1
|
Mitchel MW, Oetjens M, Berry ASF, Johns A, Moreno-De-Luca A, Torene RI, Strande NT, DiStefano MT, Dyer LH, Brandt T, Finucane BM, Ledbetter DH, Retterer K, Martin CL, Myers SM. Monogenic disorders associated with motor speech phenotypes in children and adolescents undergoing clinical exome sequencing. Genet Med 2025; 27:101374. [PMID: 39931922 PMCID: PMC11985296 DOI: 10.1016/j.gim.2025.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
PURPOSE Prior studies investigating the genetic architecture of pediatric motor speech disorders (MSDs) have been limited by small sample sizes and an exclusive focus on apraxia. We aimed to identify pathogenic genomic variants associated with MSDs in a large pediatric population referred for exome sequencing (ES). METHODS We identified pediatric patients with MSDs who had clinical ES between 2012 and 2022. The rate of pathogenic/likely pathogenic (P/LP) findings considered causative of the MSD phenotype was determined and delineated by sex and neurodevelopmental comorbidity. Gene-based burden testing compared the rate of P/LP variants in each gene in MSD cases with a comparison clinical ES cohort. RESULTS Positive diagnostic results were detected in 527 of 2004 (26.3%) patients with MSDs, with higher diagnostic rates in females and individuals with neurodevelopmental comorbidities. P/LP sequence variants were detected in 262 genes. Gene-based case-referent burden analysis revealed that 30 genes were nominally associated with MSDs, 2 of which (SETBP1 and ADCY5) survived exome-wide correction. CONCLUSION Over 25% of patients with MSDs were found to harbor P/LP variants in 262 genes, many of which have not previously been associated with MSDs. Potential clinical implications include early implementation of intensive speech therapy for children diagnosed with monogenic causes of MSDs.
Collapse
Affiliation(s)
- Marissa W Mitchel
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA.
| | - Matthew Oetjens
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA
| | | | - Alicia Johns
- Department of Population Health Sciences, Geisinger, Danville, PA
| | - Andrés Moreno-De-Luca
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA; Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA
| | | | - Natasha T Strande
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA
| | - Marina T DiStefano
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lindsay Havens Dyer
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA
| | - Tracy Brandt
- GeneDx, Gaithersburg, MD; Geisinger, Danville, PA
| | - Brenda M Finucane
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA
| | - David H Ledbetter
- Office of Research Affairs and Departments of Pediatrics and Psychiatry, University of Florida College of Medicine, Jacksonville, FL
| | | | - Christa L Martin
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA
| | - Scott M Myers
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA
| |
Collapse
|
2
|
Wei Z, Yao L, Zhang L, Li S, Xu M, Wu D, Li W, Chang Y. Prenatal diagnosis of intellectual disability, autosomal dominant 29 with a nonsense pathogenic variant in SETBP1: a case report and literature review. Front Genet 2025; 16:1463485. [PMID: 40144891 PMCID: PMC11936921 DOI: 10.3389/fgene.2025.1463485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/13/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Intellectual disability, autosomal dominant 29 is a rare disorder resulting from pathogenic variants of SETBP1 gene with no specific mutation hotspot identified. Systematic descriptions of new cases are crucial for understanding the genotypic and phenotypic spectrums of the disease. Case presentation A pregnant woman was referred to the prenatal diagnosis center at our hospital because she has an intellectual disability and has previously given birth to a child with intellectual disabilities. Karyotype, CNV-seq and whole-exome sequencing (WES) were employed to investigate the potential genetic issues in the family. The SETBP1 NM_015559.2: c.2425C>T (p.Gln809*) nonsense variant was found in the proband and mother, who were diagnosed with MRD29. Amniocentesis and genetic analysis (CNV-seq and sanger sequencing for mutation site) were performed as fetal cortical abnormalities and subependymal cystic area presented by ultrasonic examination at 25 + 5 gestational weeks. The genetic analysis confirmed the SETBP1 c.2425C>T (p.Gln809*) nonsense mutation in the fetus. The parents terminated the pregnancy at 30 + 4 gestational weeks. Conclusion The SETBP1 NM_015559.2: c.2425C>T (p.Gln809*) nonsense variant is pathogenic and SETBP1 haploinsufficiency may be associated with fatal cortical abnormalities. More prenatal clinical data is helpful for a better productive decision making and patient management.
Collapse
Affiliation(s)
- Zhuo Wei
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Liying Yao
- Prenatal Diagnosis Center, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Lei Zhang
- Prenatal Diagnosis Center, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Shanshan Li
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Meiyi Xu
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Dan Wu
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Wen Li
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin, China
- Prenatal Diagnosis Center, Nankai University Affiliated Maternity Hospital, Tianjin, China
| |
Collapse
|
3
|
Ormieres C, Lesieur-Sebellin M, Siquier-Pernet K, Delplancq G, Rio M, Parisot M, Nitschké P, Rodriguez-Fontenla C, Bodineau A, Narcy L, Schlumberger E, Cantagrel V, Malan V. Deciphering the genetic basis of developmental language disorder in children without intellectual disability, autism or apraxia of speech. Mol Autism 2025; 16:10. [PMID: 39948625 PMCID: PMC11823097 DOI: 10.1186/s13229-025-00642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Developmental language disorder (DLD) refers to children who present with language difficulties that are not due to a known biomedical condition or associated with autism spectrum disorder (ASD) or intellectual disability (ID). The clinical heterogeneity of language disorders, the frequent presence of comorbidities, and the inconsistent terminology used over the years have impeded both research and clinical practice. Identifying sub-groups of children (i.e. DLD cases without childhood apraxia of speech (CAS)) with language difficulties is essential for elucidating the underlying genetic causes of this condition. DLD presents along a spectrum of severity, ranging from mild speech delays to profound disturbances in oral language structure in otherwise typically intelligent children. The prevalence of DLD is ~ 7-8% or 2% if severe forms are considered. This study aims to investigate a homogeneous cohort of DLD patients, excluding cases of ASD, ID or CAS, using multiple genomic approaches to better define the molecular basis of the disorder. METHODS Fifteen families, including 27 children with severe DLD, were enrolled. The majority of cases (n = 24) were included in multiplex families while three cases were sporadic. This resulted in a cohort of 59 individuals for whom chromosomal microarray analysis and exome or genome sequencing were performed. RESULTS We identified copy number variants (CNVs) predisposing to neurodevelopmental disorders with incomplete penetrance and variable expressivity in two families. These CNVs (i.e., 15q13.3 deletion and proximal 16p11.2 duplication) are interpreted as pathogenic. In one sporadic case, a de novo pathogenic variant in the ZNF292 gene, known to be associated with ID, was detected, broadening the spectrum of this syndrome. LIMITATIONS The strict diagnostic criteria applied by our multidisciplinary team, including speech-language physicians, neuropsychologists, and paediatric neurologists, resulted in a relatively small sample size, which limit the strength of our findings. CONCLUSION These findings highlight a common genetic architecture between DLD, ASD and ID, and underline the need for further investigation into overlapping neurodevelopmental pathways. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06660108.
Collapse
Affiliation(s)
- Clothilde Ormieres
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, 75015, France.
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France.
- Département de la femme enfant et adolescent, Service de pédiatrie générale, Centre de coordination interdisciplinaire et de soins des maladies rares et complexes de l'enfant, de l'adolescent ou adolescente (CORAIL), Hôpitaux universitaires de Genève, Genève, 1205, Suisse.
| | - Marion Lesieur-Sebellin
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, 75015, France
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France
| | - Karine Siquier-Pernet
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France
| | - Geoffroy Delplancq
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, 75015, France
| | - Marlene Rio
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, 75015, France
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France
| | - Mélanie Parisot
- Genomics Core Facility, Université Paris Cité, Imagine Institute, Structure Fédérative de Recherche Necker, INSERM, CNRS, Paris, 75015, France
| | - Patrick Nitschké
- Bioinformatics Core Facility, Université Paris Cité, Imagine Institute, INSERM, Paris, 75015, France
| | - Cristina Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Centre for Research in Molecular Medicine and Chronic Diseases, CIBERER, Universidade de Santiago de Compostela, Santiago, 15728, Spain
| | - Alison Bodineau
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France
| | - Lucie Narcy
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France
- Centre Référent des Troubles du Langage et des Apprentissages, Hôpital Raymond Poincaré, APHP, Garches, 92380, France
| | - Emilie Schlumberger
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France
- Centre Référent des Troubles du Langage et des Apprentissages, Hôpital Raymond Poincaré, APHP, Garches, 92380, France
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France
| | - Valérie Malan
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, 75015, France.
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM, Imagine Institute, Paris, 75015, France.
| |
Collapse
|
4
|
Magielski JH, Ruggiero SM, Xian J, Parthasarathy S, Galer PD, Ganesan S, Back A, McKee JL, McSalley I, Gonzalez AK, Morgan A, Donaher J, Helbig I. The clinical and genetic spectrum of paediatric speech and language disorders. Brain 2025; 148:663-674. [PMID: 39412438 PMCID: PMC11788197 DOI: 10.1093/brain/awae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 10/23/2024] Open
Abstract
Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.
Collapse
Affiliation(s)
- Jan H Magielski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Peter D Galer
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiva Ganesan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Amanda Back
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jillian L McKee
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ian McSalley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Alexander K Gonzalez
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Angela Morgan
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joseph Donaher
- Center for Childhood Communication, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Tan J, Huang M, Ji X, Liu A, Qiao F, Zhang C, Meng L, Wang Y, Xu Z, Hu P. Long read Nanopore sequencing identifies precise breakpoints of a de novo paracentric inversion that disrupt the MEIS2 gene in a Chinese girl with syndromic developmental delay. BMC Pediatr 2025; 25:18. [PMID: 39789493 PMCID: PMC11715414 DOI: 10.1186/s12887-024-05267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Chromosomal inversions are underappreciated causes of rare diseases given their detection, resolution, and clinical interpretation remain challenging. Heterozygous mutations in the MEIS2 gene cause an autosomal dominant syndrome characterized by intellectual disability, cleft palate, congenital heart defect, and facial dysmorphism at variable severity and penetrance. CASE PRESENTATION Herein, we report a Chinese girl with intellectual disability, developmental delay, and congenital heart defect, in whom G-banded karyotype analysis identified a de novo paracentric inversion 46,XX, inv(15)(q15q26.1) and other conventional approaches including chromosomal microarray analysis and whole exome sequencing were failed to detect any pathologic variants that can explain the phenotypes of the proband. Subsequently, long-read Nanopore sequencing was directly conducted and defined the breakpoint position of the inversion, disrupting the MEIS2 gene at intron 8. These breakpoints were also confirmed by Sanger sequencing. CONCLUSIONS In conclusion, we report the first chromosomal inversion disrupting the MEIS2 gene, which was fine-mapped by long read Nanopore sequencing. Our data not only expand the clinical spectrum of MEIS2-caused syndromic developmental delay, but also illustrate the value of long-read sequencing in elucidating the precise genetic etiology of patients with relatively nonspecific clinical findings and chromosomal inversion that are beyond the resolution of conventional approaches.
Collapse
Affiliation(s)
- Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - Mingtao Huang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - Xiuqing Ji
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - An Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - Cuiping Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - Lulu Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China.
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China.
| |
Collapse
|
6
|
Ek M, Kvarnung M, Pettersson M, Soller MJ, Anderlid BM, Thonberg H, Eisfeldt J, Lindstrand A. Multi-omics analysis detail a submicroscopic inv(15)(q14q15) generating fusion transcripts and MEIS2 and NUSAP1 haploinsufficiency. Sci Rep 2024; 14:30343. [PMID: 39639090 PMCID: PMC11621304 DOI: 10.1038/s41598-024-81507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Inversions are balanced structural variants that often remain undetected in genetic diagnostics. We present a female proband with a de novo Chromosome 15 paracentric inversion, disrupting MEIS2 and NUSAP1. The inversion was detected by short-read genome sequencing and confirmed with adaptive long-read sequencing. The breakpoint junction analysis revealed a 96 bp (bp) deletion and an 18 bp insertion in the two junctions, suggesting that the rearrangement arose through a replicative error. Transcriptome sequencing of cultured fibroblasts revealed normal MEIS2 levels and 0.61-fold decreased expression of NUSAP1. Furthermore, three fusion transcripts were detected and confirmed by Sanger sequencing. Heterozygous loss of MEIS2 (MIM# 600987) is associated with a cleft palate, heart malformations, and intellectual impairment, which overlap with the clinical symptoms observed in the proband. The observed fusion transcripts are likely non-functional, and MEIS2 haploinsufficiency is the likely disease causative mechanism. Altogether, this study's findings illustrate the importance of including inversions in rare disease diagnostic testing and highlight the value of long read sequencing for the validation and characterization of such variants.
Collapse
Affiliation(s)
- Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maria Johansson Soller
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Håkan Thonberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65, Solna, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
7
|
Grönberg DJ, Pinto de Carvalho SL, Dernerova N, Norton P, Wong MMK, Mendoza E. Expression and regulation of SETBP1 in the song system of male zebra finches (Taeniopygia guttata) during singing. Sci Rep 2024; 14:29057. [PMID: 39580495 PMCID: PMC11585544 DOI: 10.1038/s41598-024-75353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 11/25/2024] Open
Abstract
Rare de novo heterozygous loss-of-function SETBP1 variants lead to a neurodevelopmental disorder characterized by speech deficits, indicating a potential involvement of SETBP1 in human speech. However, the expression pattern of SETBP1 in brain regions associated with vocal learning remains poorly understood, along with the underlying molecular mechanisms linking it to vocal production. In this study, we examined SETBP1 expression in the brain of male zebra finches, a well-established model for studying vocal production learning. We demonstrated that zebra finch SETBP1 exhibits a greater number of exons and isoforms compared to its human counterpart. We characterized a SETBP1 antibody and showed that SETBP1 colocalized with FoxP1, FoxP2, and Parvalbumin in key song nuclei. Moreover, SETBP1 expression in neurons in Area X is significantly higher in zebra finches singing alone, than those singing courtship song to a female, or non-singers. Importantly, we found a distinctive neuronal protein expression of SETBP1 and FoxP2 in Area X only in zebra finches singing alone, but not in the other conditions. We demonstrated SETBP1´s regulatory role on FoxP2 promoter activity in vitro. Taken together, these findings provide compelling evidence for SETBP1 expression in brain regions to be crucial for vocal learning and its modulation by singing behavior.
Collapse
Affiliation(s)
- Dana Jenny Grönberg
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | | | - Nikola Dernerova
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Phillip Norton
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4 (Ostertaghaus), 10115, Berlin, Germany
| | - Maggie Mei-Ki Wong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500AH, the Netherlands
| | - Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
8
|
Duan W, Huang G, Sui Y, Wang K, Yu Y, Chu X, Cao X, Chen L, Liu J, Eichler EE, Xiong B. Deficiency of DDX3X results in neurogenesis defects and abnormal behaviors via dysfunction of the Notch signaling. Proc Natl Acad Sci U S A 2024; 121:e2404173121. [PMID: 39471229 PMCID: PMC11551356 DOI: 10.1073/pnas.2404173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The molecular mechanisms underlying the neurodevelopmental disorders (NDDs) caused by DDX3X variants remain poorly understood. In this study, we validated that de novo DDX3X variants are enriched in female developmental delay (DD) patients and mainly affect the evolutionarily conserved amino acids based on a meta-analysis of 46,612 NDD trios. We generated a ddx3x deficient zebrafish allele, which exhibited reduced survival rate, DD, microcephaly, adaptation defects, anxiolytic behaviors, social interaction deficits, and impaired spatial recognitive memory. As revealed by single-nucleus RNA sequencing and biological validations, ddx3x deficiency leads to reduced neural stem cell pool, decreased total neuron number, and imbalanced differentiation of excitatory and inhibitory neurons, which are responsible for the behavioral defects. Indeed, the supplementation of L-glutamate or glutamate receptor agonist ly404039 could partly rescue the adaptation and social deficits. Mechanistically, we reveal that the ddx3x deficiency attenuates the stability of the crebbp mRNA, which in turn causes downregulation of Notch signaling and defects in neurogenesis. Our study sheds light on the molecular pathology underlying the abnormal neurodevelopment and behavior of NDD patients with DDX3X mutations, as well as providing potential therapeutic targets for the precision treatment.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Guiyang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xu Cao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Liangpei Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jiahui Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
9
|
Viswanathan S, Oliver KL, Regan BM, Schneider AL, Myers CT, Mehaffey MG, LaCroix AJ, Antony J, Webster R, Cardamone M, Subramanian GM, Chiu ATG, Roza E, Teleanu RI, Malone S, Leventer RJ, Gill D, Berkovic SF, Hildebrand MS, Goad BS, Howell KB, Symonds JD, Brunklaus A, Sadleir LG, Zuberi SM, Mefford HC, Scheffer IE. Solving the Etiology of Developmental and Epileptic Encephalopathy with Spike-Wave Activation in Sleep (D/EE-SWAS). Ann Neurol 2024; 96:932-943. [PMID: 39096015 PMCID: PMC11496008 DOI: 10.1002/ana.27041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To understand the etiological landscape and phenotypic differences between 2 developmental and epileptic encephalopathy (DEE) syndromes: DEE with spike-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS). METHODS All patients fulfilled International League Against Epilepsy (ILAE) DEE-SWAS or EE-SWAS criteria with a Core cohort (n = 91) drawn from our Epilepsy Genetics research program, together with 10 etiologically solved patients referred by collaborators in the Expanded cohort (n = 101). Detailed phenotyping and analysis of molecular genetic results were performed. We compared the phenotypic features of individuals with DEE-SWAS and EE-SWAS. Brain-specific gene co-expression analysis was performed for D/EE-SWAS genes. RESULTS We identified the etiology in 42/91 (46%) patients in our Core cohort, including 29/44 (66%) with DEE-SWAS and 13/47 (28%) with EE-SWAS. A genetic etiology was identified in 31/91 (34%). D/EE-SWAS genes were highly co-expressed in brain, highlighting the importance of channelopathies and transcriptional regulators. Structural etiologies were found in 12/91 (13%) individuals. We identified 10 novel D/EE-SWAS genes with a range of functions: ATP1A2, CACNA1A, FOXP1, GRIN1, KCNMA1, KCNQ3, PPFIA3, PUF60, SETD1B, and ZBTB18, and 2 novel copy number variants, 17p11.2 duplication and 5q22 deletion. Although developmental regression patterns were similar in both syndromes, DEE-SWAS was associated with a longer duration of epilepsy and poorer intellectual outcome than EE-SWAS. INTERPRETATION DEE-SWAS and EE-SWAS have highly heterogeneous genetic and structural etiologies. Phenotypic analysis highlights valuable clinical differences between DEE-SWAS and EE-SWAS which inform clinical care and prognostic counseling. Our etiological findings pave the way for the development of precision therapies. ANN NEUROL 2024;96:932-943.
Collapse
Affiliation(s)
- Sindhu Viswanathan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Hospital Pulau Pinang, Pulau Pinang, Malaysia
| | - Karen L. Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Brigid M. Regan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy L. Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Candace T. Myers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michele G. Mehaffey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Amy J. LaCroix
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Jayne Antony
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Richard Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Cardamone
- Sydney Children’s Hospital, Randwick; School of Clinical Medicine, UNSW Sydney, New South Wales, Australia
| | | | - Annie TG Chiu
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Eugenia Roza
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Raluca I. Teleanu
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Stephen Malone
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Neurosciences Department, Queensland Children’s Hospital, South Brisbane Queensland, Australia
| | - Richard J. Leventer
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Deepak Gill
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Kids Neuroscience Centre, Kids Research Institute, Sydney, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Beatrice S. Goad
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Katherine B. Howell
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Joseph D. Symonds
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Lynette G. Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Sameer M. Zuberi
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Heather C. Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Centre for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN,USA
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- The Florey Institute of Neurosciences and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Lauretta ML, Jarmolowicz A, Amor DJ, Best S, Morgan AT. An Investigation of Barriers and Enablers for Genetics in Speech-Language Pathology Explored Through a Case Study of Childhood Apraxia of Speech. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:3437-3451. [PMID: 37713535 DOI: 10.1044/2023_jslhr-22-00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
PURPOSE Advancements in genetic testing and analysis have allowed improved identification of the genetic basis of childhood apraxia of speech, a rare speech presentation. This study aimed to understand speech-language pathologists' (SLPs') consideration of incorporation of genetics in clinical practice using a theory-informed qualitative approach. METHOD Semistructured interviews were conducted with 12 pediatric SLPs using a behavior change theory (Theoretical Domains Framework [TDF]) within a case study describing a child with complex co-occurring features, including childhood apraxia of speech. Interviews focused on three stages of the patient journey (prereferral, referral, and postreferral). Interviews were analyzed to identify barriers and enablers to considering incorporation of genetics in current clinical practice. Barriers and enablers were grouped and mapped onto a contextually relevant TDF-coded analysis framework. RESULTS Barriers were identified across several TDF domains, through all stages of the patient journey. Lack of confidence, relevance, and level of experience were most common prereferral, and connection to and awareness of genetics services and contextual factors were barriers in the referral stage. Perception of professional role, knowledge, and beliefs about effects on families were barriers postreferral. Associated enablers were also identified, including seeing value in genetic diagnosis, support from other health care professionals, supervision, and relationships with genetics services. CONCLUSIONS Results of this qualitative study highlight barriers and enablers to incorporating genetics into speech-language pathology clinical practice. These findings will assist in the development of theory-informed implementation strategies to support SLPs into the future. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24112800.
Collapse
Affiliation(s)
| | - Anna Jarmolowicz
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital, Parkville, Victoria, Australia
| | - Stephanie Best
- Australian Genomics, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Victorian Comprehensive Cancer Centre Alliance, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Angela T Morgan
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital, Parkville, Victoria, Australia
- The University of Queensland, St. Lucia, Australia
| |
Collapse
|
11
|
Formicola D, Podda I, Dirupo E, Andreucci E, Giglio S, Cipriani P, Bombonato C, Santorelli FM, Chilosi A. Expanding the molecular landscape of childhood apraxia of speech: evidence from a single-center experience. Front Neurosci 2024; 18:1396240. [PMID: 39381681 PMCID: PMC11459770 DOI: 10.3389/fnins.2024.1396240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Background Childhood apraxia of speech (CAS) is a genetically heterogeneous pediatric motor speech disorder. The advent of whole exome sequencing (WES) and whole genome sequencing techniques has led to increased identification of pathogenic variants in CAS genes. In an as yet uncharacterized Italian cohort, we aimed both to identify new pathogenic gene variants associated with CAS, and to confirm the disease-related role of genes already reported by others. We also set out to refine the clinical and neurodevelopmental characterization of affected children, with the aim of identifying specific, gene-related phenotypes. Methods In a single-center study aiming to explore the genetic etiology of CAS in a cohort of 69 Italian children, WES was performed in the families of the 34 children found to have no copy number variants. Each of these families had only one child affected by CAS. Results High-confidence (HC) gene variants were identified in 7/34 probands, in two of whom they affected KAT6A and CREBBP, thus confirming the involvement of these genes in speech impairment. The other probands carried variants in low-confidence (LC) genes, and 20 of these variants occurred in genes not previously reported as associated with CAS. UBA6, ZFHX4, and KAT6A genes were found to be more enriched in the CAS cohort compared to control individuals. Our results also showed that most HC genes are involved in epigenetic mechanisms and are expressed in brain regions linked to language acquisition processes. Conclusion Our findings confirm a relatively high diagnostic yield in Italian patients.
Collapse
Affiliation(s)
- Daniela Formicola
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Irina Podda
- Parole al Centro Studio di Logopedia, Genoa, Italy
| | - Elia Dirupo
- Medical Genetics Unit, Meyer Children’s University Hospital IRCCS, Florence, Italy
| | - Elena Andreucci
- Medical Genetics Unit, Meyer Children’s University Hospital IRCCS, Florence, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Cipriani
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| | - Clara Bombonato
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| | - Filippo Maria Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| | - Anna Chilosi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| |
Collapse
|
12
|
Keijser R, Åsberg Johnels J, Habbe M, Lichtenstein P, Larsson H, Lundström S, Taylor MJ, Tammimies K. Prevalence and heritability of parental-reported speech and/or language difficulties in a Swedish population-based twin sample. JCPP ADVANCES 2024; 4:e12221. [PMID: 39411473 PMCID: PMC11472810 DOI: 10.1002/jcv2.12221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 10/19/2024] Open
Abstract
Background Research on genetic and environmental influences on speech and/or language difficulties (SaLD) is sparse, with inconsistent heritability estimates. We aimed to estimate the prevalence of parental reported SaLD and the relative contributions of genetic and environmental factors for the phenotype using a Swedish population-based twin sample. We hypothesized that there would be a stronger genetic than environmental effect on SaLD. Methods Data were collected from The Child and Adolescent Twin Study in Sweden. The study sample included 16,774 twin pairs (16,946 males, 16,602 females), of which 5141 were monozygotic, 5861 dizygotic (DZ), and 5772 opposite-sex DZ pairs. The language items in the Autism-Tics, Attention-Deficit Hyperactivity Disorder, and other Comorbidities inventory were used to categorize individuals as having parental-reported SaLD. A classical twin design was used to estimate the relative contribution of genetic and environmental factors to the liability of SaLD. Results The prevalence of SaLD was 7.85% (95% confidence interval (CI) [7.57%-8.15%]) and 7.27% (95% CI [6.99%-7.55%]) when excluding individuals with autism and intellectual disability (ID). We also found that SaLD were significantly more prevalent in males than females with a ratio of 2:1. The heritability was estimated to be 75% (95% CI [67%-83%]) for SaLD. Shared environment played a significant role with an estimated contribution of 22% (95% CI [14%-30%]). The heritability estimate was reduced to 70% but with overlapping CI when excluding individuals with autism and ID. Conclusions We provide evidence that SaLD is common in the population and under strong genetic influence. Future studies should focus on mapping the genetic architecture of SaLD and related disorders.
Collapse
Affiliation(s)
- Rebecka Keijser
- The Center of Neurodevelopmental Disorders (KIND)Centre for Psychiatry ResearchDepartment of Women's and Children's HealthKarolinska Institutet and Child and Adolescent PsychiatryStockholm Health Care ServicesStockholm County CouncilStockholmSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Jakob Åsberg Johnels
- Gillberg Neuropsychiatry CentreInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Speech and Language Pathology UnitInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Marika Habbe
- The Center of Neurodevelopmental Disorders (KIND)Centre for Psychiatry ResearchDepartment of Women's and Children's HealthKarolinska Institutet and Child and Adolescent PsychiatryStockholm Health Care ServicesStockholm County CouncilStockholmSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Henrik Larsson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry CentreInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Mark J. Taylor
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Kristiina Tammimies
- The Center of Neurodevelopmental Disorders (KIND)Centre for Psychiatry ResearchDepartment of Women's and Children's HealthKarolinska Institutet and Child and Adolescent PsychiatryStockholm Health Care ServicesStockholm County CouncilStockholmSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
13
|
von Mueffling A, Garcia-Forn M, De Rubeis S. DDX3X syndrome: From clinical phenotypes to biological insights. J Neurochem 2024; 168:2147-2154. [PMID: 38976626 PMCID: PMC11449660 DOI: 10.1111/jnc.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
DDX3X syndrome is a neurodevelopmental disorder accounting for up to 3% of cases of intellectual disability (ID) and affecting primarily females. Individuals diagnosed with DDX3X syndrome can also present with behavioral challenges, motor delays and movement disorders, epilepsy, and congenital malformations. DDX3X syndrome is caused by mutations in the X-linked gene DDX3X, which encodes a DEAD-box RNA helicase with critical roles in RNA metabolism, including mRNA translation. Emerging discoveries from animal models are unveiling a fundamental role of DDX3X in neuronal differentiation and development, especially in the neocortex. Here, we review the current knowledge of genetic and neurobiological mechanisms underlying DDX3X syndrome and their relationship with clinical phenotypes.
Collapse
Affiliation(s)
- Alexa von Mueffling
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Forbes EJ, Morison LD, Lelik F, Howell T, Debono S, Goel H, Burger P, Mandel JL, Geneviève D, Amor DJ, Morgan AT. Speech and language in DDX3X-neurodevelopmental disorder: A call for early augmentative and alternative communication intervention. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32971. [PMID: 38421120 DOI: 10.1002/ajmg.b.32971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Pathogenic variants in DDX3X are associated with neurodevelopmental disorders. Communication impairments are commonly reported, yet specific speech and language diagnoses have not been delineated, preventing prognostic counseling and targeted therapies. Here, we characterized speech and language in 38 female individuals, aged 1.69-24.34 years, with pathogenic and likely pathogenic DDX3X variants (missense, n = 13; nonsense, n = 12; frameshift, n = 7; splice site, n = 3; synonymous, n = 2; deletion, n = 1). Standardized speech, language, motor, social, and adaptive behavior assessments were administered. All participants had gross motor deficits in infancy (34/34), and fine motor deficits were common throughout childhood (94%; 32/34). Intellectual disability was reported in 86% (24/28) of participants over 4 years of age. Expressive, receptive, and social communication skills were, on average, severely impaired. However, receptive language was significantly stronger than expressive language ability. Over half of the assessed participants were minimally verbal (66%; 22/33; range = 2 years 2 months-24 years 4 months; mean = 8 years; SD = 6 years) and augmented speech with sign language, gestures, or digital devices. A quarter of the cohort had childhood apraxia of speech (25%; 9/36). Despite speech and language impairments, social motivation was a relevant strength. Many participants used augmentative and alternative communication (AAC), underscoring the need for early, tailored, and comprehensive AAC intervention.
Collapse
Affiliation(s)
- Elana J Forbes
- Speech & Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lottie D Morison
- Speech & Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Fatma Lelik
- Speech & Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Tegan Howell
- Speech & Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simone Debono
- Speech & Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Himanshu Goel
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Genetics, Waratah, New South Wales, Australia
| | - Pauline Burger
- Department of Neurogenetics and Translational Medicine, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
| | - Jean-Louis Mandel
- Department of Neurogenetics and Translational Medicine, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France
| | - David Geneviève
- Génétique Clinique, Départment de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier University, Centre de Référence Anomalies du Développement SOOR, Montpellier, France
| | - David J Amor
- Speech & Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela T Morgan
- Speech & Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Kleinendorst L, Abawi O, Vos N, van der Valk ES, Maas SM, Morgan AT, Hildebrand MS, Da Silva JD, Florijn RJ, Lauffer P, Visser JA, van Rossum EFC, van den Akker ELT, van Haelst MM. GNB1 and obesity: Evidence for a correlation between haploinsufficiency and syndromic obesity. Clin Obes 2024; 14:e12661. [PMID: 38596856 DOI: 10.1111/cob.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Most patients with GNB1 encephalopathy have developmental delay and/or intellectual disability, brain anomalies and seizures. Recently, two cases with GNB1 encephalopathy caused by haploinsufficiency have been reported that also show a Prader-Willi-like phenotype of childhood hypotonia and severe obesity. Here we present three new cases from our expert centre for genetic obesity in which GNB1 truncating and splice variants, probably leading to haploinsufficiency, were identified. They all have obesity, hyperphagia and intellectual deficit. The clinical cases and their weight courses are presented, together with a review of all 68 published cases with GNB1 encephalopathy. Information on weight was not mentioned in most of these articles, so we contacted authors for additional clinical information on weight status and hyperphagia. Of the 42 patients whose weight status we could determine, obesity was present in 8 patients (19%). Obesity is significantly over-represented in the group with truncating and splicing variants. In this group, we see an obesity prevalence of 75%. Since GNB1 has been linked to several key genes in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure, our data support the potential association between GNB1 haploinsufficiency and genetic obesity. We also suggest GNB1 is a candidate gene for the known obesity phenotype of the 1p36 microdeletion syndrome given this chromosomal region includes the GNB1 gene. Knowledge of an additional obesity phenotype is important for prognosis, early interventions against obesity and awareness when prescribing weight-inducing medication.
Collapse
Affiliation(s)
- Lotte Kleinendorst
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ozair Abawi
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Niels Vos
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eline S van der Valk
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Michael S Hildebrand
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Jorge D Da Silva
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto & Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ralph J Florijn
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jenny A Visser
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Erica L T van den Akker
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Morgan AT, Amor DJ, St John MD, Scheffer IE, Hildebrand MS. Genetic architecture of childhood speech disorder: a review. Mol Psychiatry 2024; 29:1281-1292. [PMID: 38366112 PMCID: PMC11189821 DOI: 10.1038/s41380-024-02409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Severe speech disorders lead to poor literacy, reduced academic attainment and negative psychosocial outcomes. As early as the 1950s, the familial nature of speech disorders was recognized, implying a genetic basis; but the molecular genetic basis remained unknown. In 2001, investigation of a large three generational family with severe speech disorder, known as childhood apraxia of speech (CAS), revealed the first causative gene; FOXP2. A long hiatus then followed for CAS candidate genes, but in the past three years, genetic analysis of cohorts ascertained for CAS have revealed over 30 causative genes. A total of 36 pathogenic variants have been identified from 122 cases across 3 cohorts in this nascent field. All genes identified have been in coding regions to date, with no apparent benefit at this stage for WGS over WES in identifying monogenic conditions associated with CAS. Hence current findings suggest a remarkable one in three children have a genetic variant that explains their CAS, with significant genetic heterogeneity emerging. Around half of the candidate genes identified are currently supported by medium (6 genes) to strong (9 genes) evidence supporting the association between the gene and CAS. Despite genetic heterogeneity; many implicated proteins functionally converge on pathways involved in chromatin modification or transcriptional regulation, opening the door to precision diagnosis and therapies. Most of the new candidate genes for CAS are associated with previously described neurodevelopmental conditions that include intellectual disability, autism and epilepsy; broadening the phenotypic spectrum to a distinctly milder presentation defined by primary speech disorder in the setting of normal intellect. Insights into the genetic bases of CAS, a severe, rare speech disorder, are yet to translate to understanding the heritability of more common, typically milder forms of speech or language impairment such as stuttering or phonological disorder. These disorders likely follow complex inheritance with polygenic contributions in many cases, rather than the monogenic patterns that underly one-third of patients with CAS. Clinical genetic testing for should now be implemented for individuals with CAS, given its high diagnostic rate, which parallels many other neurodevelopmental disorders where this testing is already standard of care. The shared mechanisms implicated by gene discovery for CAS highlight potential new targets for future precision therapies.
Collapse
Affiliation(s)
- Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia.
- Speech Pathology, Royal Children's Hospital, Melbourne, VIC, Australia.
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Miya D St John
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| | - Michael S Hildebrand
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Magielski J, Ruggiero SM, Xian J, Parthasarathy S, Galer P, Ganesan S, Back A, McKee J, McSalley I, Gonzalez AK, Morgan A, Donaher J, Helbig I. The clinical and genetic spectrum of paediatric speech and language disorders in 52,143 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.23.24306192. [PMID: 38712155 PMCID: PMC11071575 DOI: 10.1101/2024.04.23.24306192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52,143 individuals, reconstructing clinical histories using a large-scale data mining approach of the Electronic Medical Records (EMR) from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of twenty-six broad speech and language diagnoses. We used Natural Language Processing to assess to which degree clinical diagnosis in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be easily retrieved through ICD-10 diagnosis codes, while stuttering as a speech phenotype was only coded in 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and to a lesser degree with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our EMR analysis were STXBP1 (n=21), PTEN (n=20), and CACNA1A (n=18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P=8.57 × 10-7, CI=18.62-130.39) and MYO7A with speech and language development delay due to hearing loss (P=1.24 × 10-5, CI=17.46-Inf). Finally, in a sub-cohort of 726 individuals with whole exome sequencing data, we identified an enrichment of rare variants in synaptic protein and neuronal receptor pathways and associations of UQCRC1 with expressive aphasia and WASHC4 with abnormality of speech or vocalization. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.
Collapse
Affiliation(s)
- Jan Magielski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Sarah M. Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Peter Galer
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiva Ganesan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Amanda Back
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jillian McKee
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ian McSalley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Alexander K. Gonzalez
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Angela Morgan
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville 3052, Australia
| | - Joseph Donaher
- Center for Childhood Communication, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Meng Y, Best S, Amor DJ, Braden R, Morgan AT, Goranitis I. The value of genomic testing in severe childhood speech disorders. Eur J Hum Genet 2024; 32:440-447. [PMID: 38308083 PMCID: PMC10999408 DOI: 10.1038/s41431-024-01534-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/25/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
With increasing gene discoveries for severe speech disorders, genomic testing can alter the diagnostic and clinical paradigms, enabling better life outcomes for children and their families. However, evidence on the value of the outcomes generated is lacking, impeding optimal translation into health care. This study aims to estimate the value and uptake of genomic testing for severe childhood speech disorders. A discrete choice experiment was undertaken to elicit preferences for genomic testing from the perspective of the Australian public (n = 951) and parents of children experiencing severe speech disorder (n = 56). Choice attributes associated with genomic testing were identified through focus groups. A Bayesian D-efficient design was used to develop choice scenarios and choice data were analyzed using a panel error component mixed logit model and a latent class model. Statistically significant preferences were identified across all seven attributes. The mean monetary value of the benefits of genomic testing relative to standard diagnostic care in Australia was estimated at AU$7489 (US$5021) and AU$4452 (US$2985) from the perspectives of the Australian public and families with lived experience of severe speech disorders, with a corresponding test uptake of 94.2% and 99.6%. To ensure fair prioritization of genomics, decision-makers need to consider the wide range of risks and benefits associated with genomic information.
Collapse
Affiliation(s)
- Yan Meng
- The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Best
- The University of Melbourne, Parkville, VIC, Australia
- Australian Genomics Health Alliance, Melbourne, VIC, Australia
- Peter MacCallum Cancer Center, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Center, Parkville, VIC, Australia
| | - David J Amor
- The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - Ruth Braden
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Angela T Morgan
- The University of Melbourne, Parkville, VIC, Australia.
- Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Royal Children's Hospital, Parkville, VIC, Australia.
| | - Ilias Goranitis
- The University of Melbourne, Parkville, VIC, Australia.
- Australian Genomics Health Alliance, Melbourne, VIC, Australia.
- Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Eising E, Vino A, Mabie HL, Campbell TF, Shriberg LD, Fisher SE. Genome Sequencing of Idiopathic Speech Delay. Hum Mutat 2024; 2024:9692863. [PMID: 40225914 PMCID: PMC11918988 DOI: 10.1155/2024/9692863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 04/15/2025]
Abstract
Genetic investigations of people with speech and language disorders can provide windows into key aspects of human biology. Most genomic research into impaired speech development has so far focused on childhood apraxia of speech (CAS), a rare neurodevelopmental disorder characterized by difficulties with coordinating rapid fine motor sequences that underlie proficient speech. In 2001, pathogenic variants of FOXP2 provided the first molecular genetic accounts of CAS aetiology. Since then, disruptions in several other genes have been implicated in CAS, with a substantial proportion of cases being explained by high-penetrance variants. However, the genetic architecture underlying other speech-related disorders remains less well understood. Thus, in the present study, we used systematic DNA sequencing methods to investigate idiopathic speech delay, as characterized by delayed speech development in the absence of a motor speech diagnosis (such as CAS), a language/reading disorder, or intellectual disability. We performed genome sequencing in a cohort of 23 children with a rigorous diagnosis of idiopathic speech delay. For roughly half of the sample (ten probands), sufficient DNA was also available for genome sequencing in both parents, allowing discovery of de novo variants. In the thirteen singleton probands, we focused on identifying loss-of-function and likely damaging missense variants in genes intolerant to such mutations. We found that one speech delay proband carried a pathogenic frameshift deletion in SETD1A, a gene previously implicated in a broader variable monogenic syndrome characterized by global developmental problems including delayed speech and/or language development, mild intellectual disability, facial dysmorphisms, and behavioural and psychiatric symptoms. Of note, pathogenic SETD1A variants have been independently reported in children with CAS in two separate studies. In other probands in our speech delay cohort, likely pathogenic missense variants were identified affecting highly conserved amino acids in key functional domains of SPTBN1 and ARF3. Overall, this study expands the phenotype spectrum associated with pathogenic SETD1A variants, to also include idiopathic speech delay without CAS or intellectual disability, and suggests additional novel potential candidate genes that may harbour high-penetrance variants that can disrupt speech development.
Collapse
Affiliation(s)
- Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Heather L. Mabie
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thomas F. Campbell
- School of Behavioral and Brain Sciences, Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, USA
| | | | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, Netherlands
| |
Collapse
|
20
|
Xu J, Peng Q, Cai J, Shangguan J, Su W, Chen G, Sun H, Zhu C, Gu Y. The Schwann cell-specific G-protein Gαo (Gnao1) is a cell-intrinsic controller contributing to the regulation of myelination in peripheral nerve system. Acta Neuropathol Commun 2024; 12:24. [PMID: 38331815 PMCID: PMC10854112 DOI: 10.1186/s40478-024-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Jinghui Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Qianqian Peng
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jieyi Cai
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jianghong Shangguan
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Wenfeng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Hualin Sun
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| |
Collapse
|
21
|
Nashaat NH, Elrouby I, Zeidan HM, Kilany A, Abdelraouf ER, Hashish AF, Abdelhady HS, ElKeblawy MM, Shadi MS. Childhood Apraxia of Speech: Exploring Gluten Sensitivity and Changes in Glutamate and Gamma-Aminobutyric Acid Plasma Levels. Pediatr Neurol 2024; 151:104-110. [PMID: 38154236 DOI: 10.1016/j.pediatrneurol.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Individuals with childhood apraxia of speech (CAS) were reported to have genetic variations related to gluten sensitivity and some neuroanatomic changes, which could be associated with alterations in neurotransmitters levels such as glutamate and gamma-aminobutyric acid (GABA). The aim was to measure the levels of antigliadin immunoglobulin A (IgA) antibody, glutamate, and GABA in the plasma of children with CAS compared with children with delayed language development (DLD) and neurotypical (NT) children. METHODS The participants (N = 120) were in three groups: Group I for CAS (N = 30), Group II for DLD (N = 60), and Group III for NT (N = 30). The abilities of children in Groups I and II were evaluated. The plasma levels of antigliadin IgA, glutamate, and GABA were determined by enzyme-linked immunosorbent assay. RESULTS The intelligence quotient and expressive language age in Group I were low compared with Group II (P = 0.001; 0.004). The levels of antigliadin IgA and glutamate in Group I were higher compared with the other two groups, whereas the level of GABA was lower (P < 0.0001). An imbalance between glutamate and GABA was found in Group I. In Group II, no measures differed from NTs except lower GABA levels (P = 0.0007). CONCLUSIONS The elevated levels of antigliadin IgA antibody and glutamate demonstrated high sensitivity and specificity, differentiating children with CAS from children with DLD and NT children. The low levels of GABA contributed to the imbalance between the excitatory and inhibitory neurotransmitters' levels detected in children with CAS.
Collapse
Affiliation(s)
- Neveen Hassan Nashaat
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt; Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.
| | - Iman Elrouby
- Phoniatrics Department, Hearing and Speech Institute, Giza, Egypt
| | - Hala M Zeidan
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ayman Kilany
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ehab Ragaa Abdelraouf
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt; Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Adel F Hashish
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hebatallah Sherif Abdelhady
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Mohamed M ElKeblawy
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Mariam S Shadi
- Unit of Phoniatrics, Otorhinolaryngology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
Traenkner D, Shennib O, Johnson A, Weinbrom A, Taylor MR, Williams ME. Modular Splicing Is Linked to Evolution in the Synapse-Specificity Molecule Kirrel3. eNeuro 2023; 10:ENEURO.0253-23.2023. [PMID: 37977826 DOI: 10.1523/eneuro.0253-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Kirrel3 is a cell-adhesion molecule that instructs the formation of specific synapses during brain development in mouse and Kirrel3 variants may be risk factors for autism and intellectual disabilities in humans. Kirrel3 is predicted to undergo alternative splicing but brain isoforms have not been studied. Here, we present the first in-depth characterization of Kirrel3 isoform diversity in brain using targeted, long-read mRNA sequencing of mouse hippocampus. We identified 19 isoforms with predicted transmembrane and secreted forms and show that even rare isoforms generate detectable protein in the brain. We also analyzed publicly-available long-read mRNA databases from human brain tissue and found 11 Kirrel3 isoforms that, similar to mouse, encode transmembrane and secreted forms. In mice and humans, Kirrel3 diversity arises from alternative, independent use of protein-domain coding exons and alternative early translation-stop signals. Intriguingly, the alternatively spliced exons appear at branch points in the chordate phylogenetic tree, including one exon only found in humans and their closest living relatives, the great apes. Together, these results validate a simple pipeline for analyzing isoform diversity in genes with low expression and suggest that Kirrel3 function is fine-tuned by alternative splicing and may play a role in brain evolution.
Collapse
Affiliation(s)
- Dimitri Traenkner
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Omar Shennib
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Alyssa Johnson
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Adam Weinbrom
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Matthew R Taylor
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
23
|
Stefaniak U, Malak R, Kaczmarek A, Samborski W, Mojs E. DDX3X Syndrome Behavioral Manifestations with Particular Emphasis on Psycho-Pathological Symptoms-A Review. Biomedicines 2023; 11:3046. [PMID: 38002045 PMCID: PMC10669308 DOI: 10.3390/biomedicines11113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Identification of typical behavioral manifestations in patients with DEAD-Box Helicase 3 X-linked gene (DDX3X) variants plays a crucial role in accurately diagnosing and managing the syndrome. The objective of this paper was to carry out a review of medical and public databases and assess the behavioral features of the DDX3X syndrome (DDX3X), with a particular focus on psycho-pathological symptoms. (2) Methods: An extensive computerized search was conducted in various databases, including PubMed, Medline Complete, Science Direct, Scopus, and Web of Science. Specific keywords and Medical Subject Headings were used to ensure the inclusion of relevant studies. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied to assess the methodological quality of the manuscripts. (3) Results: Only nine papers out of the 272 assessed met the inclusion criteria. These articles revealed various psycho-pathological manifestations in patients with the DDX3X syndrome. Intellectual disability (ID) or developmental disability (DD), speech delay, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), generalized anxiety disorder (GAD), self-injurious behaviors (SIBs), sensory symptoms and sleep disturbance were demonstrated to be the most common psycho-pathological behavior manifestations. (4) Conclusions: Patients with the DDX3X syndrome manifest a wide spectrum of psycho-pathological symptoms. A comprehensive investigation of these symptoms in patients is essential for early diagnosis and effective therapy.
Collapse
Affiliation(s)
- Urszula Stefaniak
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Roksana Malak
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, 61-545 Poznan, Poland; (R.M.); (W.S.)
| | - Ada Kaczmarek
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Włodzimierz Samborski
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, 61-545 Poznan, Poland; (R.M.); (W.S.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
24
|
Vuolo J. Articulatory and segmental performance in children with and without speech disorder: A multiple case pilot study. CLINICAL LINGUISTICS & PHONETICS 2023; 37:935-957. [PMID: 35971981 PMCID: PMC9931931 DOI: 10.1080/02699206.2022.2108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
This multiple case pilot study explored how nonword imitation influences articulatory and segmental performance in children with and without speech disorder. Eight children, ages 4- to 8-years-old, participated, including two children with childhood apraxia of speech (CAS), four children with phonological disorder (PD), and two children with typical development (TD). Tokens included two complexity types and were presented in random order. Minimal feedback was provided and nonwords were never associated with a referent. Kinematic and transcription data were analysed to examine articulatory variability, segmental accuracy, and segmental variability in session 1 and session 5. Descriptive statistics, percent change, effect sizes, and Pearson correlations are reported. In session 1, the two participants with CAS showed high articulatory variability, low segmental accuracy, and high segmental variability compared to the participants with PD and TD. By session 5, both participants with CAS, two with PD, and one with TD showed increased articulatory variability in the lowest complexity nonword. Segmental accuracy remained low and variability remained high for the two participants with CAS in session 5, whereas several participants with PD and TD showed improved segmental performance. Articulatory and segmental variability were not significantly correlated. The results of this study suggest that motor practice with minimal feedback and no assignment of a lexical referent can instantiate positive changes to segmental performance for children without apraxia. Positive changes to segmental performance are not necessarily related to increased articulatory control; these two processing levels can show distinct and disparate learning trajectories.
Collapse
Affiliation(s)
- Janet Vuolo
- Speech and Hearing Science, The Ohio State University, Columbus, USA
| |
Collapse
|
25
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Querzani A, Sirchia F, Rustioni G, Rossi A, Orsini A, Marseglia GL, Savasta S, Chiapparini L, Foiadelli T. KIRREL3-related disorders: a case report confirming the radiological features and expanding the clinical spectrum to a less severe phenotype. Ital J Pediatr 2023; 49:99. [PMID: 37605258 PMCID: PMC10441694 DOI: 10.1186/s13052-023-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders have a multifactorial etiology, since biological, genetic, psychosocial and environmental risk factors are involved. Recent studies have been linking neurodevelopmental disorders and intellectual disability with a variety of genes, some of which encoding neuronal cell-adhesion molecules. Among these, KIRREL3 is known to play a role in CNS development, and his variants have recently been related to intellectual disability, autism spectrum disorder, childhood apraxia of speech, cerebellar hypoplasia and mild dysmorphic features. CASE PRESENTATION In this study, we describe a young Caucasian boy with mild intellectual disability, cerebellar anomalies (cerebellar hypoplasia and mega cisterna magna) and minor dysmorphic features associated to a novel KIRREL3 variant. CONCLUSIONS Aim of the present case report is to expand the clinical spectrum of KIRREL3-related diseases towards a milder phenotype than what is already described in the literature. We speculate that the interaction between KIRREL3 and CASK might play a major role in promoting cognitive and cerebellar development, contributing to a variety of clinical manifestations.
Collapse
Affiliation(s)
- Andrea Querzani
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, PV, Italy
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, 27100, Italy.
- Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy.
| | - Gianluca Rustioni
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, PV, Italy
| | - Alessandra Rossi
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, PV, Italy
| | - Alessandro Orsini
- Pediatric Neurology, University Hospital of Pisa, Azienda Ospedaliero Universitaria Pisana, Pisa, 56126, Italy
| | | | - Salvatore Savasta
- Pediatric Clinic and Rare Diseases, P.O. Pediatrico Microcitemico "A. Cao", Università degli Studi di Cagliari, Cagliari, CA, Italy
| | - Luisa Chiapparini
- Department of Neuroradiology, Fondazione IRCCS Policlinico San Matteo, Pavia, PV, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, PV, Italy
| |
Collapse
|
27
|
Peter B, Bruce L, Finestack L, Dinu V, Wilson M, Klein-Seetharaman J, Lewis CR, Braden BB, Tang YY, Scherer N, VanDam M, Potter N. Precision Medicine as a New Frontier in Speech-Language Pathology: How Applying Insights From Behavior Genomics Can Improve Outcomes in Communication Disorders. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:1397-1412. [PMID: 37146603 PMCID: PMC10484627 DOI: 10.1044/2023_ajslp-22-00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Precision medicine is an emerging intervention paradigm that leverages knowledge of risk factors such as genotypes, lifestyle, and environment toward proactive and personalized interventions. Regarding genetic risk factors, examples of interventions informed by the field of medical genomics are pharmacological interventions tailored to an individual's genotype and anticipatory guidance for children whose hearing impairment is predicted to be progressive. Here, we show how principles of precision medicine and insights from behavior genomics have relevance for novel management strategies of behaviorally expressed disorders, especially disorders of spoken language. METHOD This tutorial presents an overview of precision medicine, medical genomics, and behavior genomics; case examples of improved outcomes; and strategic goals toward enhancing clinical practice. RESULTS Speech-language pathologists (SLPs) see individuals with various communication disorders due to genetic variants. Ways of using insights from behavior genomics and implementing principles of precision medicine include recognizing early signs of undiagnosed genetic disorders in an individual's communication patterns, making appropriate referrals to genetics professionals, and incorporating genetic findings into management plans. Patients benefit from a genetics diagnosis by gaining a deeper and more prognostic understanding of their condition, obtaining more precisely targeted interventions, and learning about their recurrence risks. CONCLUSIONS SLPs can achieve improved outcomes by expanding their purview to include genetics. To drive this new interdisciplinary framework forward, goals should include systematic training in clinical genetics for SLPs, enhanced understanding of genotype-phenotype associations, leveraging insights from animal models, optimizing interprofessional team efforts, and developing novel proactive and personalized interventions.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities, Minneapolis
| | - Valentin Dinu
- College of Health Solutions, Arizona State University, Tempe
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
| | | | - Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe
- Department of Psychology, Arizona State University, Tempe
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Tempe
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|
28
|
Morison LD, van Reyk O, Forbes E, Rouxel F, Faivre L, Bruinsma F, Vincent M, Jacquemont ML, Dykzeul NL, Geneviève D, Amor DJ, Morgan AT. CDK13-related disorder: a deep characterization of speech and language abilities and addition of 33 novel cases. Eur J Hum Genet 2023; 31:793-804. [PMID: 36599938 PMCID: PMC10325997 DOI: 10.1038/s41431-022-01275-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Speech and language impairments are central features of CDK13-related disorder. While pathogenic CDK13 variants have been associated with childhood apraxia of speech (CAS), a systematic characterisation of communication has not been conducted. Here we examined speech, language, non-verbal communication skills, social behaviour and health and development in 41 individuals with CDK13-related disorder from 10 countries (male = 22, median-age 7 years 1 month, range 1-25 years; 33 novel). Most participants used augmentative and alternative communication (AAC) in early childhood (24/41). CAS was common (14/22). Performance varied widely across intellectual ability, social behaviour and expressive language skills, with participants ranging from within average through to the severely impaired range. Receptive language was significantly stronger than expressive language ability. Social motivation was a relative strength. In terms of a broader health phenotype, a quarter had one or more of: renal, urogenital, musculoskeletal, and cardiac malformations, vision impairment, ear infections and/or sleep disturbance. All had gross and fine motor impairments (41/41). Other conditions included mild-moderate intellectual disability (16/22) and autism (7/41). No genotype-phenotype correlations were found. Recognition of CAS, a rare speech disorder, is required to ensure appropriately targeted therapy. The high prevalence of speech and language impairment underscores the importance of tailored speech therapy, particularly early access to AAC supports.
Collapse
Affiliation(s)
- Lottie D Morison
- Speech and Language, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Olivia van Reyk
- Speech and Language, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Elana Forbes
- Speech and Language, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Flavien Rouxel
- Génétique Clinique, Départment de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier University, Centre de Référence Anomalies du Développement SOOR, Montpellier, France
| | - Laurence Faivre
- Centre de Référence Anomalies du Développment et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, Dijon, France
- Genetics of Developmental Disorders, INSERM - Bourgogne Franche-Comté Univeristy, Dijon, France
| | | | - Marie Vincent
- Service de génétique médicale, CHU Nantes, 9 quai Moncousu, Nantes, France
| | | | - Natalie L Dykzeul
- Lucile Packard Children's Hospital, Stanford Children's Health, Palo Alto, CA, USA
| | - David Geneviève
- Génétique Clinique, Départment de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier University, Centre de Référence Anomalies du Développement SOOR, Montpellier, France
| | - David J Amor
- Speech and Language, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Audiology and Speech Pathology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Duan J, Ye Y, Liao J, Chen L, Zhao X, Liu C, Wen J. White-Sutton syndrome and congenital heart disease: case report and literature review. BMC Pediatr 2023; 23:158. [PMID: 37016333 PMCID: PMC10071667 DOI: 10.1186/s12887-023-03972-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND White-Sutton syndrome is an autosomal dominant neurodevelopmental disorder caused by heterozygous mutation in POGZ (Pogo Transposable Element Derived with ZNF Domain). This syndrome is characterized by delayed psychomotor development apparent in infancy and abnormal facial features. To date, 80 cases have been reported in the literature; however, the phenotypic characterizations remain incomplete. CASE PRESENTATION We herein describe a 2-year-old girl harboring a novel frameshift de novo POGZ variant: c.2746del (p.Thr916ProfsTer12). This patient presented with multisystem abnormalities affecting the digestive tract and neurological functioning, as well as congenital heart disease, which involved an atrial septal defect (18 × 23 × 22 mm) with pulmonary arterial hypertension (42 mmHg). The relationship between congenital heart disease and White-Sutton syndrome as described in both the GeneReview and OMIM databases (#616,364) remains unclear. A review of the current literature revealed 18 cases of White-Sutton syndrome with POGZ variants and congenital heart disease, and we summarize their clinical features in this study. CONCLUSIONS Our findings based on the present case and those in the literature indicate a relationship between POGZ mutation and congenital heart disease.
Collapse
Affiliation(s)
- Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Yuanzhen Ye
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Chao Liu
- Department of Bioinformatics, Berry Genomics Co. Ltd, Beijing, China
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China.
| |
Collapse
|
30
|
Chenausky KV, Baas B, Stoeckel R, Brown T, Green JR, Runke C, Schimmenti L, Clark H. Comorbidity and Severity in Childhood Apraxia of Speech: A Retrospective Chart Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:791-803. [PMID: 36795544 PMCID: PMC10205100 DOI: 10.1044/2022_jslhr-22-00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 05/25/2023]
Abstract
PURPOSE The purpose of this study was to investigate comorbidity prevalence and patterns in childhood apraxia of speech (CAS) and their relationship to severity. METHOD In this retroactive cross-sectional study, medical records for 375 children with CAS (M age = 4;9 [years;months], SD = 2;9) were examined for comorbid conditions. The total number of comorbid conditions and the number of communication-related comorbidities were regressed on CAS severity as rated by speech-language pathologists during diagnosis. The relationship between CAS severity and the presence of four common comorbid conditions was also examined using ordinal or multinomial regressions. RESULTS Overall, 83 children were classified with mild CAS; 35, with moderate CAS; and 257, with severe CAS. Only one child had no comorbidities. The average number of comorbid conditions was 8.4 (SD = 3.4), and the average number of communication-related comorbidities was 5.6 (SD = 2.2). Over 95% of children had comorbid expressive language impairment. Children with comorbid intellectual disability (78.1%), receptive language impairment (72.5%), and nonspeech apraxia (37.3%; including limb, nonspeech oromotor, and oculomotor apraxia) were significantly more likely to have severe CAS than children without these comorbidities. However, children with comorbid autism spectrum disorder (33.6%) were no more likely to have severe CAS than children without autism. CONCLUSIONS Comorbidity appears to be the rule, rather than the exception, for children with CAS. Comorbid intellectual disability, receptive language impairment, and nonspeech apraxia confer additional risk for more severe forms of CAS. Findings are limited by being from a convenience sample of participants but inform future models of comorbidity. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22096622.
Collapse
Affiliation(s)
- Karen V. Chenausky
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Becky Baas
- Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Ruth Stoeckel
- Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Taylor Brown
- Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Jordan R. Green
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA
- Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA
| | - Cassandra Runke
- Departments of Clinical Genomics, Otolaryngology—Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Lisa Schimmenti
- Departments of Clinical Genomics, Otolaryngology—Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Heather Clark
- Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
31
|
Bobylova MY, Volkov IV, Gumennik EV, Rachmanina OA, Abramov MO, Volkova OK, Bayborina TS, Petrukhin AS. [Encephalopathy GNAO1]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:122-130. [PMID: 36719128 DOI: 10.17116/jnevro2023123011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To study the clinical picture of all patients with GNAO1 encephalopathy detected in the Russian Federation. This publication is a multicenter study combining data from epileptological centers in Moscow, Novosibirsk, St. Petersburg, Nizhny Novgorod, Tyumen. MATERIAL AND METHODS Nine patients were included, aged 2 to 19 years, with 4 mutations. Male to female sex ratio = 5:4. RESULTS 8 patients (5 with mutation c.607G>A (p.Gly203Arg), 1 - c.155A>G (Gln52Arg), 1 - c.485G>A (p.Arg162Gln)) had a variant of epileptic encephalopathy, developmental encephalopathy, 1 patient had torsion dystonia without epilepsy (mutation c.713A>G (p.Asp238Gly)). Epileptic seizures in 8 children with epileptic encephalopathy GNAO1 in 100% debuted at 1 month of life, becoming the earliest symptom of the disease. Motor development delayed in 100% of cases. Mental development was not affected only in the case of the dystonic variant. Hyperkinesis (dystonia, choreoathetosis, ballism) followed later, from 2 to 8 months. They were more severe than epilepsy. 4 patients with the c.607G>A (p.Gly203Arg) mutation developed repeated dystonic storms that were resistant to most drugs. CONCLUSION Epilepsy in GNAO1 is difficult to treat, but temporary or complete remission is possible. Effective drug strategies for the treatment of hyperkinesis have not yet been developed. Expansion of indications for surgical therapy (DBS) of hyperkinesis in this syndrome is desirable.
Collapse
Affiliation(s)
- M Yu Bobylova
- LLC «Svt.Luca's Institute of Child and Adult Neurology and Epilepsy», Moscow, Russia
| | | | - E V Gumennik
- Clinic of Pediatric Neurology and Epileptology EpiJay, St. Petersburg, Russia
| | | | - M O Abramov
- LLC «Svt.Luca's Institute of Child and Adult Neurology and Epilepsy», Moscow, Russia
| | | | - T S Bayborina
- Children's City Clinical Hospital of emergency medical care, Novosibirsk, Russia
| | - A S Petrukhin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
32
|
Tian M, Liu X, Lin S, Wang J, Luo S, Gao L, Chen X, Liang X, Liu Z, He N, Yi Y, Liao W. Variants in BRWD3 associated with X-linked partial epilepsy without intellectual disability. CNS Neurosci Ther 2022; 29:727-735. [PMID: 36514184 PMCID: PMC9873514 DOI: 10.1111/cns.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Etiology of the majority patients with idiopathic partial epilepsy (IPE) remains elusive. We thus screened the potential disease-associated variants in the patients with IPE. METHODS Trios-based whole exome sequencing was performed in a cohort of 320 patients with IPE. Frequency and molecular effects of variants were predicted. RESULTS Three novel BRWD3 variants were identified in five unrelated cases with IPE, which were four male cases and one female case. The variants included two recurrent missense variants (c.836C>T/p.Thr279Ile and c.4234A>C/p.Ile1412Leu) and one intronic variant close to splice site (c.2475 + 6A>G). The two missense variants were located in WD40 repeat domain and bromodomain, respectively. They were predicted to be damaging by silico tools and change hydrogen bonds with surrounding amino acids. The frequency of mutant alleles in this cohort was significantly higher than that in the controls of East Asian and all population of gnomAD. All these variants were inherited from the asymptomatic mothers. Four male cases presented frequent seizures at onset, while the female case only had two fever-triggered seizures. They showed good responses to valproate and lamotrigine, then finally became seizure free. All the cases had no intellectual disability. Further analysis demonstrated that all previously reported destructive variants of BRWD3 caused intellectual disability, while missense variants located in WD40 repeat domains and bromodomains of BRWD3 were associated with epilepsy. CONCLUSION BRWD3 gene is potentially associated with X-linked partial epilepsy without intellectual disability. The genotypes and locations of BRWD3 variants may explain for their phenotypic variation.
Collapse
Affiliation(s)
- Mao‐Qiang Tian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina,Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xiao‐Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Si‐Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Sheng Luo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Liang‐Di Gao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Xiao‐Bin Chen
- Department of PediatricsThe 900th Hospital of Joint Logistic Support ForceFuzhouChina
| | - Xiao‐Yu Liang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Zhi‐Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare HospitalSouthern Medical UniversityFoshanChina
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Yong‐Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Wei‐Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | | |
Collapse
|
33
|
Morison LD, Meffert E, Stampfer M, Steiner-Wilke I, Vollmer B, Schulze K, Briggs T, Braden R, Vogel A, Thompson-Lake D, Patel C, Blair E, Goel H, Turner S, Moog U, Riess A, Liegeois F, Koolen DA, Amor DJ, Kleefstra T, Fisher SE, Zweier C, Morgan AT. In-depth characterisation of a cohort of individuals with missense and loss-of-function variants disrupting FOXP2. J Med Genet 2022; 60:597-607. [DOI: 10.1136/jmg-2022-108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
BackgroundHeterozygous disruptions ofFOXP2were the first identified molecular cause for severe speech disorder: childhood apraxia of speech (CAS), and yet few cases have been reported, limiting knowledge of the condition.MethodsHere we phenotyped 28 individuals from 17 families with pathogenicFOXP2-only variants (12 loss-of-function, five missense variants; 14 males; aged 2 to 62 years). Health and development (cognitive, motor, social domains) were examined, including speech and language outcomes with the first cross-linguistic analysis of English and German.ResultsSpeech disorders were prevalent (23/25, 92%) and CAS was most common (22/25, 88%), with similar speech presentations across English and German. Speech was still impaired in adulthood, and some speech sounds (eg, ‘th’, ‘r’, ‘ch’, ‘j’) were never acquired. Language impairments (21/25, 84%) ranged from mild to severe. Comorbidities included feeding difficulties in infancy (10/27, 37%), fine (13/26, 50%) and gross (13/26, 50%) motor impairment, anxiety (5/27, 19%), depression (6/27, 22%) and sleep disturbance (11/15, 44%). Physical features were common (22/27, 81%) but with no consistent pattern. Cognition ranged from average to mildly impaired and was incongruent with language ability; for example, seven participants with severe language disorder had average non-verbal cognition.ConclusionsAlthough we identify an increased prevalence of conditions like anxiety, depression and sleep disturbance, we confirm that the consequences ofFOXP2dysfunction remain relatively specific to speech disorder, as compared with other recently identified monogenic conditions associated with CAS. Thus, our findings reinforce thatFOXP2provides a valuable entry point for examining the neurobiological bases of speech disorder.
Collapse
|
34
|
Genetic aetiologies for childhood speech disorder: novel pathways co-expressed during brain development. Mol Psychiatry 2022; 28:1647-1663. [PMID: 36117209 DOI: 10.1038/s41380-022-01764-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.
Collapse
|
35
|
Liu L, Feng X, Liu S, Zhou Y, Dong X, Yao H, Tan B. Whole-genome sequencing combined RNA-sequencing analysis of patients with mutations in SET binding protein 1. Front Neurosci 2022; 16:980000. [PMID: 36161179 PMCID: PMC9490002 DOI: 10.3389/fnins.2022.980000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
SET binding protein 1 (SETBP1) is essential for human development, and pathogenic germline variants in SETBP1 lead to a recognizable developmental syndrome and variable clinical features. In this study, we assessed a patient with facial dysmorphism, intellectual disability and delayed motor development. Whole genome sequencing identified a novel de novo variation of the SETBP1 (c.2631C > A; p. S877R) gene, which is located in the SKI domain, as a likely pathogenic variant for the proband’s phenotype. RNA sequencing was performed to investigate the potential molecular mechanism of the novel variation in SETBP1. In total, 77 and 38 genes were identified with aberrant expression and splicing, respectively. Moreover, the biological functions of these genes were involved in DNA/protein binding, expression regulation, and the cell cycle, which may advance our understanding of the pathogenesis of SETBP1 in vivo.
Collapse
Affiliation(s)
- Li Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshu Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Sihan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yanqiu Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hong Yao,
| | - Bo Tan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Bo Tan,
| |
Collapse
|
36
|
Zhou Y, Quan Y, Wu Y, Zhang Y. Prenatal diagnosis and molecular cytogenetic characterization of an inherited microdeletion of 18q12.3 encompassing SETBP1. J Int Med Res 2022; 50:3000605221121955. [PMID: 36113068 PMCID: PMC9478714 DOI: 10.1177/03000605221121955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 18q12.3 region contains the SET binding protein 1 (SETBP1) gene. SETBP1 mutations or deletions are associated with Schinzel-Giedion syndrome or intellectual developmental disorder, autosomal dominant 29. We report the prenatal diagnosis and genetic counseling of a patient with a maternally inherited 18q12.3 microdeletion. In this family, the mother and son carried the same microdeletion. Chromosomal microdeletions and microduplications are difficult to detect using conventional cytogenetics, whereas the combination of prenatal ultrasound, karyotype analysis, chromosomal microarray analysis, and genetic counseling is helpful for the prenatal diagnosis of chromosomal microdeletions/microduplications.
Collapse
Affiliation(s)
- Yaqing Zhou
- Reproductive Center Laboratory, Ninghai County Maternal and Child Health Hospital, Ningbo, Zhejiang, PR China
| | - Yan Quan
- Department of Maternal Health Care, Shiyan Maternal and Child Health Hospital, Shiyan, Hubei, PR China
| | - Yijun Wu
- Department of Obstetrics, Huanggang Central Hospital, Huanggang, Hubei, PR China
| | - Yinxing Zhang
- Department of Obstetrics and Gynecology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, PR China
| |
Collapse
|
37
|
Peretz I, Ross J, Bourassa CV, Perreault LPL, Dion PA, Weiss MW, Felezeu M, Rouleau GA, Dubé MP. Do variants in the coding regions of FOXP2, a gene implicated in speech disorder, confer a risk for congenital amusia? Ann N Y Acad Sci 2022; 1517:279-285. [PMID: 35980667 DOI: 10.1111/nyas.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Congenital amusia is a lifelong disorder that compromises the normal development of musical abilities in 1.5-4% of the general population. There is a substantial genetic contribution to congenital amusia, and it bears similarities to neurodevelopmental disorders of language. Here, we examine the extent to which variants in the forkhead box P2 gene (FOXP2)-the first gene to be identified as causal in developmental speech deficits-are associated with the amusic trait. Using a cohort of 49 individuals with amusia, of which 27 were unrelated, the role of FOXP2 variants in amusia was evaluated. Fourteen variants were examined in the cohort. None segregated with the amusic trait among participants for whom family information was available; nor were they predicted to be deleterious to protein function. Thus, variants in FOXP2 are not likely to cause amusia. Implications for ongoing debates about the distinction between musicality and language are discussed.
Collapse
Affiliation(s)
- Isabelle Peretz
- Department of Psychology, University of Montreal, Montréal, Québec, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, Québec, Canada
| | - Jay Ross
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Cynthia V Bourassa
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | | | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Michael W Weiss
- Department of Psychology, University of Montreal, Montréal, Québec, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, Québec, Canada
| | - Mihaela Felezeu
- Department of Psychology, University of Montreal, Montréal, Québec, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, Québec, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Marie-Pierre Dubé
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
38
|
Galosi S, Pollini L, Novelli M, Bernardi K, Di Rocco M, Martinelli S, Leuzzi V. Motor, epileptic, and developmental phenotypes in genetic disorders affecting G protein coupled receptors-cAMP signaling. Front Neurol 2022; 13:886751. [PMID: 36003298 PMCID: PMC9393484 DOI: 10.3389/fneur.2022.886751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last years, a constantly increasing number of genetic diseases associated with epilepsy and movement disorders have been recognized. An emerging group of conditions in this field is represented by genetic disorders affecting G-protein-coupled receptors (GPCRs)–cAMP signaling. This group of postsynaptic disorders includes genes encoding for proteins highly expressed in the central nervous system and involved in GPCR signal transduction and cAMP production (e.g., GNAO1, GNB1, ADCY5, GNAL, PDE2A, PDE10A, and HPCA genes). While the clinical phenotype associated with ADCY5 and GNAL is characterized by movement disorder in the absence of epilepsy, GNAO1, GNB1, PDE2A, PDE10A, and HPCA have a broader clinical phenotype, encompassing movement disorder, epilepsy, and neurodevelopmental disorders. We aimed to provide a comprehensive phenotypical characterization of genetic disorders affecting the cAMP signaling pathway, presenting with both movement disorders and epilepsy. Thus, we reviewed clinical features and genetic data of 203 patients from the literature with GNAO1, GNB1, PDE2A, PDE10A, and HPCA deficiencies. Furthermore, we delineated genotype–phenotype correlation in GNAO1 and GNB1 deficiency. This group of disorders presents with a highly recognizable clinical phenotype combining distinctive motor, epileptic, and neurodevelopmental features. A severe hyperkinetic movement disorder with potential life-threatening exacerbations and high susceptibility to a wide range of triggers is the clinical signature of the whole group of disorders. The existence of a distinctive clinical phenotype prompting diagnostic suspicion and early detection has relevant implications for clinical and therapeutic management. Studies are ongoing to clarify the pathophysiology of these rare postsynaptic disorders and start to design disease-specific treatments.
Collapse
Affiliation(s)
- Serena Galosi
- Department Human Neuroscience, Sapienza University, Rome, Italy
- *Correspondence: Serena Galosi
| | - Luca Pollini
- Department Human Neuroscience, Sapienza University, Rome, Italy
| | - Maria Novelli
- Department Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Leuzzi
- Department Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
39
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
40
|
Deisseroth CA, Lerma VC, Magyar CL, Pfliger JM, Nayak A, Bliss ND, LeMaire AW, Narayanan V, Balak C, Zanni G, Valente EM, Bertini E, Benke PJ, Wangler MF, Chao HT. An Integrated Phenotypic and Genotypic Approach Reveals a High-Risk Subtype Association for EBF3 Missense Variants Affecting the Zinc Finger Domain. Ann Neurol 2022; 92:138-153. [PMID: 35340043 DOI: 10.1002/ana.26359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Collier/Olf/EBF (COE) transcription factors have distinct expression patterns in the developing and mature nervous system. To date, a neurological disease association has been conclusively established for only the Early B-cell Factor-3 (EBF3) COE family member through the identification of heterozygous loss-of-function variants in individuals with autism spectrum/neurodevelopmental disorders (NDD). Here, we identify a symptom severity risk association with missense variants primarily disrupting the zinc finger domain (ZNF) in EBF3-related NDD. METHODS A phenotypic assessment of 41 individuals was combined with a literature meta-analysis for a total of 83 individuals diagnosed with EBF3-related NDD. Quantitative diagnostic phenotypic and symptom severity scales were developed to compare EBF3 variant type and location to identify genotype-phenotype correlations. To stratify the effects of EBF3 variants disrupting either the DNA-binding domain (DBD) or the ZNF, we used in vivo fruit fly UAS-GAL4 expression and in vitro luciferase assays. RESULTS We show that patient symptom severity correlates with EBF3 missense variants perturbing the ZNF, which is a key protein domain required for stabilizing the interaction between EBF3 and the target DNA sequence. We found that ZNF-associated variants failed to restore viability in the fruit fly and impaired transcriptional activation. However, the recurrent variant EBF3 p.Arg209Trp in the DBD is capable of partially rescuing viability in the fly and preserved transcriptional activation. INTERPRETATION We describe a symptom severity risk association with ZNF perturbations and EBF3 loss-of-function in the largest reported cohort to date of EBF3-related NDD patients. This analysis should have potential predictive clinical value for newly identified patients with EBF3 gene variants. ANN NEUROL 2022;92:138-153.
Collapse
Affiliation(s)
- Cole A Deisseroth
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Vanesa C Lerma
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Christina L Magyar
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Jessica Mae Pfliger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models, and Therapeutics Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Aarushi Nayak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan D Bliss
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ashley W LeMaire
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christopher Balak
- Biomedical Sciences Graduate Program, University of California at San Diego, San Diego, CA, USA
| | - Ginevra Zanni
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Michael F Wangler
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, USA
| |
Collapse
|
41
|
Chenausky KV, Tager-Flusberg H. The importance of deep speech phenotyping for neurodevelopmental and genetic disorders: a conceptual review. J Neurodev Disord 2022; 14:36. [PMID: 35690736 PMCID: PMC9188130 DOI: 10.1186/s11689-022-09443-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Speech is the most common modality through which language is communicated, and delayed, disordered, or absent speech production is a hallmark of many neurodevelopmental and genetic disorders. Yet, speech is not often carefully phenotyped in neurodevelopmental disorders. In this paper, we argue that such deep phenotyping, defined as phenotyping that is specific to speech production and not conflated with language or cognitive ability, is vital if we are to understand how genetic variations affect the brain regions that are associated with spoken language. Speech is distinct from language, though the two are related behaviorally and share neural substrates. We present a brief taxonomy of developmental speech production disorders, with particular emphasis on the motor speech disorders childhood apraxia of speech (a disorder of motor planning) and childhood dysarthria (a set of disorders of motor execution). We review the history of discoveries concerning the KE family, in whom a hereditary form of communication impairment was identified as childhood apraxia of speech and linked to dysfunction in the FOXP2 gene. The story demonstrates how instrumental deep phenotyping of speech production was in this seminal discovery in the genetics of speech and language. There is considerable overlap between the neural substrates associated with speech production and with FOXP2 expression, suggesting that further genes associated with speech dysfunction will also be expressed in similar brain regions. We then show how a biologically accurate computational model of speech production, in combination with detailed information about speech production in children with developmental disorders, can generate testable hypotheses about the nature, genetics, and neurology of speech disorders. CONCLUSIONS Though speech and language are distinct, specific types of developmental speech disorder are associated with far-reaching effects on verbal communication in children with neurodevelopmental disorders. Therefore, detailed speech phenotyping, in collaboration with experts on pediatric speech development and disorders, can lead us to a new generation of discoveries about how speech development is affected in genetic disorders.
Collapse
Affiliation(s)
- Karen V Chenausky
- Speech in Autism and Neurodevelopmental Disorders Lab, Massachusetts General Hospital Institute of Health Professions, 36 1st Avenue, Boston, MA, 02129, USA.
- Department of Neurology, Harvard Medical School, Boston, USA.
- Department of Psychological and Brain Sciences, Boston University, Boston, USA.
| | | |
Collapse
|
42
|
Rouxel F, Relator R, Kerkhof J, McConkey H, Levy M, Dias P, Barat-Houari M, Bednarek N, Boute O, Chatron N, Cherik F, Delahaye-Duriez A, Doco-Fenzy M, Faivre L, Gauthier LW, Heron D, Hildebrand MS, Lesca G, Lespinasse J, Mazel B, Menke LA, Morgan AT, Pinson L, Quelin C, Rossi M, Ruiz-Pallares N, Tran-Mau-Them F, Van Kessel IN, Vincent M, Weber M, Willems M, Leguyader G, Sadikovic B, Genevieve D. CDK13-related disorder: Report of a series of 18 previously unpublished individuals and description of an epigenetic signature. Genet Med 2022; 24:1096-1107. [PMID: 35063350 DOI: 10.1016/j.gim.2021.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Rare genetic variants in CDK13 are responsible for CDK13-related disorder (CDK13-RD), with main clinical features being developmental delay or intellectual disability, facial features, behavioral problems, congenital heart defect, and seizures. In this paper, we report 18 novel individuals with CDK13-RD and provide characterization of genome-wide DNA methylation. METHODS We obtained clinical phenotype and neuropsychological data for 18 and 10 individuals, respectively, and compared this series with the literature. We also compared peripheral blood DNA methylation profiles in individuals with CDK13-RD, controls, and other neurodevelopmental disorders episignatures. Finally, we developed a support vector machine-based classifier distinguishing CDK13-RD and non-CDK13-RD samples. RESULTS We reported health and developmental parameters, clinical data, and neuropsychological profile of individuals with CDK13-RD. Genome-wide differential methylation analysis revealed a global hypomethylated profile in individuals with CDK13-RD in a highly sensitive and specific model that could aid in reclassifying variants of uncertain significance. CONCLUSION We describe the novel features such as anxiety disorder, cryptorchidism, and disrupted sleep in CDK13-RD. We define a CDK13-RD DNA methylation episignature as a diagnostic tool and a defining functional feature of the evolving clinical presentation of this disorder. We also show overlap of the CDK13 DNA methylation profile in an individual with a functionally and clinically related CCNK-related disorder.
Collapse
Affiliation(s)
- Flavien Rouxel
- Génétique clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier University, Centre de Référence Anomalies du Développement SOOR, INSERM U1183, ERN ITHACA, Montpellier, France
| | - Raissa Relator
- The Archie & Irene Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- The Archie & Irene Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Haley McConkey
- The Archie & Irene Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Michael Levy
- The Archie & Irene Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Patricia Dias
- Genetics Department, Hospital Center of Lisbon North, ERN ITHACA, Lisbon, Portugal
| | - Mouna Barat-Houari
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique des Maladies Rares et Auto-Inflammatoires, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Nathalie Bednarek
- Genetics Department, CHU Reims, Medical school IFR53, EA3801, Reims, France
| | - Odile Boute
- Genetics Department, Guy Fontaine Medical Center, CLAD Nord de France, Jeanne de Flandre Hospital, CHRU Lille, Lille, France
| | - Nicolas Chatron
- Genetics Department, Lyon University Hospital, and Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Claude Bernard Lyon 1 University, Lyon, France
| | - Florian Cherik
- Genetics Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Andrée Delahaye-Duriez
- Department of Histology Embryology and Cytogenetics, Jean Verdier Hospital; Paris 13 University, Sorbonne Paris Cité, UFR SMBH Bobigny; PROTECT, INSERM, Paris Diderot University, Paris, France
| | - Martine Doco-Fenzy
- Genetics Department, CHU Reims, Medical school IFR53, EA3801, Reims, France
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, Dijon, France; Genetics of Developmental Disorders, INSERM - Bourgogne Franche-Comté University, UMR 1231 GAD Team, Dijon, France
| | - Lucas W Gauthier
- Genetics Department, Lyon University Hospital, and Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Claude Bernard Lyon 1 University, Lyon, France
| | - Delphine Heron
- Genetics Department, University Hospital Pitié-Salpétrière, Paris, France
| | - Michael S Hildebrand
- Epilepsy Research Center, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia; Murdoch Children's Research Institute, Department of Audiology and Speech Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gaëtan Lesca
- Genetics Department, Lyon University Hospital, and Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Claude Bernard Lyon 1 University, Lyon, France
| | | | - Benoit Mazel
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, ERN ITHACA, Amsterdam, Netherlands
| | - Angela T Morgan
- Department of Audiology and Speech Pathology, Melbourne School of Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucile Pinson
- Génétique clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier University, Centre de Référence Anomalies du Développement SOOR, INSERM U1183, ERN ITHACA, Montpellier, France
| | - Chloe Quelin
- Department of Clinical Genetics, CLAD Ouest, CHU de Rennes, Hôpital Sud, Rennes, France
| | - Massimiliano Rossi
- Genetics Department, Lyon University Hospital, and Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Claude Bernard Lyon 1 University, Lyon, France; Genetics Department, Referral Centre for Developmental Abnormalities, Lyon University Hospital Lyon, France; INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre, GENDEV Team, Claude Bernard Lyon 1 University, Lyon, France
| | - Nathalie Ruiz-Pallares
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique des Maladies Rares et Auto-Inflammatoires, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Frederic Tran-Mau-Them
- Genetics of Developmental Disorders, INSERM - Bourgogne Franche-Comté University, UMR 1231 GAD Team, Dijon, France; Functional Unit 6254 Innovation in Genomic Diagnosis of Rare Diseases, CHU Dijon Bourgogne, Dijon, France
| | - Imke N Van Kessel
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, ERN ITHACA, Amsterdam, Netherlands
| | | | - Mathys Weber
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Marjolaine Willems
- Génétique clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier University, Centre de Référence Anomalies du Développement SOOR, INSERM U1183, ERN ITHACA, Montpellier, France
| | - Gwenael Leguyader
- Genetics Department, CHU de Poitiers, Poitiers University Hospital, Poitiers, France
| | - Bekim Sadikovic
- The Archie & Irene Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - David Genevieve
- Génétique clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier University, Centre de Référence Anomalies du Développement SOOR, INSERM U1183, ERN ITHACA, Montpellier, France.
| |
Collapse
|
43
|
Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:586. [PMID: 35626763 PMCID: PMC9139417 DOI: 10.3390/children9050586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Language disorders are highly heritable and are influenced by complex interactions between genetic and environmental factors. Despite more than twenty years of research, we still lack critical understanding of the biological underpinnings of language. This review provides an overview of the genetic landscape of developmental language disorders (DLD), with an emphasis on the importance of defining the specific features (the phenotype) of DLD to inform gene discovery. We review the specific phenotype of DLD in the genetic literature, and the influence of historic variation in diagnostic inclusion criteria on researchers' ability to compare and replicate genotype-phenotype studies. This review provides an overview of the recently identified gene pathways in populations with DLD and explores current state-of-the-art approaches to genetic analysis based on the hypothesised architecture of DLD. We will show how recent global efforts to unify diagnostic criteria have vastly increased sample size and allow for large multi-cohort metanalyses, leading the identification of a growing number of contributory loci. We emphasise the important role of estimating the genetic architecture of DLD to decipher underlying genetic associations. Finally, we explore the potential for epigenetics and environmental interactions to further unravel the biological basis of language disorders.
Collapse
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Ruth Braden
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| |
Collapse
|
44
|
Dai Y, Yang Z, Guo J, Li H, Gong J, Xie Y, Xiao B, Wang H, Long L. Expansion of Clinical and Genetic Spectrum of DDX3X Neurodevelopmental Disorder in 23 Chinese Patients. Front Mol Neurosci 2022; 15:793001. [PMID: 35392274 PMCID: PMC8981727 DOI: 10.3389/fnmol.2022.793001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/02/2022] [Indexed: 01/12/2023] Open
Abstract
AimDe novo DDX3X variants account for 1–3% of unexplained intellectual disability cases in females and very rarely in males. Yet, the clinical and genetic features of DDX3X neurodevelopmental disorder in the Chinese cohort have not been characterized.MethodA total of 23 Chinese patients (i.e., 22 female and 1 male) with 22 de novo DDX3X deleterious variants were detected among 2,317 probands with unexplained intellectual disability (ID) undertaking whole exome sequencing (WES). The age, sex, genetic data, feeding situation, growth, developmental conditions, and auxiliary examinations of the cohort were collected. The Chinese version of the Gesell Development Diagnosis Scale (GDDS-C) was used to evaluate neurodevelopment of DDX3X patients. The Social Communication Questionnaire (SCQ)-Lifetime version was applied as a primary screener to assess risk for autism spectrum disorder (ASD).ResultA total of 17 DDX3X variants were novel and 22 were de novo. Missense variants overall were only slightly more common than loss-of-function variants and were mainly located in two functional subdomains. The average age of this cohort was 2.67 (±1.42) years old. The overlapping phenotypic spectrum between this cohort and previously described reports includes intellectual disability (23/23, 100%) with varying degrees of severity, muscle tone abnormalities (17/23, 73.9%), feeding difficulties (13/23, 56.5%), ophthalmologic problems (11/23, 47.8%), and seizures (6/23, 26.1%). A total of 15 individuals had notable brain anatomical disruption (15/23, 65.2%), including lateral ventricle enlargement, corpus callosum abnormalities, and delayed myelination. Furthermore, 9 patients showed abnormal electroencephalogram results (9/23, 39.1%). Hypothyroidism was first noted as a novel clinical feature (6/23, 26.1%). The five primary neurodevelopmental domains of GDDS-C in 21 patients were impaired severely, and 13 individuals were above the “at-risk” threshold for ASD.InterpretationAlthough a certain degree of phenotypic overlap with previously reported cohorts, our study described the phenotypic and variation spectrum of 23 additional individuals carrying DDX3X variants in the Chinese population, adding hypothyroidism as a novel finding. We confirmed the importance of DDX3X as a pathogenic gene in unexplained intellectual disability, supporting the necessity of the application of WES in patients with unexplained intellectual disability.
Collapse
Affiliation(s)
- Yuwei Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jialing Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Wang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
- *Correspondence: Lili Long,
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
- Hua Wang,
| |
Collapse
|
45
|
Ignatius E, Puosi R, Palomäki M, Forsbom N, Pohjanpelto M, Alitalo T, Anttonen AK, Avela K, Haataja L, Carroll CJ, Lönnqvist T, Isohanni P. Duplication/triplication mosaicism of EBF3 and expansion of the EBF3 neurodevelopmental disorder phenotype. Eur J Paediatr Neurol 2022; 37:1-7. [PMID: 34999443 DOI: 10.1016/j.ejpn.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 11/15/2022]
Abstract
Deleterious variants in the transcription factor early B-cell factor 3 (EBF3) are known to cause a neurodevelopmental disorder (EBF3-NDD). We report eleven individuals with EBF3 variants, including an individual with a duplication/triplication mosaicism of a region encompassing EBF3 and a phenotype consistent with EBF3-NDD, which may reflect the importance of EBF3 gene-dosage for neurodevelopment. The phenotype of individuals in this cohort was quite mild compared to the core phenotype of previously described individuals. Although ataxia tended to wane with age, we show that cognitive difficulties may increase, and we recommend that individuals with EBF3-NDD have systematic neuropsychological follow-up.
Collapse
Affiliation(s)
- Erika Ignatius
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riina Puosi
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maarit Palomäki
- Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Forsbom
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Max Pohjanpelto
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Alitalo
- Laboratory of Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Kaisa Anttonen
- Laboratory of Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Avela
- Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leena Haataja
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Christopher J Carroll
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirjo Isohanni
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
46
|
Differences and Commonalities in Children with Childhood Apraxia of Speech and Comorbid Neurodevelopmental Disorders: A Multidimensional Perspective. J Pers Med 2022; 12:jpm12020313. [PMID: 35207801 PMCID: PMC8880782 DOI: 10.3390/jpm12020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Childhood apraxia of speech (CAS) is a motor speech disorder often co-occurring with language impairment and complex neurodevelopmental disorders. A cohort of 106 children with CAS associated to other neurodevelopmental disorders underwent a multidimensional investigation of speech and language profiles, chromosome microarray analysis and structural brain magnetic resonance (MR). Our aim was to compare the clinical profiles of children with CAS co-occurring with only language impairment with those who, in addition to language impairment, had other neurodevelopmental disorders. Expressive grammar was impaired in the majority of the sample in the context of similar alterations of speech, typical of the core symptoms of CAS. Moreover, children with complex comorbidities also showed more severe and persistent receptive language deficits. About 25% of the participants harbored copy number variations (CNVs) already described in association to neurodevelopmental disorders. CNVs occurred more frequently in children with complex comorbidities. MR structural/signal alterations were found in a small number of children and were of uncertain pathogenic significance. These results confirm that CAS needs multidimensional diagnostic and clinical management. The high frequency of language impairment has important implications for early care and demands a personalized treatment approach in which speech and language goals are consistently integrated.
Collapse
|
47
|
Genotype-Phenotype Comparison in POGZ-Related Neurodevelopmental Disorders by Using Clinical Scoring. Genes (Basel) 2022; 13:genes13010154. [PMID: 35052493 PMCID: PMC8775410 DOI: 10.3390/genes13010154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/01/2023] Open
Abstract
POGZ-related disorders (also known as White-Sutton syndrome) encompass a wide range of neurocognitive abnormalities and other accompanying anomalies. Disease severity varies widely among POGZ patients and studies investigating genotype-phenotype association are scarce. Therefore, our aim was to collect data on previously unreported POGZ patients and perform a large-scale phenotype-genotype comparison from published data. Overall, 117 POGZ patients’ genotype and phenotype data were included in the analysis, including 12 novel patients. A severity scoring system was developed for the comparison. Mild and severe phenotypes were compared with the types and location of the variants and the predicted presence or absence of nonsense-mediated RNA decay (NMD). Missense variants were more often associated with mild phenotypes (p = 0.0421) and truncating variants predicted to escape NMD presented with more severe phenotypes (p < 0.0001). Within this group, variants in the prolin-rich region of the POGZ protein were associated with the most severe phenotypes (p = 0.0004). Our study suggests that gain-of-function or dominant negative effect through escaping NMD and the location of the variants in the prolin-rich domain of the protein may play an important role in the severity of manifestations of POGZ–associated neurodevelopmental disorders.
Collapse
|
48
|
Zhang B, Liu M, Fong CT, Iqbal MA. MEIS2 (15q14) gene deletions in siblings with mild developmental phenotypes and bifid uvula: documentation of mosaicism in an unaffected parent. Mol Cytogenet 2021; 14:58. [PMID: 34930369 PMCID: PMC8690878 DOI: 10.1186/s13039-021-00570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
MEIS2 (Meis homeobox 2) encodes a homeobox protein in the three amino acid loop extension (TALE) family of highly conserved homeodomain-containing transcription regulators important for development. MEIS2 deletions/mutations have been associated with cleft lip/palate, dysmorphic facial features, cardiac defects, as well as intellectual disability at a variable severity. Here we report on one familial case that two affected siblings carry the same non-mosaic ~ 423 kb genomic deletion at 15q14 encompassing the entirety of CDIN1 and the last three exons (ex. 10, 11, 12) of the MEIS2 gene, while their unaffected father is mosaic for the same deletion in about 10% lymphocytes. Both siblings presented with mild developmental delay and bifid uvula, while no congenital cardiac abnormalities were identified. The elder sister also showed syncopal episodes and mild speech delay and the father had atrial septal defects. This is the first report showing multiple family members inherit a genomic deletion resulting in a MEIS2 partial truncation from a mosaic parent. Taken all together, this study has important implications for genetic counseling regarding recurrence risk and also points to the importance of offering MEIS2 gene tests covering both point mutations and microdeletions to individuals with milder bifid uvula and developmental delay.
Collapse
|
49
|
Thompson-Lake DGY, Scerri TS, Block S, Turner SJ, Reilly S, Kefalianos E, Bonthrone AF, Helbig I, Bahlo M, Scheffer IE, Hildebrand MS, Liégeois FJ, Morgan AT. Atypical development of Broca's area in a large family with inherited stuttering. Brain 2021; 145:1177-1188. [PMID: 35296891 PMCID: PMC9724773 DOI: 10.1093/brain/awab364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.
Collapse
Affiliation(s)
| | - Thomas S Scerri
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia,Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville 305, Australia
| | - Susan Block
- Discipline of Speech Pathology, School of Allied Health, Human Services & Sport, La Trobe University, Bundoora 3086, Australia
| | - Samantha J Turner
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia
| | - Sheena Reilly
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia,Menzies Health Institute Queensland, Griffith University, Southport 4215, Australia
| | - Elaina Kefalianos
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia,Department of Audiology and Speech Pathology, University of Melbourne, Parkville 3052, Australia
| | | | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104USA,The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104USA,Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104USA,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104USA
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia,Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville 305, Australia
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg 3084, Australia,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville 3052, Australia,Murdoch Children’s Research Institute, Parkville 3052, Australia,Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
| | - Michael S Hildebrand
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg 3084, Australia,Murdoch Children’s Research Institute, Parkville 3052, Australia
| | | | - Angela T Morgan
- Correspondence to: Angela T. Morgan Murdoch Children’s Research Institute Parkville 3052, Australia E-mail:
| |
Collapse
|
50
|
Peter B, Davis J, Cotter S, Belter A, Williams E, Stumpf M, Bruce L, Eng L, Kim Y, Finestack L, Stoel-Gammon C, Williams D, Scherer N, VanDam M, Potter N. Toward Preventing Speech and Language Disorders of Known Genetic Origin: First Post-Intervention Results of Babble Boot Camp in Children With Classic Galactosemia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2021; 30:2616-2634. [PMID: 34665663 PMCID: PMC9135004 DOI: 10.1044/2021_ajslp-21-00098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 05/19/2023]
Abstract
Purpose Babble Boot Camp (BBC) is a package of proactive activities and routines designed to prevent speech and language disorders in infants at predictable risk. It is implemented via parent training and currently undergoing clinical trial in children with a newborn diagnosis of classic galactosemia (CG), a metabolic disease with high risk of speech and language disorders. The purpose of this study is to provide updates to a previous pilot study and to present the first set of post-intervention results. Method The intervention and data collection occurred during child ages < 6-24 months, with follow-up assessments of speech and language at ages 2.5 and 3.5 years. Treatment targets included earliest vocalization rates, babble complexity, speech production accuracy, and vocabulary and syntactic growth. The oldest 15 children with CG (including three untreated controls) completed the first set of follow-up assessments. Aggregate data up to 10 months were available for 17 treated children with CG, six untreated children with CG, and six typical controls. Results At ages 7-9 months, babbling complexity, as measured with mean babbling level, was higher in the treated children with CG than in the untreated children with CG and the typical controls. Prior to 24 months of age, the treated children with CG had greater expressive but not receptive vocabulary sizes than an untreated control. Follow-up testing showed typical language scores for all 12 treated children with CG and typical articulation scores for 11 of these, whereas one of three untreated children with CG had low articulation and expressive language scores. Conclusions The BBC appears to be a viable intervention to support the speech and expressive language development of children with GC. Future studies will evaluate the relative contributions of the earliest and later BBC components to outcomes.
Collapse
Affiliation(s)
- Beate Peter
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
- Department of Communication Sciences and Disorders, Saint Louis University, MO
| | - Jennifer Davis
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Sarah Cotter
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Alicia Belter
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Emma Williams
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Melissa Stumpf
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Linda Eng
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Yookyung Kim
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota Twin Cities, Minneapolis
| | - Carol Stoel-Gammon
- Department of Speech and Hearing Sciences, University of Washington, Seattle
| | - Delaney Williams
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Scherer
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|