1
|
Pache F, Otto C, Wilken D, Lietzow T, Steinhagen K, Grage-Griebenow E, Schindler P, Niederschweiberer M, Wildemann B, Jarius S, Ruprecht K. Broad Analysis of Serum and Intrathecal Antimicrobial Antibodies in Multiple Sclerosis Underscores Unique Role of Epstein-Barr Virus. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200332. [PMID: 39602676 PMCID: PMC11616972 DOI: 10.1212/nxi.0000000000200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND OBJECTIVES There is a strong link between Epstein-Barr virus (EBV) and multiple sclerosis (MS), but the underlying mechanisms are unclear. Patients with MS typically have a polyspecific intrathecal production of immunoglobulin G (IgG), part of which is directed against various microbial antigens. In this study, we comprehensively analyzed seroprevalences and frequencies of an intrathecal IgG production to EBV compared with 10 other common microbes in patients with MS. METHODS Antibodies to EBV and to Borrelia burgdorferi, cytomegalovirus, herpes simplex virus type 1/2, measles virus, mumps virus, rubella virus, parvovirus B19, tick-borne encephalitis virus, Toxoplasma gondii, and varicella zoster virus (VZV) were determined in stored paired CSF and serum samples of 50 patients with MS. Intrathecal antimicrobial antibody production was assessed by calculating antibody indices (AIs) according to standard formula. RESULTS While 50 (100%) of 50 patients with MS were EBV seropositive, seroprevalences of all other 10 microbes were lower, ranging from 94% (VZV) to 6% (Borrelia burgdorferi). An intrathecal production of antimicrobial antibodies was detected in 102 (28%) of 370 AI determinations of patients who were seropositive to the respective antimicrobial antibodies but was practically absent in seronegative patients (2/187 [1%], p < 0.0001). The frequency of intrathecally produced antimicrobial antibodies among patients who were seropositive for the respective antibodies was roughly 40% for measles, rubella, mumps, and VZV and 70% for parvovirus B19. By contrast, the frequency of intrathecally produced EBV antibodies was low (10%) and, when related to their respective seroprevalences, lower than those of all other investigated microbes. DISCUSSION Despite the universal EBV seroprevalence, the frequency of intrathecally produced EBV antibodies in patients with MS is lower than that of other microbes, whose seroprevalences are lower than those of EBV. This seemingly paradoxical finding underscores the unique role of EBV in MS and could be explained by the hypothesis that B lineage cells responsible for intrathecal antibody production are primed during and through acute EBV infection to enter the CNS of patients with MS, that is, at a time point when EBV antibody-producing cells have not yet been generated and, therefore, are not yet available for entering the CNS.
Collapse
Affiliation(s)
- Florence Pache
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Carolin Otto
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Diana Wilken
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Tatjana Lietzow
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Katja Steinhagen
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Evelin Grage-Griebenow
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Patrick Schindler
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Moritz Niederschweiberer
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Brigitte Wildemann
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Sven Jarius
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Klemens Ruprecht
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| |
Collapse
|
2
|
Otto C, Kalantzis R, Kübler-Weller D, Kühn AA, Böld T, Regler A, Strathmeyer S, Wittmann J, Ruprecht K, Heelemann S. Comprehensive analysis of the cerebrospinal fluid and serum metabolome in neurological diseases. J Neuroinflammation 2024; 21:234. [PMID: 39327581 PMCID: PMC11430517 DOI: 10.1186/s12974-024-03218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Comprehensive characterization of the metabolome in cerebrospinal fluid (CSF) and serum by Nuclear Magnetic Resonance (NMR) spectroscopy may identify biomarkers and contribute to the understanding of the pathophysiology of neurological diseases. METHODS Metabolites were determined by NMR spectroscopy in stored CSF/serum samples of 20 patients with Parkinson's disease, 25 patients with other neuro-degenerative diseases, 22 patients with cerebral ischemia, 48 patients with multiple sclerosis, and 58 control patients with normal CSF findings. The data set was analysed using descriptive and multivariate statistics, as well as machine learning models. RESULTS CSF glucose and lactic acid measured by NMR spectroscopy and routine clinical chemistry showed a strong correlation between both methods (glucose, R2 = 0.87, n = 173; lactic acid, R2 = 0.74, n = 173). NMR spectroscopy detected a total of 99 metabolites; 51 in both, CSF and serum, 16 in CSF only, and 32 in serum only. CSF concentrations of some metabolites increased with age and/or decreasing blood-brain-barrier function. Metabolite detection rates were overall similar among the different disease groups. However, in two-group comparisons, absolute metabolite levels in CSF and serum discriminated between multiple sclerosis and neurodegenerative diseases (area under the curve (AUC) = 0.96), multiple sclerosis and Parkinson's disease (AUC = 0.89), and Parkinson's disease and control patients (AUC = 0.91), as demonstrated by random forest statistical models. Orthogonal partial least square discriminant analysis using absolute metabolite levels in CSF and serum furthermore permitted separation of Parkinson's disease and neurodegenerative diseases. CSF propionic acid levels were about fourfold lower in Parkinson's disease as compared to neurodegenerative diseases. CONCLUSIONS These findings outline the landscape of the CSF and serum metabolome in different categories of neurological diseases and identify age and blood-brain-barrier function as relevant co-factors for CSF levels of certain metabolites. Metabolome profiles as determined by NMR spectroscopy may potentially aid in differentiating groups of patients with different neurological diseases, including clinically meaningful differentiations, such as Parkinson's disease from other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolin Otto
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Rea Kalantzis
- Berlin Institute of Health at Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Kübler-Weller
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tina Böld
- Lifespin GmbH, Am BioPark 13, 93050, Regensburg, Germany
| | - Armin Regler
- Lifespin GmbH, Am BioPark 13, 93050, Regensburg, Germany
| | | | | | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | |
Collapse
|
3
|
Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, Tintoré M, Villar LM, Willemse EA, Zetterberg H, Parnetti L. Fluid biomarkers in multiple sclerosis: from current to future applications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:101009. [PMID: 39444698 PMCID: PMC11496979 DOI: 10.1016/j.lanepe.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory and degenerative disorder of the central nervous system (CNS) with heterogeneous clinical manifestations. In the last decade, the landscape of cerebrospinal fluid (CSF) and blood biomarkers as potential key tools for MS diagnosis, prognosis and treatment monitoring has evolved considerably, alongside magnetic resonance imaging (MRI). CSF analysis has the potential not only to provide information on the underlying immunopathology of the disease and exclude differential diagnoses, but also to predict the risk of future relapses and disability accrual, guide therapeutic decisions and thus improve patient outcomes. This Series article overviews the biological framework and current applicability of fluid biomarkers for MS, exploring their potential role in the molecular characterisation of the disease. We discuss recent advances in the field of neurochemistry that enabled the detection of brain-derived proteins in blood, opening the door to much more efficient longitudinal disease monitoring. Furthermore, we identify the current challenges in the application of fluid biomarkers for MS in a real-world setting, while offering recommendations for harnessing their full potential as key paraclinical tools to improve patient management and personalise treatment.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Luisa M. Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Callegari I, Oechtering J, Schneider M, Perriot S, Mathias A, Voortman MM, Cagol A, Lanner U, Diebold M, Holdermann S, Kreiner V, Becher B, Granziera C, Junker A, Du Pasquier R, Khalil M, Kuhle J, Kappos L, Sanderson NSR, Derfuss T. Cell-binding IgM in CSF is distinctive of multiple sclerosis and targets the iron transporter SCARA5. Brain 2024; 147:839-848. [PMID: 38123517 PMCID: PMC10907079 DOI: 10.1093/brain/awad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023] Open
Abstract
Intrathecal IgM production in multiple sclerosis is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in multiple sclerosis, CSF from two independent cohorts, including multiple sclerosis patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS-related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of multiple sclerosis donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterization and antigen identification. We produced five cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an experimental autoimmune encephalomyelitis (EAE) model. CSF IgM might contribute to CNS inflammation in multiple sclerosis by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain.
Collapse
Affiliation(s)
- Ilaria Callegari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Mika Schneider
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Sylvain Perriot
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
| | - Amandine Mathias
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
| | | | - Alessandro Cagol
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, Basel 4123, Switzerland
| | - Ulrike Lanner
- Proteomics Core Facility, Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Martin Diebold
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg 79085, Germany
| | - Sebastian Holdermann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Victor Kreiner
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, Basel 4123, Switzerland
| | - Andreas Junker
- Department of Neuropathology, University Hospital Essen, Essen 45147, Germany
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
- Department of Clinical Neurosciences, Service of Neurology, Lausanne 1011, Switzerland
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz 8010, Austria
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Nicholas S R Sanderson
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Tobias Derfuss
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| |
Collapse
|
5
|
Oechtering J, Stein K, Schaedelin SA, Maceski AM, Orleth A, Meier S, Willemse E, Qureshi F, Heijnen I, Regeniter A, Derfuss T, Benkert P, D'Souza M, Limberg M, Fischer-Barnicol B, Achtnichts L, Mueller S, Salmen A, Lalive PH, Bridel C, Pot C, Du Pasquier RA, Gobbi C, Wiendl H, Granziera C, Kappos L, Trendelenburg M, Leppert D, Lunemann JD, Kuhle J. Complement Activation Is Associated With Disease Severity in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200212. [PMID: 38354323 PMCID: PMC10913171 DOI: 10.1212/nxi.0000000000200212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression. METHODS CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient. RESULTS CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001). DISCUSSION CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS.
Collapse
Affiliation(s)
- Johanna Oechtering
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kerstin Stein
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sabine A Schaedelin
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Aleksandra M Maceski
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Annette Orleth
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephanie Meier
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eline Willemse
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ferhan Qureshi
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Axel Regeniter
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marcus D'Souza
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marguerite Limberg
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bettina Fischer-Barnicol
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lutz Achtnichts
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefanie Mueller
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anke Salmen
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Patrice H Lalive
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claire Bridel
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caroline Pot
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Renaud A Du Pasquier
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudio Gobbi
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - David Leppert
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan D Lunemann
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Sperber PS, Brandt AU, Zimmermann HG, Bahr LS, Chien C, Rekers S, Mähler A, Böttcher C, Asseyer S, Duchow AS, Bellmann-Strobl J, Ruprecht K, Paul F, Schmitz-Hübsch T. Berlin Registry of Neuroimmunological entities (BERLimmun): protocol of a prospective observational study. BMC Neurol 2022; 22:479. [PMID: 36517734 PMCID: PMC9749207 DOI: 10.1186/s12883-022-02986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Large-scale disease overarching longitudinal data are rare in the field of neuroimmunology. However, such data could aid early disease stratification, understanding disease etiology and ultimately improve treatment decisions. The Berlin Registry of Neuroimmunological Entities (BERLimmun) is a longitudinal prospective observational study, which aims to identify diagnostic, disease activity and prognostic markers and to elucidate the underlying pathobiology of neuroimmunological diseases. METHODS BERLimmun is a single-center prospective observational study of planned 650 patients with neuroimmunological disease entity (e.g. but not confined to: multiple sclerosis, isolated syndromes, neuromyelitis optica spectrum disorders) and 85 healthy participants with 15 years of follow-up. The protocol comprises annual in-person visits with multimodal standardized assessments of medical history, rater-based disability staging, patient-report of lifestyle, diet, general health and disease specific symptoms, tests of motor, cognitive and visual functions, structural imaging of the neuroaxis and retina and extensive sampling of biological specimen. DISCUSSION The BERLimmun database allows to investigate multiple key aspects of neuroimmunological diseases, such as immunological differences between diagnoses or compared to healthy participants, interrelations between findings of functional impairment and structural change, trajectories of change for different biomarkers over time and, importantly, to study determinants of the long-term disease course. BERLimmun opens an opportunity to a better understanding and distinction of neuroimmunological diseases.
Collapse
Affiliation(s)
- Pia S. Sperber
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.7468.d0000 0001 2248 7639NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Disease (DZHK), Berlin, Germany
| | - Alexander U. Brandt
- grid.266093.80000 0001 0668 7243Department of Neurology, University of California, CA Irvine, USA
| | - Hanna G. Zimmermann
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.7468.d0000 0001 2248 7639NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lina S. Bahr
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Chien
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sophia Rekers
- grid.7468.d0000 0001 2248 7639Berlin School of Mind and Brain, Humboldt Universität Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja Mähler
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Chotima Böttcher
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanna Asseyer
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.7468.d0000 0001 2248 7639NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ankelien Solveig Duchow
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Judith Bellmann-Strobl
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.7468.d0000 0001 2248 7639NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Ruprecht
- grid.6363.00000 0001 2218 4662Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.7468.d0000 0001 2248 7639NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany ,grid.7468.d0000 0001 2248 7639NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Experimental and Clinical Research Center, Clinical Neuroimmunology Group, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
7
|
Domínguez-Mozo MI, García-Frontini Nieto MC, Gómez-Calcerrada MI, Pérez-Pérez S, García-Martínez MÁ, Villar LM, Villarrubia N, Costa-Frossard L, Arroyo R, Alvarez-Lafuente R. Mitochondrial Impairments in Peripheral Blood Mononuclear Cells of Multiple Sclerosis Patients. BIOLOGY 2022; 11:1633. [PMID: 36358334 PMCID: PMC9687791 DOI: 10.3390/biology11111633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Although impaired mitochondrial function has been proposed as a hallmark of multiple sclerosis (MS) disease, few studies focus on the mitochondria of immune cells. We aimed to compare the mitochondrial function of the peripheral blood mononuclear cells (PBMCs) from MS patients with (M+) and without (M-) lipid-specific oligoclonal immunoglobulin M bands (LS-OCMB), and healthydonors (HD). We conducted an exploratory cross-sectional study with 19 untreated MS patients (M+ = 9 and M- = 10) and 17 HDs. Mitochondrial superoxide anion production and mitochondrial mass in PBMCs were assessed without and with phytohemagglutinin by flow cytometry. The PBMCs' mitochondrial function was analyzed using Seahorse technology. Superoxide anion production corrected by the mitochondrial mass was higher in MS patients compared with HDs (p = 0.011). Mitochondrial function from M+ patients showed some impairments compared with M- patients. Without stimulus, we observed higher proton leak (p = 0.041) but lower coupling efficiency (p = 0.041) in M+ patients; and under stimulation, lower metabolic potential ECAR (p = 0.011), and lower stressed OCR/ECAR in the same patients. Exclusively among M+ patients, we described a higher mitochondrial dysfunction in the oldest ones. The mitochondrial impairments found in the PBMCs from MS patients, specifically in M+ patients, could help to better understand the disease's physiopathology.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Celeste García-Frontini Nieto
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Isabel Gómez-Calcerrada
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Ángel García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | | | - Rafael Arroyo
- Department of Neurology, Hospital Universitario Quironsalud Madrid, 28223 Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
8
|
Van Wijmeersch B, Hartung HP, Vermersch P, Pugliatti M, Pozzilli C, Grigoriadis N, Alkhawajah M, Airas L, Linker R, Oreja-Guevara C. Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide. Front Immunol 2022; 13:991291. [PMID: 36238285 PMCID: PMC9551305 DOI: 10.3389/fimmu.2022.991291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical course of multiple sclerosis (MS) is highly variable among patients, thus creating important challenges for the neurologist to appropriately treat and monitor patient progress. Despite some patients having apparently similar symptom severity at MS disease onset, their prognoses may differ greatly. To this end, we believe that a proactive disposition on the part of the neurologist to identify prognostic “red flags” early in the disease course can lead to much better long-term outcomes for the patient in terms of reduced disability and improved quality of life. Here, we present a prognosis tool in the form of a checklist of clinical, imaging and biomarker parameters which, based on consensus in the literature and on our own clinical experiences, we have established to be associated with poorer or improved clinical outcomes. The neurologist is encouraged to use this tool to identify the presence or absence of specific variables in individual patients at disease onset and thereby implement sufficiently effective treatment strategies that appropriately address the likely prognosis for each patient.
Collapse
Affiliation(s)
- Bart Van Wijmeersch
- Universitair Multiple Sclerosis (MS) Centrum, Hasselt-Pelt, Belgium
- Noorderhart, Revalidatie & Multiple Sclerosis (MS), Pelt, Belgium
- REVAL & BIOMED, Hasselt University, Hasselt, Belgium
- *Correspondence: Bart Van Wijmeersch,
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
| | - Patrick Vermersch
- University Lille, Inserm U1172 LilNCog, Centre Hospitalier Universitaire (CHU) Lille, Fédératif Hospitalo-Universitaire (FHU) Precise, Lille, France
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Unit of Clinical Neurology, San Anna University Hospital, Ferrara, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Nikolaos Grigoriadis
- B’ Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mona Alkhawajah
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laura Airas
- Turku University Hospital and University of Turku, Turku, Finland
| | - Ralf Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Cliínico San Carlos (IDISSC), Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Rosenstein I, Rasch S, Axelsson M, Novakova L, Blennow K, Zetterberg H, Lycke J. Increased intrathecal neurofilament light and immunoglobulin M predict severe disability in relapsing-remitting multiple sclerosis. Front Immunol 2022; 13:967953. [PMID: 36032114 PMCID: PMC9399944 DOI: 10.3389/fimmu.2022.967953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background Emerging evidence supports that determination of intrathecal immunoglobulin M (IgM) synthesis (ITMS) and neurofilament light (NfL) concentration in cerebrospinal fluid (CSF) may be clinically useful as disease severity biomarkers in relapsing-remitting multiple sclerosis (RRMS). Methods Monocentric observational longitudinal cohort study in which prospectively collected data were retrospectively retrieved. Included were patients with RRMS (n=457) who had a diagnostic investigation including analysis of ITMS and CSF neurofilament light (cNfL). ITMS was calculated with the linear index formula, the intrathecal fraction of IgM according to Reiber (IgMIF), and by qualitative determination of oligoclonal IgM bands (OCMB). Univariable and multivariable models were performed to predict Evidence of Disease Activity-3 (EDA-3) status within 24 months from onset, and the risk of Expanded Disability Status Score (EDSS) ≥3 and ≥6. Results All investigated methods to calculate ITMS significantly predicted evidence of disease activity (EDA-3) within 24 months. IgMIF>0% showed the strongest association with EDA-3 status (adjusted hazard ratio [aHR] 3.7, 95%CI 2.7-5, p<0.001). Combining IgM-index>0.1 or OCMB with increased cNfL were strong predictors of EDSS≥3 (for cNfL+/IgM-index+: aHR 4.6, 95%CI 2.6-8.2, p<0.001) and EDSS≥6 (aHR 8.2, 95%CI 2.3-30, p<0.001). Conclusions In a real-world setting, ITMS was a useful biomarker in early RRMS to predict disabling MS and its prognostic value was even stronger in combination with cNfL. Our data suggest that determination of ITMS and cNfL should be included in the diagnostic work-up of RRMS for prognostic purposes and in decisions of disease-modifying therapy.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Igal Rosenstein,
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at University College London (UCL), London, United Kingdom
- Department of Neurodegenerative Disease, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is highly heterogenic disorder with respect to clinical course, diagnosis, and treatment response. There is an urgent need to search for simply and reliable fluid body biomarker which would assist the diagnosis and prediction of clinical and treatment prognosis. RECENT FINDINGS 'Traditional' MS biomarkers, with exception of cerebrospinal fluid oligoclonal bands, still are having limited clinical value. Therefore, there is growing interest in novel molecules and ingredients. The most robust results have been generated with regard to cerebrospinal fluid and serum levels of neurofilament light chains (NfL). However, there are still some limitations related to specificity of NfL which delays its use in everyday practice. We present a new approach to search for biomarkers involving extracellular RNA, particularly microRNA (miRNA), and small extracellular vesicles. MiRNA represents an important molecular mechanism influencing gene expression, including those involved in MS pathogenesis and extracellular vesicles transfer multiple cargo, including myelin molecules from parental cells of central nervous system to the long-distance targets. SUMMARY MiRNAs which control gene expression in cells involved in autoimmune processes in MS as well as extracellular vesicles transferring myelin content might generate a new promising categories of biomarkers of MS.
Collapse
|
11
|
Castillo-Villalba J, Gil-Perotín S, Gasque-Rubio R, Cubas-Nuñez L, Carratalà-Boscà S, Alcalá C, Quintanilla-Bordás C, Pérez-Miralles F, Ferrer C, Cañada Martínez A, Tortosa J, Solís-Tarazona L, Campos L, Leivas A, Laíz Marro B, Casanova B. High Levels of Cerebrospinal Fluid Kappa Free Light Chains Relate to IgM Intrathecal Synthesis and Might Have Prognostic Implications in Relapsing Multiple Sclerosis. Front Immunol 2022; 13:827738. [PMID: 35330910 PMCID: PMC8940299 DOI: 10.3389/fimmu.2022.827738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebrospinal kappa free light chain (KFLC)-index is a marker of intrathecal immunoglobulin synthesis that aids in the diagnosis of multiple sclerosis (MS). However, little evidence exists on its prognostic role. Our aim is to analyze the relationship between KFLC-index and other MS biomarkers and to explore its prognostic role. This is a monocentric observational study in a cohort of 52 people with relapsing MS (pwRMS) performed on prospectively acquired clinical data and with retrospective evaluation of biomarkers. We measured KFLC-index, immunoglobulin intrathecal synthesis, cerebrospinal fluid (CSF) chitinase 3-like 1 (CHI3L1), and neurofilament light protein (NFL) and reviewed MRI to detect leptomeningeal contrast enhancement (LMCE). We compared time to Expanded Disability Status Scale (EDSS) 3 and to initiation of high-efficacy disease-modifying therapies (heDMTs) by multivariate Cox regression analysis. Median KFLC-index correlated with IgG/IgM indexes (p < 0.0001/p < 0.05) and IgG-oligoclonal bands (OCGBs) (p < 0.001). Patients with IgM-oligoclonal bands (OCMBs) had a higher KFLC-index (p = 0.049). KFLC-index was higher in patients with LMCE (p = 0.008) and correlated with CHI3L1 (p = 0.007), but disease activity had no effect on its value. Bivariate and multivariate analyses confirmed KFLC-index > 58 as an independent risk factor for reaching an EDSS of 3 (hazard ratio (HR) = 12.4; 95% CI = 1.1-147; p = 0.047) and for the need of treatment with heDMTs (HR = 3.0; 95% CI = 1.2-7.1; p = 0.0013). To conclude, our data suggest a potential prognostic role of the KFLC-index during the MS course.
Collapse
Affiliation(s)
- Jéssica Castillo-Villalba
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sara Gil-Perotín
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Raquel Gasque-Rubio
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Laura Cubas-Nuñez
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sara Carratalà-Boscà
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Alcalá
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carlos Quintanilla-Bordás
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Pérez-Miralles
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cristina Ferrer
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Antonio Cañada Martínez
- Data Science, Biostatistics and Bioinformatics, Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jordi Tortosa
- Clinical Laboratory, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Luisa Campos
- Scientific Department, The Binding Site Iberia, Barcelona, Spain
| | - Alberto Leivas
- Scientific Department, The Binding Site Iberia, Barcelona, Spain
| | - Begoña Laíz Marro
- Clinical Laboratory, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
12
|
Shuken SR, Rutledge J, Iram T, Losada PM, Wilson EN, Andreasson KI, Leib RD, Wyss-Coray T. Limited Proteolysis-Mass Spectrometry Reveals Aging-Associated Changes in Cerebrospinal Fluid Protein Abundances and Structures. NATURE AGING 2022; 2:379-388. [PMID: 36741774 PMCID: PMC9893943 DOI: 10.1038/s43587-022-00196-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebrospinal fluid (CSF) proteins and their structures have been implicated repeatedly in aging and neurodegenerative diseases. Limited proteolysis-mass spectrometry (LiP-MS) is a method that enables proteome-wide screening for changes in both protein abundance and structure. To screen for novel aging-associated changes in the CSF proteome, we performed LiP-MS on CSF from young and old mice with a modified analysis pipeline. We found 38 protein groups change in abundance with aging, most dominantly immunoglobulins of the IgM subclass. We discovered six high-confidence candidates that appeared to change in structure with aging, of which Kng1, Itih2, Lp-PLA2, and 14-3-3 proteins have binding partners or proteoforms known previously to change in the brain with Alzheimer's disease. Intriguingly, using orthogonal validation by Western blot we found the LiP-MS hit Cd5l forms a covalent complex with IgM in mouse and human CSF whose abundance increases with aging. SOMAmer probe signals for all six LiP-MS hits in human CSF, especially 14-3-3 proteins, significantly associate with several clinical features relevant to cognitive function and neurodegeneration. Together, our findings show that LiP-MS can uncover age-related structural changes in CSF with relevance to neurodegeneration.
Collapse
Affiliation(s)
- Steven R. Shuken
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jarod Rutledge
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Patricia Moran Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Edward N. Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Program in Immunology, Stanford University, Stanford, CA, USA
| | - Ryan D. Leib
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,To whom correspondence should be addressed:
| |
Collapse
|
13
|
Prognostic value of intrathecal IgM synthesis determined by various laboratory methods in patients with early multiple sclerosis - a prospective observational study. Mult Scler Relat Disord 2022; 63:103847. [DOI: 10.1016/j.msard.2022.103847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
|
14
|
Oechtering J, Lincke T, Schaedelin S, Décard BF, Maceski A, Orleth A, Meier S, Willemse E, Buchmann A, Khalil M, Derfuss T, Benkert P, Heijnen I, Regeniter A, Müller S, Achtnichts L, Lalive P, Salmen A, Pot C, Gobbi C, Kappos L, Granziera C, Leppert D, Schlaeger R, Lieb JM, Kuhle J. Intrathecal IgM synthesis is associated with spinal cord manifestation and neuronal injury in early MS. Ann Neurol 2022; 91:814-820. [PMID: 35293622 PMCID: PMC9320956 DOI: 10.1002/ana.26348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Objective Intrathecal Immunoglobulin M synthesis (IgMIntrathecal Fraction (IF)+) and spinal MRI lesions are both strong independent predictors of higher disease activity and severity in multiple sclerosis (MS). We investigated whether IgMIF+ is associated with spinal cord manifestation and higher neuroaxonal damage in early MS. Methods In 122 patients with a first demyelinating event associations between (1) spinal versus (vs) non‐spinal clinical syndrome (2) spinal vs cerebral T2‐weighted (T2w) and (3) contrast‐enhancing (CE) lesion counts with IgGIF+ (vs IgGIF−) or IgMIF+ (vs IgMIF−) were investigated by logistic regression adjusted for age and sex, respectively. For serum neurofilament light chain (sNfL) analysis patients were categorized for presence or absence of oligoclonal IgG bands (OCGB), IgGIF and IgMIF (>0% vs 0%, respectively): (1) OCGB−/IgGIF−/IgMIF−; (2) OCGB+/IgGIF−/IgMIF−; (3) OCGB+/IgGIF+/IgMIF−; and (4) OCGB+/IgGIF+/IgMIF+. Associations between categories 2 to 4 vs category 1 with sNfL concentrations were analyzed by robust linear regression, adjusted for sex and MRI parameters. Results Patients with a spinal syndrome had a 8.36‐fold higher odds of IgMIF+ (95%CI 3.03–23.03; p < 0.01). Each spinal T2w lesion (odds Ratio 1.39; 1.02–1.90; p = 0.037) and CE lesion (OR 2.73; 1.22–6.09; p = 0.014) was associated with an increased risk of IgMIF+ (but not of IgGIF+); this was not the case for cerebral lesions. OCGB+/IgGIF+/IgMIF+ category patients showed highest sNfL levels (estimate:1.80; 0.55–3.06; p < 0.01). Interpretation Intrathecal IgM synthesis is strongly associated with spinal manifestation and independently more pronounced neuroaxonal injury in early MS, suggesting a distinct clinical phenotype and pathophysiology. ANN NEUROL 2022;91:814–820
Collapse
Affiliation(s)
- Johanna Oechtering
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Therese Lincke
- Division of Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Switzerland
| | - Sabine Schaedelin
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland.,Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bernhard F Décard
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Aleksandra Maceski
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Annette Orleth
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Stephanie Meier
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Eline Willemse
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Arabella Buchmann
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland.,Department of Neurology, Medical University of Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Tobias Derfuss
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Pascal Benkert
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland.,Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stefanie Müller
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Lutz Achtnichts
- Department of Neurology, Cantonal Hospital Aarau, Switzerland
| | - Patrice Lalive
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospital, Geneva, Switzerland.,Diagnostic Department, Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Caroline Pot
- Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Claudio Gobbi
- Neurocentre of Southern Switzerland, Multiple sclerosis centre, Ospedale Civico, Lugano, Switzerland
| | - Ludwig Kappos
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | - Regina Schlaeger
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Johanna M Lieb
- Division of Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
| | | |
Collapse
|
15
|
Decreased Intrathecal Concentrations of Free Light Chains Kappa in Multiple Sclerosis Patients Taking Very High Effective Disease-Modifying Treatment. Diagnostics (Basel) 2022; 12:diagnostics12030720. [PMID: 35328273 PMCID: PMC8947149 DOI: 10.3390/diagnostics12030720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Free light chains kappa (FLCκ) in cerebrospinal fluid (CSF) are a part of the intrathecal immune response. This observational study was conducted to investigate the effects of different disease-modifying therapies (DMT) on the humoral intrathecal immune response in the CSF of patients with multiple sclerosis (MS). FLCκ were analyzed in CSF and serum samples from MS patients taking DMT (n = 60) and those in a control cohort of treatment-naïve MS patients (n = 90). DMT was classified as moderately effective (including INFß-1a, INFß-1b, glatiramer acetate, dimethyl fumarate, teriflunomide, triamcinolone); highly effective (including fingolimod, daclizumab) and very highly effective (alemtuzumab, natalizumab, rituximab/ocrelizumab, mitoxantrone). FLCκ were measured using a nephelometric FLCκ kit. Intrathecal FLCκ and IgG concentrations were assessed in relation to the hyperbolic reference range in quotient diagrams. Intrathecal FLCκ concentrations and IgG concentrations were significantly lower in samples from the cohort of MS patients taking very highly effective DMT than in samples from the cohort of MS patients taking highly effective DMT and in the treatment-naïve cohort (FLCκ: p = 0.004, p < 0.0001 respectively/IgG: p = 0.013; p = 0.021). The reduction in FLCκ could contribute to an anti-inflammatory effect in the CNS through this mechanism. There was no difference in the appearance of CSF-specific oligoclonal bands (p = 0.830). Longitudinal analyses are required to confirm these results.
Collapse
|
16
|
Lindeman I, Polak J, Qiao S, Holmøy T, Høglund RA, Vartdal F, Berg‐Hansen P, Sollid LM, Lossius A. Stereotyped B‐cell responses are linked to IgG constant region polymorphisms in multiple sclerosis. Eur J Immunol 2022; 52:550-565. [DOI: 10.1002/eji.202149576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ida Lindeman
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Justyna Polak
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Shuo‐Wang Qiao
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Trygve Holmøy
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Neurology Institute of Clinical Medicine University of Oslo Norway
| | - Rune A. Høglund
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Neurology Institute of Clinical Medicine University of Oslo Norway
| | - Frode Vartdal
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Pål Berg‐Hansen
- Department of Neurology Oslo University Hospital Oslo Norway
| | - Ludvig M. Sollid
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Andreas Lossius
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Norway
| |
Collapse
|
17
|
OUP accepted manuscript. Clin Chem 2022; 68:1134-1150. [DOI: 10.1093/clinchem/hvac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
|
18
|
Coll-Martinez C, Quintana E, Salavedra-Pont J, Buxó M, González-Del-Rio M, Gómez I, Muñoz-San Martín M, Villar LM, Álvarez-Bravo G, Robles-Cedeño R, Ramió-Torrentà L, Gich J. Assessing the presence of oligoclonal IgM bands as a prognostic biomarker of cognitive decline in the early stages of multiple sclerosis. Brain Behav 2021; 11:e2405. [PMID: 34796675 PMCID: PMC8671794 DOI: 10.1002/brb3.2405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND An association has been found between the presence of lipid-specific oligoclonal IgM bands (LS-OCMB) in cerebrospinal fluid and a more severe clinical multiple sclerosis course. OBJECTIVE To investigate lipid-specific oligoclonal IgM bands as a prognostic biomarker of cognitive impairment in the early stages of multiple sclerosis. METHODS Forty-four patients underwent neuropsychological assessment at baseline and 4 years. Cognitive performance at follow-up was compared adjusting by age, education, anxiety-depression, and baseline performance. RESULTS LS-OCMB+ patients only performed worse for Long-Term Storage in the Selective Reminding Test (p = .018). CONCLUSION There are no remarkable cognitive differences between LS-OCMB- and LS-OCMB+ patients in the early stages of MS.
Collapse
Affiliation(s)
- Clàudia Coll-Martinez
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Ester Quintana
- Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain.,REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain
| | - Judit Salavedra-Pont
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Maria Buxó
- Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Marina González-Del-Rio
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Immaculada Gómez
- Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - María Muñoz-San Martín
- Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Luisa María Villar
- REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain.,Immunology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Gary Álvarez-Bravo
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - René Robles-Cedeño
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain.,REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain
| | - Lluís Ramió-Torrentà
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain.,REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain
| | - Jordi Gich
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain
| |
Collapse
|
19
|
Pache F, Ringelstein M, Aktas O, Kleiter I, Jarius S, Siebert N, Bellmann-Strobl J, Paul F, Ruprecht K. C3 and C4 complement levels in AQP4-IgG-positive NMOSD and in MOGAD. J Neuroimmunol 2021; 360:577699. [PMID: 34464830 DOI: 10.1016/j.jneuroim.2021.577699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 11/30/2022]
Abstract
While complement-dependent cytotoxicity (CDC) is a known effector mechanism in aquaporin-4-immunoglobulin (Ig)G-positive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD), the role of CDC in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is less clear. We determined complement C3 and C4 plasma concentrations in patients with clinically stable AQP4-IgG+ NMOSD (n = 16), MOGAD (n = 15), early multiple sclerosis (MS, n = 19) and in healthy controls (HC, n = 18). C4 was lower in AQP4-IgG+ NMOSD than in MOGAD, MS and HC (p < 0.05, pairwise comparisons). C3 was lower in AQP4-IgG+ NMOSD than in MS (p = 0.034). These findings suggest subtle complement consumption in clinically stable AQP4-IgG+ NMOSD, but not in MOGAD.
Collapse
Affiliation(s)
- Florence Pache
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Kleiter
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, Bochum, Germany; Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Nadja Siebert
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany; Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany; Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Klemens Ruprecht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| |
Collapse
|
20
|
Cerebrospinal Fluid IgM and Oligoclonal IgG Bands in Multiple Sclerosis: A Meta-Analysis of Prevalence and Prognosis. Brain Sci 2021; 11:brainsci11111444. [PMID: 34827444 PMCID: PMC8615995 DOI: 10.3390/brainsci11111444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of intrathecal IgM synthesis (ITMS) has been associated with an aggressive multiple sclerosis (MS) clinical course. In the present systematic review, we aimed at assessing the prevalence of ITMS among different MS phenotypes. Moreover, we aimed at quantifying the risk of a second relapse in ITMS positive and oligoclonal IgG bands (OCGBs)-positive patients. We selected clinical studies reporting the ITMS prevalence assessed as oligoclonal IgM Bands (OCMBs), lipid-specific OCMBs (LS-OCMBs), and/or as an intrathecal IgM production > 0% (IgMLoc, Reiber formula). The overall prevalence of ITMS was higher in relapsing-remitting (RR) than clinically isolated syndrome (CIS) patients (40.1% versus 23.8%, p < 0.00001), while was in line with that detected in primary progressive MS (PPMS, 26.7%). Almost all patients (98%) with ITMS had also OCGBs. The risk of having a second relapse was higher in OCGBs positive patients (HR = 2.18, p = 0.007) but much higher in ITMS positive patients (HR = 3.62, p = 0.0005). This study revealed that the prevalence of ITMS is higher in RRMS patients. It suggests that the risk of having a second relapse, previously ascribed to OCGBs, may, to a certain extent, be related to the presence of intrathecal IgM.
Collapse
|
21
|
Rosenstein I, Rasch S, Axelsson M, Novakova L, Blennow K, Zetterberg H, Lycke J. Kappa free light chain index as a diagnostic biomarker in multiple sclerosis: A real-world investigation. J Neurochem 2021; 159:618-628. [PMID: 34478561 DOI: 10.1111/jnc.15500] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Kappa free light chain (KFLC) index, a measure for intrathecal production of free kappa chains, has been increasingly recognized for its diagnostic potential in multiple sclerosis (MS) as a quantitative alternative to IgG oligoclonal bands (OCBs). Our objective was to investigate the sensitivity, specificity, and overall diagnostic accuracy of KFLC index in MS. KFLC index was prospectively determined as part of the diagnostic workup in patients with suspected MS (n = 327) between May 2013 and February 2020. Patients with clinically isolated syndrome (CIS), radiologically isolated syndrome (RIS), and MS had markedly higher KFLC index (44.6, IQR 16-128) compared with subjects with other neuro-inflammatory disorders (ONID) and symptomatic controls (SC) (2.19, IQR 1.68-2.98, p < 0.001). KFLC index had a sensitivity of 0.93 (95% CI 0.88-0.95) and specificity of 0.87 (95% CI 0.8-0.92) to discriminate CIS/RIS/MS from ONID and SC (AUC 0.94, 95% CI 0.91-0.97, p < 0.001). KFLC index and intrathecal fraction (IF) KFLC had similar accuracies to detect MS. Treatment with disease-modifying therapy (DMT) did not influence the level of KFLC index and it was not affected by demographic factors or associated with degenerative or inflammatory biomarkers in cerebrospinal fluid (CSF). KFLC index in MS diagnostics has methodological advantages compared to OCB and is independent to subjective interpretation. Moreover, it is an attractive diagnostic tool since the diagnostic specificity and sensitivity of KFLC index are similar with that of OCBs and KFLCIF and better than for IgG index. We show that KFLC index was influenced neither by DMT nor by demographic factors or other inflammatory or degenerative processes in MS as determined by biomarkers in CSF.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Monreal E, Sainz de la Maza S, Costa-Frossard L, Walo-Delgado P, Zamora J, Fernández-Velasco JI, Villarrubia N, Espiño M, Lourido D, Lapuente P, Toboso I, Álvarez-Cermeño JC, Masjuan J, Villar LM. Predicting Aggressive Multiple Sclerosis With Intrathecal IgM Synthesis Among Patients With a Clinically Isolated Syndrome. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1047. [PMID: 34301819 PMCID: PMC8299514 DOI: 10.1212/nxi.0000000000001047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023]
Abstract
Objective To determine the best method to measure intrathecal immunoglobulin (Ig) M synthesis (ITMS), a biomarker of worse prognosis in multiple sclerosis (MS). We compared the ability for predicting a poor evolution of 4 methods assessing ITMS (IgM oligoclonal bands [OCMBs], lipid-specific OCMBs [LS-OCMBs], Reibergram, and IgM index) in patients with a clinically isolated syndrome (CIS). Methods Prospective study with consecutive patients performed at a referral MS center. We used unadjusted and multivariate Cox regressions for predicting a second relapse, Expanded Disability Status Scale (EDSS) scores of 4 and 6, and development of secondary progressive MS (SPMS). Results A total of 193 patients were included, with a median (interquartile range) age of 31 (25–38) years and a median follow-up of 12.9 years. Among all methods, only OCMB, LS-OCMB, and Reibergram significantly identified patients at risk of some of the pre-established outcomes, being LS-OCMB the technique with the strongest associations. Adjusted hazard ratio (aHR) of LS-OCMB for predicting a second relapse was 2.50 (95% CI 1.72–3.64, p < 0.001). The risk of reaching EDSS scores of 4 and 6 and SPMS was significantly higher among patients with LS-OCMB (aHR 2.96, 95% CI 1.54–5.71, p = 0.001; aHR 4.96, 95% CI 2.22–11.07, p < 0.001; and aHR 2.31, 95% CI 1.08–4.93, p = 0.03, respectively). Conclusions ITMS predicts an aggressive MS at disease onset, especially when detected as LS-OCMB. Classification of Evidence This study provides Class II evidence that lipid-specific IgM oligoclonal bands can predict progression from CIS to MS and a worse disease course over a follow-up of at least 2 years.
Collapse
Affiliation(s)
- Enric Monreal
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.
| | - Susana Sainz de la Maza
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Lucienne Costa-Frossard
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Paulette Walo-Delgado
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Javier Zamora
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José Ignacio Fernández-Velasco
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Noelia Villarrubia
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Mercedes Espiño
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Daniel Lourido
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Paloma Lapuente
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Inmaculada Toboso
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José Carlos Álvarez-Cermeño
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Jaime Masjuan
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Luisa María Villar
- From the Department of Neurology (E.M., S.S.d.l.M., L.C.-F., J.C.Á.-C., J.M.), and Department of Immunology (P.W.-D., J.I.F.-V., N.V., M.E., P.L., I.T., L.M.V.), Hospital Universitario Ramón y Cajal, REEM, IRYCIS; Clinical Biostatistics Unit (J.Z.), Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Madrid, Spain; Institute of Metabolism and System Research (J.Z.), University of Birmingham, United Kingdom; and Department of Radiology (D.L.), Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| |
Collapse
|
23
|
Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: a retrospective cohort study. Sci Rep 2021; 11:14987. [PMID: 34294805 PMCID: PMC8298473 DOI: 10.1038/s41598-021-94423-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) patients with immunoglobulin gamma (IgG) oligoclonal bands (OCB) in the cerebrospinal fluid (CSF) have different genetic backgrounds and brain MRI features compared to those without. In this study, we aimed to determine whether CSF-OCB status is associated with long-term disability outcomes. We used Swedish MS register data on clinically definite MS patients with known OCB status. Date of birth, age at MS onset, and time to sustained Expanded Disability Status Scale (EDSS) milestones 3, 4, and 6; time to conversion to secondary progressive (SP) MS, sex, and immunomodulatory treatment (IMTs) duration were collected. Multivariate Cox regression models were used to investigate the association between OCB status and risk of reaching each milestone. The OCB-positive group reached disability milestones at an earlier time and younger age. OCB-positivity significantly increased the risk of reaching EDSS 3.0 (HR = 1.29, 95% CI 1.12 to 1.48, P < 0.001) and 4.0 (HR = 1.38, 95% CI 1.17 to 1.63, P < 0.001). The OCB-positive group had a 20% higher risk of conversion to SPMS. CSF-OCB presence is associated with higher risk of reaching EDSS milestones and conversion to SPMS. Our findings suggest higher disease modifying effect of OCB presence in the early inflammatory stages of MS.
Collapse
|
24
|
Picón C, Tejeda-Velarde A, Fernández-Velasco JI, Comabella M, Álvarez-Lafuente R, Quintana E, Sainz de la Maza S, Monreal E, Villarrubia N, Álvarez-Cermeño JC, Domínguez-Mozo MI, Ramió-Torrentà L, Rodríguez-Martín E, Roldán E, Aladro Y, Medina S, Espiño M, Masjuan J, Matute-Blanch C, Muñoz-San Martín M, Espejo C, Guaza C, Muriel A, Costa-Frossard L, Villar LM. Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Front Immunol 2021; 12:685139. [PMID: 34322119 PMCID: PMC8311928 DOI: 10.3389/fimmu.2021.685139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Patients with multiple sclerosis (MS) suffer with age an early immunosenescence process, which influence the treatment response and increase the risk of infections. We explored whether lipid-specific oligoclonal IgM bands (LS-OCMB) associated with highly inflammatory MS modify the immunological profile induced by age in MS. This cross-sectional study included 263 MS patients who were classified according to the presence (M+, n=72) and absence (M-, n=191) of LS-OCMB. CSF cellular subsets and molecules implicated in immunosenescence were explored. In M- patients, aging induced remarkable decreases in absolute CSF counts of CD4+ and CD8+ T lymphocytes, including Th1 and Th17 cells, and of B cells, including those secreting TNF-alpha. It also increased serum anti-CMV IgG antibody titers (indicative of immunosenescence) and CSF CHI3L1 levels (related to astrocyte activation). In contrast, M+ patients showed an age-associated increase of TIM-3 (a biomarker of T cell exhaustion) and increased values of CHI3L1, independently of age. Finally, in both groups, age induced an increase in CSF levels of PD-L1 (an inductor of T cell tolerance) and activin A (part of the senescence-associated secretome and related to inflammaging). These changes were independent of the disease duration. Finally, this resulted in augmented disability. In summary, all MS patients experience with age a modest induction of T-cell tolerance and an activation of the innate immunity, resulting in increased disability. Additionally, M- patients show clear decreases in CSF lymphocyte numbers, which could increase the risk of infections. Thus, age and immunological status are important for tailoring effective therapies in MS.
Collapse
Affiliation(s)
- Carmen Picón
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Department of Brain Science, Imperial College London, London, United Kingdom
| | - Amalia Tejeda-Velarde
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - José Ignacio Fernández-Velasco
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’ Esclerosi Múltiple de Catalunya (Cemcat), Vall d’ Hebron Institut de Recerca, Hospital Universitari Vall d’ Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Álvarez-Lafuente
- Department of Neurology, Hospital Clínico San Carlos, Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), REEM, Madrid, Spain
| | - Ester Quintana
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr. Josep Trueta, Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Medical Sciences Department, Universitat de Girona, REEM, Girona, Spain
| | | | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, REEM, Madrid, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | | | - María Inmaculada Domínguez-Mozo
- Department of Neurology, Hospital Clínico San Carlos, Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), REEM, Madrid, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr. Josep Trueta, Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Medical Sciences Department, Universitat de Girona, REEM, Girona, Spain
| | - Eulalia Rodríguez-Martín
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Ernesto Roldán
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Yolanda Aladro
- Department of Neurology, Hospital Universitario de Getafe, REEM, Madrid, Spain
| | - Silvia Medina
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Mercedes Espiño
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, REEM, Madrid, Spain
| | - Clara Matute-Blanch
- Servei de Neurologia-Neuroimmunologia, Centre d’ Esclerosi Múltiple de Catalunya (Cemcat), Vall d’ Hebron Institut de Recerca, Hospital Universitari Vall d’ Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Muñoz-San Martín
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr. Josep Trueta, Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Medical Sciences Department, Universitat de Girona, REEM, Girona, Spain
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d’ Esclerosi Múltiple de Catalunya (Cemcat), Vall d’ Hebron Institut de Recerca, Hospital Universitari Vall d’ Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain
| | - Alfonso Muriel
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, CIBERESP, Nursing Department, Universidad de Alcalá, Madrid, Spain
| | | | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacón Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| |
Collapse
|
25
|
Schlüter M, Oswald E, Winklmeier S, Meinl I, Havla J, Eichhorn P, Meinl E, Kümpfel T. Effects of Natalizumab Therapy on Intrathecal Immunoglobulin G Production Indicate Targeting of Plasmablasts. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1030. [PMID: 34210800 PMCID: PMC8265584 DOI: 10.1212/nxi.0000000000001030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To evaluate the long-term effects of natalizumab (NTZ) on different features of intrathecal immunoglobulin (Ig) synthesis in patients with multiple sclerosis (MS) and to quantify the expression of α4-integrin in stages of B-cell maturation. METHODS We combined a cross-sectional (49 NTZ-treated MS patients, mean treatment duration 5.1 years, and 47 untreated MS patients) and a longitudinal study (33 patients with MS before and during NTZ, mean treatment duration: 4.8 years), analyzing paired serum and CSF samples for IgG, IgA, and IgM levels, reactivity against selected viruses (measles virus, rubella virus, and varicella zoster virus [MRZ] reaction), and oligoclonal bands (OCBs). Banding patterns before and after therapy were directly compared by isoelectric focusing in 1 patient. In addition, we determined the expression of α4-integrin by FACS analysis on blood-derived B-cell subsets (plasmablasts, memory B cells, and naive B cells) of healthy controls. RESULTS In serum, NTZ decreased IgM and IgG, but not IgA, levels. IgM hypogammaglobulinemia occurred in 28% of NTZ-treated patients. In CSF, NTZ treatment resulted in a strong reduction of intrathecally produced IgG and, to a lesser extent, IgA, whereas IgM indices [(Ig CSF/Serum)/(Albumin CSF/Serum)] remained largely unchanged. Reduction of the IgG index correlated with NTZ treatment duration, as did serum IgM and IgA levels. MRZ reaction was unchanged and OCB persisted. Direct comparison of OCB pattern before and after NTZ revealed the persistence of individual bands. α4-Integrin expression was highest on plasmablasts (CD19+CD38+CD27+). CONCLUSION Our data indicate that NTZ reduces short-lived plasmablasts in the CNS compartment but has little effect on locally persisting long-lived plasma cells.
Collapse
Affiliation(s)
- Miriam Schlüter
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Eva Oswald
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Stephan Winklmeier
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Ingrid Meinl
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Joachim Havla
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Peter Eichhorn
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Edgar Meinl
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Tania Kümpfel
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany.
| |
Collapse
|
26
|
Berek K, Bsteh G, Auer M, Di Pauli F, Zinganell A, Berger T, Deisenhammer F, Hegen H. Cerebrospinal Fluid Findings in 541 Patients With Clinically Isolated Syndrome and Multiple Sclerosis: A Monocentric Study. Front Immunol 2021; 12:675307. [PMID: 34220821 PMCID: PMC8248497 DOI: 10.3389/fimmu.2021.675307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Reports on typical routine cerebrospinal fluid (CSF) findings are outdated owing to novel reference limits (RL) and revised diagnostic criteria of Multiple Sclerosis (MS). Objective To assess routine CSF parameters in MS patients and the frequency of pathologic findings by applying novel RL. Methods CSF white blood cells (WBC), CSF total protein (CSF-TP), CSF/serum albumin quotient (Qalb), intrathecal synthesis of immunoglobulins (Ig) A, M and G, oligoclonal IgG bands (OCB) were determined in patients with clinically isolated syndrome (CIS) and MS. Results Of 541 patients 54% showed CSF pleocytosis with a WBC count up to 40/μl. CSF cytology revealed lymphocytes, monocytes and neutrophils in 99%, 41% and 9% of patients. CSF-TP and Qalb were increased in 19% and 7% applying age-corrected RL as opposed to 34% and 26% with conventional RL. Quantitative intrathecal IgG, IgA and IgM synthesis were present in 65%, 14% and 21%; OCB in 95% of patients. WBC were higher in relapsing than progressive MS and predicted, together with monocytes, the conversion from CIS to clinically definite MS. Intrathecal IgG fraction was highest in secondary progressive MS. Conclusions CSF profile in MS varies across disease courses. Blood-CSF-barrier dysfunction and intrathecal IgA/IgM synthesis are less frequent when the novel RL are applied.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Oechtering J, Schaedelin S, Benkert P, Müller S, Achtnichts L, Vehoff J, Disanto G, Findling O, Fischer-Barnicol B, Orleth A, Chan A, Pot C, Barakovic M, Rahmanzadeh R, Galbusera R, Heijnen I, Lalive PH, Wuerfel J, Subramaniam S, Aeschbacher S, Conen D, Naegelin Y, Maceski A, Meier S, Berger K, Wiendl H, Lincke T, Lieb J, Yaldizli Ö, Sinnecker T, Derfuss T, Regeniter A, Zecca C, Gobbi C, Kappos L, Granziera C, Leppert D, Kuhle J. Intrathecal Immunoglobulin M Synthesis is an Independent Biomarker for Higher Disease Activity and Severity in Multiple Sclerosis. Ann Neurol 2021; 90:477-489. [PMID: 34057235 PMCID: PMC8518907 DOI: 10.1002/ana.26137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE We aimed to determine in relapsing multiple sclerosis (MS) whether intrathecal synthesis of immunoglobulin (Ig) M and IgG is associated with outcomes reflecting inflammatory activity and chronic worsening. METHODS We compared cerebrospinal fluid analysis, clinical and magnetic resonance imaging data, and serum neurofilament light chain (sNfL) levels at baseline and follow-up in 530 patients with relapsing MS. Patients were categorized by the presence of oligoclonal IgG bands (OCGB) and intrathecal synthesis of IgG and IgM (intrathecal fraction [IF]: IgGIF and IgMIF ). Relationships with the time to first relapse, sNfL concentrations, T2-weighted (T2w) lesions, MS Severity Score (MSSS), and time to initiation of high-efficacy therapy were analyzed in covariate-adjusted statistical models. RESULTS By categorical analysis, in patients with IgMIF the median time to first relapse was 28 months shorter and MSSS on average higher by 1.11 steps compared with patients without intrathecal immunoglobulin synthesis. Moreover, patients with IgMIF had higher sNfL concentrations, more new/enlarging T2w lesions, and higher total T2w lesion counts (all p ≤ 0.01). These associations were absent or equally smaller in patients who were positive for only OCGB or OCGB/IgGIF . Furthermore, quantitative analyses revealed that in patients with IgMIF ≥ median, the time to first relapse and to initiation of high-efficacy therapy was shorter by 32 and by 203 months, respectively (both p < 0.01), in comparison to patients with IgMIF < median. Dose-dependent associations were also found for IgMIF but not for IgGIF with magnetic resonance imaging-defined disease activity and sNfL. INTERPRETATION This large study supports the value of intrathecal IgM synthesis as an independent biomarker of disease activity and severity in relapsing MS. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Johanna Oechtering
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefanie Müller
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Lutz Achtnichts
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Jochen Vehoff
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Giulio Disanto
- Neurocentre of Southern Switzerland, Multiple Sclerosis Centre, Ospedale Civico, Lugano, Switzerland
| | - Oliver Findling
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Bettina Fischer-Barnicol
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Annette Orleth
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Caroline Pot
- Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Muhamed Barakovic
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Reza Rahmanzadeh
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Patrice H Lalive
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospital, Geneva, Switzerland.,Diagnostic Department, Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Suvitha Subramaniam
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Yvonne Naegelin
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aleksandra Maceski
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stephanie Meier
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Therese Lincke
- Division of Neuroradiology, Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Johanna Lieb
- Division of Neuroradiology, Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Özgür Yaldizli
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tim Sinnecker
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.,Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Tobias Derfuss
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Chiara Zecca
- Neurocentre of Southern Switzerland, Multiple Sclerosis Centre, Ospedale Civico, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Claudio Gobbi
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.,Neurocentre of Southern Switzerland, Multiple Sclerosis Centre, Ospedale Civico, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Ludwig Kappos
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
28
|
Probert F, Yeo T, Zhou Y, Sealey M, Arora S, Palace J, Claridge TDW, Hillenbrand R, Oechtering J, Leppert D, Kuhle J, Anthony DC. Integrative biochemical, proteomics and metabolomics cerebrospinal fluid biomarkers predict clinical conversion to multiple sclerosis. Brain Commun 2021; 3:fcab084. [PMID: 33997784 PMCID: PMC8111065 DOI: 10.1093/braincomms/fcab084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Eighty-five percent of multiple sclerosis cases begin with a discrete attack termed clinically isolated syndrome, but 37% of clinically isolated syndrome patients do not experience a relapse within 20 years of onset. Thus, the identification of biomarkers able to differentiate between individuals who are most likely to have a second clinical attack from those who remain in the clinically isolated syndrome stage is essential to apply a personalized medicine approach. We sought to identify biomarkers from biochemical, metabolic and proteomic screens that predict clinically defined conversion from clinically isolated syndrome to multiple sclerosis and generate a multi-omics-based algorithm with higher prognostic accuracy than any currently available test. An integrative multi-variate approach was applied to the analysis of cerebrospinal fluid samples taken from 54 individuals at the point of clinically isolated syndrome with 2-10 years of subsequent follow-up enabling stratification into clinical converters and non-converters. Leukocyte counts were significantly elevated at onset in the clinical converters and predict the occurrence of a second attack with 70% accuracy. Myo-inositol levels were significantly increased in clinical converters while glucose levels were decreased, predicting transition to multiple sclerosis with accuracies of 72% and 63%, respectively. Proteomics analysis identified 89 novel gene products related to conversion. The identified biochemical and protein biomarkers were combined to produce an algorithm with predictive accuracy of 83% for the transition to clinically defined multiple sclerosis, outperforming any individual biomarker in isolation including oligoclonal bands. The identified protein biomarkers are consistent with an exaggerated immune response, perturbed energy metabolism and multiple sclerosis pathology in the clinical converter group. The new biomarkers presented provide novel insight into the molecular pathways promoting disease while the multi-omics algorithm provides a means to more accurately predict whether an individual is likely to convert to clinically defined multiple sclerosis.
Collapse
Affiliation(s)
- Fay Probert
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tianrong Yeo
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.,Department of Neurology, National Neuroscience Institute, Singapore 308437, Singapore
| | - Yifan Zhou
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Megan Sealey
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Siddharth Arora
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | | - Johanna Oechtering
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - David Leppert
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Jens Kuhle
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
29
|
Ma Q, Didonna A. The novel multiple sclerosis susceptibility gene ATXN1 regulates B cell receptor signaling in B-1a cells. Mol Brain 2021; 14:19. [PMID: 33478569 PMCID: PMC7819313 DOI: 10.1186/s13041-020-00715-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by complex gene-environment interactions. ATXN1 maps to 6p22.3, within the 233 loci associated with an increased risk of developing MS. Toxic gain-of-function mutations in ATXN1 cause the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). Conversely, ATXN1 loss-of-function is involved in Alzheimer's disease (AD) and tumorigenesis. We have recently shown that ATXN1 exerts a protective immunomodulatory activity in the MS model experimental autoimmune encephalomyelitis (EAE). Specifically, we demonstrated that mice lacking Atxn1 experience aggravated EAE due to aberrant B cell functions. Atxn1-null mice exhibit increased B cell proliferation with the concomitant expansion of specific B cell subsets including B-1a cells. This population of B cells is responsible for the production of natural immunoglobulins and has been associated with the etiology of multiple autoimmune diseases. To understand the role played by Atxn1 in these cells, we performed comprehensive transcriptomic profiling of Atxn1-null B-1a cells before and after stimulation with an encephalitogenic antigen. Importantly, we show that in this sub-population Atxn1 regulates immunoglobulin gene transcription and signaling through the B cell receptor (BCR).
Collapse
Affiliation(s)
- Qin Ma
- Department of Neurology, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alessandro Didonna
- Department of Neurology, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
30
|
Allen CM, Mowry E, Tintore M, Evangelou N. Prognostication and contemporary management of clinically isolated syndrome. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323087. [PMID: 33361410 DOI: 10.1136/jnnp-2020-323087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/04/2022]
Abstract
Clinically isolated syndrome (CIS) patients present with a single attack of inflammatory demyelination of the central nervous system. Recent advances in multiple sclerosis (MS) diagnostic criteria have expanded the number of CIS patients eligible for a diagnosis of MS at the onset of the disease, shrinking the prevalence of CIS. MS treatment options are rapidly expanding, which is driving the need to recognise MS at its earliest stages. In CIS patients, finding typical MS white matter lesions on the patient's MRI scan remains the most influential prognostic investigation for predicting subsequent diagnosis with MS. Additional imaging, cerebrospinal fluid and serum testing, information from the clinical history and genetic testing also contribute. For those subsequently diagnosed with MS, there is a wide spectrum of long-term clinical outcomes. Detailed assessment at the point of presentation with CIS provides fewer clues to calculate a personalised risk of long-term severe disability.Clinicians should select suitable CIS cases for steroid treatment to speed neurological recovery. Unfortunately, there are still no neuroprotection or remyelination strategies available. The use of MS disease modifying therapy for CIS varies among clinicians and national guidelines, suggesting a lack of robust evidence to guide practice. Clinicians should focus on confirming MS speedily and accurately with appropriate investigations. Diagnosis with CIS provides an opportune moment to promote a healthy lifestyle, in particular smoking cessation. Patients also need to understand the link between CIS and MS. This review provides clinicians an update on the contemporary evidence guiding prognostication and management of CIS.
Collapse
Affiliation(s)
- Christopher Martin Allen
- Department of Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Ellen Mowry
- Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mar Tintore
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain
- Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Nikos Evangelou
- Department of Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|
31
|
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, Sørensen PS, Hohlfeld R, Hauser SL. Role of B Cells in Multiple Sclerosis and Related Disorders. Ann Neurol 2020; 89:13-23. [PMID: 33091175 DOI: 10.1002/ana.25927] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
The success of clinical trials of selective B-cell depletion in patients with relapsing multiple sclerosis (MS) and primary progressive MS has led to a conceptual shift in the understanding of MS pathogenesis, away from the classical model in which T cells were the sole central actors and toward a more complex paradigm with B cells having an essential role in both the inflammatory and neurodegenerative components of the disease process. The role of B cells in MS was selected as the topic of the 27th Annual Meeting of the European Charcot Foundation. Results of the meeting are presented in this concise review, which recaps current concepts underlying the biology and therapeutic rationale behind B-cell-directed therapeutics in MS, and proposes strategies to optimize the use of existing anti-B-cell treatments and provide future directions for research in this area. ANN NEUROL 2021;89:13-23.
Collapse
Affiliation(s)
- Giancarlo Comi
- Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Amit Bar-Or
- Department of Neurology, Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA
| | - Hans Lassmann
- Department of Neuroimmunology (Center for Brain Research), University Hospital Vienna, Vienna, Austria
| | - Antonio Uccelli
- Department of Neuroscience, Genetic Ophthalmology, and Infant Maternity Science, San Martino Polyclinic Hospital, Genoa, Italy
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xavier Montalban
- Neurology-Neuroimmunology Department and Neurorehabilitation Unit, Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Per Solberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University of Munich and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
32
|
Magliozzi R, Mazziotti V, Montibeller L, Pisani AI, Marastoni D, Tamanti A, Rossi S, Crescenzo F, Calabrese M. Cerebrospinal Fluid IgM Levels in Association With Inflammatory Pathways in Multiple Sclerosis Patients. Front Cell Neurosci 2020; 14:569827. [PMID: 33192314 PMCID: PMC7596330 DOI: 10.3389/fncel.2020.569827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Intrathecal immunoglobulin M (IgM) synthesis has been demonstrated in the early disease stages of multiple sclerosis (MS) as a predictor factor of a worsening disease course. Similarly, increased cerebrospinal fluid (CSF) molecules related to B-cell intrathecal activity have been associated with a more severe MS progression. However, whether CSF levels of IgM are linked to specific inflammatory and clinical profile in MS patients at the time of diagnosis remains to be elucidated. Methods Using customized Bio-Plex assay, the protein levels of IgG, IgA, IgM, and of 34 other inflammatory molecules, related to B-cell, T-cell, and monocyte/macrophage activity, were analyzed in the CSF of 103 newly diagnosed relapsing–remitting MS patients and 36 patients with other neurological disorders. CSF IgM levels were also correlated with clinical and neuroradiological measures [advanced 3-T magnetic resonance imaging (MRI) parameters], at diagnosis and after 2 years of follow-up. Results A 45.6% increase in CSF IgM levels was found in MS patients compared to controls (p = 0.013). CSF IgM levels correlated with higher CSF levels of CXCL13 (p = 0.039), CCL21 (p = 0.023), interleukin 10 (IL-10) (p = 0.025), IL-12p70 (p = 0.020), CX3CL1 (p = 0.036), and CHI3L1 (p = 0.048) and were associated with earlier age of patients at diagnosis (p = 0.008), white matter lesion (WML) number (p = 0.039) and disease activity (p = 0.033) after 2 years of follow-up. Conclusion IgMs are the immunoglobulins mostly expressed in the CSF of naive MS patients compared to other neurological conditions at the time of diagnosis. The association between increased CSF IgM levels and molecules related to both B-cell immunity (IL-10) and recruitment (CXCL13 and CCL21) and to macrophage/microglia activity (IL-12p70, CX3CL1, and CHI3L1) suggests possible correlation between humoral and innate intrathecal immunity in early disease stage. Furthermore, the association of IgM levels with WMLs and MS clinical and MRI activity after 2 years supports the idea of key role of IgM in the disease course.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.,Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Valentina Mazziotti
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Luigi Montibeller
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Anna I Pisani
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Damiano Marastoni
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | - Francesco Crescenzo
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
33
|
Alcalá C, Pérez-Miralles FC, Gil-Perotín S, Casanova B. Reader response: Intrathecal IgM production is a strong risk factor for early conversion to multiple sclerosis. Neurology 2020; 95:277. [DOI: 10.1212/wnl.0000000000010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Ruprecht K, Pfuhl C, Oechtering J. Author response: Intrathecal IgM production is a strong risk factor for early conversion to multiple sclerosis. Neurology 2020; 95:277-278. [DOI: 10.1212/wnl.0000000000010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Negi N, Das BK. Decoding intrathecal immunoglobulins and B cells in the CNS: their synthesis, function, and regulation. Int Rev Immunol 2020; 39:67-79. [PMID: 31928379 DOI: 10.1080/08830185.2019.1711073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discovery of an active lymphatic system in the meninges (dura mater) has opened up a wide range of possibilities for the role of CNS immunoglobulins in brain development in early fetal life or during infancy. The antibody-dependent and -independent functions of B cells in the immunopathogenesis of multiple sclerosis are not new to immunologists, yet their role in other neurodegenerative disorders such as Alzheimer's and Parkinson's disease is incompletely understood. Deep cervical lymph nodes have emerged as a candidate site for autosensitization against CNS antigens and have been shown to provide the right kind of milieu for the dynamic interaction of antigen-presenting cells, B cells, and T cells. The presence of different B cells in the lymph nodes and the production of natural autoantibodies by B-1 cells have definitely unlocked another piece of the puzzle. At a time when CD19 and CD20 monoclonal antibodies have shown remarkable results in ameliorating the relapse and progression of multiple sclerosis, it is imperative to dissect out the diversity in B cell populations inside the CNS to identify new targets to improve current treatment regimens for neurodegenerative diseases. This review highlights the origin, migration, function, and regulation of B cells and the production of intrathecal immunoglobulins considering the previous and current findings and taking into account the differences between a healthy state and the changes that occur during an inflammatory or autoimmune response.
Collapse
Affiliation(s)
- Neema Negi
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland, Galway, Ireland
| | - Bimal K Das
- HIV Immunology Section, Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
Lemprière S. Intrathecal immunoglobulin M predicts conversion from CIS to MS. Nat Rev Neurol 2019; 15:620-621. [PMID: 31558779 DOI: 10.1038/s41582-019-0272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|