1
|
Paoletti M, Monforte M, Barzaghi L, Tasca G, Bergsland N, Faggioli A, Solazzo F, Manco G, Bortolani S, Torchia E, Ravera B, Deligianni X, Santini F, Ballante E, Figini S, Tartaglione T, Ricci E, Pichiecchio A. Natural history of facioscapulohumeral muscular dystrophy evaluated by multiparametric quantitative MRI: a prospective cohort study. J Neurol 2025; 272:306. [PMID: 40172709 PMCID: PMC11965262 DOI: 10.1007/s00415-025-13062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder characterized by progressive skeletal muscle wasting. Longitudinal muscle magnetic resonance imaging (MRI) studies demonstrated that the risk of developing irreversible fatty replacement is higher in muscles showing edematous lesions. The quantification of this phenomenon is an understudied topic in FSHD and intramuscular water content can also represent a potential biomarker sensitive to the effect of investigational drugs. We applied a multiparametric quantitative muscle MRI protocol to assess disease progression quantifying fatty replacement and muscle edema over 2 years, using fat fraction (FF) and water-T2 (wT2) metrics. METHODS Thirty FSHD patients with at least one muscle showing signs of edema on conventional MRI were enrolled. FF and wT2 maps were assessed in 12 thigh and 6 leg muscles for each side, and a linear mixed model was employed to explore their variations over time. The measurements were acquired at baseline, 12, and 24 months. Quantitative MRI parameters were also correlated with clinical scales and functional assessments collected at baseline. RESULTS The average yearly increase in FF was 2 ± 0.6% at thigh level and 1.9 ± 0.7% at leg level. No significant longitudinal changes in wT2 were observed. Muscles with intermediate FF (15-30%) at baseline and those with baseline wT2 values above 41 ms showed the highest increase in fat replacement. Both FF and wT2 showed significant correlations with clinical scales and functional assessments. CONCLUSIONS Our longitudinal study identified muscles and compartments more likely to show FF increase in FSHD subjects. Multiparametric quantitative MRI metrics should be incorporated into clinical trial frameworks to explore their potential in detecting early therapeutic effects.
Collapse
Affiliation(s)
- M Paoletti
- Advanced Imaging and Artificial Intelligence, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - M Monforte
- Dipartimento di Neuroscienze, Organi di Senso e Torace, UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy.
| | - L Barzaghi
- Advanced Imaging and Artificial Intelligence, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- INFN, Group of Pavia, Pavia, Italy
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - G Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - N Bergsland
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, the State University of New York, Buffalo, NY, USA
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - A Faggioli
- Advanced Imaging and Artificial Intelligence, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - F Solazzo
- Advanced Imaging and Artificial Intelligence, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - G Manco
- Advanced Imaging and Artificial Intelligence, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - S Bortolani
- Dipartimento di Neuroscienze, Organi di Senso e Torace, UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - E Torchia
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - B Ravera
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - X Deligianni
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, Basel Muscle MRI, University of Basel, Basel, Switzerland
| | - F Santini
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, Basel Muscle MRI, University of Basel, Basel, Switzerland
| | - E Ballante
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - S Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - T Tartaglione
- Università Cattolica del Sacro Cuore, Rome, Italy
- Istituto Dermopatico Dell'Immacolata (IDI), IRCCS, Rome, Italy
| | - E Ricci
- Dipartimento di Neuroscienze, Organi di Senso e Torace, UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Pichiecchio
- Advanced Imaging and Artificial Intelligence, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Vincenten SCC, Teeselink S, Mul K, Heskamp L, Kan HE, Heerschap A, Cameron D, Tasca G, Leung DG, Voermans NC, van Engelen BGM, van Alfen N. Muscle imaging in facioscapulohumeral muscular dystrophy research: A scoping review and expert recommendations. Neuromuscul Disord 2025; 47:105274. [PMID: 39884029 DOI: 10.1016/j.nmd.2025.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Clinical trial readiness is an important topic in the field of facioscapulohumeral muscular dystrophy (FSHD). As FSHD is a slowly progressive and clinically heterogeneous disease, imaging biomarkers have been proposed to complement clinical outcome measures. Muscle magnetic resonance imaging (MRI), ultrasound and dual energy X-ray absorptiometry (DEXA) have been used to measure disease severity, activity and progression. We conducted a scoping review of the literature on these imaging modalities to assess gaps in knowledge and subsequently collaborated with a panel of neuromuscular imaging experts to generate recommendations on the road ahead. We systematically searched PubMed, EMBASE and Cochrane Library databases. Three-hundred and twenty-eight studies were screened and one hundred and five studies were included. MRI indices related to intramuscular fat content, STIR positivity and T2water are used as diagnostic as well as prognostic and monitoring biomarkers. Ultrasound echogenicity can be used as a diagnostic and potentially as a prognostic and monitoring biomarker. DEXA lean muscle mass may be used as an additional monitoring biomarker. Each imaging modality has its own benefits but also challenges. Based on our expert opinions, we propose a roadmap to address these challenges, ensuring the optimal use of each modality in multi-center clinical trials in FSHD.
Collapse
Affiliation(s)
- Sanne C C Vincenten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjan Teeselink
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Linda Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands & Duchenne Center Netherlands, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Donnie Cameron
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, United Kingdom
| | - Doris G Leung
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, 1741 Ashland Ave., Baltimore, MD, 21205, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Díaz-Ubilla M, Retamal MA. The Unexplored Role of Connexin Hemichannels in Promoting Facioscapulohumeral Muscular Dystrophy Progression. Int J Mol Sci 2025; 26:373. [PMID: 39796228 PMCID: PMC11719937 DOI: 10.3390/ijms26010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments. Thus, hemichannels have been implicated in skeletal muscle atrophy, as observed in human biopsies and animal models of Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Dysferlinopathies, suggesting a potentially shared mechanism of muscle atrophy that has not yet been explored in FSHD. Despite various therapeutic strategies proposed to manage FSHD, no treatment or cure is currently available. This review summarizes the current understanding of the mechanisms underlying FSHD progression, with a focus on hormones, inflammation, reactive oxygen species (ROS), and mitochondrial function. Additionally, it explores the potential of targeting hemichannels as a therapeutic strategy to slow disease progression by preventing the spread of pathogenic factors between muscle cells.
Collapse
Affiliation(s)
- Macarena Díaz-Ubilla
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile
| | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile
| |
Collapse
|
4
|
Avallone AR, Di Stefano V, Bevilacqua L, Alonge P, Lupica A, Maccora S, Monastero R, Amabile S, Barone P, Brighina F, Vinciguerra C. AChR-seropositive myasthenia gravis in muscular dystrophy: diagnostic pitfalls and clinical management challenges. Neurol Sci 2025; 46:125-132. [PMID: 38965114 DOI: 10.1007/s10072-024-07675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
The co-occurrence of genetic myopathies with myasthenia gravis (MG) is extremely rare, however a few studies have been reported. We aim to explore the link between genetically inherited muscle disorders and immune-mediated neuromuscular junction conditions, taking into account the diagnostic and therapeutic implications posed by these combined conditions. We searched all English medical papers registered in Web of Knowledge, PubMed, Google Scholar, and Science Direct between January 1987 concerning the association between muscular dystrophies (MD) and MG, also adding three new cases to the series reported so far. Three new clinical cases in which MG concurs with oculopharyngeal muscular dystrophy (OPMD) or facioscapulohumeral muscular dystrophy (FSHD) or myotonic dystrophy type 2 (DM2) were reported. A comprehensive literature review showed that FSHD is the dystrophy most frequently associated with generalized MG. The AChR antibody titer is high and neurophysiologic tests prove to be an essential tool for the diagnosis. The association between MG and MD is rare but should not be underestimated. The presence of unusual clinical features suggest investigating additional overlapping condition, especially when a treatable disease like MG is suspected.
Collapse
Affiliation(s)
- Anna Rosa Avallone
- Neurology Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University Hospital San Giovanni di Dio e Ruggi D'Aragona, University of Salerno, Salerno, 84131, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience, and advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Liliana Bevilacqua
- Department of Biomedicine, Neuroscience, and advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Paolo Alonge
- Department of Biomedicine, Neuroscience, and advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience, and advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Simona Maccora
- Department of Biomedicine, Neuroscience, and advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Roberto Monastero
- Department of Biomedicine, Neuroscience, and advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Sonia Amabile
- Medical Genomics Program, AOU S. Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neurology Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University Hospital San Giovanni di Dio e Ruggi D'Aragona, University of Salerno, Salerno, 84131, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience, and advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Claudia Vinciguerra
- Neurology Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University Hospital San Giovanni di Dio e Ruggi D'Aragona, University of Salerno, Salerno, 84131, Italy.
| |
Collapse
|
5
|
Hooijmans MT, Schlaffke L, Bolsterlee B, Schlaeger S, Marty B, Mazzoli V. Compositional and Functional MRI of Skeletal Muscle: A Review. J Magn Reson Imaging 2024; 60:860-877. [PMID: 37929681 PMCID: PMC11070452 DOI: 10.1002/jmri.29091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its exceptional sensitivity to soft tissues, MRI has been extensively utilized to assess anatomical muscle parameters such as muscle volume and cross-sectional area. Quantitative Magnetic Resonance Imaging (qMRI) adds to the capabilities of MRI, by providing information on muscle composition such as fat content, water content, microstructure, hypertrophy, atrophy, as well as muscle architecture. In addition to compositional changes, qMRI can also be used to assess function for example by measuring muscle quality or through characterization of muscle deformation during passive lengthening/shortening and active contractions. The overall aim of this review is to provide an updated overview of qMRI techniques that can quantitatively evaluate muscle structure and composition, provide insights into the underlying biological basis of the qMRI signal, and illustrate how qMRI biomarkers of muscle health relate to function in healthy and diseased/injured muscles. While some applications still require systematic clinical validation, qMRI is now established as a comprehensive technique, that can be used to characterize a wide variety of structural and compositional changes in healthy and diseased skeletal muscle. Taken together, multiparametric muscle MRI holds great potential in the diagnosis and monitoring of muscle conditions in research and clinical applications. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
6
|
Barzaghi L, Paoletti M, Monforte M, Bortolani S, Bonizzoni C, Thorsten F, Bergsland N, Santini F, Deligianni X, Tasca G, Ballante E, Figini S, Ricci E, Pichiecchio A. Muscle diffusion tensor imaging in facioscapulohumeral muscular dystrophy. Muscle Nerve 2024; 70:248-256. [PMID: 38873946 DOI: 10.1002/mus.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION/AIMS Muscle diffusion tensor imaging has not yet been explored in facioscapulohumeral muscular dystrophy (FSHD). We assessed diffusivity parameters in FSHD subjects compared with healthy controls (HCs), with regard to their ability to precede any fat replacement or edema. METHODS Fat fraction (FF), water T2 (wT2), mean, radial, axial diffusivity (MD, RD, AD), and fractional anisotropy (FA) of thigh muscles were calculated in 10 FSHD subjects and 15 HCs. All parameters were compared between FSHD and controls, also exploring their gradient along the main axis of the muscle. Diffusivity parameters were tested in a subgroup analysis as predictors of disease involvement in muscle compartments with different degrees of FF and wT2 and were also correlated with clinical severity scores. RESULTS We found that MD, RD, and AD were significantly lower in FSHD subjects than in controls, whereas we failed to find a difference for FA. In contrast, we found a significant positive correlation between FF and FA and a negative correlation between MD, RD, and AD and FF. No correlation was found with wT2. In our subgroup analysis we found that muscle compartments with no significant fat replacement or edema (FF < 10% and wT2 < 41 ms) showed a reduced AD and FA compared with controls. Less involved compartments showed different diffusivity parameters than more involved compartments. DISCUSSION Our exploratory study was able to demonstrate diffusivity parameter abnormalities even in muscles with no significant fat replacement or edema. Larger cohorts are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Leonardo Barzaghi
- Department of Mathematics, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- INFN, Group of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sara Bortolani
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Bonizzoni
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Niels Bergsland
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, The State University of New York, Buffalo, New York, USA
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Francesco Santini
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Xeni Deligianni
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Giorgio Tasca
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Elena Ballante
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Enzo Ricci
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Riem L, DuCharme O, Cousins M, Feng X, Kenney A, Morris J, Tapscott SJ, Tawil R, Statland J, Shaw D, Wang L, Walker M, Lewis L, Jacobs MA, Leung DG, Friedman SD, Blemker SS. AI driven analysis of MRI to measure health and disease progression in FSHD. Sci Rep 2024; 14:15462. [PMID: 38965267 PMCID: PMC11224366 DOI: 10.1038/s41598-024-65802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) affects roughly 1 in 7500 individuals. While at the population level there is a general pattern of affected muscles, there is substantial heterogeneity in muscle expression across- and within-patients. There can also be substantial variation in the pattern of fat and water signal intensity within a single muscle. While quantifying individual muscles across their full length using magnetic resonance imaging (MRI) represents the optimal approach to follow disease progression and evaluate therapeutic response, the ability to automate this process has been limited. The goal of this work was to develop and optimize an artificial intelligence-based image segmentation approach to comprehensively measure muscle volume, fat fraction, fat fraction distribution, and elevated short-tau inversion recovery signal in the musculature of patients with FSHD. Intra-rater, inter-rater, and scan-rescan analyses demonstrated that the developed methods are robust and precise. Representative cases and derived metrics of volume, cross-sectional area, and 3D pixel-maps demonstrate unique intramuscular patterns of disease. Future work focuses on leveraging these AI methods to include upper body output and aggregating individual muscle data across studies to determine best-fit models for characterizing progression and monitoring therapeutic modulation of MRI biomarkers.
Collapse
Affiliation(s)
- Lara Riem
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Olivia DuCharme
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Matthew Cousins
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Xue Feng
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Allison Kenney
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Jacob Morris
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, NY, USA
| | - Jeff Statland
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Dennis Shaw
- Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Leo Wang
- University of Washington, Seattle, WA, USA
| | | | - Leann Lewis
- University of Rochester Medical Center, Rochester, NY, USA
| | - Michael A Jacobs
- University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Rice University, Houston, TX, USA
| | - Doris G Leung
- Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Silvia S Blemker
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA.
- University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Wong CJ, Friedman SD, Snider L, Bennett SR, Jones TI, Jones PL, Shaw DWW, Blemker SS, Riem L, DuCharme O, Lemmers RJFL, van der Maarel SM, Wang LH, Tawil R, Statland JM, Tapscott SJ. Regional and bilateral MRI and gene signatures in facioscapulohumeral dystrophy: implications for clinical trial design and mechanisms of disease progression. Hum Mol Genet 2024; 33:698-708. [PMID: 38268317 PMCID: PMC11000661 DOI: 10.1093/hmg/ddae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA, indicating that regional biopsies can accurately measure progression in the whole muscle and providing a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design. An unanticipated finding was the strong correlations of molecular signatures in the bilateral comparisons, including markers of B-cells and other immune cell populations, suggesting that a systemic immune cell infiltration of skeletal muscle might have a role in disease progression.
Collapse
Affiliation(s)
- Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
| | - Seth D Friedman
- Department of Radiology, Seattle Children’s Hospital, 4540 Sandpoint Way, Seattle, WA 98105, United States
| | - Lauren Snider
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
| | - Sean R Bennett
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States
| | - Dennis W W Shaw
- Department of Radiology, Seattle Children’s Hospital, 4540 Sandpoint Way, Seattle, WA 98105, United States
| | - Silvia S Blemker
- Springbok Analytics, 100 W South St, Charlottesville, VA 22902, United States
| | - Lara Riem
- Springbok Analytics, 100 W South St, Charlottesville, VA 22902, United States
| | - Olivia DuCharme
- Springbok Analytics, 100 W South St, Charlottesville, VA 22902, United States
| | - Richard J F L Lemmers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Leo H Wang
- Department of Neurology, University of Washington, 1959 NE Pacific St, Seattle, WA 98105, United States
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, 601 Elm St, Rochester, NY 14642, United States
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KA 66160, United States
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
- Department of Neurology, University of Washington, 1959 NE Pacific St, Seattle, WA 98105, United States
| |
Collapse
|
9
|
Deenen JCW, Kools J, Greco A, Thewissen R, van de Put W, Lanser A, Joosten LAB, Verbeek ALM, van Engelen BGM, Voermans NC. Living with facioscapulohumeral muscular dystrophy during the first two COVID-19 outbreaks: a repeated patient survey in the Netherlands. Acta Neurol Belg 2024; 124:559-566. [PMID: 38218752 DOI: 10.1007/s13760-023-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Patients with facioscapulohumeral dystrophy (FSHD) suffer from slowly progressive muscle weakness. Approximately 20% of FSHD patients end up wheelchair-dependent. FSHD patients benefit from physical activity to maintain their muscle strength as much as possible. The impact of the COVID-19 pandemic on the health of FSHD patients was unknown. OBJECTIVE This study assessed changes in daily care received, perceived psychosocial stress, and worsening of FSHD complaints in 2020. Furthermore, we compared COVID-19 infection incidence and severity of symptoms between FSHD patients and non-FSHD housemates. METHODS Three online survey rounds were sent out to all adult participants of the Dutch FSHD registry regarding daily care received, perceived psychosocial stress, COVID-19 infection rate, and COVID-19 symptoms severity. They also included COVID-19-related questions regarding the participants' housemates, which served as control group. RESULTS Participation rate was 210 (61%), 186 (54%), and 205 (59%) for survey 1, 2, and 3, respectively. Care reduction was reported by 42.7%, 40%, and 28.8% of the participants in the respective surveys. Perceived psychosocial stress increased in 44%, 30%, and 40% of the participants. Compared to the 197 non-FSHD housemates, the 213 FSHD patients reported more possibly COVID-19-related symptoms (27% vs. 39%, p = 0.017) of mostly minimal severity (63%). No difference in (possible) COVID-19 infection incidence rates was found (2.0% vs. 2.8%, p = 0.527). CONCLUSIONS The COVID-19 pandemic negatively impacted care received and increased perceived psychosocial stress in FSHD patients. However, COVID-19 infection incidence in FSHD patients was similar to their non-FSHD housemates.
Collapse
Affiliation(s)
- Johanna C W Deenen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joost Kools
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Renée Thewissen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Wiecke van de Put
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anke Lanser
- Patient Representative and Chairman FSHD Advocacy Group, Patient Organization for Muscular Disease Spierziekten Nederland, Lt. Gen. van Heutszlaan 6, 3743 JN, Baarn, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Strada Victor Babeș 8, 400347, Cluj-Napoca, Romania
| | - Andre L M Verbeek
- Department for Health Evidence, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Vincenten SCC, Voermans NC, Cameron D, van Engelen BGM, van Alfen N, Mul K. The complementary use of muscle ultrasound and MRI in FSHD: Early versus later disease stage follow-up. Clin Neurophysiol 2024:S1388-2457(24)00064-6. [PMID: 38521678 DOI: 10.1016/j.clinph.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES Muscle MRI and ultrasound provide complementary techniques for characterizing muscle changes and tracking disease progression in facioscapulohumeral muscular dystrophy (FSHD). In this cohort study, we provide longitudinal data that compares both imaging modalities head-to-head. METHODS FSHD patients were assessed at baseline and after five years. Standardized muscle MRI and ultrasound images of five leg muscles were assessed bilaterally. Fat replacement was quantified using MRI fat-fraction (FF) and ultrasound Heckmatt and echogenicity z-scores (EZ-score). Muscle edema was evaluated using T2-weighted turbo inversion recovery magnitude (TIRM) MRI. RESULTS Twenty FSHD patients were included. Muscles with normal baseline imaging showed increases in ultrasound EZ-scores (≥1; in 17%) more often than MRI FF increases (≥10%; in 7%) over time. Muscles with only baseline ultrasound abnormalities often showed considerable FF increases (in 22%), and TIRM positivity at follow-up (44%). Muscles with increased FF at baseline showed stable (80%) or increasing FF (20%) over time. EZ-scores of those muscles either increased (23%), decreased (33%) or remained stable (44%). CONCLUSIONS Muscle ultrasound may capture accelerated pathological muscle changes in FSHD in early disease, while muscle MRI appears better-suited to detecting and monitoring pathology in later stages. SIGNIFICANCE Our results help establish each techniques' optimal use as imaging biomarker.
Collapse
Affiliation(s)
- Sanne C C Vincenten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Clinical Neuromuscular Imaging Group, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Donnie Cameron
- Clinical Neuromuscular Imaging Group, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Clinical Neuromuscular Imaging Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Engquist EN, Greco A, Joosten LAB, van Engelen BGM, Zammit PS, Banerji CRS. FSHD muscle shows perturbation in fibroadipogenic progenitor cells, mitochondrial function and alternative splicing independently of inflammation. Hum Mol Genet 2024; 33:182-197. [PMID: 37856562 PMCID: PMC10772042 DOI: 10.1093/hmg/ddad175] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom
| |
Collapse
|
12
|
Greco A, Mul K, Jaeger MH, Dos Santos JC, Koenen H, de Jong L, Mann R, Fütterer J, Netea MG, Pruijn GJM, van Engelen BGM, Joosten LAB. IL-6 and TNF are Potential Inflammatory Biomarkers in Facioscapulohumeral Muscular Dystrophy. J Neuromuscul Dis 2024; 11:327-347. [PMID: 38250782 DOI: 10.3233/jnd-230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Background FSHD is a highly prevalent inherited myopathy with a still poorly understood pathology. Objective To investigate whether proinflammatory cytokines are associated with FSHD and which specific innate immune cells are involved in its pathology. Methods First, we measured circulating cytokines in serum samples: IL-6 (FSHD, n = 150; HC, n = 98); TNF (FSHD, n = 150; HC, n = 59); IL-1α (FSHD, n = 150; HC, n = 66); IL-1β (FSHD, n = 150; HC, n = 98); MCP-1 (FSHD, n = 14; HC, n = 14); VEGF-A (FSHD, n = 14; HC, n = 14). Second, we tested trained immunity in monocytes (FSHD, n = 15; HC, n = 15) and NK cells (FSHD, n = 11; HC, n = 11). Next, we explored the cytokine production capacity of NK cells in response to different stimuli (FSHD, n = 39; HC, n = 22). Lastly, we evaluated the cytokine production of ex vivo stimulated MRI guided inflamed (TIRM+) and paired MRI guided non inflamed (TIRM-) muscle biopsies of 21 patients and of 8 HC muscle biopsies. Results We included a total of 190 FSHD patients (N = 190, 48±14 years, 49% men) and of 135 HC (N = 135, 44±15 years, 47% men). We found that FSHD patients had higher concentrations of IL-6 and TNF measured (a) in the circulation, (b) after ex-vivo stimulation of NK cells, and (c) in muscle specimens. Besides, IL-6 circulating concentrations, as well as its production by NK cells and IL-6 content of FSHD muscle specimens, showed a mild correlation with disease duration, disease severity, and muscle weakness. Conclusion These results show that IL-6 and TNF may contribute to FSHD pathology and suggest novel therapeutic targets. Additionally, the activation of NK cells in FSHD may be a novel pathway contributing to FSHD pathology.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin H Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leon de Jong
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ritse Mann
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen Fütterer
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Rawls A, Diviak BK, Smith CI, Severson GW, Acosta SA, Wilson-Rawls J. Pharmacotherapeutic Approaches to Treatment of Muscular Dystrophies. Biomolecules 2023; 13:1536. [PMID: 37892218 PMCID: PMC10605463 DOI: 10.3390/biom13101536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders that are subdivided based on the region of the body impacted by muscle weakness as well as the functional activity of the underlying genetic mutations. A common feature of the pathophysiology of muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however, long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus, it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis to reduce muscle damage and promote repair. Here, we examine the pathophysiology, genetic background, and emerging therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| | - Bridget K. Diviak
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Cameron I. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Sofia A. Acosta
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| |
Collapse
|
14
|
Wang LH, Leung DG, Wagner KR, Lowry SJ, McDermott MP, Eichinger K, Higgs K, Walker M, Lewis L, Martens WB, Mul K, Sansone VA, Shieh P, Elsheikh B, LoRusso S, Butterfield RJ, Johnson N, Preston MR, Messina C, Carraro E, Tawil R, Statland J. Lean tissue mass measurements by dual-energy X-ray absorptiometry and associations with strength and functional outcome measures in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2023; 33:63-68. [PMID: 37400350 PMCID: PMC10527411 DOI: 10.1016/j.nmd.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive disease of skeletal muscle. Dual energy X-ray absorptiometry (DEXA) is a widely available, cost-effective and sensitive technique for measuring whole body and regional lean tissue mass and has been used in prior clinical trials in neuromuscular diseases. The Clinical Trial Readiness to Solve Barriers to Drug Development in FSHD (ReSolve) study is a prospective, longitudinal, observational multisite study. We obtained concurrent DEXA scans and functional outcome measurements in 185 patients with FSHD at the baseline visit. We determined the associations between lean tissue mass in the upper and lower extremities and corresponding clinical outcome measures. There were moderate correlations between upper and lower extremity lean tissue mass and their corresponding strengths and function. Lean tissue mass obtained by DEXA scan may be useful as a biomarker in future clinical trials in FSHD.
Collapse
Affiliation(s)
- Leo H Wang
- University of Washington, Department of Neurology, WA, USA.
| | - Doris G Leung
- Kennedy Krieger Institute, The Johns Hopkins School of Medicine, MD, USA
| | - Kathryn R Wagner
- Kennedy Krieger Institute, The Johns Hopkins School of Medicine, MD, USA
| | | | - Michael P McDermott
- University of Rochester Medical Center, Department of Biostatistics and Computational Biology, NY, USA; University of Rochester Medical Center, Department of Neurology, NY, USA
| | - Katy Eichinger
- University of Rochester Medical Center, Department of Neurology, NY, USA
| | - Kiley Higgs
- University of Kansas Medical Center, Department of Neurology, KS, USA
| | - Michaela Walker
- University of Kansas Medical Center, Department of Neurology, KS, USA
| | - Leann Lewis
- University of Rochester Medical Center, Department of Biostatistics and Computational Biology, NY, USA
| | - William B Martens
- University of Rochester Medical Center, Department of Biostatistics and Computational Biology, NY, USA
| | | | - Valeria A Sansone
- The NEMO Clinical Center, Neurorehabilitation Unit, University of Milan, Department of Neurology, Milan, Italy
| | - Perry Shieh
- University of California, Los Angeles, CA, USA
| | | | | | | | | | | | - Carmelo Messina
- Galeazzi Institute, Radiology Department, University of Milan, Italy
| | - Elena Carraro
- The NEMO Clinical Center, Neurorehabilitation Unit, University of Milan, Department of Neurology, Milan, Italy
| | - Rabi Tawil
- University of Rochester Medical Center, Department of Neurology, NY, USA
| | - Jeff Statland
- University of Kansas Medical Center, Department of Neurology, KS, USA
| |
Collapse
|
15
|
Kakimoto T, Ogasawara A, Ishikawa K, Kurita T, Yoshida K, Harada S, Nonaka T, Inoue Y, Uchida K, Tateoka T, Ohta T, Kumagai S, Sasaki T, Aihara H. A Systemically Administered Unconjugated Antisense Oligonucleotide Targeting DUX4 Improves Muscular Injury and Motor Function in FSHD Model Mice. Biomedicines 2023; 11:2339. [PMID: 37760780 PMCID: PMC10525656 DOI: 10.3390/biomedicines11092339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), one of the most common muscular dystrophies, is caused by an abnormal expression of the DUX4 gene in skeletal muscles, resulting in muscle weakness. In this study, we investigated MT-DUX4-ASO, a novel gapmer antisense oligonucleotide (ASO). MT-DUX4-ASO decreased the expression of DUX4 and its target genes in FSHD patient-derived myoblasts. For the first time, we demonstrated that a systemically administered ASO, even without a ligand for drug delivery, could significantly improve muscle injury and motor function in the ACTA1-MCM/FLExDUX4 (DUX4-TG) mouse model of FSHD. Tamoxifen (TMX) injection transiently induces skeletal-muscle-specific DUX4 expression in DUX4-TG mice, while the skeletal muscles of TMX-untreated DUX4-TG mice have leaky DUX4 expression in a small subset of myofibers similar to those of FSHD patients. Subcutaneous 10 mg/kg of MT-DUX4-ASO at two-week intervals significantly suppressed muscular DUX4 target gene expression, histological muscle injury, and blood muscle injury marker elevation in TMX-untreated DUX4-TG mice. Notably, MT-DUX4-ASO at 10 mg/kg every other week significantly prevented the TMX-induced declines in treadmill test running speed and muscle force in DUX4-TG mice. Thus, the systemically administered unconjugated MT-DUX4-ASO suppressed disease progression in DUX4-TG mice, extending the potential of unconjugated ASOs as a promising FSHD treatment strategy.
Collapse
Affiliation(s)
- Tetsuhiro Kakimoto
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1 Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wong CJ, Friedman SD, Snider L, Bennett SR, Jones TI, Jones PL, Shaw DWW, Blemker SS, Riem L, DuCharme O, Lemmers RJFL, van der Maarel SRM, Wang LH, Tawil R, Statland JM, Tapscott SJ. Validation of the association between MRI and gene signatures in facioscapulohumeral dystrophy muscle: implications for clinical trial design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529303. [PMID: 36865168 PMCID: PMC9980042 DOI: 10.1101/2023.02.20.529303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression, but reproducibility across studies needs further validation. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA. Together with moderate-to-strong correlations of gene signatures and MRI characteristics between the TA muscles bilaterally, these results suggest a whole muscle model of disease progression and provide a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design.
Collapse
|
17
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 PMCID: PMC11578282 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
18
|
Monforte M, Attarian S, Vissing J, Diaz-Manera J, Tasca G. 265th ENMC International Workshop: Muscle imaging in Facioscapulohumeral Muscular Dystrophy (FSHD): relevance for clinical trials. 22-24 April 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:65-75. [PMID: 36369218 DOI: 10.1016/j.nmd.2022.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone Aix-Marseille Hospital University Marseille, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome 00168, Italy.
| |
Collapse
|
19
|
Mul K. Facioscapulohumeral Muscular Dystrophy. Continuum (Minneap Minn) 2022; 28:1735-1751. [PMID: 36537978 DOI: 10.1212/con.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This article reviews the current knowledge on the clinical characteristics and disease mechanism of facioscapulohumeral muscular dystrophy (FSHD), as well as advances in targeted therapy development. RECENT FINDINGS FSHD has a wide range of severity, yet a distinct phenotype characterized by weakness of the facial, shoulder, and upper arm muscles, followed by weakness of the trunk and leg muscles. It can be caused by two genetic mechanisms that share a common downstream pathway, namely, the epigenetic derepression and subsequent misexpression of the myotoxic DUX4 transcription factor. Treatment is currently supportive and outlined in evidence-based guidelines. Advances in the understanding of the pathogenic mechanism of FSHD are paving the way for targeted therapy development. Approaches for targeted therapies to reduce DUX4 expression that are currently being explored include small molecules, antisense oligonucleotides, vector-based RNA interference, and gene therapy. In anticipation of more clinical trials, "clinical trial preparedness," including the development of sensitive biomarkers and clinical outcome measures, are needed. SUMMARY The cornerstones of the diagnosis of FSHD are clinical observation and genetic testing. Management is currently supportive, but progress in the understanding of the disease mechanism has shifted the field of FSHD toward targeted therapy development.
Collapse
|
20
|
Whole-muscle fat analysis identifies distal muscle end as disease initiation site in facioscapulohumeral muscular dystrophy. COMMUNICATIONS MEDICINE 2022; 2:155. [PMID: 36450865 PMCID: PMC9712512 DOI: 10.1038/s43856-022-00217-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Facioscapulohumeral dystrophy (FSHD) is a major muscular dystrophy characterized by asymmetric fatty replacement of muscles. We aimed to determine the initiation site and progression profile of the disease in lower extremity muscles of FSHD patients by assessing fat infiltration along their full proximo-distal axis using quantitative MRI. METHODS Nine patients underwent MRI of lower extremities to assess end-to-end muscle fat fractions (FFs) and inflammatory lesions. Seven patients underwent the same MRI ~3.5 years later. Individual muscles (n = 396) were semi-automatically segmented to calculate average FFs over all slices covering whole muscles. To assess disease progression we determined FF changes in 5 adjacent muscle segments. RESULTS We provide evidence that fat replacement commonly starts at the distal end of affected muscles where the highest FFs occur (p < 0.001). It progresses in a wave-like manner in the proximal direction at an increasing rate with the highest value (4.9 ± 2.7%/year) for muscles with baseline FFs of 30-40%. Thereafter it proceeds at a slower pace towards the proximal muscle end. In early phases of disease, inflammatory lesions preferentially occur at the distal muscle end. Compared with whole-muscle analysis, the common FF assessments using only few MR slices centrally placed in muscles are significantly biased (~50% in progression rate). CONCLUSIONS These findings identify the distal end of leg muscles as a prime location for disease initiation in FSHD and demonstrate a wave-like progression towards the proximal end, consistent with proposed disease mechanisms. End-to-end whole-muscle fat assessment is essential to properly diagnose FSHD and its progression.
Collapse
|
21
|
Mellion ML, Widholm P, Karlsson M, Ahlgren A, Tawil R, Wagner KR, Statland JM, Wang L, Shieh PB, van Engelen BGM, Kools J, Ronco L, Odueyungbo A, Jiang J, Han JJ, Hatch M, Towles J, Leinhard OD, Cadavid D. Quantitative Muscle Analysis in FSHD Using Whole-Body Fat-Referenced MRI: Composite Scores for Longitudinal and Cross-Sectional Analysis. Neurology 2022; 99:e877-e889. [PMID: 35750498 DOI: 10.1212/wnl.0000000000200757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Facioscapulohumeral muscular dystrophy (FSHD) is a rare, debilitating disease characterized by progressive muscle weakness. MRI is a sensitive assessment of disease severity and progression. We developed a quantitative whole-body (WB) musculoskeletal MRI (WB-MSK-MRI) protocol analyzing muscles in their entirety. This study aimed to assess WB-MSK-MRI as a potential imaging biomarker providing reliable measurements of muscle health that capture disease heterogeneity and clinically meaningful composite assessments correlating with severity and more responsive to change in clinical trials. METHODS Participants 18 to 65 years, genetically confirmed FSHD1, clinical severity 2 to 4 (Ricci's scale, range 0-5), and ≥1 short tau inversion recovery (STIR)-positive lower extremity muscle eligible for needle biopsy enrolled at 6 sites; imaged twice 4 - 12 weeks apart. Volumetric analysis of muscle fat infiltration (MFI), muscle fat fraction (MFF), and lean muscle volume (LMV) in 18 (36 total) muscles from bilateral shoulder, proximal arm, trunk, and legs was performed after automated atlas-based segmentation followed by manual verification. A WB composite score, including muscles at highest risk for progression, and functional cross-sectional composites for correlation with relevant functional outcomes including timed up and go (TUG), FSHD-TUG, and reachable workspace (RWS) were developed. RESULTS Seventeen participants;16 follow-up MRIs performed at 52 days (range 36 to 85). Functional cross-sectional composites (MFF and MFI) showed moderate to strong correlations: TUG (rho=0.71, rho=0.83), FSHD-TUG (rho=0.73, rho=0.73), and RWS (left arm: rho=-0.71, rho=-0.53; right arm: rho=-0.61, rho=-0.65). WB composite variability:LMVtot, coefficient of variation (CV) 1.9% and 3.4%; MFFtot, within-subject standard deviation (Sw) 0.5% and 1.5%; MFItot, (Sw), 0.3% and 0.4% for normal and intermediate muscles respectively. CV and Sw were higher in intermediate (MFI≥0.10; MFF<0.50) than in normal (MFI<0.10, MFF<0.50) muscles. DISCUSSION We developed a WB-MSK-MRI protocol and composite measures that capture disease heterogeneity and assess muscle involvement as it correlates with FSHD-relevant clinical endpoints. Functional composites robustly correlate with functional assessments. Stability of the WB composite shows it could be an assessment of change in therapeutic clinical trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that quantitative WB-MSK-MRI findings associate with FSHD1 severity measured using established functional assessments.
Collapse
Affiliation(s)
| | - Per Widholm
- AMRA Medical AB, Linköping, Sweden.,Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | | | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, NY
| | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Leo Wang
- University of Washington, Seattle, WA
| | | | | | - Joost Kools
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Jay J Han
- University of California-Irvine, Orange, CA
| | - Maya Hatch
- University of California-Irvine, Orange, CA
| | | | | | | |
Collapse
|
22
|
Wong CJ, Wang L, Holers VM, Frazer-Abel A, van der Maarel SM, Tawil R, Statland JM, Tapscott SJ. Elevated plasma complement components in facioscapulohumeral dystrophy. Hum Mol Genet 2022; 31:1821-1829. [PMID: 34919696 PMCID: PMC9169453 DOI: 10.1093/hmg/ddab364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to several therapeutic approaches entering clinical trials and an increased need to develop biomarkers of disease activity and progression. Multiple prior studies have shown early elevation of RNAs encoding components of the complement pathways and relatively widespread activated complement complexes by immunodetection in FSHD muscle. The current study tested plasma from two independent cohorts of FSHD and control subjects and found elevated complement components in both FSHD cohorts. Combining subjects from both cohorts identified complement factors that best distinguished FSHD and controls. Within the FSHD group, a subset of subjects showed elevation in multiple complement components. Together these findings suggest the need for future studies to determine whether measurements of complement activation can be used as a non-invasive measurement of FSHD disease activity, progression and/or response to therapies. In addition, with the ongoing expansion of complement therapeutic approaches, consideration for precision-based targeting of this pathway is appropriate.
Collapse
Affiliation(s)
- Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Leo Wang
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ashley Frazer-Abel
- Exsera BioLabs, Division of Rheumatalogy, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KA 66160, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
23
|
Widholm P, Ahlgren A, Karlsson M, Romu T, Tawil R, Wagner KR, Statland JM, Wang LH, Shieh PB, van Engelen BGM, Cadavid D, Ronco L, Odueyungbo AO, Jiang JG, Mellion ML, Dahlqvist Leinhard O. Quantitative muscle analysis in facioscapulohumeral muscular dystrophy using whole-body fat-referenced MRI: Protocol development, multicenter feasibility, and repeatability. Muscle Nerve 2022; 66:183-192. [PMID: 35585766 DOI: 10.1002/mus.27638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Functional performance tests are the gold standard to assess disease progression and treatment effects in neuromuscular disorders. These tests can be confounded by motivation, pain, fatigue, and learning effects, increasing variability and decreasing sensitivity to disease progression, limiting efficacy assessment in clinical trials with small sample sizes. We aimed to develop and validate a quantitative and objective method to measure skeletal muscle volume and fat content based on whole-body fat-referenced magnetic resonance imaging (MRI) for use in multisite clinical trials. METHODS Subjects aged 18 to 65 years, genetically confirmed facioscapulohumeral muscular dystrophy 1 (FSHD1), clinical severity 2 to 4 (Ricci's scale, range 0-5), were enrolled at six sites and imaged twice 4-12 weeks apart with T1-weighted two-point Dixon MRI covering the torso and upper and lower extremities. Thirty-six muscles were volumetrically segmented using semi-automatic multi-atlas-based segmentation. Muscle fat fraction (MFF), muscle fat infiltration (MFI), and lean muscle volume (LMV) were quantified for each muscle using fat-referenced quantification. RESULTS Seventeen patients (mean age ± SD, 49.4 years ±13.02; 12 men) were enrolled. Within-patient SD ranged from 1.00% to 3.51% for MFF and 0.40% to 1.48% for MFI in individual muscles. For LMV, coefficients of variation ranged from 2.7% to 11.7%. For the composite score average of all muscles, observed SDs were 0.70% and 0.32% for MFF and MFI, respectively; composite LMV coefficient of variation was 2.0%. DISCUSSION We developed and validated a method for measuring skeletal muscle volume and fat content for use in multisite clinical trials of neuromuscular disorders.
Collapse
Affiliation(s)
- Per Widholm
- AMRA Medical AB, Linköping, Sweden.,Department of Radiology, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | | | | | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, New York, USA
| | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Leo H Wang
- University of Washington, Seattle, Washington, USA
| | - Perry B Shieh
- University of California, Los Angeles, California, USA
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - John G Jiang
- Fulcrum Therapeutics, Cambridge, Massachusetts, USA
| | | | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden.,Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
24
|
Ghasemi M, Emerson CP, Hayward LJ. Outcome Measures in Facioscapulohumeral Muscular Dystrophy Clinical Trials. Cells 2022; 11:687. [PMID: 35203336 PMCID: PMC8870318 DOI: 10.3390/cells11040687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a debilitating muscular dystrophy with a variable age of onset, severity, and progression. While there is still no cure for this disease, progress towards FSHD therapies has accelerated since the underlying mechanism of epigenetic derepression of the double homeobox 4 (DUX4) gene leading to skeletal muscle toxicity was identified. This has facilitated the rapid development of novel therapies to target DUX4 expression and downstream dysregulation that cause muscle degeneration. These discoveries and pre-clinical translational studies have opened new avenues for therapies that await evaluation in clinical trials. As the field anticipates more FSHD trials, the need has grown for more reliable and quantifiable outcome measures of muscle function, both for early phase and phase II and III trials. Advanced tools that facilitate longitudinal clinical assessment will greatly improve the potential of trials to identify therapeutics that successfully ameliorate disease progression or permit muscle functional recovery. Here, we discuss current and emerging FSHD outcome measures and the challenges that investigators may experience in applying such measures to FSHD clinical trial design and implementation.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Charles P. Emerson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
25
|
Holm-Yildiz S, Witting N, de Stricker Borch J, Kass K, Khawajazada T, Krag T, Vissing J. Muscle biopsy and MRI findings in ANO5-related myopathy. Muscle Nerve 2021; 64:743-748. [PMID: 34550615 DOI: 10.1002/mus.27419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION/AIMS Mutations in the anoctamin 5 (ANO5) gene are a common cause of muscular dystrophy. We aimed to investigate whether inflammatory changes in muscle are present in patients with ANO5 myopathy when assessed by muscle biopsy and muscle magnetic resonance imaging (MRI). METHODS Adults with pathogenic variations in ANO5 known to cause muscular dystrophy were included in our study. Muscle biopsies of pelvic and lower extremity muscles were reviewed retrospectively. Muscle MR short-tau inversion recovery (STIR) images of a subset of these patients were obtained prospectively. RESULTS Muscle biopsies from 24 patients were reviewed. MR STIR images were performed in 17 of these patients. We found inflammatory changes in muscle biopsies of three patients and MRI revealed hyperintense signals on STIR images in 14 of 17 patients. DISCUSSION In this study, we found that muscle edema is very common in patients with ANO5 myopathy and that some patients have inflammatory changes in muscle biopsies. Further studies are needed to determine whether the STIR+ lesions reflect inflammation.
Collapse
Affiliation(s)
- Sonja Holm-Yildiz
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Konni Kass
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Voermans NC, Vriens-Munoz Bravo M, Padberg GW, Laforêt P. 1st FSHD European Trial Network workshop:Working towards trial readiness across Europe. Neuromuscul Disord 2021; 31:907-918. [PMID: 34404575 DOI: 10.1016/j.nmd.2021.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/29/2023]
Affiliation(s)
- N C Voermans
- FSHD Europe, Radboud University Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, the Netherlands.
| | - M Vriens-Munoz Bravo
- FSHD Europe, Radboud University Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, the Netherlands
| | - G W Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P Laforêt
- Nord-Est-Ile de France Neuromuscular Reference Center, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris Myology Institute, Neuromuscular Pathology Reference Center, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | | |
Collapse
|
27
|
Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021; 13:e13695. [PMID: 34151531 PMCID: PMC8350899 DOI: 10.15252/emmm.202013695] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by progressive skeletal muscle weakness and wasting. FSHD is linked to epigenetic derepression of the subtelomeric D4Z4 macrosatellite at chromosome 4q35. Epigenetic derepression permits the distal-most D4Z4 unit to transcribe DUX4, with transcripts stabilised by splicing to a poly(A) signal on permissive 4qA haplotypes. The pioneer transcription factor DUX4 activates target genes that are proposed to drive FSHD pathology. While this toxic gain-of-function model is a satisfying "bottom-up" genotype-to-phenotype link, DUX4 is rarely detectable in muscle and DUX4 target gene expression is inconsistent in patients. A reliable biomarker for FSHD is suppression of a target gene score of PAX7, a master regulator of myogenesis. However, it is unclear how this "top-down" finding links to genomic changes that characterise FSHD and to DUX4. Here, we explore the roles and interactions of DUX4 and PAX7 in FSHD pathology and how the relationship between these two transcription factors deepens understanding via the immune system and muscle regeneration. Considering how FSHD pathomechanisms are represented by "DUX4opathy" models has implications for developing therapies and current clinical trials.
Collapse
Affiliation(s)
| | - Peter S Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
28
|
Wang LH, Shaw DWW, Faino A, Budech CB, Lewis LM, Statland J, Eichinger K, Tapscott SJ, Tawil RN, Friedman SD. Longitudinal study of MRI and functional outcome measures in facioscapulohumeral muscular dystrophy. BMC Musculoskelet Disord 2021; 22:262. [PMID: 33691664 PMCID: PMC7948347 DOI: 10.1186/s12891-021-04134-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a patchy and slowly progressive disease of skeletal muscle. For MRI to be a useful biomarker in an FSHD clinical trial, it should reliably detect changes over relatively short time-intervals (~ 1 year). We hypothesized that fatty change over the study course would be most likely in muscles already demonstrating disease progression, and that the degree of MRI burden would be correlated with function. Methods We studied 36 patients with FSHD and lower-extremity weakness at baseline. Thirty-two patients returned in our 12-month longitudinal observational study. We analyzed DIXON MRI images of 16 lower-extremity muscles in each patient and compared them to quantitative strength measurement and ambulatory functional outcome measures. Results There was a small shift to higher fat fractions in the summed muscle data for each patient, however individual muscles demonstrated much larger magnitudes of change. The greatest increase in fat fraction was observed in muscles having an intermediate fat replacement at baseline, with minimally (baseline fat fraction < 0.10) or severely (> 0.70) affected muscles less likely to progress. Functional outcome measures did not demonstrate marked change over the interval; however, overall MRI disease burden was correlated with functional outcome measures. Direct comparison of the tibialis anterior (TA) fat fraction and quantitative strength measurement showed a sigmoidal relationship, with steepest drop being when the muscle gets more than ~ 20% fatty replaced. Conclusions Assessing MRI changes in 16 lower-extremity muscles across 1 year demonstrated that those muscles having an intermediate baseline fat fraction were more likely to progress. Ambulatory functional outcome measures are generally related to overall muscle MRI burden but remain unchanged in the short term. Quantitative strength measurement of the TA showed a steep loss of strength when more fatty infiltration is present suggesting that MRI may be preferable for following incremental change or modulation with drug therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04134-7.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, Washington, USA.
| | - Dennis W W Shaw
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Anna Faino
- Children's Core for Biomedical Statistics, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Leann M Lewis
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Jeffrey Statland
- Department of Neurology, Kansas University Medical Center, Fairway, KS, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Research Center, Seattle, Washington, USA
| | - Rabi N Tawil
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Seth D Friedman
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Wang LH, Johnstone LM, Bindschadler M, Tapscott SJ, Friedman SD. Adapting MRI as a clinical outcome measure for a facioscapulohumeral muscular dystrophy trial of prednisone and tacrolimus: case report. BMC Musculoskelet Disord 2021; 22:56. [PMID: 33422031 PMCID: PMC7797109 DOI: 10.1186/s12891-020-03910-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 08/30/2023] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a patchy and slowly progressive disease of skeletal muscle. MRI short tau inversion recovery (STIR) sequences of patient muscles often show increased hyperintensity that is hypothesized to be associated with inflammation. This is supported by the presence of inflammatory changes on biopsies of STIR-positive muscles. We hypothesized that the STIR positivity would normalize with targeted immunosuppressive therapy. Case presentation 45-year-old male with FSHD type 1 was treated with 12 weeks of immunosuppressive therapy, tacrolimus and prednisone. Tacrolimus was treated to a goal serum trough of > 5 ng/mL and prednisone was tapered every month. Quantitative strength exam, functional outcome measures, and muscle MRI were performed at baseline, week 6, and week 12. The patient reported subjective worsening as reflected in quantitative strength exam. The MRI STIR signal was slightly increased from 0.02 to 0.03 of total muscle; while the T1 fat fraction was stable. Functional outcome measures also were stable. Conclusions Immunosuppressive therapy in refractive autoimmune myopathy in other contexts has been shown to reverse STIR signal hyperintensity, however this treatment did not reverse STIR signal in this patient with FSHD. In fact, STIR signal slightly increased throughout the treatment period. This is the first study of using MRI STIR and T1 fat fraction to follow treatment effect in FSHD. We find that STIR might not be a dynamic marker for suppressing inflammation in FSHD.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, Washington, USA. .,University of Washington Medical Center, Box 356465, 1959 NE Pacific Street, Seattle, WA, USA.
| | - Laura M Johnstone
- Department of Rehabilitative Medicine, University of Washington, Seattle, Washington, USA
| | - Michael Bindschadler
- Radiology Clinical Research Imaging Core/Neurology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Research Center, Seattle, Washington, USA
| | - Seth D Friedman
- Radiology Clinical Research Imaging Core/Improvement and Innovation, Seattle Children's Hospital, Seattle, Washington, USA
| |
Collapse
|
30
|
Editorial: Remaining diagnostic issues and start of a treatment era for muscle diseases. Curr Opin Neurol 2020; 33:587-589. [PMID: 32796281 DOI: 10.1097/wco.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|