1
|
Joutel A. The Pathobiology of Cerebrovascular Lesions in CADASIL Small Vessel Disease. Basic Clin Pharmacol Toxicol 2025; 136:e70028. [PMID: 40145673 PMCID: PMC11948957 DOI: 10.1111/bcpt.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Cerebral small vessel disease (cSVD) is a significant global health issue, accounting for approximately 25% of ischemic strokes and 20% of all dementia cases. CADASIL, the most common monogenic form of cSVD, is caused by stereotyped mutations in the NOTCH3 receptor that alter the number of cysteine residues in its extracellular domain (Notch3ECD). The two hallmark features of CADASIL are the loss of arterial smooth muscle cells (SMCs) and the abnormal accumulation of Notch3ECD, without associated accumulation of its transmembrane intracellular domain. Notably, cysteine-altering mutations in NOTCH3 are prevalent in the general population, and although they are not directly associated with classical CADASIL disease, they are still linked to an elevated risk of stroke and dementia. NOTCH3 is predominantly expressed in the mural cells of small blood vessels and plays an essential role in the development, maintenance, function and survival of arterial SMCs. Recent research has challenged the loss-of-function hypothesis, instead implicating Notch3ECD aggregation, involving both mutant and wild-type NOTCH3, as the primary driver of vascular pathology in CADASIL. Consequently, therapeutic strategies targeting the reduction of Notch3ECD levels in brain arteries, such as antisense therapies, are considered highly promising for clinical development.
Collapse
Affiliation(s)
- Anne Joutel
- University Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU‐Paris Psychiatry and NeurosciencesSt. Anne HospitalParisFrance
| |
Collapse
|
2
|
Dunn PJ, Maksemous N, Smith RA, Sutherland HG, Haupt LM, Griffiths LR. Targeted exonic sequencing identifies novel variants in a cerebral small vessel disease cohort. Clin Chim Acta 2025; 567:120120. [PMID: 39743006 DOI: 10.1016/j.cca.2024.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AND AIMS Cerebral small vessel diseases (CSVDs) are a set of conditions that affect the small blood vessels in the brain and can cause severe neurological pathologies such as stroke and vascular dementia. The most common monogenic CSVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) which is caused by mutations in NOTCH3. However, only 15-20% of CADASIL cases referred for genetic testing have pathogenic mutations in NOTCH3. We hypothesise that other monogenic causes of CSVD may be causing a CADASIL-like CSVD phenotype. METHODS To test this, we performed whole exome sequencing for 50 individuals suspected of having CADASIL, but did not exhibit a disease-causing mutation in NOTCH3, and applied targeted analysis of all monogenic forms of CSVD. RESULTS This analysis identified three mutations affecting the Collagen type IV genes in three individuals likely to be causative of CSVD. CONCLUSIONS This suggests that screening for all monogenic forms of CSVD when one monogenic form is clinically suspected may improve diagnosis in clinically suspected monogenic CSVD. However, despite these findings, the majority of NOTCH3 negative CSVD cases did not have candidate mutations in known CSVD genes, suggesting that additional genetic factors contributing to the disease are yet to be identified.
Collapse
Affiliation(s)
- Paul J Dunn
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Bond University, Faculty of Health Sciences and Medicine, 15 University Drive, Robina, Queensland 4226, Australia
| | - Neven Maksemous
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Robert A Smith
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Heidi G Sutherland
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
3
|
Cho BPH, Auckland K, Gräf S, Markus HS. Rare Sequence Variation Underlying Suspected Familial Cerebral Small-Vessel Disease. J Am Heart Assoc 2024; 13:e035771. [PMID: 39082428 PMCID: PMC11964016 DOI: 10.1161/jaha.123.035771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Cerebral small-vessel disease (cSVD) is the leading monogenic cause of stroke. Despite genetic screening in routine diagnosis, many cases remain without a known causative variant. Using a cohort with suspected familial cSVD and whole-genome sequencing, we screened for variants in genes associated with monogenic cSVD and searched for novel variants associated with the disease. METHODS AND RESULTS Rare variants were identified in whole-genome sequencing data from the NBR (National Institute for Health Research BioResource Rare Disease) study. Pathogenic variants in known monogenic cSVD genes were identified. Gene-based burden tests and family analysis were performed to identify novel variants associated with familial cSVD. A total of 257 suspected cSVD cases (mean ± SD age, 56.2 ± 16.1 years), and 13 086 controls with other nonstroke diseases (5874 [44.9%] men) were studied. A total of 8.9% of the cases carried a variant in known cSVD genes. Excluding these known causes, 23.6% of unrelated subjects with cSVD carried predicted deleterious variants in the Genomics England gene panel, but no association was found with cSVD in burden tests. We identified potential associations with cSVD in noncoding genes, including RP4-568F9.3 (adjusted P = 7.1 × 10-25), RP3-466I7.1 (adjusted P = 8.9 × 10-16), and ZNF209P (adjusted P = 1.0 × 10-15), and matrisomal genes (adjusted P = 5.1 × 10-6), including FAM20C, INHA, LAMC1, and VWA5B2. CONCLUSIONS Predicted deleterious variants in known cSVD genes were present in 23.6% of unrelated cases with cSVD, but none of the genes were associated with the disease. Rare variants in noncoding and matrisomal genes could potentially contribute to cSVD development. These genes could play a role in tissue development and brain endothelial cell function. However, further studies are needed to confirm their pathophysiological roles.
Collapse
Affiliation(s)
- Bernard P. H. Cho
- Stroke Research GroupDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Kate Auckland
- Department of MedicineUniversity of CambridgeVictor Phillip Dahdaleh Heart and Lung Research InstituteCambridgeUK
| | - Stefan Gräf
- Department of MedicineUniversity of CambridgeVictor Phillip Dahdaleh Heart and Lung Research InstituteCambridgeUK
| | - Hugh S. Markus
- Stroke Research GroupDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
4
|
Muir RT, Smith EE. The Spectrum of Cerebral Small Vessel Disease: Emerging Pathophysiologic Constructs and Management Strategies. Neurol Clin 2024; 42:663-688. [PMID: 38937035 DOI: 10.1016/j.ncl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Cerebral small vessel disease (CSVD) is a spectrum of disorders that affect small arterioles, venules, cortical and leptomeningeal vessels, perivascular spaces, and the integrity of neurovascular unit, blood brain barrier, and surrounding glia and neurons. CSVD is an important cause of lacunar ischemic stroke and sporadic hemorrhagic stroke, as well as dementia-which will constitute some of the most substantive population and public health challenges over the next century. This article provides an overview of updated pathophysiologic frameworks of CSVD; discusses common and underappreciated clinical and neuroimaging manifestations of CSVD; and reviews emerging genetic risk factors linked to sporadic CSVD.
Collapse
Affiliation(s)
- Ryan T Muir
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Eric E Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
5
|
Malik R, Beaufort N, Li J, Tanaka K, Georgakis MK, He Y, Koido M, Terao C, Japan B, Anderson CD, Kamatani Y, Zand R, Dichgans M. Genetically proxied HTRA1 protease activity and circulating levels independently predict risk of ischemic stroke and coronary artery disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:701-713. [PMID: 39196222 DOI: 10.1038/s44161-024-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/23/2024] [Indexed: 08/29/2024]
Abstract
Genetic variants in HTRA1 are associated with stroke risk. However, the mechanisms mediating this remain largely unknown, as does the full spectrum of phenotypes associated with genetic variation in HTRA1. Here we show that rare HTRA1 variants are linked to ischemic stroke in the UK Biobank and BioBank Japan. Integrating data from biochemical experiments, we next show that variants causing loss of protease function associated with ischemic stroke, coronary artery disease and skeletal traits in the UK Biobank and MyCode cohorts. Moreover, a common variant modulating circulating HTRA1 mRNA and protein levels enhances the risk of ischemic stroke and coronary artery disease while lowering the risk of migraine and macular dystrophy in genome-wide association study, UK Biobank, MyCode and BioBank Japan data. We found no interaction between proxied HTRA1 activity and levels. Our findings demonstrate the role of HTRA1 for cardiovascular diseases and identify two mechanisms as potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | - Koki Tanaka
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yunye He
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Masaru Koido
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - BioBank Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Ramin Zand
- Department of Neurology, Pennsylvania State University, Hershey, PA, USA
- Department of Neurology, Neuroscience Institute, Geisinger Health System, Danville, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
6
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
7
|
Kaburagi K, Hagiwara Y, Tachikawa K, Miyake N, Akiyama H, Kawai Y, Omae Y, Tokunaga K, Yamano Y, Shimizu T, Mitsuhashi S. A novel NODAL variant in a young embolic stroke patient with visceral heterotaxy. BMC Neurol 2024; 24:119. [PMID: 38605286 PMCID: PMC11007883 DOI: 10.1186/s12883-024-03619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Ischemic stroke in young adults can be caused by a variety of etiologies including the monogenic disorders. Visceral heterotaxy is a condition caused by abnormal left-right determinations during embryonic development. We aimed to determine the cause of a young ischemic stroke patient with visceral heterotaxy. CASE PRESENTATION We performed neurological, radiological, and genetic evaluations in a 17-year-old male patient presenting ischemic stroke and visceral heterotaxy to determine the underlying cause of this rare disease combination. Brain magnetic resonance imaging (MRI) showed evidence of embolic stroke, abdominal computed tomography (CT) showed visceral heterotaxy, and echocardiogram showed cardiac anomaly with right-to-left-shunt (RLS). Whole genome sequencing (WGS) revealed a heterozygous missense variant (NM_018055.5: c.1016 T > C, p.(Met339Val)) in the NODAL gene, which is essential to the determination of the left-right body axis. CONCLUSIONS Our study highlights the importance of evaluating genetic etiology in young ischemic stroke and the need for stroke risk management in visceral heterotaxy patients with RLS. To the best of our knowledge, we report the first genetically-confirmed case of visceral heterotaxy with young embolic stroke reported to date.
Collapse
Affiliation(s)
- Kei Kaburagi
- Department of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 2168511, Japan
| | - Yuta Hagiwara
- Department of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 2168511, Japan
| | - Keiji Tachikawa
- Department of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 2168511, Japan
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hisanao Akiyama
- Department of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 2168511, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 2168511, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takahiro Shimizu
- Department of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 2168511, Japan.
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 2168511, Japan.
| |
Collapse
|
8
|
Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein ED, Rost NS, Majersik JJ, Gutierrez J. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement From the American Heart Association. Stroke 2023; 54:e452-e464. [PMID: 37602377 DOI: 10.1161/str.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.
Collapse
|
9
|
Wong-Valenzuela EI, San Juan D, Santos Zambrano J, Camacho Molina A, Morales-Morales MA, Lopez-Landa A. Recurrent Ischemic Strokes due to Monogenic COL4A1 Mutation: The First Case Report from Latin America. Case Rep Genet 2023; 2023:6614837. [PMID: 37681221 PMCID: PMC10482535 DOI: 10.1155/2023/6614837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction. Monogenic mutations as the cause of recurrent ischemic cerebral small-vessel disease with leukodystrophy are rare. COL4A1 gene mutations are a relatively new etiology of cerebrovascular lesions in young adults; however, any patient has been reported from Latin America. Case Presentation. We presented a Mexican young female with leukodystrophy and recurrent stroke secondary to COL4A1 monogenic mutation. Discussion/Conclusion. COL4A1 monogenic mutations are associated with cerebral small-vessel disease and other systemic manifestations. To date, there is little evidence to justify the treatment and prevention of recurrent strokes in patients with this mutation.
Collapse
Affiliation(s)
| | - Daniel San Juan
- Epilepsy Clinic, Instituto Nacional de Neurologia y Neurocirugia, Mexico City, Mexico
| | | | - Alejandra Camacho Molina
- Rare Diseases National Program, Institute for Social Security and Services for State Workers, Mexico City, Mexico
| | | | | |
Collapse
|
10
|
Zhang F, Peng H, Fu C, Deng Y, Zhang M, Li W, Zhong J, Zhou Q, Huang L, Xiao S, Zhao J. Association Between HTRA1, GAS6 and IFNGR2 Gene Polymorphisms and Stroke Susceptibility in the Chinese Han Population. Pharmgenomics Pers Med 2023; 16:717-727. [PMID: 37441189 PMCID: PMC10335315 DOI: 10.2147/pgpm.s408911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Background Stroke has a high disability rate, and 30% of stroke cases have an unknown cause. Accurate diagnosis and treatment of stroke requires consideration of several rare heritable and non-heritable factors. Objective This study aimed to evaluate the impacts of three genetic polymorphisms (rs369149111 in HTRA1, rs1803628 in GAS6 and rs9808753 in IFNGR2) on stroke susceptibility among the Chinese Han population. Methods Three single nucleotide polymorphisms (SNPs) from 623 stroke cases and 572 healthy controls were genotyped by the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression analysis to evaluate the associations of three SNPs with stroke susceptibility. Additionally, SNP-SNP interactions were analyzed by multifactor dimensionality reduction (MDR). Results As demonstrated by the overall analysis, rs9808753 in IFNGR2 (allele: OR = 1.25, 95% CI = 1.06-1.47, p = 0.007; homozygous: OR = 1.59, 95% CI = 1.14-2.23, p = 0.007; dominant: OR = 1.31, 95% CI = 1.02-1.67, p = 0.032; recessive: OR = 1.42, 95% CI = 1.05-1.91, p = 0.022; additive: OR = 1.26, 95% CI = 1.07-1.48, p = 0.007) was associated with an increased susceptibility to stroke. Besides, stratification analysis suggested that rs9808753 was associated with an increased risk of stroke in subgroup aged ≤ 64 years, males and drinkers (p < 0.05). And rs1803628 in GAS6 was significantly associated with an increased susceptibility to stroke in non-smokers (p < 0.05). Conclusion A risk-increasing effect of IFNGR2 rs980875 on stroke was detected in this study, which further broadens the understanding of the relationship between genetic polymorphisms and stroke susceptibility.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Hao Peng
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Chuanyi Fu
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Yidong Deng
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Mao Zhang
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Wenan Li
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Jian Zhong
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Qing Zhou
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Li Huang
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Shuli Xiao
- Department of Cerebrovascular Disease, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Jiannong Zhao
- Department of Neurosurgery, Hainan Medical University, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 571199, People’s Republic of China
| |
Collapse
|
11
|
Giossi A, Giliani SC, Gamba M, Toniati P, Magoni M, Pezzini A. Ischaemic cerebral small vessel disease caused by adenosine deaminase 2 deficiency syndrome. Eur J Neurol 2023; 30:1148-1151. [PMID: 36692946 DOI: 10.1111/ene.15708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Only a small proportion of cerebral small vessel disease (cSVD), a frequent cause of stroke and cognitive or motor disability in adults, is attributable to monogenic conditions. The hereditary nature of a patient's cSVD may be masked by a mild or non-informative phenotype, as single-gene disorders have a variable mode of presentation, penetrance and disease severity. CASE DESCRIPTION An adult patient is here described with recurrent acute ischaemic strokes due to cSVD with no other phenotypic manifestation, in whom the pathogenic c.139G>A (p.G47R) missense variant in ADA2 (NM_001282225.2), consistent with the diagnosis of adenosine deaminase 2 deficiency syndrome, was detected by targeted next-generation sequencing. CONCLUSIONS Clinical suspicion of adenosine deaminase 2 deficiency syndrome may be overlooked in stroke patients in whom other specific disease features are lacking. This case enlarges the mode of presentation of the syndrome and highlights the diagnostic potential of next-generation sequencing of known cSVD genes in young adults with recurrent small subcortical infarcts presenting with a lacunar syndrome.
Collapse
Affiliation(s)
- Alessia Giossi
- U.O. Neurologia, Istituti Ospitalieri, ASST Cremona, Cremona, Italy
| | - Silvia Clara Giliani
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Gamba
- Stroke Unit, Vascular Neurology, Department of Neurological Sciences and Vision, ASST Spedali Civili Brescia, Brescia, Italy
| | - Paola Toniati
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili Brescia, Brescia, Italy
| | - Mauro Magoni
- Stroke Unit, Vascular Neurology, Department of Neurological Sciences and Vision, ASST Spedali Civili Brescia, Brescia, Italy
| | - Alessandro Pezzini
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| |
Collapse
|
12
|
Härtl J, Hartberger J, Wunderlich S, Cordts I, Bafligil C, Sturm M, Westphal D, Haack T, Hemmer B, Ikenberg BD, Deschauer M. Exome-based gene panel analysis in a cohort of acute juvenile ischemic stroke patients:relevance of NOTCH3 and GLA variants. J Neurol 2023; 270:1501-1511. [PMID: 36411388 PMCID: PMC9971083 DOI: 10.1007/s00415-022-11401-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Genetic variants are considered to have a crucial impact on the occurrence of ischemic stroke. In clinical routine, the diagnostic value of next-generation sequencing (NGS) in the medical clarification of acute juvenile stroke has not been investigated so far. MATERIAL AND METHODS We analyzed an exome-based gene panel of 349 genes in 172 clinically well-characterized patients with magnetic resonance imaging (MRI)-proven, juvenile (age ≤ 55 years), ischemic stroke admitted to a single comprehensive stroke center. RESULTS Monogenetic diseases causing ischemic stroke were observed in five patients (2.9%): In three patients with lacunar stroke (1.7%), we identified pathogenic variants in NOTCH3 causing cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hence, CADASIL was identified at a frequency of 12.5% in the lacunar stroke subgroup. Further, in two male patients (1.2%) suffering from lacunar and cardioembolic stroke, pathogenic variants in GLA causing Fabry's disease were present. Additionally, genetic variants in monogenetic diseases lacking impact on stroke occurrence, variants of unclear significance (VUS) in monogenetic diseases, and (cardiovascular-) risk genes in ischemic stroke were observed in a total of 15 patients (15.7%). CONCLUSION Genetic screening for Fabry's disease in cardioembolic and lacunar stroke as well as CADASIL in lacunar stroke might be beneficial in routine medical work-up of acute juvenile ischemic stroke.
Collapse
Affiliation(s)
- Johanna Härtl
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Julia Hartberger
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Silke Wunderlich
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Isabell Cordts
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Cemsel Bafligil
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Marc Sturm
- School of Medicine, Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | | | - Dominik Westphal
- School of Medicine, Klinikum rechts der Isar, Department of Cardiology, Technical University of Munich, Munich, Germany ,School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Institute of Human Genetics, Munich, Germany
| | - Tobias Haack
- School of Medicine, Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Universitaetsklinikum Tuebingen, Tuebingen, Germany ,School of Medicine, Centre for Rare Diseases, Eberhard Karls University, Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Bernhard Hemmer
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany ,Munich Cluster for Systems Neurology, (SyNergy), Munich, Germany
| | - Benno David Ikenberg
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Marcus Deschauer
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| |
Collapse
|
13
|
Chang LH, Chi NF, Chen CY, Lin YS, Hsu SL, Tsai JY, Huang HC, Lin CJ, Chung CP, Tung CY, Jeng CJ, Lee YC, Liu YT, Lee IH. Monogenic Causes in Familial Stroke Across Intracerebral Hemorrhage and Ischemic Stroke Subtypes Identified by Whole-Exome Sequencing. Cell Mol Neurobiol 2022:10.1007/s10571-022-01315-3. [PMID: 36580209 DOI: 10.1007/s10571-022-01315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing (WES) has been used to detect rare causative variants in neurological diseases. However, the efficacy of WES in genetic diagnosis of clinically heterogeneous familial stroke remains inconclusive. We prospectively searched for disease-causing variants in unrelated probands with defined familial stroke by candidate gene/hotspot screening and/or WES, depending on stroke subtypes and neuroimaging features at a referral center. The clinical significance of each variant was determined according to the American College of Medical Genetics guidelines. Among 161 probands (mean age at onset 53.2 ± 13.7 years; male 63.4%), 33 participants (20.5%) had been identified with 19 pathogenic/likely pathogenic variants (PVs; WES applied 152/161 = 94.4%). Across subtypes, the highest hit rate (HR) was intracerebral hemorrhage (ICH, 7/18 = 38.9%), particularly with the etiological subtype of structural vasculopathy (4/4 = 100%, PVs in ENG, KRIT1, PKD1, RNF213); followed by ischemic small vessel disease (SVD, 15/48 = 31.3%; PVs in NOTCH3, HTRA1, HBB). In contrast, large artery atherosclerosis (LAA, 4/44 = 9.1%) and cardioembolism (0/11 = 0%) had the lowest HR. NOTCH3 was the most common causative gene (16/161 = 9.9%), presenting with multiple subtypes of SVD (n = 13), ICH (n = 2), or LAA (n = 1). Importantly, we disclosed two previously unreported PVs, KRIT1 p.E379* in a familial cerebral cavernous malformation, and F2 p.F382L in a familial cerebral venous sinus thrombosis. The contribution of monogenic etiologies was particularly high in familial ICH and SVD subtypes in our Taiwanese cohort. Utilizing subtype-guided hotspot screening and/or subsequent WES, we unraveled monogenic causes in 20.5% familial stroke probands, including 1.2% novel PVs. Genetic diagnosis may enable early diagnosis, management and lifestyle modification. Among 161 familial stroke probands, 33 (20.5%) had been identified pathogenic or likely pathogenic monogenic variants related to stroke. The positive hit rate among all subtypes was high in intracerebral hemorrhage (ICH) and ischemic small vessel disease (SVD). Notably, two previously unreported variants, KRIT1 p.E379* in a familial cerebral cavernous malformation and F2 p.F382L in familial cerebral venous sinus thrombosis, were disclosed. CVT cerebral venous thrombosis; HTN Hypertensive subtype; LAA large artery atherosclerosis; SV structural vasculopathy; U Undetermined.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Shao-Lun Hsu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Jui-Yao Tsai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Hui-Chi Huang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Chun-Jen Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Yi Tung
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yo-Tsen Liu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - I-Hui Lee
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
14
|
Yu WK, Wang YC, Gao Y, Shi CH, Fan Y, Yu LL, Zhao ZC, Li SS, Xu YM, Li YS. Genetic analysis of the ATP11B gene in Chinese Han population with cerebral small vessel disease. BMC Genomics 2022; 23:822. [PMID: 36510145 PMCID: PMC9746074 DOI: 10.1186/s12864-022-09051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A loss-of-function mutation in ATPase phospholipid transporting 11-B (putative) (ATP11B) gene causing cerebral small vessel disease (SVD) in vivo, and a single intronic nucleotide polymorphism in ATP11B: rs148771930 that was associated with white matter hyperintensities burden in European patients with SVD, was recently identified. Our results suggest that ATP11B may not play an essential role in SVD in the Chinese population. RESULTS We performed target region sequencing including ATP11B gene in 182 patients with sporadic SVD, and identified five rare variants and two novel variants of ATP11B. A case-control study was then performed in 524 patients and matched 550 controls to investigate the relationship between ATP11B and sporadic SVD in the Chinese Han population. Although none of these variants were significantly associated with SVD in our samples, it is important to mention that we identified a novel variant, p. G238W, which was predicted to be pathogenic in silico. This variant was present in our cohort of patients with an extremely low frequency and was absent in the controls. CONCLUSION Our results suggest that ATP11B may not play an essential role in SVD in the Chinese population.
Collapse
Affiliation(s)
- Wen-Kai Yu
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Yun-Chao Wang
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Yuan Gao
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Chang-He Shi
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Yu Fan
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Lu-Lu Yu
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Zi-Chen Zhao
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Shan-Shan Li
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Yu-Ming Xu
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China ,National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan China
| | - Yu-Sheng Li
- grid.207374.50000 0001 2189 3846Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| |
Collapse
|
15
|
Ferguson AC, Thrippleton S, Henshall D, Whittaker E, Conway B, MacLeod M, Malik R, Rawlik K, Tenesa A, Sudlow C, Rannikmae K. Frequency and Phenotype Associations of Rare Variants in 5 Monogenic Cerebral Small Vessel Disease Genes in 200,000 UK Biobank Participants. Neurol Genet 2022; 8:e200015. [PMID: 36035235 PMCID: PMC9403885 DOI: 10.1212/nxg.0000000000200015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 04/14/2023]
Abstract
Background and Objectives Based on previous case reports and disease-based cohorts, a minority of patients with cerebral small vessel disease (cSVD) have a monogenic cause, with many also manifesting extracerebral phenotypes. We investigated the frequency, penetrance, and phenotype associations of putative pathogenic variants in cSVD genes in the UK Biobank (UKB), a large population-based study. Methods We used a systematic review of previous literature and ClinVar to identify putative pathogenic rare variants in CTSA, TREX1, HTRA1, and COL4A1/2. We mapped phenotypes previously attributed to these variants (phenotypes-of-interest) to disease coding systems used in the UKB's linked health data from UK hospital admissions, death records, and primary care. Among 199,313 exome-sequenced UKB participants, we assessed the following: the proportion of participants carrying ≥1 variant(s); phenotype-of-interest penetrance; and the association between variant carrier status and phenotypes-of-interest using a binary (any phenotype present/absent) and phenotype burden (linear score of the number of phenotypes a participant possessed) approach. Results Among UKB participants, 0.5% had ≥1 variant(s) in studied genes. Using hospital admission and death records, 4%-20% of variant carriers per gene had an associated phenotype. This increased to 7%-55% when including primary care records. Only COL4A1 variant carrier status was significantly associated with having ≥1 phenotype-of-interest and a higher phenotype score (OR = 1.29, p = 0.006). Discussion While putative pathogenic rare variants in monogenic cSVD genes occur in 1:200 people in the UKB population, only approximately half of variant carriers have a relevant disease phenotype recorded in their linked health data. We could not replicate most previously reported gene-phenotype associations, suggesting lower penetrance rates, overestimated pathogenicity, and/or limited statistical power.
Collapse
Affiliation(s)
- Amy Christina Ferguson
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Sophie Thrippleton
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - David Henshall
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Ed Whittaker
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Bryan Conway
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Malcolm MacLeod
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Rainer Malik
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Konrad Rawlik
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Albert Tenesa
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Cathie Sudlow
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| | - Kristiina Rannikmae
- From the Centre for Medical Informatics (A.C.F., D.H., A.T., K.Rannikmae), Usher Institute, University of Edinburgh; Edinburgh Medical School (S.T., E.W.), University of Edinburgh; Centre for Cardiovascular Science (B.C.), The Queen's Medical Research Institute, University of Edinburgh; Centre for Clinical Brain Sciences (M.M.), University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (ISD) (R.M.), University Hospital, LMU Munich, Germany; The Roslin Institute (K. Rawlik, A.T.), University of Edinburgh; MRC Human Genetics Unit (A.T.), Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital; and BHF Data Science Centre (C.S.), Health Death Research UK, London, United Kingdom
| |
Collapse
|
16
|
Ryu JR, Ahuja S, Arnold CR, Potts KG, Mishra A, Yang Q, Sargurupremraj M, Mahoney DJ, Seshadri S, Debette S, Childs SJ. Stroke-associated intergenic variants modulate a human FOXF2 transcriptional enhancer. Proc Natl Acad Sci U S A 2022; 119:e2121333119. [PMID: 35994645 PMCID: PMC9436329 DOI: 10.1073/pnas.2121333119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
SNPs associated with human stroke risk have been identified in the intergenic region between Forkhead family transcription factors FOXF2 and FOXQ1, but we lack a mechanism for the association. FoxF2 is expressed in vascular mural pericytes and is important for maintaining pericyte number and stabilizing small vessels in zebrafish. The stroke-associated SNPs are located in a previously unknown transcriptional enhancer for FOXF2, functional in human cells and zebrafish. We identify critical enhancer regions for FOXF2 gene expression, including binding sites occupied by transcription factors ETS1, RBPJ, and CTCF. rs74564934, a stroke-associated SNP adjacent to the ETS1 binding site, decreases enhancer function, as does mutation of RPBJ sites. rs74564934 is significantly associated with the increased risk of any stroke, ischemic stroke, small vessel stroke, and elevated white matter hyperintensity burden in humans. Foxf2 has a conserved function cross-species and is expressed in vascular mural pericytes of the vessel wall. Thus, stroke-associated SNPs modulate enhancer activity and expression of a regulator of vascular stabilization, FOXF2, thereby modulating stroke risk.
Collapse
Affiliation(s)
- Jae-Ryeon Ryu
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Suchit Ahuja
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Corey R. Arnold
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kyle G. Potts
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000 Bordeaux, France
| | - Qiong Yang
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118
| | - Muralidharan Sargurupremraj
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229
- Boston University and the NHLBI’s Framingham Heart Study, Boston, MA 02215
| | - Douglas J. Mahoney
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229
- Boston University and the NHLBI’s Framingham Heart Study, Boston, MA 02215
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000 Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, CHU de Bordeaux, 33000 Bordeaux, France
| | - Sarah J. Childs
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
17
|
Zhou H, Jiao B, Ouyang Z, Wu Q, Shen L, Fang L. Report of two pedigrees with heterozygous HTRA1 variants-related cerebral small vessel disease and literature review. Mol Genet Genomic Med 2022; 10:e2032. [PMID: 35946346 PMCID: PMC9544214 DOI: 10.1002/mgg3.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biallelic HTRA1 pathogenic variants are associated with autosomal recessive cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Recent studies have indicated that heterozygous HTRA1 variants are related to autosomal dominant hereditary cerebral small vessel disease (CSVD). However, few studies have assessed heterozygous HTRA1 carriers or the genotype-phenotype correlation. METHODS The clinical data of two unrelated Chinese Han families with CSVD were collected. Panel sequencing was used to search for pathogenic genes, Sanger sequencing was used for verification, three-dimensional protein models were constructed, and pathogenicity was analyzed. Published HTRA1-related phenotypes included in PubMed up to September 2021 were extensively reviewed, and the patients' genetic and clinical characteristics were summarized. RESULTS We report a novel heterozygous variant c.920T>C p.L307P in the HTRA1, whose main clinical and neuroimaging phenotypes are stroke and gait disturbance. We report another patient with the previously reported pathogenic variant HTRA1 c.589C>T p.R197X characterized by early cognitive decline. A literature review indicated that compared with CARASIL, HTRA1-related autosomal dominant hereditary CSVD has a later onset age, milder clinical symptoms, fewer extraneurological symptoms, and slower progression, indicating a milder CARASIL phenotype. In addition, HTRA1 heterozygous variants were related to a higher proportion of vascular risk factors (p < .001) and male sex (p = .022). CONCLUSION These findings broaden the known mutational spectrum and possible clinical phenotype of HTRA1. Considering the semidominant characteristics of HTRA1-related phenotypes, we recommend that all members of HTRA1 variant families undergo genetic screening and clinical follow-up if carrying pathogenic variants.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
18
|
Budhdeo S, de Paiva ARB, Wade C, Lopes LCG, Della-Ripa B, Davagnanam I, Lucato L, Mummery CJ, Kok F, Houlden H, Werring DJ, Lynch DS. A rare cause of monogenic cerebral small vessel disease and stroke: Cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL). J Neurol 2022; 269:6673-6677. [PMID: 35904593 DOI: 10.1007/s00415-022-11302-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL) is a rare monogenic cause of cerebral small vessel disease. To date, fewer than 15 patients with CARASAL have been described, all of common European ancestry. METHODS Clinical and imaging phenotypes of two patients are presented. Genetic variants were identified using targeted Sanger and focused exome sequencing, respectively. RESULTS Both patients carried the same pathogenic p.Arg325Cys mutation in CTSA. One patient of Chinese ethnicity presented with migraine, tinnitus and slowly progressive cognitive impairment with significant cerebral small vessel disease in the absence of typical cardiovascular risk factors. She later suffered an ischaemic stroke. A second patient from Brazil, of Italian ethnicity developed progressive dysphagia and dysarthria in his 50s, he later developed hearing loss and chronic disequilibrium. Magnetic resonance imaging in both cases demonstrated extensive signal change in the deep cerebral white matter, anterior temporal lobes, thalami, internal and external capsules and brainstem. CONCLUSIONS CARASAL should be considered in patients with early onset or severe cerebral small vessel disease, particularly where there are prominent symptoms or signs related to brainstem involvement, such as hearing dysfunction, tinnitus or dysphagia or where there is significant thalamic and brainstem involvement on imaging.
Collapse
Affiliation(s)
- Sanjay Budhdeo
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Anderson Rodrigues Brandão de Paiva
- Neurology Department, Neurogenetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Neurology Department, Hospital São Rafael-Rede D'Or São Luiz, Salvador, Brazil
| | - Charles Wade
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Laura Cardia Gomes Lopes
- Department of Neurology, Psychology and Psychiatry, Universidade Estadual de São Paulo (UNESP), Botucatu, SP, Brazil
| | - Bruno Della-Ripa
- Neurology Department, Neurogenetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Indran Davagnanam
- Lysholm Department of Neuroradiology, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Leandro Lucato
- Diagnostic Neuroradiology Section, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Catherine J Mummery
- Dementia Research Centre, Department of Neurodegenerative Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | - Fernando Kok
- Neurology Department, Neurogenetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Mendelics Genomic Analysis, São Paulo, Brazil
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - David S Lynch
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
19
|
Amico G, Hemphill WO, Severino M, Moratti C, Pascarella R, Bertamino M, Napoli F, Volpi S, Rosamilia F, Signa S, Perrino F, Zedde M, Ceccherini I. Genotype-Phenotype Correlation and Functional Insights for Two Monoallelic TREX1 Missense Variants Affecting the Catalytic Core. Genes (Basel) 2022; 13:1179. [PMID: 35885962 PMCID: PMC9323106 DOI: 10.3390/genes13071179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The TREX1 exonuclease degrades DNA to prevent aberrant nucleic-acid sensing through the cGAS-STING pathway, and dominant Aicardi-Goutières Syndrome type 1 (AGS1) represents one of numerous TREX1-related autoimmune diseases. Monoallelic TREX1 mutations were identified in patients showing early-onset cerebrovascular disease, ascribable to small vessel disease, and CADASIL-like neuroimaging. We report the clinical-neuroradiological features of two patients with AGS-like (Patient A) and CADASIL-like (Patient B) phenotypes carrying the heterozygous p.A136V and p.R174G TREX1 variants, respectively. Genetic findings, obtained by a customized panel including 183 genes associated with monogenic stroke, were combined with interferon signature testing and biochemical assays to determine the mutations' effects in vitro. Our results for the p.A136V variant are inconsistent with prior biochemistry-pathology correlates for dominant AGS-causing TREX1 mutants. The p.R174G variant modestly altered exonuclease activity in a manner consistent with perturbation of substrate interaction rather than catalysis, which represents the first robust enzymological data for a TREX1 variant identified in a CADASIL-like patient. In conclusion, functional analysis allowed us to interpret the impact of TREX1 variants on patients' phenotypes. While the p.A136V variant is unlikely to be causative for AGS in Patient A, Patient B's phenotype is potentially related to the p.R174G variant. Therefore, further functional investigations of TREX1 variants found in CADASIL-like patients are warranted to determine any causal link and interrogate the molecular disease mechanism(s).
Collapse
Affiliation(s)
- Giulia Amico
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy;
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Wayne O. Hemphill
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Flavia Napoli
- Departments of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Stefano Volpi
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Francesca Rosamilia
- Biostatistic Unit, Health Science Department (DISSAL), University of Genoa, 16132 Genoa, Italy;
| | - Sara Signa
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Fred Perrino
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | | |
Collapse
|
20
|
Liu X, Yang Q, Tang L, He J, Tian D, Wang B, Xie L, Li C, Fan D. Rare and Common Variants in COL4A1 in Chinese Patients With Intracerebral Hemorrhage. Front Neurol 2022; 13:827165. [PMID: 35711275 PMCID: PMC9196627 DOI: 10.3389/fneur.2022.827165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Here, we screened the COL4A1 variants in Chinese intracerebral hemorrhage (ICH) patients to summarize the relationship between the variants and clinical characteristics. Targeted sequencing of a 65-gene panel including COL4A1 was performed to detect all the coding regions and ±10-bp splicing sites. In total, 568 patients were included. Regarding rare nonsynonymous variants with a minor allele frequency (MAF) <0.5%, 6 missense variants and five suspicious splice site variants, absent in 573 healthy controls, were found in 11 patients. The subgroup carrying rare variants did not show specific phenotype compared with non-variant carriers. For the single nucleotide polymorphism (SNP) loci with an MAF> 5%, we did not find a significant association between the allele or genotype distribution of the SNP loci and the risk of ICH. Rs3742207 was nominally associated with death at 1-year follow-up (p = 0.02027, OR 1.857, 95% CI 1.101-3.133) after adjusted by age, hypertension history, hematoma volume and recurrent ICH history. Nevertheless, after the Bonferroni correction, the association was no longer significant. In conclusion, rare nonsynonymous variants in COL4A1 were identified in 1.94% (11/568) of Chinese ICH patients, while rs3742207 maybe indicate a worse prognosis of ICH.
Collapse
Affiliation(s)
- Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Qiong Yang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Danyang Tian
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Baojun Wang
- Department of Neurology, Central Hospital of Baotou, Baotou, China
| | - Lihong Xie
- Department of Neurology, Central Hospital of Baotou, Baotou, China
| | - Changbao Li
- Department of Neurosurgery, Beijing Pinggu Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
21
|
Jankovic M, Petrovic B, Novakovic I, Brankovic S, Radosavljevic N, Nikolic D. The Genetic Basis of Strokes in Pediatric Populations and Insight into New Therapeutic Options. Int J Mol Sci 2022; 23:ijms23031601. [PMID: 35163523 PMCID: PMC8835808 DOI: 10.3390/ijms23031601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Strokes within pediatric populations are considered to be the 10th leading cause of death in the United States of America, with over half of such events occurring in children younger than one year of life. The multifactorial etiopathology that has an influence on stroke development and occurrence signify the importance of the timely recognition of both modifiable and non-modifiable factors for adequate diagnostic and treatment approaches. The early recognition of a stroke and stroke risk in children has the potential to advance the application of neuroprotective, thrombolytic, and antithrombotic interventions and rehabilitation strategies to the earliest possible timepoints after the onset of a stroke, improving the outcomes and quality of life for affected children and their families. The recent development of molecular genetic methods has greatly facilitated the analysis and diagnosis of single-gene disorders. In this review, the most significant single gene disorders associated with pediatric stroke are presented, along with specific therapeutic options whenever they exist. Besides monogenic disorders that may present with stroke as a first symptom, genetic polymorphisms may contribute to the risk of pediatric and perinatal stroke. The most frequently studied genetic risk factors are several common polymorphisms in genes associated with thrombophilia; these genes code for proteins that are part of the coagulation cascade, fibrolysis, homocystein metabolism, lipid metabolism, or platelets. Single polymorphism frequencies may not be sufficient to completely explain the stroke causality and an analysis of several genotype combinations is a more promising approach. The recent steps forward in our understanding of the disorders underlying strokes has given us a next generation of therapeutics and therapeutic targets by which to improve stroke survival, protect or rebuild neuronal connections in the brain, and enhance neural function. Advances in DNA sequencing and the development of new tools to correct human gene mutations have brought genetic analysis and gene therapy into the focus of investigations for new therapeutic options for stroke patients.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Slavko Brankovic
- Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Natasa Radosavljevic
- Department of Physical Medicine and Rehabilitation, King Abdulaziz Specialist Hospital, Taif 26521, Saudi Arabia;
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
22
|
Alehabib E, Kokotović T, Ranji-Burachaloo S, Tafakhori A, Ramshe SM, Esmaeilizadeh Z, Darvish H, Movafagh A, Nagy V. Leu226Trp CACNA1A variant associated with juvenile myoclonic epilepsy with and without intellectual disability. Clin Neurol Neurosurg 2021; 213:107108. [PMID: 34995834 DOI: 10.1016/j.clineuro.2021.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/25/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Epilepsy is a disease of Central Nervous System (CNS) characterized by abnormal brain activity and recurrent seizures and is considered a clinically and genetically heterogeneous disease. Here, we investigated pathogenic genetic alteration and described the clinical characteristics of three Iranian family members affected by Idiopathic Generalized Epilepsy (IGE) with and without intellectual disability. METHODS A non-consanguineous Iranian family with juvenile myoclonic epilepsy was enrolled in the study. The comprehensive neurological evaluation included motor and sensory skills, vision, hearing, speech, coordination, and mood. Whole-exome Sequencing (WES) was performed on the proband to detect probable pathogenic variant, and after the filtering process, probable variants were evaluated with familial segregation analysis using Sanger sequencing. RESULTS Using WES, we identified a heterozygous missense substitution (NM_023035.3:c.T677G:p.Leu226Trp) in CACNA1A gene in the studied family with juvenile myoclonic epilepsy with and without intellectual disability and psychiatric phenotype. Considering the patients' clinical synopsis, familial segregation analysis, and literature review, we postulated this variant to be causative of the disease. Indeed, the resulting missense mutation of Leu226Trp affects a highly conserved residue supporting our hypothesis that this mutation is potentially pathogenic. CONCLUSION To the best of our knowledge, this is the first report of juvenile myoclonic epilepsy related to CACNA1A gene. Our results provide evidence for expanding the clinical and molecular findings related to the CACNA1A gene.
Collapse
Affiliation(s)
- Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
| | - Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sakineh Ranji-Burachaloo
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Molaei Ramshe
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeilizadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
23
|
Tan RY, Drazyk AM, Urankar K, Bailey C, Gräf S, Markus H, Giffin NJ. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Pract Neurol 2021; 21:448-451. [PMID: 34433685 DOI: 10.1136/practneurol-2021-003058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 11/03/2022]
Abstract
A 44-year-old Caucasian man presented with seizures and cognitive impairment. He had marked retinal drusen, and MR brain scan showed features of cerebral small vessel disease; he was diagnosed with a leukoencephalopathy of uncertain cause. He died at the age of 46 years and postmortem brain examination showed widespread small vessel changes described as a vasculopathy of unknown cause. Seven years postmortem, whole-genome sequencing identified a homozygous nonsense HTRA1 mutation (p.Arg302Ter), giving a retrospective diagnosis of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy.
Collapse
Affiliation(s)
- Rhea Yy Tan
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anna M Drazyk
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Clare Bailey
- Ophthalmology, Bristol Eye Hospital, Bristol, UK
| | - Stefan Gräf
- Haematology and Medicine, Cambridge University, Cambridge, UK
| | - Hugh Markus
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
24
|
Liu JY, Yao M, Dai Y, Han F, Zhai FF, Zhang DD, Zhou LX, Ni J, Zhang SY, Cui LY, Zhu YC. Rare NOTCH3 Variants in a Chinese Population-Based Cohort and Its Relationship With Cerebral Small Vessel Disease. Stroke 2021; 52:3918-3925. [PMID: 34404235 DOI: 10.1161/strokeaha.120.032265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Researches on rare variants of NOTCH3 in the general Chinese population are lacking. This study aims to describe the spectrum of rare NOTCH3 variants by whole-exome sequencing in a Chinese community-based cohort and to investigate the association between rare NOTCH3 variants and age-related cerebral small vessel disease. METHODS The cross-sectional study comprised 1065 participants who underwent whole-exome sequencing and brain magnetic resonance imaging. NOTCH3 variants with minor allele frequency<1% in all 4 public population databases (1000 Genomes, ESP6500siv2_ALL, GnomAD_ALL, and GnomAD_EAS) were defined as rare variants. Multivariable linear and logistic regressions were used to investigate the associations between rare NOTCH3 variants and volume of white matter hyperintensities and cerebral small vessel disease burden. Clinical and imaging characteristics of rare NOTCH3 variant carriers were summarized. RESULTS Sixty-five rare NOTCH3 variants were identified in 147 of 1065 (13.8%) participants, including 57 missense single nucleotide polymorphisms (SNPs), 5 SNPs in splice branching sites, and 3 frameshift deletions. A significantly higher volume of white matter hyperintensities and heavier burden of cerebral small vessel disease was found in carriers of rare NOTCH3 EGFr (epidermal growth factor-like repeats)-involving variants, but not in carriers of EGFr-sparing variants. The carrying rate of rare EGFr-involving NOTCH3 variants in participants with dementia or stroke was significantly higher than those without dementia or stroke (12.4% versus 6.6%, P=0.041). Magnetic resonance imaging signs suggestive of CADASIL were found in 3.4% (5/145) rare EGFr cysteine-sparing NOTCH3 variant carriers but not in 2 cysteine-altering NOTCH3 variant carriers. CONCLUSIONS Carriers of rare NOTCH3 variants involving the EGFr domain may be genetically predisposed to age-related cerebral small vessel disease in the general Chinese population.
Collapse
Affiliation(s)
- Jing-Yi Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Fei-Fei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Ding-Ding Zhang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (D.-D.Z.)
| | - Li-Xin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (S.-Y.Z.)
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| |
Collapse
|
25
|
Guey S, Lesnik Oberstein SAJ, Tournier-Lasserve E, Chabriat H. Hereditary Cerebral Small Vessel Diseases and Stroke: A Guide for Diagnosis and Management. Stroke 2021; 52:3025-3032. [PMID: 34399586 DOI: 10.1161/strokeaha.121.032620] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cerebral small vessel diseases represent a frequent cause of stroke and cognitive or motor disability in adults. A small proportion of cerebral small vessel diseases is attributable to monogenic conditions. Since the characterization in the late 1990s of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, several other monogenic conditions leading to adult-onset ischemic or hemorrhagic stroke have been described. In this practical guide, we summarize the key features that should elicit the differential diagnosis of a hereditary cerebral small vessel diseases in adult stroke patients, describe the main clinical and imaging characteristics of the major hereditary cerebral small vessel diseases that can manifest as stroke, and provide general recommendations for the clinical management of affected patients and their relatives.
Collapse
Affiliation(s)
- Stéphanie Guey
- CERVCO, FHU NeuroVasc, Assistance Publique des Hôpitaux de Paris and Paris University, France (S.G., E.T.-L., H.C.).,INSERM UMR 1141, NeuroDiderot, Université de Paris, France (S.G., E.T.-L., H.C.)
| | | | - Elisabeth Tournier-Lasserve
- CERVCO, FHU NeuroVasc, Assistance Publique des Hôpitaux de Paris and Paris University, France (S.G., E.T.-L., H.C.).,INSERM UMR 1141, NeuroDiderot, Université de Paris, France (S.G., E.T.-L., H.C.)
| | - Hugues Chabriat
- CERVCO, FHU NeuroVasc, Assistance Publique des Hôpitaux de Paris and Paris University, France (S.G., E.T.-L., H.C.).,INSERM UMR 1141, NeuroDiderot, Université de Paris, France (S.G., E.T.-L., H.C.)
| |
Collapse
|
26
|
Tian Y, Tang W, Yang S, Zhao Y, Chen Y, Zhao X, Liu C, Chen X, Shen C. HTRA1 Variants and the Interaction with Smoking Confer the Genetic Susceptibility to Ischemic Stroke. Int J Med Sci 2021; 18:1840-1847. [PMID: 33746601 PMCID: PMC7976583 DOI: 10.7150/ijms.45856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
High temperature requirement protein A1 (HtrA1) was identified as the causative gene of autosomal recessive arteriopathy and associated with lacunar ischemic stroke (IS) in European. This study aimed at evaluating the association of HTRA1 with IS and four tagging single-nucleotide polymorphisms (SNPs) were genotyped in a cohort of 4,098 Chinese. The mRNA level of HTRA1 in 72 IS cases and 72 hypertension controls were measured and compared. In whole population, SNP rs2268350 (C>T) was significantly associated with IS incidence (P=0.034). Stratification analysis observed significant association of rs2268350 in male, smoking and drinking populations, rs2672587 (C>G) in smoking and nonsmoking populations and rs3793917 (C>G) in smoking, nonsmoking and nondrinking populations with stroke respectively (P<0.05). The additive interaction and multiplicative interaction between rs2268350 and smoking were both of significant (P<0.05) after adjustment for the covariates. There was a cumulated risk of IS among genotypes of rs3793917 (P=0.009) and rs2672587 (P=0.047) in smoking population. The mRNA level of HTRA1 in non-smokers with rs2268350 CC was significantly higher than smokers with rs2268350 CT/TT (P=0.046) in IS cases. Our findings support that HTRA1 confers the genetic susceptibility to IS and smoking might modify the genetic effect of HTRA1 on IS by suppressing HTRA1 mRNA expression.
Collapse
Affiliation(s)
- Yuanrui Tian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wuzhuang Tang
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yanping Zhao
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaotian Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
27
|
Chen Z, Tan YJ, Lian MM, Tandiono M, Foo JN, Lim WK, Kandiah N, Tan EK, Ng ASL. High Diagnostic Utility Incorporating a Targeted Neurodegeneration Gene Panel With MRI Brain Diagnostic Algorithms in Patients With Young-Onset Cognitive Impairment With Leukodystrophy. Front Neurol 2021; 12:631407. [PMID: 33597917 PMCID: PMC7882677 DOI: 10.3389/fneur.2021.631407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Leukodystrophies are a diverse group of genetic disorders that selectively involve the white matter of the brain and are a frequent cause of young-onset cognitive impairment. Genetic diagnosis is challenging. Data on the utility of incorporating brain magnetic resonance imaging (MRI) diagnostic algorithms with next-generation sequencing (NGS) for diagnosis in a real-life clinical setting is limited. We performed sequencing using a custom-designed panel of 200 neurodegeneration-associated genes on 45 patients with young-onset cognitive impairment with leukodystrophy, and classified them based on van der Knaap et al.'s MRI diagnostic algorithm. We found that 20/45 (44.4%) patients carried pathogenic variants or novel variants predicted to be pathogenic (one in CSF1R, two in HTRA1 and 17 in NOTCH3). All patients with an established genetic diagnosis had an MRI brain pattern consistent with a specific genetic condition/s. More than half (19/37, 51.4%) of patients with MRI changes consistent with vascular cognitive impairment secondary to small vessel disease (VCI-SVD) had pathogenic variants, including all patients with pathogenic NOTCH3 (17/19, 89.5%) and HTRA1 variants (2/19, 11.5%). Amongst patients harboring pathogenic NOTCH3 variants, 13/17 (76.5%) carried the p.R544C variant seen predominantly in East Asians. Anterior temporal white matter involvement was seen only in patients with pathogenic NOTCH3 variants (6/17, 35.3%). Overall, we demonstrated a high diagnostic utility incorporating a targeted neurodegeneration gene panel and MRI-based diagnostic algorithms in young-onset cognitive impairment patients with leukodystrophy.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Human Genetics, Genome Institute of Singapore, ASTAR, Singapore, Singapore
| | - Weng Khong Lim
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore.,Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore.,Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
28
|
|
29
|
Ouin E, Jouvent E. [Clinico-radiological spectrum of cerebral small vessel diseases]. Rev Med Interne 2020; 41:459-468. [PMID: 32540119 DOI: 10.1016/j.revmed.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022]
Abstract
Cerebral small vessel diseases are frequent and can be seen through all ages. Although the most frequent forms related to age and hypertension or to cerebral amyloid angiopathy are mainly observed in subjects over 50 years of age, rarer forms may affect young people, sometimes even children. Some familial or inflammatory forms can be particularly misleading with some presentations very difficult to relate to a microvascular origin. Cerebral small vessel diseases thus raise both daily therapeutic issues and much rarer diagnostic questions, sometimes extremely complex. Our aim was to review the main clinical initial presentations and the clinico-radiological spectrum of associated underlying conditions.
Collapse
Affiliation(s)
- E Ouin
- Inserm U1141, service de neurologie et centre des maladies vasculaires rares du cerveau et de l'œil (CERVCO), hôpital Lariboisière, université de Paris, AP-HP, 75475 Paris, France; Département de neurologie, hôpitaux universitaires d'Amiens, Amiens, France
| | - E Jouvent
- Inserm U1141, service de neurologie et centre des maladies vasculaires rares du cerveau et de l'œil (CERVCO), hôpital Lariboisière, université de Paris, AP-HP, 75475 Paris, France.
| |
Collapse
|
30
|
Okada T, Washida K, Irie K, Saito S, Noguchi M, Tomita T, Koga M, Toyoda K, Okazaki S, Koizumi T, Mizuta I, Mizuno T, Ihara M. Prevalence and Atypical Clinical Characteristics of NOTCH3 Mutations Among Patients Admitted for Acute Lacunar Infarctions. Front Aging Neurosci 2020; 12:130. [PMID: 32477100 PMCID: PMC7240022 DOI: 10.3389/fnagi.2020.00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/20/2020] [Indexed: 01/12/2023] Open
Abstract
Objectives: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary small vessel disease, with reported frequencies of 2-5/100,000 individuals. Recently, it has been reported that some patients with NOTCH3 gene mutations show atypical clinical symptoms of CADASIL. Assuming that CADASIL is underdiagnosed in some cases of lacunar infarction, this study was designed to examine the prevalence of NOTCH3 gene mutations in the patients at highest risk who were admitted for lacunar infarctions. Methods: From January 2011 to April 2018, 1,094 patients with lacunar infarctions were admitted to our hospital, of whom 31 patients without hypertension but with white matter disease (Fazekas scale 2 or 3) were selected and genetically analyzed for NOTCH3 gene mutations (Phase 1). Furthermore, 54 patients, who were 60 years or younger, were analyzed for NOTCH3 mutations (Phase 2). NOTCH3 exons 2–24, which encode the epidermal growth factor-like repeat domain of the NOTCH3 receptor, were analyzed for mutations by direct sequencing of genomic DNA. Results: Three patients presented NOTCH3 p.R75P mutations: two in the Phase 1 and one in the Phase 2 cohort. Among patients aged 60 years or younger and those without hypertension but with moderate-to-severe white matter lesions, the carrier frequency of p.R75P was 3.5% (3/85), which was significantly higher than that in the Japanese general population (4.7KJPN) (odds ratio [95% CI] = 58.2 [11.6–292.5]). All three patients with NOTCH3 mutations had family histories of stroke, and the average patient age was 51.3 years. All three patients also showed white matter lesions in the external capsule but not in the temporal pole. The CADASIL and CADASIL scale-J scores of the three patients were 6, 17, 7 (mean, 10.0) and 13, 20, 10 (mean, 14.3), respectively. Conclusion: Among patients hospitalized for lacunar infarctions, the p.R75P prevalence may be higher than previously estimated. The NOTCH3 p.R75P mutation may be underdiagnosed in patients with early-onset lacunar infarctions due to the atypical clinical and neuroimaging features of CADASIL. Early-onset, presence of family history of stroke, external capsule lesions, and absence of hypertension may help predict underlying NOTCH3 mutations despite no temporal white matter lesions.
Collapse
Affiliation(s)
- Takashi Okada
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenichi Irie
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Michio Noguchi
- NCVC Biobank, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tsutomu Tomita
- NCVC Biobank, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shuhei Okazaki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Koizumi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
31
|
|