1
|
D'Onofrio G, Villano G, Dell'isola G, Verrotti A, Striano P. Neuromodulation as a treatment strategy in Lennox-Gastaut syndrome: evidence and future directions. Expert Rev Neurother 2025; 25:501-504. [PMID: 40021489 DOI: 10.1080/14737175.2025.2474560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 03/03/2025]
Affiliation(s)
- Gianluca D'Onofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Gianmichele Villano
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giovanni Dell'isola
- Department of Pediatrics, Saint Camillus International University of Health Sciences, Rome, Italy
| | | | - Pasquale Striano
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| |
Collapse
|
2
|
Marcuse LV, Langan M, Hof PR, Panov F, Saez I, Jimenez-Shahed J, Figee M, Mayberg H, Yoo JY, Ghatan S, Balchandani P, Fields MC. The thalamus: Structure, function, and neurotherapeutics. Neurotherapeutics 2025; 22:e00550. [PMID: 39956708 PMCID: PMC12014413 DOI: 10.1016/j.neurot.2025.e00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The complexity and expansive nature of thalamic research has led to numerous interventions for varied disease states. At the same time, this complexity along with siloed areas of study can hinder a comprehensive understanding. The goal of this paper is to give the reader a broader and more detailed perspective on the thalamus. In order to accomplish this goal, the paper begins with a summary of the function, electrophysiology, and anatomy of the normal thalamus. With this foundation, thalamic involvement in neurological diseases is discussed with a focus on epilepsy. Therapeutic interventions in the thalamus for epilepsy as well as movement disorders, psychiatric conditions and disorders of consciousness are described. Lastly limitations in the field and future models of data sharing and cooperation are explored.
Collapse
Affiliation(s)
- Lara V Marcuse
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA.
| | - Mackenzie Langan
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Igancio Saez
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA; Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Joohi Jimenez-Shahed
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Martijn Figee
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Ji Yeoun Yoo
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Madeline C Fields
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| |
Collapse
|
3
|
Zhou Z, Gong P, Jiao X, Niu Y, Xu Z, Qin J, Yang Z. Interictal paroxysmal fast activity and functional connectivity in steroid responsive and non-responsive Lennox-Gastaut syndrome. Eur J Paediatr Neurol 2025; 55:38-46. [PMID: 40106963 DOI: 10.1016/j.ejpn.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE The aim of this study was to investigate the changes in interictal paroxysmal fast activity and functional connectivity before and after steroid pulse therapy in patients with Lennox-Gastaut syndrome (LGS). METHODS The medical records of patients who visited the pediatric neurology clinics with LGS as their primary complaint and completed intravenous methylprednisolone therapy were reviewed. Effects of steroid therapy on clinical seizures and scalp EEG were analyzed. Generalized paroxysmal fast activity (GPFA) burden were detected and compared before and after treatment. As a measure of global functional connectivity, we calculated mutual information (MI) between all channels, which was then used to assess network topology. RESULTS Steroid pulse therapy improved seizure control in 20 (27 %) patients. Fourteen (18.9 %) children became complete seizure-free, but 8 patients experienced relapses subsequently. The later age of disease onset, shorter duration of epilepsy, and definite cerebral structural etiology were found to advantageous for hormone response. A significant correlation was observed between GPFA burden and diary seizure number. Patients with higher GPFA burdens and higher MI values exhibited a poor response to steroid treatment. Patients who respond positively to steroids therapy demonstrated longer characteristic path length, higher modularity and lower global efficiency in high beta and gamma bands. CONCLUSION Add-on steroid therapy can be considered as an optional adjunct for LGS. GPFA could be utilized as a parameter to predict treatment effects and prognosis for LGS. The group that responded to steroids showed a high level of local clustering and low long-range network connectivity. This study provides real-world evidence regarding the effectiveness of steroid in refractory LGS.
Collapse
Affiliation(s)
- Zongpu Zhou
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xianru Jiao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
4
|
Swartwood SM, Bollo RJ, Sweney MT, Wilson CA, Sandoval Karamian AG, Kaur H, Orton K, Baker M, Espinoza AC. Responsive Neurostimulation in Pediatric and Young Adult Patients With Drug-Resistant Focal, Multifocal, and Generalized Epilepsy: A Single-Center Experience. Pediatr Neurol 2024; 161:247-254. [PMID: 39454224 DOI: 10.1016/j.pediatrneurol.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Responsive neurostimulation (RNS) is used off-label in pediatric patients with drug-resistant epilepsy (DRE). Our study aims to assess the safety and efficacy of RNS in pediatric and young adult patients with focal, multifocal, and generalized DRE. METHODS All patients who underwent RNS implantation at Primary Children's Hospital in Salt Lake City, UT, between December 2017 and 2022. RESULTS A total of 47 patients were retrospectively identified, of which 32 patients were included in the final analysis. Patients ranged in age from five to 21 years (pediatric n = 22, young adult n = 10) at the time of RNS implantation with focal (20 [63%]), multifocal (8 [25%]), and generalized (4 [12%]) DRE. Operative complications (3 [9%]) and negative side effects (6 [19%]) were minor. At the time of most recent clinic visit (mean 18.6 months, S.D. 13.9), 19 of 32 patients (59%) were responders with ≥50% reduction in seizure frequency (pediatric n = 14, young adult n = 5). The rate of responders increased with prolonged activation of RNS stimulation, reaching 71% (five of seven patients) after 24 months. Antiseizure medication was reduced in five (16%) patients, and seizure rescue medication usage was reduced in 10 (31%) patients. Quality of life improved in 15 (47%) patients. CONCLUSIONS RNS implantation resulted in a sustained reduction in seizure frequency with minimal side effects in a majority of patients. Taken together, our data suggest that RNS is an effective and safe treatment option for focal, multifocal, and potentially generalized DRE in the pediatric and young adult population.
Collapse
Affiliation(s)
- Shanna M Swartwood
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah.
| | - Robert J Bollo
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Division of Pediatric Neurosurgery, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T Sweney
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Carey A Wilson
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Amanda G Sandoval Karamian
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Harsheen Kaur
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Kimberly Orton
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Monika Baker
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Audie C Espinoza
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| |
Collapse
|
5
|
Samanta D, Haneef Z, Albert GW, Naik S, Reeders PC, Jain P, Abel TJ, Al-Ramadhani R, Ibrahim GM, Warren AEL. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav 2024; 160:110067. [PMID: 39393142 DOI: 10.1016/j.yebeh.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of childhood-onset epilepsy syndromes characterized by frequent seizures, severe cognitive and behavioral impairments, and poor long-term outcomes. These conditions are typically refractory to currently available medical therapies, prompting recent exploration of neuromodulation treatments such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), which aim to modulate epileptic networks spanning cortical and subcortical regions. These advances have occurred alongside an improved understanding of syndrome-specific and interictal epileptiform discharge/seizure-specific brain networks. By targeting key nodes within these networks, DBS and RNS hold promise for influencing seizures and associated cognitive and behavioral comorbidities. Initial experiences with centromedian (CM) thalamic DBS for Lennox-Gastaut syndrome (LGS) have shown modest efficacy across multiple seizure types. Reports also indicate the application of DBS and RNS across various genetic and structural etiologies commonly associated with DEEs, with mixed success. Although DBS and RNS are increasingly used in LGS and other DEEs, their mixed efficacy highlights a knowledge gap in understanding why some patients with LGS do not respond and which neuromodulation approach is most effective for other DEEs. To address these issues, this review first discusses recent neuroimaging studies showing similarities and differences in the epileptic brain networks underlying various DEEs, revealing the common involvement of the thalamus and the default-mode network (DMN) across multiple DEEs. We then examine thalamic DBS for LGS to illustrate how such network insights may be used to optimize neuromodulation. Although network-based neuromodulation is still in its infancy, the LGS model may serve as a framework for other DEEs, where optimal treatment necessitates consideration of the underlying epileptic networks. Lastly, the review suggests future research directions, including individualized connectivity assessment and biomarker identification through collaborative efforts, which may enhance the therapeutic potential of neuromodulation for individuals living with DEEs.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Departmen of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruba Al-Ramadhani
- Division of Child Neurology, University of Pittsburgh, Department of Pediatrics, Pittsburgh, PA, USA
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Knowles JK, Warren AEL, Mohamed IS, Stafstrom CE, Koh HY, Samanta D, Shellhaas RA, Gupta G, Dixon‐Salazar T, Tran L, Bhatia S, McCabe JM, Patel AD, Grinspan ZM. Clinical trials for Lennox-Gastaut syndrome: Challenges and priorities. Ann Clin Transl Neurol 2024; 11:2818-2835. [PMID: 39440617 PMCID: PMC11572735 DOI: 10.1002/acn3.52211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset epilepsy that is typically refractory to treatment. We surveyed the current landscape of LGS treatment, aiming to identify challenges to the development of efficacious therapies, and to articulate corresponding priorities toward clinical trials that improve outcomes. METHODS The LGS Special Interest Group of the Pediatric Epilepsy Research Consortium integrated evidence from the literature and expert opinion, into a narrative review. RESULTS We provide an overview of approved and emerging medical, dietary, surgical and neuromodulation approaches for LGS. We note that quality of care could be improved by standardizing LGS treatment based on expert consensus and empirical data. Whereas LGS natural history is incompletely understood, prospective studies and use of large retrospective datasets to understand LGS across the lifespan would enable clinical trials that address these dynamics. Recent discoveries related to LGS pathophysiology should enable development of disease-modifying therapies, which are currently lacking. Finally, clinical trials have focused chiefly on seizures involving "drops," but should incorporate additional patient-centered outcomes, using emerging measures adapted to people with LGS. INTERPRETATION Clinicians and researchers should enact these priorities, with the goal of patient-centered clinical trials that are tailored to LGS pathophysiology and natural history.
Collapse
Affiliation(s)
- Juliet K. Knowles
- Department of NeurologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Aaron E. L. Warren
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Carl E. Stafstrom
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Debopam Samanta
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Renée A. Shellhaas
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Gita Gupta
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | | | - Linh Tran
- Jane and John Justin Institute for Mind HealthCook Children's Medical CenterFort WorthTexasUSA
| | - Sonal Bhatia
- Division of Pediatric NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | | - Anup D. Patel
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
- The Center for Clinical ExcellenceNationwide Children's HospitalColumbusOhioUSA
| | | |
Collapse
|
7
|
Tatum WO, Freund B, Middlebrooks EH, Lundstrom BN, Feyissa AM, Van Gompel JJ, Grewal SS. CM-Pf deep brain stimulation in polyneuromodulation for epilepsy. Epileptic Disord 2024; 26:626-637. [PMID: 39078093 DOI: 10.1002/epd2.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Neuromodulation is a viable option for patients with drug-resistant epilepsies. We reviewed the management of patients with two deep brain neurostimulators. In addition, patients implanted with a device targeting the centromedian-parafascicular (CM-Pf) nuclear complex supplements this report to provide an illustrative case to implantation and programming a patient with three active devices. METHODS A narrative review using PubMed and Embase identified patients with drug-resistant epilepsy implanted with more than one neurostimulator was performed. Combinations of vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS) were identified. We provide a background of a newly reported case of an adult with a triple implant eventually responding to CM-Pf DBS as the third implant following suboptimal benefit from VNS and RNS. RESULTS In review of the literature, dual-device therapy is increasing in reports of use with combinations of VNS, RNS, and DBS to treat patients with drug-resistant epilepsy. We review dual-device implants with thalamic DBS device combinations, functional neural networks, and programming patients with dual devices. CM-Pf is a new target for DBS and has shown a variable response in focal epilepsy. We report the unique case of 28-year-old male with drug-resistant focal epilepsy who experienced a 75% seizure reduction with CM-Pf DBS as his third device after suboptimal responses to VNS and RNS. After 9 months, he also experienced seizure freedom from recurrent focal to bilateral tonic-clonic seizures. No medical or surgical complications or safety issues were encountered. CONCLUSION We demonstrate safety and feasibility in an adult combining active VNS, RNS, and CM-Pf DBS. Patients with dual-device therapy who experience a suboptimal response to initial device use at optimized settings should not be considered a neuromodulation "failure." Strategies to combine devices require a working knowledge of brain networks.
Collapse
Affiliation(s)
- W O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - B Freund
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - E H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - B N Lundstrom
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - A M Feyissa
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - J J Van Gompel
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - S S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
8
|
Cerulli Irelli E, Petrungaro A, Pastorino GMG, Mazzeo A, Morano A, Casciato S, Salati E, Operto FF, Giallonardo AT, Di Gennaro G, Di Bonaventura C. Long-term outcomes and adaptive behavior in adult patients with Lennox-Gastaut syndrome. Epilepsia Open 2024; 9:1881-1890. [PMID: 39110111 PMCID: PMC11450593 DOI: 10.1002/epi4.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe form of epilepsy characterized by difficult-to-control seizures and cognitive dysfunction. Previous studies mainly focused on pediatric populations, and little is known about the long-term cognitive outcome in adult patients with LGS. The objective of this study was to investigate the long-term functional and adaptive behavior in adult patients with LGS. METHODS This cross-sectional study enrolled adult patients diagnosed with LGS according to the recently published International League Against Epilepsy (ILAE) diagnostic criteria. The adaptive behavior of participants was assessed using the Vineland Adaptive Behavior Scales, Survey Interview, Second Edition (VABS-II). Demographic, clinical, electroencephalography (EEG), and antiseizure medication (ASM) data were also collected at different timepoints, to investigate their association with VABS-II scores. RESULTS The study included 38 adult patients with LGS. A low score on the Adaptive Behavior Composite Scale was found in all patients. When considering single VABS-II domains, particularly low scores were found in daily living skills and socialization, whereas slightly higher performances were observed in communication. An earlier age at LGS diagnosis was identified as the most significant predictor of worse adaptive outcomes in adult life. At the time of study evaluation, high seizure frequency, higher EEG background slowing, and multifocal EEG epileptiform abnormalities were significantly associated with lower VABS-II raw scores. Furthermore, in an exploratory correlation analysis with ASM regimen at the study visit, treatment with cannabidiol was associated with higher adaptive behavior scores, whereas benzodiazepine intake correlated with lower scores. SIGNIFICANCE This study provides relevant insights into the long-term challenges faced by adults with Lennox-Gastaut syndrome (LGS), highlighting significant impairments in adaptive behavior as well as the associated clinical and electroencephalography features. Additionally, this study provides a more specific neuropsychological profile in adults with LGS and underscores the importance of comprehensive care approaches that go beyond seizure control in this population. PLAIN LANGUAGE SUMMARY This study examined adults with Lennox-Gastaut syndrome (LGS), a severe type of epilepsy, to understand their long-term abilities to perform daily tasks and adapt socially. We found that these adults have significant difficulties with daily living and social skills, although not all areas were equally affected. They performed somewhat better in communication, particularly in understanding others (receptive communication). Importantly, the younger the age at which LGS was diagnosed, the worse their outcomes were as adults. This study highlights the need for research and treatment approaches that focus not only on controlling seizures but also on improving daily life skills.
Collapse
Affiliation(s)
| | - Alessio Petrungaro
- Neurorehabilitation Unit, IRCCS Santa Maria Nascente, Don Carlo Gnocchi FoundationMilanItaly
| | - Grazia M. G. Pastorino
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery, and DentistryUniversity of SalernoSalernoItaly
| | | | | | - Sara Casciato
- Department of NeurosciencesS. Camillo‐Forlanini HospitalRomeItaly
| | - Emanuela Salati
- Department of Human NeurosciencesSapienza UniversityRomeItaly
| | - Francesca F. Operto
- Department of Science of Health, School of MedicineUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | | | | | | |
Collapse
|
9
|
Alanazi FI, Bravo CAR, Moreno JSS, Botero-Posada LF, Ladino LD, Rios ALL, Hutchison WD. Modulation of neuronal activity in human centromedian nucleus during an auditory attention and working memory task. Neuroimage 2024; 296:120686. [PMID: 38871037 DOI: 10.1016/j.neuroimage.2024.120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Centromedian nucleus (CM) is one of several intralaminar nuclei of the thalamus and is thought to be involved in consciousness, arousal, and attention. CM has been suggested to play a key role in the control of attention, by regulating the flow of information to different brain regions such as the ascending reticular system, basal ganglia, and cortex. While the neurophysiology of attention in visual and auditory systems has been studied in animal models, combined single unit and LFP recordings in human have not, to our knowledge, been reported. Here, we recorded neuronal activity in the CM nucleus in 11 patients prior to insertion of deep brain stimulation electrodes for the treatment of epilepsy while subjects performed an auditory attention task. Patients were requested to attend and count the infrequent (p = 0.2) odd or "deviant" tones, ignore the frequent standard tones and report the total number of deviant tones at trial completion. Spikes were discriminated, and LFPs were band pass filtered (5-45 Hz). Average peri‑stimulus time histograms and spectra were constructed by aligning on tone onsets and statistically compared. The firing rate of CM neurons showed selective, multi-phasic responses to deviant tones in 81% of the tested neurons. Local field potential analysis showed selective beta and low gamma (13-45 Hz) modulations in response to deviant tones, also in a multi-phasic pattern. The current study demonstrates that CM neurons are under top-down control and participate in the selective processing during auditory attention and working memory. These results, taken together, implicate the CM in selective auditory attention and working memory and support a role of beta and low gamma oscillatory activity in cognitive processes. It also has potential implications for DBS therapy for epilepsy and non-motor symptoms of PD, such as apathy and other disorders of attention.
Collapse
Affiliation(s)
- Frhan I Alanazi
- Department of Physiology, University of Toronto, Canada; Krembil Brain Institute, Leonard St, Toronto Ontario, Canada; Department of Basic Sciences, Prince Sultan bin Abdulaziz College for Emergency Medical Services, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | - Juan Sebastián Saavedra Moreno
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Neurology, University of Antioquia, Medellín, Colombia
| | - Luis Fernando Botero-Posada
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia
| | - Lady Diana Ladino
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Neurology, University of Antioquia, Medellín, Colombia
| | - Adriana Lucia Lopez Rios
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia
| | - William D Hutchison
- Department of Physiology, University of Toronto, Canada; Krembil Brain Institute, Leonard St, Toronto Ontario, Canada; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Surgery, University of Toronto, Canada
| |
Collapse
|
10
|
Zhou Z, Gong P, Jiao X, Niu Y, Xu Z, Qin J, Yang Z. A generalized seizure type: Myoclonic-to-tonic seizure. Clin Neurophysiol 2024; 164:24-29. [PMID: 38823261 DOI: 10.1016/j.clinph.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/31/2024] [Accepted: 04/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND PURPOSE To test the hypothesis that myoclonic seizures can evolve to tonic seizures, we documented the electroclinical features of this under-recognized seizure type. METHODS We observed a distinct seizure pattern starting with myoclonus without returning to an interictal state, which subsequently evolved into generalized tonic seizures. The detailed symptomatic and electroencephalographic characteristics of this seizure were extracted, and the clinical manifestations, drug curative responses in patients with this seizure were reviewed and analyzed. RESULTS The onset of all seizures was characterized by a preceding period of myoclonus and bursts of generalized spike or poly-spike slow wave discharges with high amplitude. This was closely followed by the occurrence of tonic seizures, which were distinguished by bursts of generalized fast activity at 10 Hz or higher frequency. This under-recognized seizure type has been designated as myoclonic-to-tonic (MT) seizure. The number of patients identified with MT seizures in this study was 34. The prevalence rate of MT seizures was found to be higher in males. While MT seizures typically included a tonic component, it should be noted that some patients experiencing this seizure type never presented with isolated tonic seizures. Generalized Epilepsy not further defined (GE) accounted for approximately one-third of the diagnosed cases, followed by Lennox-Gastaut syndrome and Epilepsy with Myoclonic-Atonic seizures. In comparison to other types of epilepsy, GE with MT seizures demonstrated a more favorable prognosis. CONCLUSIONS The classification of myoclonic-to-tonic seizure represents a novel approach in comprehending the ictogenesis of generalized seizures and can provide valuable assistance to clinicians in epilepsy diagnosis.
Collapse
Affiliation(s)
- Zongpu Zhou
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xianru Jiao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
11
|
Macdonald-Laurs E, Dzau W, Warren AEL, Coleman M, Mignone C, Stephenson SEM, Howell KB. Identification and treatment of surgically-remediable causes of infantile epileptic spasms syndrome. Expert Rev Neurother 2024; 24:661-680. [PMID: 38814860 DOI: 10.1080/14737175.2024.2360117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Infantile epileptic spasms syndrome (IESS) is a common developmental and epileptic encephalopathy with poor long-term outcomes. A substantial proportion of patients with IESS have a potentially surgically remediable etiology. Despite this, epilepsy surgery is underutilized in this patient group. Some surgically remediable etiologies, such as focal cortical dysplasia and malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), are under-diagnosed in infants and young children. Even when a surgically remediable etiology is recognised, for example, tuberous sclerosis or focal encephalomalacia, epilepsy surgery may be delayed or not considered due to diffuse EEG changes, unclear surgical boundaries, or concerns about operating in this age group. AREAS COVERED In this review, the authors discuss the common surgically remediable etiologies of IESS, their clinical and EEG features, and the imaging techniques that can aid in their diagnosis. They then describe the surgical approaches used in this patient group, and the beneficial impact that early epilepsy surgery can have on developing brain networks. EXPERT OPINION Epilepsy surgery remains underutilized even when a potentially surgically remediable cause is recognized. Overcoming the barriers that result in under-recognition of surgical candidates and underutilization of epilepsy surgery in IESS will improve long-term seizure and developmental outcomes.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Winston Dzau
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Aaron E L Warren
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
- Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Matthew Coleman
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Cristina Mignone
- Department of Medical Imaging, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Sarah E M Stephenson
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Katherine B Howell
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
12
|
Warren AEL, Butson CR, Hook MP, Dalic LJ, Archer JS, Macdonald-Laurs E, Schaper FLWVJ, Hart LA, Singh H, Johnson L, Bullinger KL, Gross RE, Morrell MJ, Rolston JD. Targeting thalamocortical circuits for closed-loop stimulation in Lennox-Gastaut syndrome. Brain Commun 2024; 6:fcae161. [PMID: 38764777 PMCID: PMC11099664 DOI: 10.1093/braincomms/fcae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
This paper outlines the therapeutic rationale and neurosurgical targeting technique for bilateral, closed-loop, thalamocortical stimulation in Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy. Thalamic stimulation can be an effective treatment for Lennox-Gastaut syndrome, but complete seizure control is rarely achieved. Outcomes may be improved by stimulating areas beyond the thalamus, including cortex, but the optimal targets are unknown. We aimed to identify a cortical target by synthesizing prior neuroimaging studies, and to use this knowledge to advance a dual thalamic (centromedian) and cortical (frontal) approach for closed-loop stimulation. Multi-modal brain network maps from three group-level studies of Lennox-Gastaut syndrome were averaged to define the area of peak overlap: simultaneous EEG-functional MRI of generalized paroxysmal fast activity, [18F]fluorodeoxyglucose PET of cortical hypometabolism and diffusion MRI structural connectivity associated with clinical efficacy in a previous trial of thalamic deep brain stimulation. The resulting 'hotspot' was used as a seed in a normative functional MRI connectivity analysis to identify connected networks. Intracranial electrophysiology was reviewed in the first two trial patients undergoing bilateral implantations guided by this hotspot. Simultaneous recordings from cortex and thalamus were analysed for presence and synchrony of epileptiform activity. The peak overlap was in bilateral premotor cortex/caudal middle frontal gyrus. Functional connectivity of this hotspot revealed a distributed network of frontoparietal cortex resembling the diffuse abnormalities seen on EEG-functional MRI and PET. Intracranial electrophysiology showed characteristic epileptiform activity of Lennox-Gastaut syndrome in both the cortical hotspot and thalamus; most detected events occurred first in the cortex before appearing in the thalamus. Premotor frontal cortex shows peak involvement in Lennox-Gastaut syndrome and functional connectivity of this region resembles the wider epileptic brain network. Thus, it may be an optimal target for a range of neuromodulation therapies, including thalamocortical stimulation and emerging non-invasive treatments like focused ultrasound or transcranial magnetic stimulation. Compared to thalamus-only approaches, the addition of this cortical target may allow more rapid detections of seizures, more diverse stimulation paradigms and broader modulation of the epileptic network. A prospective, multi-centre trial of closed-loop thalamocortical stimulation for Lennox-Gastaut syndrome is currently underway.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher R Butson
- Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32608, USA
| | - Matthew P Hook
- Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32608, USA
| | - Linda J Dalic
- University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - John S Archer
- University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Emma Macdonald-Laurs
- University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Frederic L W V J Schaper
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren A Hart
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Katie L Bullinger
- Department of Neurology, Emory University Hospital, Atlanta, GA 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Martha J Morrell
- NeuroPace, Mountain View, CA 94043, USA
- Department of Neurology and Neurological Science, Stanford University, Palo Alto, CA 94304, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Sharma A, Parfyonov M, Tiefenbach J, Hogue O, Nero N, Jehi L, Serletis D, Bingaman W, Gupta A, Rammo R. Predictors of therapeutic response following thalamic neuromodulation for drug-resistant pediatric epilepsy: A systematic review and individual patient data meta-analysis. Epilepsia 2024; 65:542-555. [PMID: 38265348 DOI: 10.1111/epi.17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Maksim Parfyonov
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jakov Tiefenbach
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Neil Nero
- Education Institute, Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Demitre Serletis
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajay Gupta
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Rammo
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Devinsky O, Elder C, Sivathamboo S, Scheffer IE, Koepp MJ. Idiopathic Generalized Epilepsy: Misunderstandings, Challenges, and Opportunities. Neurology 2024; 102:e208076. [PMID: 38165295 PMCID: PMC11097769 DOI: 10.1212/wnl.0000000000208076] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
The idiopathic generalized epilepsies (IGE) make up a fifth of all epilepsies, but <1% of epilepsy research. This skew reflects misperceptions: diagnosis is straightforward, pathophysiology is understood, seizures are easily controlled, epilepsy is outgrown, morbidity and mortality are low, and surgical interventions are impossible. Emerging evidence reveals that patients with IGE may go undiagnosed or misdiagnosed with focal epilepsy if EEG or semiology have asymmetric or focal features. Genetic, electrophysiologic, and neuroimaging studies provide insights into pathophysiology, including overlaps and differences from focal epilepsies. IGE can begin in adulthood and patients have chronic and drug-resistant seizures. Neuromodulatory interventions for drug-resistant IGE are emerging. Rates of psychiatric and other comorbidities, including sudden unexpected death in epilepsy, parallel those in focal epilepsy. IGE is an understudied spectrum for which our diagnostic sensitivity and specificity, scientific understanding, and therapies remain inadequate.
Collapse
Affiliation(s)
- Orrin Devinsky
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Christopher Elder
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Shobi Sivathamboo
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Ingrid E Scheffer
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Matthias J Koepp
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| |
Collapse
|
15
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Abstract
Intracranial neuromodulation is an evolving therapy for patients with drug-resistant epilepsy (DRE). Deep brain stimulation (DBS) is now available as a therapy for patients with DRE and focal-onset seizures in select health care systems; however, there remains a substantial need of efficacy data before DBS can be more widely adopted into routine clinical practice. This review and commentary focuses on a particular shifting paradigm: DBS as a therapy for children with generalized-onset seizures.
Collapse
Affiliation(s)
- Rory J Piper
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurosurgery, Great Ormond Street Hospital, London, UK.
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Martin M Tisdall
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| |
Collapse
|
17
|
Cooper MS, Mackay MT, Shepherd DA, Dagia C, Fahey MC, Reddihough D, Reid SM, Harvey AS. Distinct manifestations and potential mechanisms of seizures due to cortical versus white matter injury in children. Epilepsy Res 2024; 199:107267. [PMID: 38113603 DOI: 10.1016/j.eplepsyres.2023.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE To study seizure manifestations and outcomes in children with cortical versus white matter injury, differences potentially explaining variability of epilepsy in children with cerebral palsy. METHODS In this population-based retrospective cohort study, MRIs of children with cerebral palsy due to ischemia or haemorrhage were classified according to presence or absence of cortical injury. MRI findings were then correlated with history of neonatal seizures, seizures during childhood, epilepsy syndromes, and seizure outcomes. RESULTS Of 256 children studied, neonatal seizures occurred in 57 and seizures during childhood occurred in 93. Children with neonatal seizures were more likely to develop seizures during childhood, mostly those with cortical injury. Cortical injury was more strongly associated with (1) developing seizures during childhood, (2) more severe epilepsy syndromes (infantile spasms syndrome, focal epilepsy, Lennox-Gastaut syndrome), and (3) less likelihood of reaching > 2 years without seizures at last follow-up, compared to children without cortical injury. Children without cortical injury, mainly those with white matter injury, were less likely to develop neonatal seizures and seizures during childhood, and when they did, epilepsy syndromes were more commonly febrile seizures and self-limited focal epilepsies of childhood, with most achieving > 2 years without seizures at last follow-up. The presence of cortical injury also influenced seizure occurrence, severity, and outcome within the different predominant injury patterns of the MRI Classification System in cerebral palsy, most notably white matter injury. CONCLUSIONS Epileptogenesis is understood with cortical injury but not well with white matter injury, the latter potentially related to altered postnatal white matter development or myelination leading to apoptosis, abnormal synaptogenesis or altered thalamic connectivity of cortical neurons. These findings, and the potential mechanisms discussed, likely explain the variability of epilepsy in children with cerebral palsy and epilepsy following early-life brain injury in general.
Collapse
Affiliation(s)
- Monica S Cooper
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| | - Mark T Mackay
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daisy A Shepherd
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Charuta Dagia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Medical Imaging, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Dinah Reddihough
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Susan M Reid
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - A Simon Harvey
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Remore LG, Rifi Z, Nariai H, Eliashiv DS, Fallah A, Edmonds BD, Matsumoto JH, Salamon N, Tolossa M, Wei W, Locatelli M, Tsolaki EC, Bari AA. Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drug-resistant epilepsy: insight from a tractography study. Ther Adv Neurol Disord 2023; 16:17562864231202064. [PMID: 37822361 PMCID: PMC10563482 DOI: 10.1177/17562864231202064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.
Collapse
Affiliation(s)
- Luigi G. Remore
- Surgical Neuromodulation and Brain Mapping Laboratory, ULCA
- Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, USA
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn S. Eliashiv
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin D. Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Locatelli
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Evangelia C. Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A. Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Geffen School of Medicine David California Los Angeles University of Angeles Los CA, USA
| |
Collapse
|
19
|
Manjunatha RT, Vakilna YS, Chaitanya G, Alamoudi O, Ilyas A, Pati S. Advancing the frontiers of thalamic neuromodulation: A review of emerging targets and paradigms. Epilepsy Res 2023; 196:107219. [PMID: 37660585 DOI: 10.1016/j.eplepsyres.2023.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The thalamus is a key structure that plays a crucial role in initiating and propagating seizures. Recent advancements in neuroimaging and neurophysiology have identified the thalamus as a promising target for neuromodulation in drug-resistant epilepsies. This review article presents the latest innovations in thalamic targets and neuromodulation paradigms being explored in pilot or pivotal clinical trials. Multifocal temporal plus or posterior quadrant epilepsies are evaluated with pulvinar thalamus neuromodulation, while centromedian thalamus is explored in generalized epilepsies and Lennox Gastaut syndrome. Multinodal thalamocortical neuromodulation with novel stimulation paradigms such as long bursting or low-frequency stimulation is being investigated to quench the epileptic network excitability. Beyond seizure control, thalamic neuromodulation to restore consciousness is being studied. This review highlights the promising potential of thalamic neuromodulation in epilepsy treatment, offering hope to patients who have not responded to conventional medical therapies. However, it also emphasizes the need for larger randomized controlled trials and personalized stimulation paradigms to improve patient outcomes further.
Collapse
Affiliation(s)
- Ramya Talanki Manjunatha
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yash Shashank Vakilna
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Ganne Chaitanya
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Omar Alamoudi
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Adeel Ilyas
- Department of Neurosurgery, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Sandipan Pati
- Texas Institute of Restorative Neurotechnologies [TIRN], University of Texas Health Science Center, Houston, TX, USA; Texas Comprehensive Epilepsy Program, Texas Institute of Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
20
|
Nurse ES, Dalic LJ, Clarke S, Cook M, Archer J. Deep learning for automated detection of generalized paroxysmal fast activity in Lennox-Gastaut syndrome. Epilepsy Behav 2023; 147:109418. [PMID: 37677902 DOI: 10.1016/j.yebeh.2023.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Generalized paroxysmal fast activity (GPFA) is a key electroencephalographic (EEG) feature of Lennox-Gastaut Syndrome (LGS). Automated analysis of scalp EEG has been successful in detecting more typical abnormalities. Automatic detection of GPFA has been more challenging, due to its variability from patient to patient and similarity to normal brain rhythms. In this work, a deep learning model is investigated for detection of GPFA events and estimating their overall burden from scalp EEG. METHODS Data from 10 patients recorded during four ambulatory EEG monitoring sessions are used to generate and validate the model. All patients had confirmed LGS and were recruited into a trial for thalamic deep-brain stimulation therapy (ESTEL Trial). RESULTS The correlation coefficient between manual and model estimates of event counts was r2 = 0.87, and for total burden was r2 = 0.91. The average GPFA detection sensitivity was 0.876, with an average false-positive rate of 3.35 per minute. There was no significant difference found between patients with early or delayed deep brain stimulation (DBS) treatment, or those with active vagal nerve stimulation (VNS). CONCLUSIONS Overall, the deep learning model was able to accurately detect GPFA and provide accurate estimates of the overall GPFA burden and electrographic event counts, albeit with a high false-positive rate. SIGNIFICANCE Automated GPFA detection may enable automated calculation of EEG biomarkers of burden of disease in LGS.
Collapse
Affiliation(s)
- Ewan S Nurse
- Seer Medical, Melbourne, VIC 3000, Australia; Department of Medicine (St. Vincent's Hospital Melbourne), University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Linda J Dalic
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, VIC 3084, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | | | - Mark Cook
- Department of Medicine (St. Vincent's Hospital Melbourne), University of Melbourne, Fitzroy, VIC 3065, Australia
| | - John Archer
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, VIC 3084, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia; The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC 3084, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| |
Collapse
|
21
|
Giampiccolo D, Binding LP, Caciagli L, Rodionov R, Foulon C, de Tisi J, Granados A, Finn R, Dasgupta D, Xiao F, Diehl B, Torzillo E, Van Dijk J, Taylor PN, Koepp M, McEvoy AW, Baxendale S, Chowdhury F, Duncan JS, Miserocchi A. Thalamostriatal disconnection underpins long-term seizure freedom in frontal lobe epilepsy surgery. Brain 2023; 146:2377-2388. [PMID: 37062539 PMCID: PMC10232243 DOI: 10.1093/brain/awad085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Around 50% of patients undergoing frontal lobe surgery for focal drug-resistant epilepsy become seizure free post-operatively; however, only about 30% of patients remain seizure free in the long-term. Early seizure recurrence is likely to be caused by partial resection of the epileptogenic lesion, whilst delayed seizure recurrence can occur even if the epileptogenic lesion has been completely excised. This suggests a coexistent epileptogenic network facilitating ictogenesis in close or distant dormant epileptic foci. As thalamic and striatal dysregulation can support epileptogenesis and disconnection of cortico-thalamostriatal pathways through hemispherotomy or neuromodulation can improve seizure outcome regardless of focality, we hypothesize that projections from the striatum and the thalamus to the cortex may contribute to this common epileptogenic network. To this end, we retrospectively reviewed a series of 47 consecutive individuals who underwent surgery for drug-resistant frontal lobe epilepsy. We performed voxel-based and tractography disconnectome analyses to investigate shared patterns of disconnection associated with long-term seizure freedom. Seizure freedom after 3 and 5 years was independently associated with disconnection of the anterior thalamic radiation and anterior cortico-striatal projections. This was also confirmed in a subgroup of 29 patients with complete resections, suggesting these pathways may play a critical role in supporting the development of novel epileptic networks. Our study indicates that network dysfunction in frontal lobe epilepsy may extend beyond the resection and putative epileptogenic zone. This may be critical in the pathogenesis of delayed seizure recurrence as thalamic and striatal networks may promote epileptogenesis and disconnection may underpin long-term seizure freedom.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| | - Lawrence P Binding
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Computer Science, Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Chris Foulon
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alejandro Granados
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Roisin Finn
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Debayan Dasgupta
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Emma Torzillo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jan Van Dijk
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Fahmida Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| |
Collapse
|
22
|
Balfroid T, Warren AE, Dalic LJ, Aeby A, Berlangieri SU, Archer JS. Frontoparietal 18F-FDG-PET hypo-metabolism in Lennox-Gastaut syndrome: further evidence highlighting the key network. Epilepsy Res 2023; 192:107131. [PMID: 37054522 DOI: 10.1016/j.eplepsyres.2023.107131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Lennox Gastaut syndrome (LGS) can be conceptualised as a "secondary network epilepsy", in which the shared electroclinical manifestations reflect epileptic recruitment of a common brain network, despite a range of underlying aetiologies. We aimed to identify the key networks recruited by the epileptic process of LGS using interictal 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG-PET). METHODS Group analysis of cerebral 18F-FDG-PET, comparing 21 patients with LGS (mean age = 15 years) and 18 pseudo-controls (mean age = 19 years), studied at Austin Health Melbourne, between 2004 and 2015. To minimise the influence of individual patient lesions in the LGS group, we only studied brain hemispheres without structural MRI abnormalities. The pseudo-control group consisted of age- and sex-matched patients with unilateral temporal lobe epilepsy, using only the hemispheres contralateral to the side of epilepsy. Voxel-wise permutation testing compared 18F-FDG-PET uptake between groups. Associations were explored between areas of altered metabolism and clinical variables (age of seizure onset, proportion of life with epilepsy, and verbal/nonverbal ability). Penetrance maps were calculated to explore spatial consistency of altered metabolic patterns across individual patients with LGS. RESULTS Although not always readily apparent on visual inspection of individual patient scans, group analysis revealed hypometabolism in a network of regions including prefrontal and premotor cortex, anterior and posterior cingulate, inferior parietal lobule, and precuneus (p < 0.05, corrected for family-wise error). These brain regions tended to show a greater reduction in metabolism in non-verbal compared to verbal LGS patients, although this difference was not statistically significant. No areas of hypermetabolism were detected on group analysis, although ∼25 % of individual patients showed increased metabolism (relative to pseudo-controls) in the brainstem, putamen, thalamus, cerebellum, and pericentral cortex. DISCUSSION Interictal hypometabolism in frontoparietal cortex in LGS is compatible with our previous EEG-fMRI and SPECT studies showing that interictal bursts of generalised paroxysmal fast activity and tonic seizures recruit similar cortical regions. This study provides further evidence that these regions are central to the electroclinical expression of LGS.
Collapse
|
23
|
Deep brain stimulation of thalamic nuclei for the treatment of drug-resistant epilepsy: Are we confident with the precise surgical target? Seizure 2023; 105:22-28. [PMID: 36657225 DOI: 10.1016/j.seizure.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/16/2023] Open
Abstract
Deep brain stimulation (DBS) of the thalamic nuclei for the treatment of drug-resistant epilepsy (DRE) has been investigated for decades. In recent years, DBS targeting the anterior nucleus of the thalamus (ANT) was approved by CE and FDA for the treatment of focal-onset DRE in light of the results from the multicentric randomized controlled SANTE trial. However, stereotactic targeting of thalamic nuclei is not straightforward because of the low contrast definition among thalamic nuclei on the current MRI sequences. When the FGATIR sequence is added to the preoperative MRI protocol, the mammillothalamic tract can be identified and used as a visible landmark to directly target ANT. According to the current evidence, the trans-ventricular trajectory allows the placement of stimulating contact into the nucleus more frequently than the trans-cortical trajectory. Another thalamic nucleus whose stimulation for the treatment of generalized DRE is receiving increasing attention is the centromedian nucleus (CM). CM-DBS seems to be particularly efficacious in patients suffering from Lennox-Gastault syndrome (LGS) and the recent monocentric randomized controlled ESTEL trial also described a beneficial "sweet-spot". However, CM targeting is still based on indirect stereotactic coordinates, since acquisition times and post-processing techniques of the actual MRI sequences are not applicable in clinical practice. Moreover, the results of the ESTEL trial await confirmation from similar studies accounting for epileptic syndromes other than LGS. Therefore, novel neuroimaging approaches are advisable to improve the surgical targeting of CM and potentially tailor the stimulation based on the patient's specific epileptic phenotype.
Collapse
|
24
|
Dalic LJ, Warren AEL, Spiegel C, Thevathasan W, Roten A, Bulluss KJ, Archer JS. Paroxysmal fast activity is a biomarker of treatment response in deep brain stimulation for Lennox-Gastaut syndrome. Epilepsia 2022; 63:3134-3147. [PMID: 36114808 PMCID: PMC10946931 DOI: 10.1111/epi.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Epilepsy treatment trials typically rely on seizure diaries to determine seizure frequency, but these are time-consuming and difficult to maintain accurately. Fast, reliable, and objective biomarkers of treatment response are needed, particularly in Lennox-Gastaut syndrome (LGS), where high seizure frequency and comorbid cognitive and behavioral issues are additional obstacles to accurate diary-keeping. Here, we measured generalized paroxysmal fast activity (GPFA), a key interictal electrographic feature of LGS, and correlated GPFA burden with seizure diaries during a thalamic deep brain stimulation (DBS) treatment trial (Electrical Stimulation of the Thalamus in Epilepsy of Lennox-Gastaut Phenotype [ESTEL]). METHODS GPFA and electrographic seizure counts from intermittent, 24-h electroencephalograms (EEGs) were compared to 3-month diary-recorded seizure counts in 17 young adults with LGS (mean age ± SD = 24.9 ± 6.6) in the ESTEL study, a randomized clinical trial of DBS lasting 12 months (comprising a 3-month baseline and 9 months of postimplantation follow-up). RESULTS Baseline median seizures measured by diaries numbered 2.6 (interquartile range [IQR] = 1.4-5) per day, compared to 284 (IQR = 120.5-360) electrographic seizures per day, confirming that diaries capture only a small fraction of seizure burden. Across all patient EEGs, the average number of GPFA discharges per hour of sleep was 138 (IQR =72-258). GPFA duration and frequency, quantified over 2-h windows of sleep EEG, were significantly associated with diary-recorded seizure counts over 3-month intervals (p < .001, η2 p = .30-.48). For every GPFA discharge, there were 20-25 diary seizures witnessed over 3 months. There was high between-patient variability in the ratio between diary seizure burden and GPFA burden; however, within individual patients, the ratio was similar over time, such that the percentage change from pre-DBS baseline in seizure diaries strongly correlated with the percentage change in GPFA. SIGNIFICANCE When seeking to optimize treatment in patients with LGS, monitoring changes in GPFA may allow rapid titration of treatment parameters, rather than waiting for feedback from seizure diaries.
Collapse
Affiliation(s)
- Linda J. Dalic
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
- Department of Neurology, Austin HealthHeidelbergVictoriaAustralia
| | - Aaron E. L. Warren
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Chloe Spiegel
- Department of Neurology, Austin HealthHeidelbergVictoriaAustralia
| | - Wesley Thevathasan
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
- Bionics InstituteEast MelbourneVictoriaAustralia
- Department of MedicineUniversity of Melbourne, and Department of Neurology, Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Annie Roten
- Department of Neurology, Austin HealthHeidelbergVictoriaAustralia
| | - Kristian J. Bulluss
- Bionics InstituteEast MelbourneVictoriaAustralia
- Department of Neurosurgery, Austin HealthHeidelbergVictoriaAustralia
- Department of SurgeryUniversity of MelbourneParkvilleVictoriaAustralia
| | - John S. Archer
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
- Department of Neurology, Austin HealthHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
25
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
26
|
Maki Y, Natsume J, Ito Y, Okai Y, Bagarinao E, Yamamoto H, Ogaya S, Takeuchi T, Fukasawa T, Sawamura F, Mitsumatsu T, Maesawa S, Saito R, Takahashi Y, Kidokoro H. Involvement of the Thalamus, Hippocampus, and Brainstem in Hypsarrhythmia of West Syndrome: Simultaneous Recordings of Electroencephalography and fMRI Study. AJNR Am J Neuroradiol 2022; 43:1502-1507. [PMID: 36137665 PMCID: PMC9575537 DOI: 10.3174/ajnr.a7646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/27/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE West syndrome is a developmental and epileptic encephalopathy characterized by epileptic spasms, neurodevelopmental regression, and a specific EEG pattern called hypsarrhythmia. Our aim was to investigate the brain activities related to hypsarrhythmia at onset and focal epileptiform discharges in the remote period in children with West syndrome using simultaneous electroencephalography and fMRI recordings. MATERIALS AND METHODS Fourteen children with West syndrome underwent simultaneous electroencephalography and fMRI at the onset of West syndrome. Statistically significant blood oxygen level-dependent responses related to hypsarrhythmia were analyzed using an event-related design of 4 hemodynamic response functions with peaks at 3, 5, 7, and 9 seconds after the onset of each event. Six of 14 children had focal epileptiform discharges after treatment and underwent simultaneous electroencephalography and fMRI from 12 to 25 months of age. RESULTS At onset, positive blood oxygen level-dependent responses were seen in the brainstem (14/14 patients), thalami (13/14), basal ganglia (13/14), and hippocampi (13/14), in addition to multiple cerebral cortices. Group analysis using hemodynamic response functions with peaks at 3, 5, and 7 seconds showed positive blood oxygen level-dependent responses in the brainstem, thalamus, and hippocampus, while positive blood oxygen level-dependent responses in multiple cerebral cortices were seen using hemodynamic response functions with peaks at 5 and 7 seconds. In the remote period, 3 of 6 children had focal epileptiform discharge-related positive blood oxygen level-dependent responses in the thalamus, hippocampus, and brainstem. CONCLUSIONS Positive blood oxygen level-dependent responses with hypsarrhythmia appeared in the brainstem, thalamus, and hippocampus on earlier hemodynamic response functions than the cerebral cortices, suggesting the propagation of epileptogenic activities from the deep brain structures to the neocortices. Activation of the hippocampus, thalamus, and brainstem was still seen in half of the patients with focal epileptiform discharges after adrenocorticotropic hormone therapy.
Collapse
Affiliation(s)
- Y Maki
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
| | - J Natsume
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
- Developmental Disability Medicine (J.N.)
- Brain and Mind Research Center (J.N., Y.I., Y.O., E.B., H.Y., S.M., H.K.), Nagoya University, Nagoya, Japan
| | - Y Ito
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
- Brain and Mind Research Center (J.N., Y.I., Y.O., E.B., H.Y., S.M., H.K.), Nagoya University, Nagoya, Japan
- Department of Pediatrics (Y.I.), Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center, Okazaki, Japan
| | - Y Okai
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
- Brain and Mind Research Center (J.N., Y.I., Y.O., E.B., H.Y., S.M., H.K.), Nagoya University, Nagoya, Japan
- Department of Pediatric Neurology (Y.O.), Toyota Municipal Child Development Center, Toyota, Japan
| | - E Bagarinao
- Brain and Mind Research Center (J.N., Y.I., Y.O., E.B., H.Y., S.M., H.K.), Nagoya University, Nagoya, Japan
| | - H Yamamoto
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
- Brain and Mind Research Center (J.N., Y.I., Y.O., E.B., H.Y., S.M., H.K.), Nagoya University, Nagoya, Japan
| | - S Ogaya
- Department of Pediatric Neurology (S.O.), Aichi Developmental Disability Center Central Hospital, Kasugai, Japan
| | - T Takeuchi
- Department of Pediatrics (T.T.), Japanese Red Cross Nagoya First Hospital
| | - T Fukasawa
- Nagoya, Japan; and Department of Pediatrics (T.F.), Anjo Kosei Hospital, Anjo, Japan
| | - F Sawamura
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
| | - T Mitsumatsu
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
| | - S Maesawa
- Neurosurgery (S.M., R.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
- Brain and Mind Research Center (J.N., Y.I., Y.O., E.B., H.Y., S.M., H.K.), Nagoya University, Nagoya, Japan
| | - R Saito
- Neurosurgery (S.M., R.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Takahashi
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
| | - H Kidokoro
- From the Departments of Pediatrics (Y.M., J.N., Y.I., Y.O., H.Y., F.S., T.M., Y.T., H.K.)
- Brain and Mind Research Center (J.N., Y.I., Y.O., E.B., H.Y., S.M., H.K.), Nagoya University, Nagoya, Japan
| |
Collapse
|
27
|
Ikemoto S, von Ellenrieder N, Gotman J. EEG-fMRI of epileptiform discharges: non-invasive investigation of the whole brain. Epilepsia 2022; 63:2725-2744. [PMID: 35822919 DOI: 10.1111/epi.17364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Simultaneous EEG-fMRI is a unique and non-invasive method for investigating epileptic activity. Interictal epileptiform discharge-related EEG-fMRI provides cortical and subcortical blood oxygen level-dependent (BOLD) signal changes specific to epileptic discharges. As a result, EEG-fMRI has revealed insights into generators and networks involved in epileptic activity in different types of epilepsy, demonstrating-for instance-the implication of the thalamus in human generalized spike and wave discharges and the role of the Default Mode Network (DMN) in absences and focal epilepsy, and proposed a mechanism for the cortico-subcortical interactions in Lennox-Gastaut syndrome discharges. EEG-fMRI can find deep sources of epileptic activity not available to scalp EEG or MEG and provides critical new information to delineate the epileptic focus when considering surgical treatment or electrode implantation. In recent years, methodological advances, such as artifact removal and automatic detection of events have rendered this method easier to implement, and its clinical potential has since been established by evidence of the impact of BOLD response on clinical decision-making and of the relationship between concordance of BOLD responses with extent of resection and surgical outcome. This review presents the recent developments in EEG-fMRI methodology and EEG-fMRI studies in different types of epileptic disorders as follows: EEG-fMRI acquisition, gradient and pulse artifact removal, statistical analysis, clinical applications, pre-surgical evaluation, altered physiological state in generalized genetic epilepsy, and pediatric EEG-fMRI studies.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC, Canada.,The Jikei University School of Medicine, Department of Pediatrics, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | | | - Jean Gotman
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC, Canada
| |
Collapse
|
28
|
Safety and efficacy of cathodal transcranial direct current stimulation in patients with Lennox Gastaut Syndrome: An open-label, prospective, single-center, single-blinded, pilot study. Seizure 2022; 100:44-50. [PMID: 35751952 DOI: 10.1016/j.seizure.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Lennox-Gastaut Syndrome (SLG) is a severe form of childhood refractory epilepsy. Only one pilot study has been conducted using cathodal transcranial direct current stimulation (c-tDCs; 2mAx30minx5days) in LGS with promising results (-99% seizure reduction at 5 days). Our aim was to explore and replicate the efficacy and safety of 10 daily sessions of c-tDCs in SLG. METHODS We conducted a one-blinded, single-center pilot clinical study of c-tDCs (2mAx 30 min x 10 days), applied over the highest amplitude or frequent epileptiform interictal discharges areas using scalp EEG recordings without changes in their treatments. The tDCS device used was Enobio EEG® (Neuroelectrics, Barcelona, Spain). The primary outcome was based on the seizure frequency using seizure diaries before, during 10 days of treatment, and then on a 4 and 8 weeks of follow-up. The rate of adverse events was recorded as a secondary outcome. Descriptive statistics and Wilcoxon signed-rank test were used RESULTS: Twenty-four patients were enrolled. The mean age was 10.1 ± 5.8 years old and 75% male. All the patients had severe mental retardation and abnormal neurological examinations. A significant median percentual seizure frequency reduction was found: 68.12% (p = 0.05) at 1 week, 68.12% (p = 0.002) in the second week. We found no significant reduction at 1 and 2 months; mainly tonic and atonic seizures were reduced significantly at all times. Only mild self-limited side effects were recorded mainly itching and erythema in the application zone CONCLUSION: Ten sessions of c-tDCs in combination with pharmacologic treatment in LGS is safe and appears to reduce significatively tonic and atonic seizure frequency at 2 months of follow-up.
Collapse
|
29
|
Lin JJ, Meletti S, Vaudano AE, Lin KL. Developmental and epileptic encephalopathies: Is prognosis related to different epileptic network dysfunctions? Epilepsy Behav 2022; 131:107654. [PMID: 33349540 DOI: 10.1016/j.yebeh.2020.107654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
Developmental and epileptic encephalopathies are a group of rare, severe epilepsies, which are characterized by refractory seizures starting in infancy or childhood and developmental delay or regression. Developmental changes might be independent of epilepsy. However, interictal epileptic activity and seizures can further deteriorate cognition and behavior. Recently, the concept of developmental and epileptic encephalopathies has moved from the lesions associated with epileptic encephalopathies toward the epileptic network dysfunctions on the functioning of the brain. Early recognition and differentiation of patients with developmental and epileptic encephalopathies is important, as precision therapies need to be holistic to address the often devastating symptoms. In this review, we discuss the evolution of the concept of developmental and epileptic encephalopathies in recent years, as well as the current understanding of the genetic basis of developmental and epileptic encephalopathies. Finally, we will discuss the role of epileptic network dysfunctions on prognosis for these severe conditions.
Collapse
Affiliation(s)
- Jainn-Jim Lin
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Taoyuan, Taiwan; Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Study Group for Intensive and Integrated Care of Pediatric Central Nervous System (iCNS Group), Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Stefano Meletti
- Division of Neurology, University Hospital of Modena, Modena, Italy; Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Division of Neurology, University Hospital of Modena, Modena, Italy; Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Study Group for Intensive and Integrated Care of Pediatric Central Nervous System (iCNS Group), Chang Gung Children's Hospital, Taoyuan, Taiwan.
| |
Collapse
|
30
|
Specchio N, Wirrell EC, Scheffer IE, Nabbout R, Riney K, Samia P, Guerreiro M, Gwer S, Zuberi SM, Wilmshurst JM, Yozawitz E, Pressler R, Hirsch E, Wiebe S, Cross HJ, Perucca E, Moshé SL, Tinuper P, Auvin S. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1398-1442. [PMID: 35503717 DOI: 10.1111/epi.17241] [Citation(s) in RCA: 381] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
The 2017 International League Against Epilepsy classification has defined a three-tier system with epilepsy syndrome identification at the third level. Although a syndrome cannot be determined in all children with epilepsy, identification of a specific syndrome provides guidance on management and prognosis. In this paper, we describe the childhood onset epilepsy syndromes, most of which have both mandatory seizure type(s) and interictal electroencephalographic (EEG) features. Based on the 2017 Classification of Seizures and Epilepsies, some syndrome names have been updated using terms directly describing the seizure semiology. Epilepsy syndromes beginning in childhood have been divided into three categories: (1) self-limited focal epilepsies, comprising four syndromes: self-limited epilepsy with centrotemporal spikes, self-limited epilepsy with autonomic seizures, childhood occipital visual epilepsy, and photosensitive occipital lobe epilepsy; (2) generalized epilepsies, comprising three syndromes: childhood absence epilepsy, epilepsy with myoclonic absence, and epilepsy with eyelid myoclonia; and (3) developmental and/or epileptic encephalopathies, comprising five syndromes: epilepsy with myoclonic-atonic seizures, Lennox-Gastaut syndrome, developmental and/or epileptic encephalopathy with spike-and-wave activation in sleep, hemiconvulsion-hemiplegia-epilepsy syndrome, and febrile infection-related epilepsy syndrome. We define each, highlighting the mandatory seizure(s), EEG features, phenotypic variations, and findings from key investigations.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, Full Member of EpiCARE, Rome, Italy
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Sick Children Hospital, Public Hospital Network of Paris, member of EpiCARE, Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University of Paris, Paris, France
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, South Brisbane, Queensland, Australia
| | - Pauline Samia
- Department of Pediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | | | - Sam Gwer
- School of Medicine, Kenyatta University, and Afya Research Africa, Nairobi, Kenya
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children and Institute of Health & Wellbeing, member of EpiCARE, University of Glasgow, Glasgow, UK
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology of the Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Ronit Pressler
- Programme of Developmental Neurosciences, University College London National Institute for Health Research Biomedical Research Centre Great Ormond Street Institute of Child Health, Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK
| | - Edouard Hirsch
- Neurology Epilepsy Units "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Sam Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Helen J Cross
- Programme of Developmental Neurosciences, University College London National Institute for Health Research Biomedical Research Centre Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, and Young Epilepsy Lingfield, London, UK
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Neurological Sciences, Scientific Institute for Research and Health Care, Bologna, Italy
| | - Stéphane Auvin
- Robert Debré Hospital, Public Hospital Network of Paris, NeuroDiderot, National Institute of Health and Medical Research, Department Medico-Universitaire Innovation Robert-Debré, Pediatric Neurology, University of Paris, Paris, France
| |
Collapse
|
31
|
Wang G, Wu W, Xu Y, Yang Z, Xiao B, Long L. Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives. Front Mol Neurosci 2022; 15:891621. [PMID: 35706428 PMCID: PMC9189397 DOI: 10.3389/fnmol.2022.891621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a neurological network disease with genetics playing a much greater role than was previously appreciated. Unfortunately, the relationship between genetic basis and imaging phenotype is by no means simple. Imaging genetics integrates multidimensional datasets within a unified framework, providing a unique opportunity to pursue a global vision for epilepsy. This review delineates the current knowledge of underlying genetic mechanisms for brain networks in different epilepsy syndromes, particularly from a neural developmental perspective. Further, endophenotypes and their potential value are discussed. Finally, we highlight current challenges and provide perspectives for the future development of imaging genetics in epilepsy.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yuchen Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuanyi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- *Correspondence: Lili Long
| |
Collapse
|
32
|
Boerwinkle VL, Sussman BL, Wyckoff SN, Manjón I, Fine JM, David Adelson P. Discerning Seizure-Onset v. Propagation Zone: Pre-and-Post-Operative Resting-State fMRI Directionality and Boerwinkle Neuroplasticity Index. Neuroimage Clin 2022; 35:103063. [PMID: 35653912 PMCID: PMC9163994 DOI: 10.1016/j.nicl.2022.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
The goal of this study was to determine resting state fMRI (rs-fMRI) effective connectivity (RSEC) capacity, agnostic of epileptogenic events, in distinguishing seizure onset zones (SOZ) from propagation zones (pZ). Consecutive patients (2.1-18.2 years old), with epilepsy and hypothalamic hamartoma, pre-operative rs-fMRI-directed surgery, post-operative imaging, and Engel class I outcomes were collected. Cross-spectral dynamic causal modelling (DCM) was used to estimate RSEC between the ablated rs-fMRI-SOZ to its region of highest connectivity outside the HH, defined as the propagation zone (pZ). Pre-operatively, RSEC from the SOZ and PZ was expected to be positive (excitatory), and pZ to SOZ negative (inhibitory), and post-operatively to be either diminished or non-existent. Sensitivity, accuracy, positive predictive value were determined for node-to-node connections. A Parametric Empirical Bayes (PEB) group analysis on pre-operative data was performed to identify group effects and effects of Engel class outcome and age. Pre-operative RSEC strength was also evaluated for correlation with percent seizure frequency improvement, sex, and region of interest size. Of the SOZ's RSEC, only 3.6% had no connection of significance to the pZ when patient models were individually reduced. Among remaining, 96% were in expected (excitatory signal found from SOZ → pZ and inhibitory signal found from pZ → SOZ) versus 3.6% reversed polarities. Both pre-operative polarity signals were equivalently as expected, with one false signal direction out of 26 each (3.7% total). Sensitivity of 95%, specificity 73%, accuracy of 88%, negative predictive value 88%, and positive predictive value of 88% in identifying and differentiating the SOZ and pZ. Groupwise PEB analysis confirmed SOZ → pZ EC was excitatory, and pZ → SOZ EC was inhibitory. Patients with better outcomes (Engel Ia vs. Ib) showed stronger inhibitory signal (pZ → SOZ). Age was negatively associated with absolute RSEC bidirectionally but had no relationship with Directionality SOZ identification performance. In an additional hierarchical PEB analysis identifying changes from pre-to-post surgery, SOZ → pZ modulation became less excitatory and pZ → SOZ modulation became less inhibitory. This study demonstrates the accuracy of Directionality to identify the origin of excitatory and inhibitory signal between the surgically confirmed SOZ and the region of hypothesized propagation zone in children with DRE due to a HH. Thus, this method validation study in a homogenous DRE population may have potential in narrowing the SOZ-candidates for epileptogenicity in other DRE populations and utility in other neurological disorders.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, University of North Carolina, Dept. of Neurology, 170 Manning Dr, CB #7025, Chapel Hill, NC 25714, USA.
| | - Bethany L Sussman
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Ambulatory Building, Phoenix, AZ 85016, USA
| | - Sarah N Wyckoff
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Ambulatory Building, Phoenix, AZ 85016, USA
| | - Iliana Manjón
- University of Arizona College of Medicine - Tucson, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Justin M Fine
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - P David Adelson
- Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| |
Collapse
|
33
|
Ohmori I, Ouchida M, Shinohara M, Kobayashi K, Ishida S, Mashimo T. A novel animal model of combined generalized and focal epilepsy. Epilepsia 2022; 63:e80-e85. [PMID: 35532890 PMCID: PMC9544055 DOI: 10.1111/epi.17295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
Thioredoxin, encoded by Txn1, is a critical antioxidant that protects against oxidative damage by regulating the dithiol/disulfide balance of interacting proteins. We recently discovered the Adem rat, an epileptic rat harboring the Txn1-F54L mutation, characterized by wild running and vacuolar degeneration in the midbrain. This study aimed to characterize the classification of epilepsy in Adem rats. We performed simultaneous video-EEG recordings, MRI, neurotransmitter measurements using gas chromatography-mass spectrometry (GC-MS), and immunohistochemistry. Adem rats exhibited absence, tonic, and focal seizures. The type of epilepsy was classified as combined generalized and focal epilepsy. Neurotransmitters in the midbrain and cortex were measured at three weeks of age when neuronal cell death occurs in the midbrain. The results of GC-MS ruled out the dominance of the excitatory system in the midbrain and cortex of Adem rats. Activation of astrocytes and microglia was more pronounced at five weeks of age, at which time epileptic seizures occurred frequently. The underlying pathology in Adem rats remains unknown. However, glial cell activation and inflammation may play a significant role in the occurrence of epilepsy.
Collapse
Affiliation(s)
- Iori Ohmori
- Section of Developmental Physiology and Pathology, Institute of Academic and Research, Okayama University, Tsushima 3-chome 1-1, Kita-ku, Okayama, 700-8530, Japan.,Department of Child Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-chome 5-1, Kita-ku, Okayama, 700-8558, Japan
| | - Mamoru Ouchida
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-chome 5-1, Kita-ku, Okayama, 700-8558, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan.,The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kiyoka Kobayashi
- Otsuka Pharmaceutical, 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, Japan
| | - Saeko Ishida
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
34
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
35
|
Warren AE, Dalic LJ, Bulluss KJ, Roten A, Thevathasan W, Archer JS. The optimal target and connectivity for
DBS
in
Lennox‐Gastaut
syndrome. Ann Neurol 2022; 92:61-74. [PMID: 35429045 PMCID: PMC9544037 DOI: 10.1002/ana.26368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Objective Deep brain stimulation (DBS) can reduce seizures in Lennox–Gastaut syndrome (LGS). However, little is known about the optimal target and whether efficacy depends on connectivity of the stimulation site. Using outcome data from the ESTEL trial, we aimed to determine the optimal target and connectivity for DBS in LGS. Methods A total of 20 patients underwent bilateral DBS of the thalamic centromedian nucleus (CM). Outcome was percentage seizure reduction from baseline after 3 months of DBS, defined using three measures (monthly seizure diaries, 24‐hour scalp electroencephalography [EEG], and a novel diary‐EEG composite). Probabilistic stimulation mapping identified thalamic locations associated with higher/lower efficacy. Two substitute diffusion MRI datasets (a normative dataset from healthy subjects and a “disease‐matched” dataset from a separate group of LGS patients) were used to calculate structural connectivity between DBS sites and a map of areas known to express epileptic activity in LGS, derived from our previous EEG‐fMRI research. Results Results were similar across the three outcome measures. Stimulation was most efficacious in the anterior and inferolateral “parvocellular” CM border, extending into the ventral lateral nucleus (posterior subdivision). There was a positive association between diary‐EEG composite seizure reduction and connectivity to areas of a priori EEG‐fMRI activation, including premotor and prefrontal cortex, putamen, and pontine brainstem. In contrast, outcomes were not associated with baseline clinical variables. Interpretation Efficacious CM‐DBS for LGS is linked to stimulation of the parvocellular CM and the adjacent ventral lateral nucleus, and is associated with connectivity to, and thus likely modulation of, the “secondary epileptic network” underlying the shared electroclinical manifestations of LGS. ANN NEUROL 2022;92:61–74
Collapse
Affiliation(s)
- Aaron E.L Warren
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Murdoch Children’s Research Institute Parkville Victoria Australia
- The Florey Institute of Neuroscience and Mental Health Heidelberg Victoria Australia
| | - Linda J. Dalic
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Department of Neurology Austin Health Heidelberg Victoria Australia
| | - Kristian J. Bulluss
- Bionics Institute East Melbourne Victoria Australia
- Department of Neurosurgery Austin Health Heidelberg Victoria Australia
- Department of Surgery University of Melbourne Parkville Victoria Australia
| | - Annie Roten
- Department of Neurology Austin Health Heidelberg Victoria Australia
| | - Wesley Thevathasan
- Department of Neurology Austin Health Heidelberg Victoria Australia
- Bionics Institute East Melbourne Victoria Australia
| | - John S. Archer
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Murdoch Children’s Research Institute Parkville Victoria Australia
- The Florey Institute of Neuroscience and Mental Health Heidelberg Victoria Australia
- Department of Neurology Austin Health Heidelberg Victoria Australia
| |
Collapse
|
36
|
Cerulli Irelli E, Barone FA, Mari L, Morano A, Orlando B, Salamone EM, Marchi A, Fanella M, Fattouch J, Placidi F, Giallonardo AT, Izzi F, Di Bonaventura C. Generalized Fast Discharges Along the Genetic Generalized Epilepsy Spectrum: Clinical and Prognostic Significance. Front Neurol 2022; 13:844674. [PMID: 35356452 PMCID: PMC8960043 DOI: 10.3389/fneur.2022.844674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 01/18/2023] Open
Abstract
Objective To investigate the electroclinical characteristics and the prognostic impact of generalized fast discharges in a large cohort of genetic generalized epilepsy (GGE) patients studied with 24-h prolonged ambulatory electroencephalography (paEEG). Methods This retrospective multicenter cohort study included 202 GGE patients. The occurrence of generalized paroxysmal fast activity (GPFA) and generalized polyspike train (GPT) was reviewed. GGE patients were classified as having idiopathic generalized epilepsy (IGE) or another GGE syndrome (namely perioral myoclonia with absences, eyelid myoclonia with absences, epilepsy with myoclonic absences, generalized epilepsy with febrile seizures plus, or GGE without a specific epilepsy syndrome) according to recent classification proposals. Results GPFA/GPT was found in overall 25 (12.4%) patients, though it was significantly less frequent in IGE compared with other GGE syndromes (9.3 vs. 25%, p = 0.007). GPFA/GPT was found independently of seizure type experienced during history, the presence of mild intellectual disability/borderline intellectual functioning, or EEG features. At multivariable analysis, GPFA/GPT was significantly associated with drug resistance (p = 0.04) and with a higher number of antiseizure medications (ASMs) at the time of paEEG (p < 0.001) and at the last medical observation (p < 0.001). Similarly, GPFA/GPT, frequent/abundant generalized spike-wave discharges during sleep, and a higher number of seizure types during history were the only factors independently associated with a lower chance of achieving 2-year seizure remission at the last medical observation. Additionally, a greater number of GPFA/GPT discharges significantly discriminated between patients who achieved 2-year seizure remission at the last medical observation and those who did not (area under the curve = 0.77, 95% confidence interval 0.57-0.97, p = 0.02). Conclusion We found that generalized fast discharges were more common than expected in GGE patients when considering the entire GGE spectrum. In addition, our study highlighted that GPFA/GPT could be found along the entire GGE continuum, though their occurrence was more common in less benign GGE syndromes. Finally, we confirmed that GPFA/GPT was associated with difficult-to-treat GGE, as evidenced by the multivariable analysis and the higher ASM load during history.
Collapse
Affiliation(s)
- Emanuele Cerulli Irelli
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| | | | - Luisa Mari
- Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Alessandra Morano
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| | - Biagio Orlando
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| | - Enrico Michele Salamone
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| | - Angela Marchi
- Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Martina Fanella
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| | - Jinane Fattouch
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| | - Fabio Placidi
- Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Anna Teresa Giallonardo
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| | - Francesca Izzi
- Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, Policlinico “Umberto I”, Sapienza University, Rome, Italy
| |
Collapse
|
37
|
Cao X, Liu T, Jiang J, Liu H, Zhang J, Kochan NA, Niu H, Brodaty H, Sachdev PS, Wen W. Alternation in Effective Connectivity With Cognitive Aging: A Longitudinal Study of Elderly Populations. Front Aging Neurosci 2021; 13:755931. [PMID: 34867282 PMCID: PMC8636113 DOI: 10.3389/fnagi.2021.755931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
In this research, we investigated the alterations in the directionality and strength of regional interactions within functionally changed brain networks and their relationship to cognitive decline during the aging process in normal elderly individuals. Thirty-seven cognitively normal elderly people received resting-state fMRI scans and cognitive assessments at baseline (age = 78.65 ± 3.56 years) and at 4-year follow-up. Functional connectivity analyses were used to identify networks containing brain regions whose functions changed with age as regions of interest. The spectral dynamic causal modeling (spDCM) method was used to estimate the causal interactions within networks in subjects at different time points and in subjects with different cognitive levels to explore the alterations with cognitive aging. The results showed that, at both time points, all the networks, except the frontal-parietal network (FPN) at baseline, had mutual interactions between each pair of nodes. Furthermore, when the subjects were divided with global cognition level, lost connections were only found in the subgroup with better performance. These indicated that elderly people appeared to need more interaction pathways between brain areas with cognitive decline. We also observed that the strength of the flow of information from the left angular gyrus to the precuneus, which is associated with activation of memory retrieval and the functional hub involved in various cognitive domains, was predictive of declines in executive function with the aging process, making it a potential predictor of such situation.
Collapse
Affiliation(s)
- Xingxing Cao
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tao Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Hao Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Haijun Niu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Dementia Collaborative Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
38
|
Asadi-Pooya AA, Bazrafshan M, Farazdaghi M. Long-term medical and social outcomes of patients with Lennox-Gastaut syndrome. Epilepsy Res 2021; 178:106813. [PMID: 34798494 DOI: 10.1016/j.eplepsyres.2021.106813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of the current study was to investigate the long-term outcome in a large cohort of patients with Lennox-Gastaut syndrome (LGS). METHODS This was a longitudinal study (a retrospective database review with a telephone follow-up interview). All patients 18 years of age and older, with a diagnosis of LGS were studied at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2020. The inclusion criteria were: multiple seizure types, characteristic electroencephalographic patterns [either bursts of slow spike-waves or generalized paroxysmal fast activity], with or without intellectual disability. Being lost on follow-up was the only exclusion criterion. RESULTS 78 patients fulfilled the inclusion criteria. All the patients were followed for one to 12 years (9.3 ± 2.8 years). In the last follow-up (call), 14 patients (17.9%) were seizure-free for at least 12 months. Tonic seizure at diagnosis was associated with a poor seizure outcome (not seizure-free) (p = 0.045). Four patients (5.1%) reported having high school degree (diploma), four patients (5.1%) were married, and one person (1.3%) reported driving a motor vehicle; none of the patients were employed. CONCLUSION A minority of patients with LGS (almost one in six patients) may enjoy a seizure-free state in their adulthood. However, very few of them could enjoy a healthy social life. While intellectual dysfunction may not be evident at the onset of the disease, cognitive impairment usually becomes apparent over time, and almost all patients would suffer from poor social outcomes in their adulthood.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mehdi Bazrafshan
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Farazdaghi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Transfer of SCN1A to the brain of adolescent mouse model of Dravet syndrome improves epileptic, motor, and behavioral manifestations. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:585-602. [PMID: 34589280 PMCID: PMC8463324 DOI: 10.1016/j.omtn.2021.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022]
Abstract
Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient’s neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement.
Collapse
|
40
|
Snyder AD, Ma L, Steinberg JL, Woisard K, Moeller FG. Dynamic Causal Modeling Self-Connectivity Findings in the Functional Magnetic Resonance Imaging Neuropsychiatric Literature. Front Neurosci 2021; 15:636273. [PMID: 34456665 PMCID: PMC8385130 DOI: 10.3389/fnins.2021.636273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dynamic causal modeling (DCM) is a method for analyzing functional magnetic resonance imaging (fMRI) and other functional neuroimaging data that provides information about directionality of connectivity between brain regions. A review of the neuropsychiatric fMRI DCM literature suggests that there may be a historical trend to under-report self-connectivity (within brain regions) compared to between brain region connectivity findings. These findings are an integral part of the neurologic model represented by DCM and serve an important neurobiological function in regulating excitatory and inhibitory activity between regions. We reviewed the literature on the topic as well as the past 13 years of available neuropsychiatric DCM literature to find an increasing (but still, perhaps, and inadequate) trend in reporting these results. The focus of this review is fMRI as the majority of published DCM studies utilized fMRI and the interpretation of the self-connectivity findings may vary across imaging methodologies. About 25% of articles published between 2007 and 2019 made any mention of self-connectivity findings. We recommend increased attention toward the inclusion and interpretation of self-connectivity findings in DCM analyses in the neuropsychiatric literature, particularly in forthcoming effective connectivity studies of substance use disorders.
Collapse
Affiliation(s)
- Andrew D Snyder
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Radiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kyle Woisard
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Frederick G Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
41
|
Akman O, Briggs SW, Mowrey WB, Moshé SL, Galanopoulou AS. Antiepileptogenic effects of rapamycin in a model of infantile spasms due to structural lesions. Epilepsia 2021; 62:1985-1999. [PMID: 34212374 DOI: 10.1111/epi.16975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Infantile spasms may evolve into persistent epilepsies including Lennox-Gastaut syndrome. We compared adult epilepsy outcomes in models of infantile spasms due to structural etiology (multiple-hit model) or focal cortical inflammation and determined the anti-epileptogenic effects of pulse-rapamycin, previously shown to stop spasms in multiple-hit rats. METHODS Spasms were induced in 3-day-old male rats via right intracerebral doxorubicin/lipopolysaccharide (multiple-hit model) infusions. Controls and sham rats were used. Separate multiple-hit rats received pulse-rapamycin or vehicle intraperitoneally between postnatal days 4 and 6. In adult mice, video-EEG (electroencephalography) scoring for seizures and sleep and histology were done blinded to treatment. RESULTS Motor-type seizures developed in 66.7% of multiple-hit rats, usually from sleep, but were reduced in the pulse-rapamycin-treated group (20%, p = .043 vs multiple-hit) and rare in other groups (0-9.1%, p < .05 vs multiple-hit). Spike-and-wave bursts had a slower frequency in multiple-hit rats (5.4-5.8Hz) than in the other groups (7.6-8.3Hz) (p < .05); pulse rapamycin had no effect on the hourly spike-and-wave burst rates in adulthood. Rapamycin, however, reduced the time spent in slow-wave-sleep (17.2%), which was increased in multiple-hit rats (71.6%, p = .003). Sham rats spent more time in wakefulness (43.7%) compared to controls (30.6%, p = .043). Multiple-hit rats, with or without rapamycin treatment, had right more than left corticohippocampal, basal ganglia lesions. There was no macroscopic pathology in the other groups. SIGNIFICANCE Structural corticohippocampal/basal ganglia lesions increase the risk for post-infantile spasms epilepsy, Lennox-Gastaut syndrome features, and sleep dysregulation. Pulse rapamycin treatment for infantile spasms has anti-epileptogenic effects, despite the structural lesions, and decreases the time spent in slow wave sleep.
Collapse
Affiliation(s)
- Ozlem Akman
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA
| | - Stephen W Briggs
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA
| | - Wenzhu B Mowrey
- Division of Biostatistics, Department of Epidemiology and Population Health, Bronx, New York, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA.,Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Bronx, New York, USA.,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA.,Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| |
Collapse
|
42
|
Epilepsy Surgery is a Viable Treatment for Lennox Gastaut Syndrome. Semin Pediatr Neurol 2021; 38:100894. [PMID: 34183143 DOI: 10.1016/j.spen.2021.100894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022]
Abstract
Lennox Gastaut Syndrome (LGS) is a severe developmental epileptic encephalopathy with onset in childhood characterized by multiple seizure types and characteristic electroencephalogram findings. The majority of patients develop drug resistant epilepsy, defined as failure of 2 appropriate anti-seizure medications used at adequate doses. Epilepsy surgery can reduce seizure burden, in some cases leading to seizure freedom, and improve neuro-developmental outcomes and quality of life. Epilepsy surgery should be considered for all patients with drug resistant LGS. Herein, we review current surgical treatment options for patients with LGS, both definitive and palliative, including: focal cortical resection, vagus nerve stimulation and corpus callosotomy. Newer neuromodulation techniques will be explored, as well as the concept of LGS as a secondary network disorder.
Collapse
|
43
|
Vaudano AE, Mirandola L, Talami F, Giovannini G, Monti G, Riguzzi P, Volpi L, Michelucci R, Bisulli F, Pasini E, Tinuper P, Di Vito L, Gessaroli G, Malagoli M, Pavesi G, Cardinale F, Tassi L, Lemieux L, Meletti S. fMRI-Based Effective Connectivity in Surgical Remediable Epilepsies: A Pilot Study. Brain Topogr 2021; 34:632-650. [PMID: 34152513 DOI: 10.1007/s10548-021-00857-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022]
Abstract
Simultaneous EEG-fMRI can contribute to identify the epileptogenic zone (EZ) in focal epilepsies. However, fMRI maps related to Interictal Epileptiform Discharges (IED) commonly show multiple regions of signal change rather than focal ones. Dynamic causal modeling (DCM) can estimate effective connectivity, i.e. the causal effects exerted by one brain region over another, based on fMRI data. Here, we employed DCM on fMRI data in 10 focal epilepsy patients with multiple IED-related regions of BOLD signal change, to test whether this approach can help the localization process of EZ. For each subject, a family of competing deterministic, plausible DCM models were constructed using IED as autonomous input at each node, one at time. The DCM findings were compared to the presurgical evaluation results and classified as: "Concordant" if the node identified by DCM matches the presumed focus, "Discordant" if the node is distant from the presumed focus, or "Inconclusive" (no statistically significant result). Furthermore, patients who subsequently underwent intracranial EEG recordings or surgery were considered as having an independent validation of DCM results. The effective connectivity focus identified using DCM was Concordant in 7 patients, Discordant in two cases and Inconclusive in one. In four of the 6 patients operated, the DCM findings were validated. Notably, the two Discordant and Invalidated results were found in patients with poor surgical outcome. Our findings provide preliminary evidence to support the applicability of DCM on fMRI data to investigate the epileptic networks in focal epilepsy and, particularly, to identify the EZ in complex cases.
Collapse
Affiliation(s)
- A E Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliero-Universitaria of Modena, Via Giardini 1355, 41100, Modena, Italy. .,Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - L Mirandola
- Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Talami
- Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G Giovannini
- Neurology Unit, OCB Hospital, Azienda Ospedaliero-Universitaria of Modena, Via Giardini 1355, 41100, Modena, Italy.,Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G Monti
- Neurology Unit, AUSL Modena, Ospedale Ramazzini, Carpi, MO, Italy
| | - P Riguzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna, Italy
| | - L Volpi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna, Italy
| | - R Michelucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna, Italy
| | - F Bisulli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - E Pasini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna, Italy
| | - P Tinuper
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - L Di Vito
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - G Gessaroli
- Neurology Unit, OCB Hospital, Azienda Ospedaliero-Universitaria of Modena, Via Giardini 1355, 41100, Modena, Italy
| | - M Malagoli
- Neuroradiology Unit, OCB Hospital, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - G Pavesi
- Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Neurosurgery Unit, OCB Hospital, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - F Cardinale
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - L Tassi
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - L Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - S Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliero-Universitaria of Modena, Via Giardini 1355, 41100, Modena, Italy.,Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
44
|
Aranyi SC, Nagy M, Opposits G, Berényi E, Emri M. Characterizing Network Search Algorithms Developed for Dynamic Causal Modeling. Front Neuroinform 2021; 15:656486. [PMID: 34177506 PMCID: PMC8222613 DOI: 10.3389/fninf.2021.656486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Dynamic causal modeling (DCM) is a widely used tool to estimate the effective connectivity of specified models of a brain network. Finding the model explaining measured data is one of the most important outstanding problems in Bayesian modeling. Using heuristic model search algorithms enables us to find an optimal model without having to define a model set a priori. However, the development of such methods is cumbersome in the case of large model-spaces. We aimed to utilize commonly used graph theoretical search algorithms for DCM to create a framework for characterizing them, and to investigate relevance of such methods for single-subject and group-level studies. Because of the enormous computational demand of DCM calculations, we separated the model estimation procedure from the search algorithm by providing a database containing the parameters of all models in a full model-space. For test data a publicly available fMRI dataset of 60 subjects was used. First, we reimplemented the deterministic bilinear DCM algorithm in the ReDCM R package, increasing computational speed during model estimation. Then, three network search algorithms have been adapted for DCM, and we demonstrated how modifications to these methods, based on DCM posterior parameter estimates, can enhance search performance. Comparison of the results are based on model evidence, structural similarities and the number of model estimations needed during search. An analytical approach using Bayesian model reduction (BMR) for efficient network discovery is already available for DCM. Comparing model search methods we found that topological algorithms often outperform analytical methods for single-subject analysis and achieve similar results for recovering common network properties of the winning model family, or set of models, obtained by multi-subject family-wise analysis. However, network search methods show their limitations in higher level statistical analysis of parametric empirical Bayes. Optimizing such linear modeling schemes the BMR methods are still considered the recommended approach. We envision the freely available database of estimated model-spaces to help further studies of the DCM model-space, and the ReDCM package to be a useful contribution for Bayesian inference within and beyond the field of neuroscience.
Collapse
Affiliation(s)
- Sándor Csaba Aranyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marianna Nagy
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Opposits
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ervin Berényi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
45
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
46
|
Automatic detection of generalized paroxysmal fast activity in interictal EEG using time-frequency analysis. Comput Biol Med 2021; 133:104287. [PMID: 34022764 DOI: 10.1016/j.compbiomed.2021.104287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Markup of generalized interictal epileptiform discharges (IEDs) on EEG is an important step in the diagnosis and characterization of epilepsy. However, manual EEG markup is a time-consuming, subjective, and the specialized task where the human reviewer needs to visually inspect a large amount of data to facilitate accurate clinical decisions. In this study, we aimed to develop a framework for automated detection of generalized paroxysmal fast activity (GPFA), a generalized IED seen in scalp EEG recordings of patients with the severe epilepsy of Lennox-Gastaut syndrome (LGS). METHODS We studied 13 children with LGS who had GPFA events in their interictal EEG recordings. Time-frequency information derived from manually marked IEDs across multiple EEG channels was used to automatically detect similar events in each patient's interictal EEG. We validated true positives and false positives of the proposed spike detection approach using both standalone scalp EEG and simultaneous EEG-functional MRI (EEG-fMRI) recordings. RESULTS GPFA events displayed a consistent low-high frequency arrangement in the time-frequency domain. This 'bimodal' spectral feature was most prominent over frontal EEG channels. Our automatic detection approach using this feature identified EEG events with similar time-frequency properties to the manually marked GPFAs. Brain maps of EEG-fMRI signal change during these automatically detected IEDs were comparable to the EEG-fMRI brain maps derived from manual IED markup. CONCLUSION GPFA events have a characteristic bimodal time-frequency feature that can be automatically detected from scalp EEG recordings in patients with LGS. The validity of this time-frequency feature is demonstrated by EEG-fMRI analysis of automatically detected events, which recapitulates the brain maps we have previously shown to underlie generalized IEDs in LGS. SIGNIFICANCE This study provides a novel methodology that enables a fast, automated, and objective inspection of generalized IEDs in LGS. The proposed framework may be extendable to a wider range of epilepsy syndromes in which monitoring the burden of epileptic activity can aid clinical decision-making and faster assessment of treatment response and estimation of future seizure risk.
Collapse
|
47
|
Kwon C, Schupper AJ, Fields MC, Marcuse LV, La Vega‐Talbott M, Panov F, Ghatan S. Centromedian thalamic responsive neurostimulation for Lennox-Gastaut epilepsy and autism. Ann Clin Transl Neurol 2020; 7:2035-2040. [PMID: 32860345 PMCID: PMC7545608 DOI: 10.1002/acn3.51173] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/31/2023] Open
Abstract
The RNS System is not approved in patients under 18, although a critical need for novel treatment modalities in this vulnerable population persist. We present two pediatric patients with drug-resistant epilepsy secondary to Lennox-Gastaut Syndrome (LGS) and autism spectrum disorder (ASD) treated with the RNS System. Both patients have experienced 75-99% clinical seizure reductions in >1 year of follow-up. We illustrate that children with diffuse onset, multifocal epilepsy, including frontal and thalamic circuits thought to exist in the generation of LGS seizures, can be treated with responsive neurostimulation safely and effectively, targeting thalamic networks, and avoiding palliative disconnections and resections.
Collapse
Affiliation(s)
- Churl‐Su Kwon
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alexander J. Schupper
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Madeline C. Fields
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lara V. Marcuse
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Fedor Panov
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Saadi Ghatan
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
48
|
Dalic LJ, Warren AEL, Young JC, Thevathasan W, Roten A, Bulluss KJ, Archer JS. Cortex leads the thalamic centromedian nucleus in generalized epileptic discharges in Lennox‐Gastaut syndrome. Epilepsia 2020; 61:2214-2223. [DOI: 10.1111/epi.16657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Linda J. Dalic
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Department of Neurology Austin Health Heidelberg Victoria Australia
| | - Aaron E. L. Warren
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Florey Institute of Neuroscience and Mental Health Heidelberg Victoria Australia
- Murdoch Children’s Research Institute Parkville Victoria Australia
| | - James C. Young
- Florey Institute of Neuroscience and Mental Health Heidelberg Victoria Australia
| | - Wesley Thevathasan
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Bionics Institute East Melbourne Victoria Australia
- Department of Medicine Royal Melbourne Hospital and Department of Neurology University of Melbourne Parkville Victoria Australia
| | - Annie Roten
- Department of Neurology Austin Health Heidelberg Victoria Australia
| | - Kristian J. Bulluss
- Bionics Institute East Melbourne Victoria Australia
- Department of Neurosurgery Austin Health Heidelberg Victoria Australia
- Department of Surgery University of Melbourne Parkville Victoria Australia
| | - John S. Archer
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Department of Neurology Austin Health Heidelberg Victoria Australia
- Florey Institute of Neuroscience and Mental Health Heidelberg Victoria Australia
- Murdoch Children’s Research Institute Parkville Victoria Australia
| |
Collapse
|
49
|
Combined Isoflurane-Remifentanil Anaesthesia Permits Resting-State fMRI in Children with Severe Epilepsy and Intellectual Disability. Brain Topogr 2020; 33:618-635. [PMID: 32623611 DOI: 10.1007/s10548-020-00782-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022]
Abstract
Head motion is a significant barrier to functional MRI (fMRI) in patients who are unable to tolerate awake scanning, including young children or those with cognitive and behavioural impairments. General anaesthesia minimises motion and ensures patient comfort, however the optimal anaesthesia regimen for fMRI in the paediatric setting is unknown. In this study, we tested the feasibility of anaesthetised fMRI in 11 patients (mean age = 9.8 years) with Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy associated with intellectual disability. fMRI was acquired during clinically-indicated MRI sessions using a synergistic anaesthesia regimen we typically administer for epilepsy neurosurgery: combined low-dose isoflurane (≤ 0.8% end-tidal concentration) with remifentanil (≤ 0.1 mcg/kg/min). Using group-level independent component analysis, we assessed the presence of resting-state networks by spatially comparing results in the anaesthetised patients to resting-state network templates from the 'Generation R' study of 536 similarly-aged non-anaesthetised healthy children (Muetzel et al. in Hum Brain Mapp 37(12):4286-4300, 2016). Numerous resting-state networks commonly studied in non-anaesthetised healthy children were readily identifiable in the anaesthetised patients, including the default-mode, sensorimotor, and frontoparietal networks. Independent component time-courses associated with these networks showed spectral characteristics suggestive of a neuronal origin of fMRI signal fluctuations, including high dynamic range and temporal frequency power predominantly below 0.1 Hz. These results demonstrate the technical feasibility of anaesthetised fMRI in children, suggesting that combined isoflurane-remifentanil anaesthesia may be an effective strategy to extend the emerging clinical applications of resting-state fMRI (for example, neurosurgical planning) to the variety of patient groups who may otherwise be impractical to scan.
Collapse
|
50
|
Warren AEL, Dalic LJ, Thevathasan W, Roten A, Bulluss KJ, Archer J. Targeting the centromedian thalamic nucleus for deep brain stimulation. J Neurol Neurosurg Psychiatry 2020; 91:339-349. [PMID: 31980515 DOI: 10.1136/jnnp-2019-322030] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the centromedian thalamic nucleus (CM) is an emerging treatment for multiple brain diseases, including the drug-resistant epilepsy Lennox-Gastaut syndrome (LGS). We aimed to improve neurosurgical targeting of the CM by: (1) developing a structural MRI approach for CM visualisation, (2) identifying the CM's neurophysiological characteristics using microelectrode recordings (MERs) and (3) mapping connectivity from CM-DBS sites using functional MRI (fMRI). METHODS 19 patients with LGS (mean age=28 years) underwent presurgical 3T MRI using magnetisation-prepared 2 rapid acquisition gradient-echoes (MP2RAGE) and fMRI sequences; 16 patients proceeded to bilateral CM-DBS implantation and intraoperative thalamic MERs. CM visualisation was achieved by highlighting intrathalamic borders on MP2RAGE using Sobel edge detection. Mixed-effects analysis compared two MER features (spike firing rate and background noise) between ventrolateral, CM and parafasicular nuclei. Resting-state fMRI connectivity was assessed using implanted CM-DBS electrode positions as regions of interest. RESULTS The CM appeared as a hyperintense region bordering the comparatively hypointense pulvinar, mediodorsal and parafasicular nuclei. At the group level, reduced spike firing and background noise distinguished CM from the ventrolateral nucleus; however, these trends were not found in 20%-25% of individual MER trajectories. Areas of fMRI connectivity included basal ganglia, brainstem, cerebellum, sensorimotor/premotor and limbic cortex. CONCLUSIONS In the largest clinical trial of DBS undertaken in patients with LGS to date, we show that accurate targeting of the CM is achievable using 3T MP2RAGE MRI. Intraoperative MERs may provide additional localising features in some cases; however, their utility is limited by interpatient variability. Therapeutic effects of CM-DBS may be mediated via connectivity with brain networks that support diverse arousal, cognitive and sensorimotor processes.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia .,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Linda J Dalic
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Wesley Thevathasan
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia.,Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Annie Roten
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Kristian J Bulluss
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Neurosurgery, Austin Health, Heidelberg, Victoria, Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - John Archer
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|