effect registered as immediate vs. long-term on cognitive performance in humans. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and was registered with PROSPERO, number (CRD42021285668). A systematic review was conducted to identify relevant studies through six healthcare science databases (Cochrane, PubMed, EMBASE, EBSCO, Scopus, and Web of Science) up to December 2021. Eligibility criteria included (1) a study sample of participants aged ≥18 years, (2) post-intervention changes on cognitive performance in humans, and (3) this systematic review included only randomized controlled trials of RIC in humans. The quality of the included studies was assessed by GRADEpro tool. A total of 118 articles were initially identified, 35 of which met the inclusion criteria. Based on title/abstract, age and RIC protocol, 14 articles were included in this review: 5 studies investigated the immediate and long-term effect of a single RIC (n = 370 patients), 4 studies examined intermittent short-term RIC (n = 174 patients) and 5 studies evaluated repeated long-term RIC (n = 228 patients). A single pre-operative RIC treatment had an immediate effect that disappeared at one week. Short-term RIC showed either a positive or no effects on cognitive function. The majority of studies examining long-term RIC treatment showed improvements in cognitive performance, particularly in very old adults and older patients with cognitive impairments. Single RIC treatment did not show any persisting effect on cognition. However, repeated short term RIC showed some improvement and long-term RIC may improve cognitive performance after stroke or enhance neuropsychological tests in patients diagnosed with vascular dementia. The mixed results might be explained by different RIC treatment protocols and populations investigated.
Collapse
Affiliation(s)
- Samuel Amorim
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | | | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark
| | - Charlotte Suetta
- Bispebjerg Hospital, Copenhagen University - Department of Geriatrics
| | - Rolf Ankerlund Blauenfeldt
- Danish Stroke Center, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Grethe Andersen
- Danish Stroke Center, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022; 122:2493-2514. [PMID: 36149520 PMCID: PMC9613570 DOI: 10.1007/s00421-022-05041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Chhetri I, Hunt JEA, Mendis JR, Forni LG, Kirk-Bayley J, White I, Cooper J, Somasundaram K, Shah N, Patterson SD, Puthucheary ZA, Montgomery HE, Creagh-Brown BC. Safety and Feasibility Assessment of Repetitive Vascular Occlusion Stimulus (RVOS) Application to Multi-Organ Failure Critically Ill Patients: A Pilot Randomised Controlled Trial. J Clin Med 2022; 11:3938. [PMID: 35887701 PMCID: PMC9316533 DOI: 10.3390/jcm11143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle wasting is implicated in the pathogenesis of intensive care unit acquired weakness (ICU-AW), affecting 40% of patients and causing long-term physical disability. A repetitive vascular occlusion stimulus (RVOS) limits muscle atrophy in healthy and orthopaedic subjects, thus, we explored its application to ICU patients. Adult multi-organ failure patients received standard care +/- twice daily RVOS {4 cycles of 5 min tourniquet inflation to 50 mmHg supra-systolic blood pressure, and 5 min complete deflation} for 10 days. Serious adverse events (SAEs), tolerability, feasibility, acceptability, and exploratory outcomes of the rectus femoris cross-sectional area (RFCSA), echogenicity, clinical outcomes, and blood biomarkers were assessed. Only 12 of the intended 32 participants were recruited. RVOS sessions (76.1%) were delivered to five participants and two could not tolerate it. No SAEs occurred; 75% of participants and 82% of clinical staff strongly agreed or agreed that RVOS is an acceptable treatment. RFCSA fell significantly and echogenicity increased in controls (n = 5) and intervention subjects (n = 4). The intervention group was associated with less frequent acute kidney injury (AKI), a greater decrease in the total sequential organ failure assessment score (SOFA) score, and increased insulin-like growth factor-1 (IGF-1), and reduced syndecan-1, interleukin-4 (IL-4) and Tumor necrosis factor receptor type II (TNF-RII) levels. RVOS application appears safe and acceptable, but protocol modifications are required to improve tolerability and recruitment. There were signals of possible clinical benefit relating to RVOS application.
Collapse
Affiliation(s)
- Ismita Chhetri
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London SW7 2BX, UK
| | - Julie E. A. Hunt
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Jeewaka R. Mendis
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Lui G. Forni
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Justin Kirk-Bayley
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
| | - Ian White
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Jonathan Cooper
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Karthik Somasundaram
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Nikunj Shah
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Stephen D. Patterson
- Faculty of Sport, Allied Health & Performance Sciences, St Mary’s University, London TW1 4SX, UK;
| | - Zudin A. Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, UK;
- Institute for Sport, Exercise and Health, University College London, London W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Hugh E. Montgomery
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
| | - Benedict C. Creagh-Brown
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| |
Collapse
|
24
|
Lang JA, Kim J. Remote ischaemic preconditioning - translating cardiovascular benefits to humans. J Physiol 2022; 600:3053-3067. [PMID: 35596644 PMCID: PMC9327506 DOI: 10.1113/jp282568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Remote ischaemic preconditioning (RIPC), induced by intermittent periods of limb ischaemia and reperfusion, confers cardiac and vascular protection from subsequent ischaemia–reperfusion (IR) injury. Early animal studies reliably demonstrate that RIPC attenuated infarct size and preserved cardiac tissue. However, translating these adaptations to clinical practice in humans has been challenging. Large clinical studies have found inconsistent results with respect to RIPC eliciting IR injury protection or improving clinical outcomes. Follow‐up studies have implicated several factors that potentially affect the efficacy of RIPC in humans such as age, fitness, frequency, disease state and interactions with medications. Thus, realizing the clinical potential for RIPC may require a human experimental model where confounding factors are more effectively controlled and underlying mechanisms can be further elucidated. In this review, we highlight recent experimental findings in the peripheral circulation that have added valuable insight on the mechanisms and clinical benefit of RIPC in humans. Central to this discussion is the critical role of timing (i.e. immediate vs. delayed effects following a single bout of RIPC) and the frequency of RIPC. Limited evidence in humans has demonstrated that repeated bouts of RIPC over several days uniquely improves vascular function beyond that observed with a single bout alone. Since changes in resistance vessel and microvascular function often precede symptoms and diagnosis of cardiovascular disease, repeated bouts of RIPC may be promising as a preclinical intervention to prevent or delay cardiovascular disease progression.
![]()
Collapse
Affiliation(s)
- James A Lang
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Jahyun Kim
- Department of Kinesiology, California State University Bakersfield, Bakersfield, CA, USA
| |
Collapse
|
25
|
Qu Y, Zhang P, He QY, Sun YY, Wang MQ, Liu J, Zhang PD, Yang Y, Guo ZN. The Impact of Serial Remote Ischemic Conditioning on Dynamic Cerebral Autoregulation and Brain Injury Related Biomarkers. Front Physiol 2022; 13:835173. [PMID: 35273521 PMCID: PMC8902383 DOI: 10.3389/fphys.2022.835173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Objective Recent studies have demonstrated the positive roles of remote ischemic conditioning (RIC) in patients with cerebrovascular diseases; however, the mechanisms remain unclear. This study aimed to explore the effect of serial RIC on dynamic cerebral autoregulation (dCA) and serum biomarkers associated with brain injury, both of which are related to the prognosis of cerebrovascular disease. Methods This was a self-controlled interventional study in healthy adults. The RIC was conducted twice a day for 7 consecutive days (d1–d7) and comprised 4 × 5-min single arm cuff inflation/deflation cycles at 200 mmHg. All participants underwent assessments of dCA ten times, including baseline, d1, d2, d4, d7, d8, d10, d14, d21, and d35 of the study. Blood samples were collected four times (baseline, d1, d7, and d8) immediately after dCA measurements. The transfer function parameters [phase difference (PD) and gain] were used to quantify dCA. Four serum biomarkers associated with brain injury, ubiquitin C-terminal hydrolase-L1, neuron-specific enolase, glial fibrillary acidic protein, and S100β were tested. Results Twenty-two healthy adult volunteers (mean age 25.73 ± 1.78 years, 3 men [13.6%], all Asian) were enrolled in this study. Bilateral PD values were significantly higher since four times of RIC were completed (d2) compared with PD values at baseline (left: 53.31 ± 10.53 vs. 45.87 ± 13.02 degree, p = 0.015; right: 54.90 ± 10.46 vs. 45.96 ± 10.77 degree, p = 0.005). After completing 7 days of RIC, the significant increase in dCA was sustained for at least 28 days (d35, left: 53.11 ± 14.51 degree, P = 0.038; right: 56.95 ± 14.57 degree, p < 0.001). No difference was found in terms of different serum biomarkers related to brain injury before and after RIC. Conclusion The elevation in dCA was detected immediately after four repeated times of RIC, and 7-day consecutive RIC induced a sustained increase in dCA for at least 28 days and did not affect blood biomarkers of brain injury in healthy adults. These results will help us to formulate detailed strategies for the safe and effective application of RIC in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Yang Qu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Peng Zhang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qian-Yan He
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Ying-Ying Sun
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Mei-Qi Wang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan-Deng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
26
|
Abbasi-Habashi S, Jickling GC, Winship IR. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Front Neurol 2021; 12:746486. [PMID: 34956045 PMCID: PMC8695500 DOI: 10.3389/fneur.2021.746486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic conditioning (RIC), which involves a series of short cycles of ischemia in an organ remote to the brain (typically the limbs), has been shown to protect the ischemic penumbra after stroke and reduce ischemia/reperfusion (IR) injury. Although the exact mechanism by which this protective signal is transferred from the remote site to the brain remains unclear, preclinical studies suggest that the mechanisms of RIC involve a combination of circulating humoral factors and neuronal signals. An improved understanding of these mechanisms will facilitate translation to more effective treatment strategies in clinical settings. In this review, we will discuss potential protective mechanisms in the brain and cerebral vasculature associated with RIC. We will discuss a putative role of the immune system and circulating mediators of inflammation in these protective processes, including the expression of pro-and anti-inflammatory genes in peripheral immune cells that may influence the outcome. We will also review the potential role of extracellular vesicles (EVs), biological vectors capable of delivering cell-specific cargo such as proteins and miRNAs to cells, in modulating the protective effects of RIC in the brain and vasculature.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P. Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol (1985) 2021; 132:154-166. [PMID: 34855525 DOI: 10.1152/japplphysiol.00653.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral pressure-flow relationship has directional sensitivity, meaning the augmentation in cerebral blood flow is attenuated when mean arterial pressure (MAP) increases vs MAP decreases. We employed repeated squat-stands (RSS) to quantify it using a novel metric. However, its within-day reproducibility and the impacts of diurnal variation and biological sex are unknown. Study aims were to evaluate this metric for: 1) within-day reproducibility and diurnal variation in middle (MCA; ∆MCAvT/∆MAPT) and posterior cerebral arteries (PCA; ∆PCAvT/∆MAPT); 2) sex differences. ∆MCAvT/∆MAPT and ∆PCAvT/∆MAPT were calculated at seven time-points (08:00-17:00) in 18 participants (8 women; 24 ± 3 yrs) using the minimum-to-maximum MCAv or PCAv and MAP for each RSS at 0.05 Hz and 0.10 Hz. Relative metric values were also calculated (%MCAvT/%MAPT, %PCAvT/%MAPT). Intraclass correlation coefficient (ICC) evaluated reproducibility, which was good (0.75-0.90) to excellent (>0.90). Time-of-day impacted ∆MCAvT/∆MAPT (0.05 Hz: p = 0.002; 0.10 Hz: p = 0.001), %MCAvT/%MAPT (0.05 Hz: p = 0.035; 0.10 Hz: p = 0.009), and ∆PCAvT/∆MAPT (0.05 Hz: p = 0.024), albeit with small/negligible effect sizes. MAP direction impacted both arteries' metric at 0.10 Hz (all p < 0.024). Sex differences in the MCA only (p = 0.003) vanished when reported in relative terms. These findings demonstrate this metric is reproducible throughout the day in the MCA and PCA and is not impacted by biological sex.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
28
|
Kirschner A, Koch SE, Robbins N, Karthik F, Mudigonda P, Ramasubramanian R, Nieman ML, Lorenz JN, Rubinstein J. Pharmacologic Inhibition of Pain Response to Incomplete Vascular Occlusion Blunts Cardiovascular Preconditioning Response. Cardiovasc Toxicol 2021; 21:889-900. [PMID: 34324134 DOI: 10.1007/s12012-021-09680-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022]
Abstract
Complete vascular occlusion to distant tissue prior to an ischemic cardiac event can provide significant cardioprotection via remote ischemic preconditioning (RIPC). Despite understanding its mechanistic basis, its translation to clinical practice has been unsuccessful, likely secondary to the inherent impossibility of predicting (and therefore preconditioning) an ischemic event, as well as the discomfort that is associated with traditional, fully occlusive RIPC stimuli. Our laboratory has previously shown that non-occlusive banding (NOB) via wrapping of a leather band (similar to a traditional Jewish ritual) can elicit an RIPC response in healthy human subjects. This study sought to further the pain-mediated aspect of this observation in a mouse model of NOB with healthy mice that were exposed to treatment with and without lidocaine to inhibit pain sensation prior to ischemia/reperfusion injury. We demonstrated that NOB downregulates key inflammatory markers resulting in a preconditioning response that is partially mediated via pain sensation.
Collapse
Affiliation(s)
- Akiva Kirschner
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Nathan Robbins
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Felix Karthik
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Parvathi Mudigonda
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Ranjani Ramasubramanian
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
29
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
30
|
Zhang W, Fu W, Yan L, Wang M, Ning B, Mo X, Xiong L, Liu J, Zhang P, Zhong J, Sun L, Fu W. Impaired dynamic cerebral autoregulation in young adults with mild depression. Psychophysiology 2021; 59:e13949. [PMID: 34587299 DOI: 10.1111/psyp.13949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
The incidence of depression is increasing, especially in the young adult population. Impaired cognitive function is one of the characteristics of depression, which may be related to impaired cerebral autoregulation (CA). We investigated the characteristics of CA in young adults with mild depression, as well as its validity for identifying patients with depression. Patients (aged 18-35 years) with Hamilton Depression Rating Scale (HAMD) scores ranging from 8 to 17 and a first episode of mild depression were enrolled in this study. Healthy volunteers were recruited as controls. Noninvasive continuous arterial blood pressure and bilateral middle cerebral artery blood flow velocity were simultaneously recorded from each subject. Transfer function analysis was applied to derive phase difference, gain, coherence and rate of recovery for the assessment of CA. Forty-three patients and 43 healthy controls were enrolled. Phase difference values were significantly compromised in young adults with mild depression and were negatively correlated with HAMD scores. Rate of recovery values estimated from depressed patients was significantly lower. The validity in identifying patients with depression was favorable for the phase difference. The cutoff phase difference value was 29.66. Our findings suggest that dynamic CA was impaired in young patients with mild depression and negatively correlated with HAMD scores. CA represented by phase difference can be used as an objective auxiliary examination of depression, and has clinical diagnostic value for the early identification of patients with depression.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Fu
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Luda Yan
- Shenzhen Bao'an Research Center for Acupuncture and Moxibustion, Shenzhen, China
| | - Mengyu Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baile Ning
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuyun Mo
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pandeng Zhang
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingxin Zhong
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- Department of Psychosomatics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Chen J, Dong P, Dong K, Mo D, Wang Y, Zhao X, Wang Y, Gong X. Improvement of exhausted cerebral autoregulation in patients with idiopathic intracranial hypertension benefit of venous sinus stenting. Physiol Meas 2021; 42. [PMID: 34293729 DOI: 10.1088/1361-6579/ac172c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Objective.To evaluate the cerebral autoregulation (CA) in idiopathic intracranial hypertension (IIH) patients with transfer function analysis, and to explore its improvement after venous sinus stenting.Approach. In total, 15 consecutive IIH patients with venous sinus stenosis and 15 controls were recruited. All the patients underwent digital subtraction angiography and venous manometry. Venous sinus stenting was performed for IIH patients with a trans-stenosis pressure gradient ≥8 mmHg. CA was assessed before and after the operation with transfer function analysis, by using the spontaneous oscillations of the cerebral blood flow velocity in the bilateral middle cerebral artery and blood pressure.Main results. Compared with controls, the autoregulatory parameters, phase shift and rate of recovery, were both significantly lower in IIH patients [(57.94° ± 23.22° versus 34.59° ± 24.15°,p < 0.001; (39.87 ± 21.95) %/s versus (20.56 ± 46.66) %/s,p= 0.045, respectively). In total, six patients with bilateral transverse or sigmoid sinus stenosis received venous sinus stenting, in whom, the phase shift significantly improved after venous sinus stenting (39.62° ± 20.26° versus 22.79° ± 19.96°,p = 0.04).Significance. The study revealed that dynamic CA was impaired in IIH patients and was improved after venous sinus stenting. CA assessment has the potential to be used for investigating the hemodynamics in IIH patients.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pei Dong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Kehui Dong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dapeng Mo
- Neurointervention Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiping Gong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
32
|
Xu R, He Q, Wang Y, Yang Y, Guo ZN. Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment. Front Cell Neurosci 2021; 15:706759. [PMID: 34413726 PMCID: PMC8370253 DOI: 10.3389/fncel.2021.706759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qianyan He
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
33
|
Baig S, Moyle B, Nair KPS, Redgrave J, Majid A, Ali A. Remote ischaemic conditioning for stroke: unanswered questions and future directions. Stroke Vasc Neurol 2021; 6:298-309. [PMID: 33903181 PMCID: PMC8258051 DOI: 10.1136/svn-2020-000722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 11/07/2022] Open
Abstract
Remote ischaemic conditioning (RIC) refers to a process whereby periods of intermittent ischaemia, typically via the cyclical application of a blood pressure cuff to a limb at above systolic pressure, confers systemic protection against ischaemia in spatially distinct vascular territories. The mechanisms underlying this have not been characterised fully but have been shown to involve neural, hormonal and systemic inflammatory signalling cascades. Preclinical and early clinical studies have been promising and suggest beneficial effects of RIC in acute ischaemic stroke, symptomatic intracranial stenosis and vascular cognitive impairment. Through systematic searches of several clinical trials databases we identified 48 active clinical trials of RIC in ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage. We summarise the different RIC protocols and outcome measures studied in ongoing clinical trials and highlight which studies are most likely to elucidate the underlying biological mechanisms of RIC and characterise its efficacy in the near future. We discuss the uncertainties of RIC including the optimal frequency and duration of therapy, target patient groups, cost-effectiveness, the confounding impact of medications and the absence of a clinically meaningful biomarker of the conditioning response. With several large clinical trials of RIC expected to report their outcomes within the next 2 years, this review aims to highlight the most important studies and unanswered questions that will need to be addressed before this potentially widely accessible and low-cost intervention can be used in clinical practice.
Collapse
Affiliation(s)
- Sheharyar Baig
- Cerebrovascular Medicine, The University of Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - Bethany Moyle
- Cerebrovascular Medicine, The University of Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | | | - Jessica Redgrave
- Cerebrovascular Medicine, The University of Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - Arshad Majid
- Faculty of Medicine and Dentistry, University of Sheffield, Sheffield, UK
| | - Ali Ali
- Geriatrics and Stroke Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield NIHR Biomedical Research Centre, The University of Sheffield, Sheffield, UK
| |
Collapse
|
34
|
Sangeetha RP, Venkatapura RJ, Kamath S, Christopher R, Bhat DI, Arvinda HR, Chakrabarti D. Effect of remote ischemic preconditioning on cerebral vasospasm, biomarkers of cerebral ischemia, and functional outcomes in aneurysmal subarachnoid hemorrhage (ERVAS): A randomized controlled pilot trial. Brain Circ 2021; 7:104-110. [PMID: 34189353 PMCID: PMC8191538 DOI: 10.4103/bc.bc_13_21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Cerebral vasospasm can complicate aneurysmal subarachnoid hemorrhage (aSAH), contributing to cerebral ischemia. We explored the role of remote ischemic preconditioning (RIPC) in reducing cerebral vasospasm and ischemia and improving outcomes after aSAH. MATERIALS AND METHODS: Patients with ruptured cerebral aneurysm undergoing surgical clipping and meeting the trial criteria were randomized to true RIPC (n = 13) (inflating upper extremity blood pressure cuff thrice to 30 mmHg above systolic pressure for 5 min) or sham RIPC (n = 12) (inflating blood pressure cuff thrice to 30 mmHg for 5 min) after ethical approval. A blinded observer assessed outcome measures-cerebral vasospasm and biomarkers of cerebral ischemia. We also evaluated the feasibility and safety of RIPC in aSAH and Glasgow Outcome Scale-Extended (GOSE). RESULTS: Angiographic vasospasm was seen in 9/13 (69%) patients; 1/4 patients (25%) in true RIPC group, and 8/9 patients (89%) in sham RIPC group (P = 0.05). Vasospasm on transcranial Doppler study was diagnosed in 5/25 (20%) patients and 1/13 patients (7.7%) in true RIPC and 4/12 patients (33.3%) in sham RIPC group, (P = 0.16). There was no difference in S100B and neuron-specific enolase (NSE) levels over various time-points within groups (P = 0.32 and 0.49 for S100B, P = 0.66 and 0.17 for NSE in true and sham groups, respectively) and between groups (P = 0.56 for S100B and P = 0.31 for NSE). Higher GOSE scores were observed with true RIPC (P = 0.009) unlike sham RIPC (P = 0.847) over 6-month follow-up with significant between group difference (P = 0.003). No side effects were seen with RIPC. CONCLUSIONS: RIPC is feasible and safe in patients with aSAH and results in a lower incidence of vasospasm and better functional outcome.
Collapse
Affiliation(s)
- R P Sangeetha
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ramesh J Venkatapura
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sriganesh Kamath
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | | - H R Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dhritiman Chakrabarti
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
35
|
Appleton JP, O'Sullivan SE, Hedstrom A, May JA, Donnelly R, Sprigg N, Bath PM, England TJ. Blood markers in remote ischaemic conditioning for acute ischaemic stroke: data from the REmote ischaemic Conditioning After Stroke Trial. Eur J Neurol 2021; 28:1225-1233. [PMID: 33217147 DOI: 10.1111/ene.14650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Remote ischaemic per-conditioning (RIC) is neuroprotective in experimental ischaemic stroke. Several neurohumoral, vascular and inflammatory mediators are implicated. The effect of RIC on plasma biomarkers was assessed using clinical data from the REmote ischaemic Conditioning After Stroke Trial (RECAST-1). METHODS RECAST-1 was a pilot sham-controlled blinded trial in 26 patients with ischaemic stroke, randomized to receive four 5-min cycles of RIC within 24 h of ictus. Plasma taken pre-intervention, immediately post-intervention and on day 4 was analysed for nitric oxide (nitrate/nitrite) using chemiluminescence and all other biomarkers by multiplex analysis. Biomarkers were correlated with clinical outcome (day 90 National Institutes of Health Stroke Scale, modified Rankin Scale, Barthel index). RESULTS Remote ischaemic per-conditioning reduced serum amyloid protein (SAP) and tissue necrosis factor α (TNF-α) levels from pre- to post-intervention (n = 13, two-way ANOVA, p < 0.05). Overall (n = 26), increases in SAP pre- to post-intervention and pre-intervention to day 4 were moderately correlated with worse day 90 clinical outcomes. No consistent significant changes over time, or by treatment, or correlations with outcome were seen for other biomarkers. CONCLUSIONS Remote ischaemic per-conditioning reduced SAP and TNF-α levels from pre- to post-intervention. Increases in plasma levels of SAP were associated with worse clinical outcomes after ischaemic stroke. Larger studies assessing biomarkers and the safety and efficacy of RIC in acute ischaemic stroke are warranted to further understand these relationships.
Collapse
Affiliation(s)
- Jason P Appleton
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Saoirse E O'Sullivan
- Division of Medical Sciences and GEM, School of Medicine, Vascular Medicine, University of Nottingham, Derby, UK
| | - Amanda Hedstrom
- Division of Medical Sciences and GEM, School of Medicine, Vascular Medicine, University of Nottingham, Derby, UK
| | - Jane A May
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Richard Donnelly
- Division of Medical Sciences and GEM, School of Medicine, Vascular Medicine, University of Nottingham, Derby, UK
| | - Nikola Sprigg
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke, City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke, City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Timothy J England
- Division of Medical Sciences and GEM, School of Medicine, Vascular Medicine, University of Nottingham, Derby, UK
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, UK
| |
Collapse
|
36
|
Baffour-Awuah B, Dieberg G, Pearson MJ, Smart NA. The effect of remote ischaemic conditioning on blood pressure response: A systematic review and meta-analysis. Int J Cardiol Hypertens 2021; 8:100081. [PMID: 33748739 PMCID: PMC7972960 DOI: 10.1016/j.ijchy.2021.100081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous work has evaluated the effect of remote ischaemic conditioning (RIC) in a number of clinical conditions (e.g. cardiac surgery and acute kidney injury), but only one analysis has examined blood pressure (BP) changes. While individual studies have reported the effects of acute bouts and repeated RIC exposure on resting BP, efficacy is equivocal. We conducted a systematic review and meta-analysis to evaluate the effects of acute and repeat RIC on BP. METHODS A systematic search was performed using PubMed, Web of Science, EMBASE, and Cochrane Library of Controlled Trials up until October 31, 2020. Additionally, manual searches of reference lists were performed. Studies that compared BP responses after exposing participants to either an acute bout or repeated cycles of RIC with a minimum one-week intervention period were considered. RESULTS Eighteen studies were included in this systematic review, ten examined acute effects while eight investigated repeat effects of RIC. Mean differences (MD) for outcome measures from acute RIC studies were: systolic BP 0.18 mmHg (95%CI -0.95, 1.31; p = 0.76), diastolic BP -0.43 mmHg (95%CI -2.36, 1.50; p = 0.66), MAP -1.73 mmHg (95%CI -3.11, -0.34; p = 0.01) and HR -1.15 bpm (95%CI -2.92, 0.62; p = 0.20). Only MAP was significantly reduced. Repeat RIC exposure showed non-significant change in systolic BP -3.23 mmHg (95%CI -6.57, 0.11; p = 0.06) and HR -0.16 bpm (95%CI -7.08, 6.77; p = 0.96) while diastolic BP -2.94 mmHg (95%CI -4.08, -1.79; p < 0.00001) and MAP -3.21 mmHg (95%CI -4.82, -1.61; p < 0.0001) were significantly reduced. CONCLUSIONS Our data suggests repeated, but not acute, RIC produced clinically meaningful reductions in diastolic BP and MAP.
Collapse
Affiliation(s)
- Biggie Baffour-Awuah
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Gudrun Dieberg
- Biomedical Sciences, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Melissa J. Pearson
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Neil A. Smart
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
37
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
38
|
Chi NF, Hu HH, Chan L, Wang CY, Chao SP, Huang LK, Ku HL, Hu CJ. Impaired cerebral autoregulation is associated with poststroke cognitive impairment. Ann Clin Transl Neurol 2020; 7:1092-1102. [PMID: 32468721 PMCID: PMC7359112 DOI: 10.1002/acn3.51075] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 05/10/2020] [Indexed: 01/11/2023] Open
Abstract
Objective To investigate whether dynamic cerebral autoregulation (CA) and neuroimaging characteristics are determinants of poststroke cognitive impairment (PSCI). Methods Eighty patients within 7 days of acute ischemic stroke and 35 age‐ and sex‐matched controls were enrolled. In the patients with stroke, brain magnetic resonance imaging and dynamic CA were obtained at baseline, and dynamic CA was followed up at 3 months and 1 year. Montreal Cognitive Assessment (MoCA) was performed at 3 months and 1 year. Patients with a MoCA score <23 at 1 year were defined as having PSCI, and those with a MoCA score that decreased by 2 points or more between the 3‐month and 1‐year assessments were defined as having progressive cognitive decline. Results In total, 65 patients completed the study and 16 developed PSCI. The patients with PSCI exhibited poorer results for all cognitive domains than did those without PSCI. The patients with PSCI also had poorer CA (lower phase shift between cerebral blood flow and blood pressure waveforms in the very low frequency band) compared with that of the patients without PSCI and controls at baseline and 1 year. CA was not different between the patients without PSCI and controls. In the multivariate analysis, low education level, lobar microbleeds, and impaired CA (very low frequency phase shift [≤46°] within 7 days of stroke), were independently associated with PSCI. In addition, impaired CA was associated with progressive cognitive decline. Interpretation Low education level, lobar microbleeds, and impaired CA are involved in the pathogenesis of PSCI.
Collapse
Affiliation(s)
- Nai-Fang Chi
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Hwa Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yen Wang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Ping Chao
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Kai Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Lun Ku
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Deaparmtent of Psychiatry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Yang G, Yang Y, Li Y, Hu Z. Remote liver ischaemic preconditioning protects rat brain against cerebral ischaemia-reperfusion injury by activation of an AKT-dependent pathway. Exp Physiol 2020; 105:852-863. [PMID: 32134522 DOI: 10.1113/ep088394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can remote liver ischaemic preconditioning (RLIPC) protect rat brain against cerebral ischaemia-reperfusion injury? What is the main finding and its importance? Pretreatment with RLIPC reduced cerebral infarct volume, improved neurological outcomes and inhibited neuron apoptosis. RLIPC led to increased phosphorylation of AKT, while inhibition of AKT abolished the effects of RLIPC. Our data suggest that liver ischaemic preconditioning exerts a strong neuroprotective effect against cerebral ischaemia-reperfusion injury by activating an AKT-dependent pathway. ABSTRACT Remote limb ischaemic preconditioning has been shown to have beneficial effects in protecting brains against ischaemia-reperfusion (I/R) injury. However, little is known regarding the effect of remote liver ischaemic conditioning (RLIPC). We therefore investigated the effect of RLIPC on brain tissues suffering from I/R injury. Rats were randomly assigned to a sham group, a control group or a RLIPC group. Rats in all groups except for the sham group received middle cerebral artery occlusion (MCAO) for 1 h, followed by 48 h of reperfusion. For the RLIPC rats, four cycles of 5 min of liver ischaemia (portal vein, hepatic arterial and venous trunk occlusion) with 5 min intermittent reperfusion were carried out before cerebral ischaemia. Infarct volume was assessed after 48 h of reperfusion. Blood samples were taken for serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) tests. Morphological changes of cortical tissue and cellular apoptosis were determined. Right cortex tissues were taken for western blotting measurements. Our data demonstrate that RLIPC reduced cerebral I/R injury, decreased the volume of the MCAO-evoked infarct region, decreased serum levels of LDH and CK-MB, and reduced neurological deficits and apoptosis after I/R injury. Moreover, rats receiving RLIPC showed increased cortical AKT phosphorylation, but protein phosphorylation level was unchanged in the survivor activating factor enhancement (SAFE) signalling pathway. Accordingly, inhibition of AKT with wortmannin abolished the neuroprotective action of liver preconditioning. Our study showed for the first time that liver ischaemic preconditioning effectively protects brain against cerebral I/R injury by activating an AKT-dependent pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yang
- Lab for Aging Research, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanmei Li
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
UBC-Nepal expedition: dynamic cerebral autoregulation is attenuated in lowlanders upon ascent to 5050 m. Eur J Appl Physiol 2020; 120:675-686. [DOI: 10.1007/s00421-020-04307-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
|
41
|
Lv S, Wang Z, Sun X, Jin H, Liu J, Deng F, Lv Y, Jia M, Guo ZN, Yang Y. Compromised Dynamic Cerebral Autoregulation in Patients With Idiopathic Rapid Eye Movement Behavior Disorder: A Case-Control Study Using Transcranial Doppler. Front Psychiatry 2020; 11:51. [PMID: 32140114 PMCID: PMC7042385 DOI: 10.3389/fpsyt.2020.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Patients with idiopathic rapid eye movement behavior disorder (IRBD) have been suggested to exhibit altered cerebral perfusion and abnormal cerebral blood flow, which imply a possibility of cerebral autoregulation (CA) impairment. We aimed to investigate the dynamic CA (dCA) in patients with IRBD during wakefulness and to explore the correlations between dCA parameters and clinical measurements. METHODS We assessed the dCA capability of 30 patients with IRBD and 36 sex- and age-matched healthy controls by using transcranial Doppler and finger plethysmography. CA function was evaluated by transfer function analysis based on spontaneous oscillation of cerebral blood flow and arterial blood pressure. Transfer function parameters (phase difference and gain) were used to quantify the CA. RESULTS No significant differences were observed between the right and left middle cerebral artery dCA parameters (phase difference and gain) of both groups. Patients with IRBD had significantly lower phase difference than the healthy controls, indicating their impaired CA capability. Besides, the value of gain in patients with IRBD was higher than the healthy controls, but the difference did not reach statistical level. CONCLUSIONS CA function is compromised in patients with IRBD during wakefulness, which might be an intermediate link between IRBD and neurological symptoms.
Collapse
Affiliation(s)
- Shan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yudan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Meiyan Jia
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology 2019; 93:608. [DOI: 10.1212/wnl.0000000000008351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Nyquist P, Georgakis MK. Remote ischemic preconditioning effects on brain vasculature. Neurology 2019; 93:15-16. [PMID: 31142632 DOI: 10.1212/wnl.0000000000007724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Paul Nyquist
- From the Department of Neurology (P.N.), Anesthesia/Critical Care Medicine, and Department of Neurosurgery, General Internal Medicine (P.N.), Johns Hopkin School of Medicine, Baltimore, MD; and Institute for Stroke and Dementia Research (M.K.G.), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| | - Marios K Georgakis
- From the Department of Neurology (P.N.), Anesthesia/Critical Care Medicine, and Department of Neurosurgery, General Internal Medicine (P.N.), Johns Hopkin School of Medicine, Baltimore, MD; and Institute for Stroke and Dementia Research (M.K.G.), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|