1
|
Katsumi Y, Howe IA, Eckbo R, Wong B, Quimby M, Hochberg D, McGinnis SM, Putcha D, Wolk DA, Touroutoglou A, Dickerson BC. Default mode network tau predicts future clinical decline in atypical early Alzheimer's disease. Brain 2025; 148:1329-1344. [PMID: 39412999 PMCID: PMC11969453 DOI: 10.1093/brain/awae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Identifying individuals with early-stage Alzheimer's disease (AD) at greater risk of steeper clinical decline would enable better-informed medical, support and life planning decisions. Despite accumulating evidence on the clinical prognostic value of tau PET in typical late-onset amnestic AD, its utility in predicting clinical decline in individuals with atypical forms of AD remains unclear. Across heterogeneous clinical phenotypes, patients with atypical AD consistently exhibit abnormal tau accumulation in the posterior nodes of the default mode network of the cerebral cortex. This evidence suggests that tau burden in this functional network could be a common imaging biomarker for prognostication across the syndromic spectrum of AD. Here, we examined the relationship between baseline tau PET signal and the rate of subsequent clinical decline in a sample of 48 A+/T+/N+ patients with mild cognitive impairment or mild dementia due to AD with atypical clinical phenotypes: Posterior Cortical Atrophy (n = 16); logopenic variant Primary Progressive Aphasia (n = 15); and amnestic syndrome with multi-domain impairment and young age of onset < 65 years (n = 17). All patients underwent MRI, tau PET and amyloid PET scans at baseline. Each patient's longitudinal clinical decline was assessed by calculating the annualized change in the Clinical Dementia Rating Sum-of-Boxes (CDR-SB) scores from baseline to follow-up (mean time interval = 14.55 ± 3.97 months). Atypical early AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per year: t(47) = 6.56, P < 0.001, Cohen's d = 0.95. Across clinical phenotypes, baseline tau in the default mode network was the strongest predictor of clinical decline (R2 = 0.30), outperforming a simpler model with baseline clinical impairment and demographic variables (R2 = 0.10), tau in other functional networks (R2 = 0.11-0.26) and the magnitude of cortical atrophy (R2 = 0.20) and amyloid burden (R2 = 0.09) in the default mode network. Overall, these findings point to the contribution of default mode network tau to predicting the magnitude of clinical decline in atypical early AD patients 1 year later. This simple measure could aid the development of a personalized prognostic, monitoring and treatment plan, which would help clinicians not only predict the natural evolution of the disease but also estimate the effect of disease-modifying therapies on slowing subsequent clinical decline given the patient's tau burden while still early in the disease course.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Inola A Howe
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham & Women’s Hospital, Boston, MA 02115, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham & Women’s Hospital, Boston, MA 02115, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Capilla-López MD, Deprada A, Andrade-Talavera Y, Martínez-Gallego I, Coatl-Cuaya H, Sotillo P, Rodríguez-Alvarez J, Rodríguez-Moreno A, Parra-Damas A, Saura CA. Synaptic vulnerability to amyloid-β and tau pathologies differentially disrupts emotional and memory neural circuits. Mol Psychiatry 2025:10.1038/s41380-025-02901-9. [PMID: 39885298 DOI: 10.1038/s41380-025-02901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions. Early memory deficits were associated with hippocampal tau pathology in Tau and APP/Tau mice, whereas anxiety and fear appeared linked to intracellular Aβ in the basolateral amygdala (BLA) of APP and APP/Tau mice. Transcriptome hippocampal profiling revealed gene changes affecting myelination and RNA processing in Tau mice, and inflammation and synaptic-related pathways in APP/Tau mice at 6 months. At 9 months, we detected common and region-specific changes in astrocytic, microglia and 63 AD-associated genes in the hippocampus and BLA of APP/Tau mice. Spatial learning deficits were associated with synaptic tau accumulation and synapse disruption in the hippocampus of Tau and APP/Tau mice, whereas emotional disturbances were linked to Aβ pathology but not synaptic tau in the BLA. Interestingly, Aβ and tau exhibited synergistic detrimental effects in long-term potentiation (LTP) in the hippocampus but they counteract with each other to mitigate LTP impairments in the amygdala. These findings indicate that Aβ and tau pathologies cause region-specific effects and synergize to induce synaptic dysfunction and immune responses, contributing to the differing vulnerability of memory and emotional neural circuits in AD.
Collapse
Affiliation(s)
- Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Heriberto Coatl-Cuaya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Paula Sotillo
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Alvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Altaras C, Ly MT, Schultz O, Barr WB, Banks SJ, Wethe JV, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Ashton N, Peskind E, Cantu RC, Coleman MJ, Lin AP, Koerte IK, Bouix S, Daneshvar D, Dodick DW, Geda YE, Katz DL, Weller JL, Mez J, Palmisano JN, Martin B, Cummings JL, Reiman EM, Shenton ME, Stern RA, Alosco ML. Dispersion-based cognitive intra-individual variability in former American football players: Association with traumatic encephalopathy syndrome, repetitive head impacts, and biomarkers. Clin Neuropsychol 2025:1-29. [PMID: 39865747 DOI: 10.1080/13854046.2025.2453103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Background: Exposure to repetitive head impacts (RHI), such as those experienced in American football, is linked to cognitive dysfunction later in life. Traumatic encephalopathy syndrome (TES) is a proposed clinical syndrome thought to be linked to neuropath-ology of chronic traumatic encephalopathy (CTE), a condition associated with RHI from football. Cognitive intra-individual variability (d-CIIV) measures test-score dispersion, indicating cognitive dysfunction. This study examined d-CIIV in former football players and its associations with TES diagnosis, RHI exposure, and DTI and CSF biomarkers. Methods: Data included 237 males (45-74 years) from DIAGNOSE CTE Research Project, including former professional and college football players (COL) (n = 173) and asymptomatic men without RHI or TBI (n = 55). Participants completed neuropsychological tests. TES diagnosis was based on 2021 NINDS TES criteria. Years of football play and a cumulative head impact index (CHII) measured RHI exposure. Lumipulse technology was used for CSF assays. DTI fractional anisotropy assessed white matter integrity. Coefficient of variation (CoV) measured d-CIIV. ANCOVA compared d-CIIV among groups (football versus control; TES-status). Pearson correlations and linear regressions tested associations between d-CIIV, RHI exposure, and CSF and DTI biomarkers. Results: Former professional players had higher d-CIIV than controls (F(7, 194) = 2.87, p = .007). d-CIIV was associated with TES diagnosis (F(8, 146) = 9.063, p < .001), with highest d-CIIV in TES Possible/Probable-CTE. Higher d-CIIV correlated with higher CHII scores (r = 0.19), reduced CSF Aβ1-42 (β = -0.302), increased p-tau181 (β = 0.374), and reduced DTI FA (β = -0.202). Conclusion: d-CIIV is linked to RHI exposure and TES diagnosis in former football players, with associated changes in CSF biomarkers and white matter integrity.
Collapse
Affiliation(s)
- Caroline Altaras
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Monica T Ly
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Olivia Schultz
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah J Banks
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Yorghos Tripodis
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UKDementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, UK
- Kong Center for Neurodegenerative Diseases, Hong Kong, ROC
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Elaine Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington Medicine, Seattle, WA, USA
- Education, and Clinical Center, NW Mental Illness Research, Seattle, WA, USA
| | - Robert C Cantu
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander P Lin
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Ludwigs-Maximilians-Universität, cBRAIN, Munich, Germany
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Daneshvar
- Department of Physical Medicine & Rehabilitation, Massachusetts General Hospital, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David W Dodick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Atria Academy of Science and Medicine, New York, NY, USA
| | - Yonas E Geda
- Department of Neurology, the Franke Barrow Global Neuroscience Education Center, Neurological Institute, Barrow Phoenix, AZ, USA
| | - Douglas L Katz
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jason L Weller
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, Chambers-Grundy Center for Transformative Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Neuroscience, Arizona State University, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Cappa SF. Hemispheric asymmetry in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:101-112. [PMID: 40074390 DOI: 10.1016/b978-0-443-15646-5.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Hemispheric asymmetry in pathologic involvement is frequently observed in neurodegenerative disorders (NDD) and is responsible for differences in cognitive and motor clinical manifestations in individual patients. While asymmetry is modest in typical Alzheimer disease (AD), atypical AD presentations with prominent language impairment [logopenic/phonologic variant of primary progressive aphasia (L/Phv-PPA)] are associated with prevalent involvement of the language-dominant hemisphere. Similarly, in the frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, the semantic (Sv) and nonfluent/agrammatic (Nf/Av) variants of PPA are due to asymmetric pathology involving the language-dominant hemisphere. A reversed (typically right-sided) pattern of asymmetry is often found in conditions associated with prominent disorders of behavior and social cognition (i.e., behavioral variant of frontotemporal degeneration-Bv FTD). Asymmetry is generally modest and less consistent in NDD with prevalent motor manifestations, such as Parkinson disease (PD). Overall, the pattern of hemispheric involvement reflects the network-specific selectivity of NDD and is compatible with the spreading of pathology along connection pathways.
Collapse
Affiliation(s)
- Stefano F Cappa
- University School for Advanced Studies (IUSS-Pavia), Pavia, Italy; Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
5
|
Boon BDC, Frigerio I, de Gooijer D, Morrema THJ, Bol J, Galis-de Graaf Y, Heymans M, Murray ME, van der Lee SJ, Holstege H, van de Berg WDJ, Jonkman LE, Rozemuller AJM, Bouwman FH, Hoozemans JJM. Alzheimer's disease clinical variants show distinct neuroinflammatory profiles with neuropathology. Neuropathol Appl Neurobiol 2024; 50:e13009. [PMID: 39400356 DOI: 10.1111/nan.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
AIMS Although the neuroanatomical distribution of tau and amyloid-β is well studied in Alzheimer's disease (AD) (non)-amnestic clinical variants, that of neuroinflammation remains unexplored. We investigate the neuroanatomical distribution of activated myeloid cells, astrocytes, and complement alongside amyloid-β and phosphorylated tau in a clinically well-defined prospectively collected AD cohort. METHODS Clinical variants were diagnosed antemortem, and brain tissue was collected post-mortem. Typical AD (n = 10), behavioural/dysexecutive AD (n = 6), posterior cortical atrophy (PCA) AD (n = 3), and controls (n = 10) were neuropathologically assessed for AD neuropathology, concurrent pathology including Lewy body disease, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and vascular pathology. For quantitative assessment, we analysed the corticolimbic distribution of phosphorylated tau, amyloid-β, CD68, MHC-II, C4b, and glial fibrillary acidic protein (GFAP) using digital pathology. RESULTS Phosphorylated tau was distinctly distributed in each variant. In all variants, amyloid-β was neocortical-dominant, with a notable increase in the middle frontal cortex of behavioural/dysexecutive AD. Typical AD and PCA AD had no concurrent Lewy body disease, whereas three out of six cases with behavioural/dysexecutive AD did. LATE-NC stage >0 was observed in three AD cases, two typical AD (stage 1/3), and one behavioural/dysexecutive AD (stage 2/3). Vascular pathology was present in each variant. In typical AD, CD68 and MHC-II were hippocampal-dominant. In behavioural/dysexecutive AD, C4b was elevated in the middle frontal and inferior parietal cortex. In PCA AD, MHC-II was increased in the fusiform gyrus, and GFAP in parietal cortices. Correlations between AD neuropathology and neuroinflammation were distinct within variants. CONCLUSIONS Our data suggests that different involvement of neuroinflammation may add to clinical heterogeneity in AD, which has implications for neuroinflammation-based biomarkers and future therapeutics.
Collapse
Affiliation(s)
- Baayla D C Boon
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Irene Frigerio
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Danae de Gooijer
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tjado H J Morrema
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - John Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Yvon Galis-de Graaf
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Martijn Heymans
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Sven J van der Lee
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Crawford JL, Brough RE, Eisenstein SA, Peelle JE, Braver TS. Generalized Encoding of the Relative Subjective Value of Cognitive Effort in the Dorsal ACC. J Neurosci 2024; 44:e0367242024. [PMID: 39122557 PMCID: PMC11411589 DOI: 10.1523/jneurosci.0367-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Making choices about whether and when to engage cognitive effort are a common feature of everyday experience, with important consequences for academic, career, and health outcomes. Yet, despite their hypothesized importance, very little is understood about the underlying mechanisms that support this form of human cost-benefit decision-making. To investigate these mechanisms, we used the Cognitive Effort Discounting Paradigm (Cog-ED) during fMRI scanning to precisely quantify the neural encoding of varying cognitive effort demands relative to reward outcomes, within two distinct cognitive domains (working memory, speech comprehension). The findings provide strong evidence that the dorsal anterior cingulate cortex (dACC) plays a central and selective role in this decision-making process. Trial-by-trial modulations in dACC activation tracked the relative subjective value of the low-effort, low-reward option, with the strongest activity occurring when this was of greater value than the high-effort, high-reward option. In contrast, dACC activity was not modulated by decision difficulty, though such effects were found in other frontoparietal regions. Critically, dACC activity was also strongly correlated across the two decision-making task domains and further predicted subsequent choice behavior in both. Together, the results suggest that dACC activity modulation reflects a domain-general valuation comparison mechanism, which acts to bias participants away from decisions to engage in cognitive effort, when the perceived subjective costs of such engagement outweigh the reward-related benefits. These findings complement work in other cost domains and species by pointing to a clear role of the dACC in representing subjective value differences between choice options during cost-benefit decision-making.
Collapse
Affiliation(s)
- Jennifer L Crawford
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02453
| | - Rachel E Brough
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Jonathan E Peelle
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
7
|
Datta D, Yang S, Joyce MKP, Woo E, McCarroll SA, Gonzalez-Burgos G, Perone I, Uchendu S, Ling E, Goldman M, Berretta S, Murray J, Morozov Y, Arellano J, Duque A, Rakic P, O’Dell R, van Dyck CH, Lewis DA, Wang M, Krienen FM, Arnsten AFT. Key Roles of CACNA1C/Cav1.2 and CALB1/Calbindin in Prefrontal Neurons Altered in Cognitive Disorders. JAMA Psychiatry 2024; 81:870-881. [PMID: 38776078 PMCID: PMC11112502 DOI: 10.1001/jamapsychiatry.2024.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Importance The risk of mental disorders is consistently associated with variants in CACNA1C (L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders. Objective To examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices. Design, Setting, and Participants The design included transcriptomic analyses from human and macaque dorsolateral prefrontal cortex, and connectivity, protein expression, physiology, and cognitive behavior in macaques. The research was performed in academic laboratories at Yale, Harvard, Princeton, and the University of Pittsburgh. As dorsolateral prefrontal cortex only exists in primates, the work evaluated humans and macaques. Main Outcomes and Measures Outcome measures included transcriptomic signatures of human and macaque pyramidal cells, protein expression and interactions in layer III macaque pyramidal cells using light and electron microscopy, changes in neuronal firing during spatial working memory, and working memory performance following pharmacological treatments. Results Layer III pyramidal cells in dorsolateral prefrontal cortex coexpress a constellation of calcium-related proteins, delineated by CALB1 (calbindin), and high levels of CACNA1C (Cav1.2), GRIN2B (NMDA receptor GluN2B), and KCNN3 (SK3 potassium channel), concentrated in dendritic spines near the calcium-storing smooth endoplasmic reticulum. L-type calcium channels influenced neuronal firing needed for working memory, where either blockade or increased drive by β1-adrenoceptors, reduced neuronal firing by a mean (SD) 37.3% (5.5%) or 40% (6.3%), respectively, the latter via SK potassium channel opening. An L-type calcium channel blocker or β1-adrenoceptor antagonist protected working memory from stress. Conclusions and Relevance The layer III pyramidal cells in the dorsolateral prefrontal cortex especially vulnerable in cognitive disorders differentially express calbindin and a constellation of calcium-related proteins including L-type calcium channels Cav1.2 (CACNA1C), GluN2B-NMDA receptors (GRIN2B), and SK3 potassium channels (KCNN3), which influence memory-related neuronal firing. The finding that either inadequate or excessive L-type calcium channel activation reduced neuronal firing explains why either loss- or gain-of-function variants in CACNA1C were associated with increased risk of cognitive disorders. The selective expression of calbindin in these pyramidal cells highlights the importance of regulatory mechanisms in neurons with high calcium signaling, consistent with Alzheimer tau pathology emerging when calbindin is lost with age and/or inflammation.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Mary Kate P. Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Woo
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | | | - Isabella Perone
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Stacy Uchendu
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Sabina Berretta
- Basic Neuroscience Division, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - John Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Yury Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Jon Arellano
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan O’Dell
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher H. van Dyck
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - David A. Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Fenna M. Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Argyriou S, Fullard JF, Krivinko JM, Lee D, Wingo TS, Wingo AP, Sweet RA, Roussos P. Beyond memory impairment: the complex phenotypic landscape of Alzheimer's disease. Trends Mol Med 2024; 30:713-722. [PMID: 38821772 PMCID: PMC11329360 DOI: 10.1016/j.molmed.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD) constitute multifaceted behavioral manifestations that reflect processes of emotional regulation, thinking, and social behavior. They are as prevalent in AD as cognitive impairment and develop independently during the progression of neurodegeneration. As studying NPSs in AD is clinically challenging, most AD research to date has focused on cognitive decline. In this opinion article we summarize emerging literature on the prevalence, time course, and the underlying genetic, molecular, and pathological mechanisms related to NPSs in AD. Overall, we propose that NPSs constitute a cluster of core symptoms in AD, and understanding their neurobiology can lead to a more holistic approach to AD research, paving the way for more accurate diagnostic tests and personalized treatments embracing the goals of precision medicine.
Collapse
Affiliation(s)
- Stathis Argyriou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Josh M Krivinko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghoon Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA; Veterans Affairs Atlanta Health Care System, Decatur, GA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Street, Bronx, NY, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Street, Bronx, NY, USA.
| |
Collapse
|
9
|
Xiao L, Yang J, Zhu H, Zhou M, Li J, Liu D, Tang Y, Feng L, Hu S. [ 18F]SynVesT-1 and [ 18F]FDG quantitative PET imaging in the presurgical evaluation of MRI-negative children with focal cortical dysplasia type II. Eur J Nucl Med Mol Imaging 2024; 51:1651-1661. [PMID: 38182838 DOI: 10.1007/s00259-024-06593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
PURPOSE MRI-negative children with focal cortical dysplasia type II (FCD II) are one of the most challenging cases in surgical epilepsy management. We aimed to utilize quantitative positron emission tomography (QPET) analysis to complement [18F]SynVesT-1 and [18F]FDG PET imaging and facilitate the localization of epileptogenic foci in pediatric MRI-negative FCD II patients. METHODS We prospectively enrolled 17 MRI-negative children with FCD II who underwent [18F]SynVesT-1 and [18F]FDG PET before surgical resection. The QPET scans were analyzed using statistical parametric mapping (SPM) with respect to healthy controls. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) of [18F]SynVesT-1 PET, [18F]FDG PET, [18F]SynVesT-1 QPET, and [18F]FDG QPET in the localization of epileptogenic foci were assessed. Additionally, we developed a multivariate prediction model based on dual trace PET/QPET assessment. RESULTS The AUC values of [18F]FDG PET and [18F]SynVesT-1 PET were 0.861 (sensitivity = 94.1%, specificity = 78.2%, PPV = 38.1%, NPV = 98.9%) and 0.908 (sensitivity = 82.4%, specificity = 99.2%, PPV = 93.3%, NPV = 97.5%), respectively. [18F]FDG QPET showed lower sensitivity (76.5%) and NPV (96.6%) but higher specificity (95.0%) and PPV (68.4%) than visual assessment, while [18F]SynVesT-1 QPET exhibited higher sensitivity (94.1%) and NPV (99.1%) but lower specificity (97.5%) and PPV (84.2%). The multivariate prediction model had the highest AUC value (AUC = 0.996, sensitivity = 100.0%, specificity = 96.6%, PPV = 81.0%, NPV = 100%). CONCLUSIONS The multivariate prediction model based on [18F]SynVesT-1 and [18F]FDG PET/QPET assessments holds promise in noninvasively identifying epileptogenic regions in MRI-negative children with FCD II. Furthermore, the combination of visual assessment and QPET may improve the sensitivity and specificity of diagnostic tests in localizing epileptogenic foci and achieving a preferable surgical outcome in MRI-negative FCD II.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhui Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Nabizadeh F, Pirahesh K, Aarabi MH, Wennberg A, Pini L. Behavioral and dysexecutive variant of Alzheimer's disease: Insights from structural and molecular imaging studies. Heliyon 2024; 10:e29420. [PMID: 38638964 PMCID: PMC11024599 DOI: 10.1016/j.heliyon.2024.e29420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Frontal variant Alzheimer's disease (AD) manifests with either behavioral or dysexecutive syndromes. Recent efforts to gain a deeper understanding of this phenotype have led to a re-conceptualization of frontal AD. Behavioral (bAD) and dysexecutive (dAD) phenotypes could be considered subtypes, as suggested by both clinical and neuroimaging studies. In this review, we focused on imaging studies to highlight specific brain patterns in these two uncommon clinical AD phenotypes. Although studies did not compare directly these two variants, a common epicenter located in the frontal cortex could be inferred. On the contrary, 18F-FDG-PET findings suggested differing metabolic patterns, with bAD showing specific involvement of frontal regions and dAD exhibiting widespread alterations. Structural MRI findings confirmed this pattern, suggesting that degeneration might involve neural circuits associated with behavioral control in bAD and attentional networks in dAD. Furthermore, molecular imaging has identified different neocortical tau distribution in bAD and dAD patients compared to typical AD patients, although the distribution is remarkably heterogeneous. In contrast, Aβ deposition patterns are less differentiated between these atypical variants and typical AD. Although preliminary, these findings underscore the complexity of AD frontal phenotypes and suggest that they represent distinct entities. Further research is essential to refine our understanding of the pathophysiological mechanisms in frontal AD.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kasra Pirahesh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Alexandra Wennberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Italy
| |
Collapse
|
11
|
Therriault J, Schindler SE, Salvadó G, Pascoal TA, Benedet AL, Ashton NJ, Karikari TK, Apostolova L, Murray ME, Verberk I, Vogel JW, La Joie R, Gauthier S, Teunissen C, Rabinovici GD, Zetterberg H, Bateman RJ, Scheltens P, Blennow K, Sperling R, Hansson O, Jack CR, Rosa-Neto P. Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol 2024; 20:232-244. [PMID: 38429551 DOI: 10.1038/s41582-024-00942-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Liana Apostolova
- Department of Neurology, University of Indiana School of Medicine, Indianapolis, IN, USA
| | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip Scheltens
- Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Whitwell JL. Atypical clinical variants of Alzheimer's disease: are they really atypical? Front Neurosci 2024; 18:1352822. [PMID: 38482142 PMCID: PMC10933030 DOI: 10.3389/fnins.2024.1352822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/15/2024] [Indexed: 02/12/2025] Open
Abstract
Alzheimer's disease (AD) is a neuropathological disorder defined by the deposition of the proteins, tau and β-amyloid. Alzheimer's disease is commonly thought of as a disease of the elderly that is associated with episodic memory loss. However, the very first patient described with AD was in her 50's with impairments in multiple cognitive domains. It is now clear that AD can present with multiple different non-amnestic clinical variants which have been labeled as atypical variants of AD. Instead of these variants of AD being considered "atypical," I propose that they provide an excellent disease model of AD and reflect the true clinical heterogeneity of AD. The atypical variants of AD usually have a relatively young age at onset, and they show striking cortical tau deposition on molecular PET imaging which relates strongly with patterns of neurodegeneration and clinical outcomes. In contrast, elderly patients with AD show less tau deposition on PET, and neuroimaging and clinical outcomes are confounded by other age-related pathologies, including TDP-43 and vascular pathology. There is also considerable clinical and anatomical heterogeneity across atypical and young-onset amnestic variants of AD which reflects the fact that AD is a disease that causes impairments in multiple cognitive domains. Future studies should focus on careful characterization of cognitive impairment in AD and consider the full clinical spectrum of AD, including atypical AD, in the design of research studies investigating disease mechanisms in AD and clinical treatment trials, particularly with therapeutics targeting tau.
Collapse
|
13
|
Tang Y, Xiao L, Deng C, Zhu H, Gao X, Li J, Yang Z, Liu D, Feng L, Hu S. [ 18F]FDG PET metabolic patterns in mesial temporal lobe epilepsy with different pathological types. Eur Radiol 2024; 34:887-898. [PMID: 37581655 DOI: 10.1007/s00330-023-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To investigate [18F]FDG PET patterns of mesial temporal lobe epilepsy (MTLE) patients with distinct pathologic types and provide possible guidance for predicting long-term prognoses of patients undergoing epilepsy surgery. METHODS This was a retrospective review of MTLE patients who underwent anterior temporal lobectomy between 2016 and 2021. Patients were classified as having chronic inflammation and gliosis (gliosis, n = 44), hippocampal sclerosis (HS, n = 43), or focal cortical dysplasia plus HS (FCD-HS, n = 13) based on the postoperative pathological diagnosis. Metabolic patterns and the severity of metabolic abnormalities were investigated among MTLE patients and healthy controls (HCs). The standardized uptake value (SUV), SUV ratio (SUVr), and asymmetry index (AI) of regions of interest were applied to evaluate the severity of metabolic abnormalities. Imaging processing was performed with statistical parametric mapping (SPM12). RESULTS With a mean follow-up of 2.8 years, the seizure freedom (Engel class IA) rates of gliosis, HS, and FCD-HS were 54.55%, 62.79%, and 69.23%, respectively. The patients in the gliosis group presented a metabolic pattern with a larger involvement of extratemporal areas, including the ipsilateral insula. SUV, SUVr, and AI in ROIs were decreased for patients in all three MTLE groups compared with those of HCs, but the differences among all three MTLE groups were not significant. CONCLUSIONS MTLE patients with isolated gliosis had the worst prognosis and hypometabolism in the insula, but the degree of metabolic decrease did not differ from the other two groups. Hypometabolic regions should be prioritized for [18F]FDG PET presurgical evaluation rather than [18F]FDG uptake values. CLINICAL RELEVANCE STATEMENT This study proposes guidance for optimizing the operation scheme in patients with refractory MTLE and emphasizes the potential of molecular neuroimaging with PET using selected tracers to predict the postsurgical histology of patients with refractory MTLE epilepsy. KEY POINTS • MTLE patients with gliosis had poor surgical outcomes and showed a distinct pattern of decreased metabolism in the ipsilateral insula. • In the preoperative assessment of MTLE, it is recommended to prioritize the evaluation of glucose hypometabolism areas over [18F]FDG uptake values. • The degree of glucose hypometabolism in the epileptogenic focus was not associated with the surgical outcomes of MTLE.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, Jiangxi, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Wang T, Yan S, Shan Y, Xing Y, Bi S, Chen Z, Xi H, Xue H, Qi Z, Tang Y, Lu J. Altered Neuronal Activity Patterns of the Prefrontal Cortex in Alzheimer's Disease After Transcranial Alternating Current Stimulation: A Resting-State fMRI Study. J Alzheimers Dis 2024; 101:901-912. [PMID: 39269839 DOI: 10.3233/jad-240400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Transcranial alternating current stimulation (tACS) could improve cognition in patients with Alzheimer's disease (AD). However, the effects of tACS on brain activity remain unclear. Objective The purpose is to investigate the change in regional neuronal activity after tACS in AD patients employing resting-state functional magnetic resonance imaging (rs-fMRI). Methods A total of 46 patients with mild AD were enrolled. Each patient received 30 one-hour sessions of real or sham tACS for three weeks (clinical trial: NCT03920826). The fractional amplitude of low-frequency fluctuations (fALFF) and the regional homogeneity (ReHo) measured by rs-fMRI were calculated to evaluate the regional brain activity. Results Compared to baseline, AD patients in the real group exhibited increased fALFF in the left middle frontal gyrus-orbital part and right inferior frontal gyrus-orbital part, as well as increased ReHo in the left precentral gyrus and right middle frontal gyrus at the end of intervention. At the 3-month follow-up, fALFF increased in the left superior parietal lobule and right inferior temporal gyrus, as well as ReHo, in the left middle frontal gyrus and right superior medial frontal gyrus. A higher fALFF in the right lingual gyrus and ReHo in the right parahippocampal gyrus were observed in the response group than in the nonresponse group. Conclusions The findings demonstrated the beneficial effects of tACS on the neuronal activity of the prefrontal cortex and even more extensive regions and provided a neuroimaging biomarker of treatment response in AD patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Xing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sheng Bi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigeng Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Hanyu Xi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Hanxiao Xue
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigang Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
15
|
Therriault J, Servaes S, Tissot C, Rahmouni N, Ashton NJ, Benedet AL, Karikari TK, Macedo AC, Lussier FZ, Stevenson J, Wang YT, Fernandez-Arias J, Stevenson A, Socualaya KQ, Haeger A, Nazneen T, Aumont É, Hosseini A, Rej S, Vitali P, Triana-Baltzer G, Kolb HC, Soucy JP, Pascoal TA, Gauthier S, Zetterberg H, Blennow K, Rosa-Neto P. Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease. Alzheimers Dement 2023; 19:4967-4977. [PMID: 37078495 PMCID: PMC10587362 DOI: 10.1002/alz.13026] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed. METHODS We assessed the diagnostic performance of p-tau181 , p-tau217 , and p-tau231 in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity. RESULTS Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau181 (AUC = 76%) and p-tau231 (AUC = 82%) assessments performed inferior to CSF p-tau181 (AUC = 87%) and p-tau231 (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau217 (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity. DISCUSSION Plasma and CSF p-tau217 had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau217 may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD. HIGHLIGHTS p-tau217 in plasma performed equivalent to p-tau217 in CSF for the diagnosis of AD, suggesting the increased accessibility of plasma p-tau217 is not offset by lower accuracy. p-tau biomarkers in plasma had lower mean fold-changes between amyloid-PET negative and positive groups than p-tau biomarkers in CSF. CSF p-tau biomarkers had greater effect sizes than plasma p-tau biomarkers when differentiating between amyloid-PET positive and negative groups. Plasma p-tau181 and plasma p-tau231 performed worse than p-tau181 and p-tau231 in CSF for AD diagnosis.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
- Wallenberg Centre for Molecular Medicine, University of Gothenburg, Gothenburg, Sweden, 6, 431 41
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom London, UK, SE5 9RT
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK, SE5 8AF
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
| | - Thomas K. Karikari
- Wallenberg Centre for Molecular Medicine, University of Gothenburg, Gothenburg, Sweden, 6, 431 41
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - Arthur C. Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Firoza Z. Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alyssa Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Kely Quispialaya Socualaya
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Arlette Haeger
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Tahnia Nazneen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Étienne Aumont
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Ali Hosseini
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Soham Rej
- Department of Psychiatry, McGill University Montreal, Quebec, Canada, H3T 1E2
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Gallen Triana-Baltzer
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA, 92121
| | - Hartmuth C. Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA, 92121
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Tharick A. Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden, 6, 431 41
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK, SE5 9RT
- UK Dementia Research Institute at UCL, London, UK, SE5 9RT
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China, 0
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden, 6, 431 41
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| |
Collapse
|
16
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. How Many Alzheimer-Perusini's Atypical Forms Do We Still Have to Discover? Biomedicines 2023; 11:2035. [PMID: 37509674 PMCID: PMC10377159 DOI: 10.3390/biomedicines11072035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer-Perusini's (AD) disease represents the most spread dementia around the world and constitutes a serious problem for public health. It was first described by the two physicians from whom it took its name. Nowadays, we have extensively expanded our knowledge about this disease. Starting from a merely clinical and histopathologic description, we have now reached better molecular comprehension. For instance, we passed from an old conceptualization of the disease based on plaques and tangles to a more modern vision of mixed proteinopathy in a one-to-one relationship with an alteration of specific glial and neuronal phenotypes. However, no disease-modifying therapies are yet available. It is likely that the only way to find a few "magic bullets" is to deepen this aspect more and more until we are able to draw up specific molecular profiles for single AD cases. This review reports the most recent classifications of AD atypical variants in order to summarize all the clinical evidence using several discrimina (for example, post mortem neurofibrillary tangle density, cerebral atrophy, or FDG-PET studies). The better defined four atypical forms are posterior cortical atrophy (PCA), logopenic variant of primary progressive aphasia (LvPPA), behavioral/dysexecutive variant and AD with corticobasal degeneration (CBS). Moreover, we discuss the usefulness of such classifications before outlining the molecular-genetic aspects focusing on microglial activity or, more generally, immune system control of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
17
|
Therriault J, Lussier FZ, Tissot C, Chamoun M, Stevenson J, Rahmouni N, Pallen V, Bezgin G, Servaes S, Kunach P, Wang Y, Fernandez‐Arias J, Vermeiren M, Pascoal TA, Massarweh G, Vitali P, Soucy J, Saha‐Chaudhuri P, Gauthie S, Rosa‐Neto P. Amyloid beta plaque accumulation with longitudinal [18F]AZD4694 PET. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12391. [PMID: 37644990 PMCID: PMC10461075 DOI: 10.1002/dad2.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 08/31/2023]
Abstract
Introduction [18F]AZD4694 is an amyloid beta (Aβ) imaging agent used in several observational studies and clinical trials. However, no studies have yet published data on longitudinal Aβ accumulation measured with [18F]AZD4694. Methods We assessed 146 individuals who were evaluated with [18F]AZD4694 at baseline and 2-year follow-up. We calculated annual rates of [18F]AZD4694 change for clinically defined and biomarker-defined groups. Results Cognitively unimpaired (CU) older adults displayed subtle [18F]AZD4694 standardized uptake value ratio (SUVR) accumulation over the follow-up period. In contrast, Aβ positive CU older adults displayed higher annual [18F]AZD4694 SUVR increases. [18F]AZD4694 SUVR accumulation in Aβ positive mild cognitive impairment (MCI) and dementia was modest across the neocortex. Discussion Larger increases in [18F]AZD4694 SUVR were observed in CU individuals who had abnormal amyloid positron emission tomography levels at baseline. [18F]AZD4694 can be used to monitor Aβ levels in therapeutic trials as well as clinical settings, particularly prior to initiating anti-amyloid therapies.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Firoza Z. Lussier
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Cécile Tissot
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Mira Chamoun
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jenna Stevenson
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Nesrine Rahmouni
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Vanessa Pallen
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Gleb Bezgin
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Stijn Servaes
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Peter Kunach
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Yi‐Ting Wang
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jaime Fernandez‐Arias
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Marie Vermeiren
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
| | - Tharick A. Pascoal
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gassan Massarweh
- Department of RadiochemistryMcGill UniversityMontrealQuebecCanada
| | - Paolo Vitali
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jean‐Paul Soucy
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Paramita Saha‐Chaudhuri
- Department of EpidemiologyBiostatistics and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Department of Mathematics & StatisticsUniversity of VermontBurlingtonVermontUSA
| | - Serge Gauthie
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
18
|
Carlos AF, Tosakulwong N, Weigand SD, Senjem ML, Schwarz CG, Knopman DS, Boeve BF, Petersen RC, Nguyen AT, Reichard RR, Dickson DW, Jack CR, Lowe V, Whitwell JL, Josephs KA. TDP-43 pathology effect on volume and flortaucipir uptake in Alzheimer's disease. Alzheimers Dement 2023; 19:2343-2354. [PMID: 36463537 PMCID: PMC10239529 DOI: 10.1002/alz.12878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 12/07/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) patients ≥70 years show smaller medial temporal volumes despite less 18 F-flortaucipir-positron emission tomography (PET) uptake than younger counterparts. We investigated whether TAR DNA-binding protein 43 (TDP-43) was contributing to this volume-uptake mismatch. METHODS Seventy-seven participants with flortaucipir-PET and volumetric magnetic resonance imaging underwent postmortem AD and TDP-43 pathology assessments. Bivariate-response linear regression estimated the effect of age and TDP-43 pathology on volume and/or flortaucipir standardized uptake volume ratios of the hippocampus, amygdala, entorhinal, inferior temporal, and midfrontal cortices. RESULTS Older participants had lower hippocampal volumes and overall flortaucipir uptake. TDP-43-immunoreactivity correlated with reduced medial temporal volumes but was unrelated to flortaucipir uptake. TDP-43 effect size was consistent across the age spectrum. However, at older ages, the cohort mean volumes moved toward those of TDP-43-positives, reflecting the increasing TDP-43 pathology frequency with age. DISCUSSION TDP-43 pathology is a relevant contributor driving the volume-uptake mismatch in older AD participants. HIGHLIGHTS TDP-43 pathology affects medial temporal volume loss but not tau radiotracer uptake. Greater TDP-43 pathology effect is seen in old age due to its increasing frequency. TDP-43 pathology is a relevant driver of the volume-uptake mismatch in old AD patients.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905 USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905 USA
| | - Stephen D. Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905 USA
| | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905 USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, 55905 USA
| | | | | | | | | | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905 USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224 USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905 USA
| | | | | |
Collapse
|
19
|
Montoliu-Gaya L, Benedet AL, Tissot C, Vrillon A, Ashton NJ, Brum WS, Lantero-Rodriguez J, Stevenson J, Nilsson J, Sauer M, Rahmouni N, Brinkmalm G, Lussier FZ, Pascoal TA, Skoog I, Kern S, Zetterberg H, Paquet C, Gobom J, Rosa-Neto P, Blennow K. Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies. NATURE AGING 2023; 3:661-669. [PMID: 37198279 PMCID: PMC10275761 DOI: 10.1038/s43587-023-00405-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/22/2023] [Indexed: 05/19/2023]
Abstract
Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer's disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials.
Collapse
Grants
- R01 AG068398 NIA NIH HHS
- BrightFocus Foundation (BrightFocus)
- Alzheimerfonden
- Stiftelsen för Gamla Tjänarinnor (Foundation for Old Servants)
- AV is funded by Fondation Ophtalmologique Adolphe de Rothschild, Fondation Philipe Chatrier, Amicale des Anciens Internes des Hôpitaux de Paris, Fondation Vaincre Alzheimer, the Swedish Dementia Foundation (Demensfonden), Gun and Bertil Stohnes Foundation and Gamla Tjänarinnor Foundation.
- JN is supported by Demensfonden and the Foundation for Gamla Tjänarinnor (#2020-00959 and #2021-01153).
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003).
- KB is supported by the Swedish Research Council (#2017-00915 and #2022-00732), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01), the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), and the Alzheimer’s Association 2022-2025 Grant (SG-23-1038904 QC)
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Agathe Vrillon
- Université de Paris, Cognitive Neurology Center, GHUNord APHP Hospital Lariboisière Fernand Widal, Paris, France
- Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mathias Sauer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Claire Paquet
- Université de Paris, Cognitive Neurology Center, GHUNord APHP Hospital Lariboisière Fernand Widal, Paris, France
- Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
20
|
Weigand AJ, Ortiz G, Walker KS, Galasko DR, Bondi MW, Thomas KR. APOE differentially moderates cerebrospinal fluid and plasma phosphorylated tau181 associations with multi-domain cognition. Neurobiol Aging 2023; 125:1-8. [PMID: 36780762 DOI: 10.1016/j.neurobiolaging.2022.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/19/2023]
Abstract
Biofluid markers of phosphorylated tau181 (p-tau181) are increasingly popular for the detection of early Alzheimer's pathologic changes. However, the differential dynamics of cerebrospinal fluid (CSF) and plasma p-tau181 remain under investigation. We studied 727 participants from the Alzheimer's Disease Neuroimaging Initiative with plasma and CSF p-tau181 data, apolipoprotein (APOE) ε4 carrier status, amyloid positron emission tomography (PET) imaging, and neuropsychological data. Higher levels of plasma and CSF p-tau181 were observed among APOE ε4 carriers. CSF and plasma p-tau181 were significantly associated with memory, and this effect was greater in APOE ε4 carriers. However, whereas CSF p-tau181 was not significantly associated with language or attention/executive function among ε4 carriers or non-carriers, APOE ε4 status moderated the association of plasma p-tau181 with both language and attention/executive function. These findings lend support to the notion that p-tau181 biofluid markers are useful in measuring AD pathologic changes but also suggest that CSF and plasma p-tau181 have unique properties and dynamics that should be considered when using these markers in research and clinical practice.
Collapse
Affiliation(s)
- Alexandra J Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Gema Ortiz
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Kayla S Walker
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - Douglas R Galasko
- VA San Diego Healthcare System, San Diego, CA, USA; University of California San Diego, Department of Neurosciences, La Jolla, CA, USA
| | - Mark W Bondi
- VA San Diego Healthcare System, San Diego, CA, USA; University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Kelsey R Thomas
- VA San Diego Healthcare System, San Diego, CA, USA; University of California San Diego, Department of Psychiatry, La Jolla, CA, USA.
| | | |
Collapse
|
21
|
Ribas MZ, Paticcié GF, Noleto FM, Ramanzini LG, Veras ADO, Dall'Oglio R, Filho LBDA, Martins da Silva JG, Lima MPP, Teixeira BE, Nunes de Sousa G, Alves AFC, Vieira Lima LMF, Sallem CC, Garcia TFM, Ponte de Oliveira IM, Rocha RSDC, Jucá MDS, Barroso ST, Claudino Dos Santos JC. Impact of dysexecutive syndrome in quality of life in Alzheimer disease: What we know now and where we are headed. Ageing Res Rev 2023; 86:101866. [PMID: 36709886 DOI: 10.1016/j.arr.2023.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is a common form of dementia that leads to multiple repercussions in the patient's life. This condition's clinical characteristics include loss of memory, temporal and spatial disorientation, language or executive dysfunction, and subsequent decline of social function. Dysexecutive syndrome (DS), the second most frequent neuropsychological dysfunction in AD, affects multiple brain areas and causes cognitive, behavioral, and emotional difficulties. We aimed to analyze the association between DS and AD and elucidate possible lack of evidence that may urge further research on this theme. Especially when dealing with such a disabling disease, where new findings can directly imply a better prognosis.
Collapse
Affiliation(s)
| | | | - Felipe Micelli Noleto
- Faculdade de Medicina, Centro Universitário Christus, UNICHRISTUS, Fortaleza, CE, Brazil
| | | | - Arthur de Oliveira Veras
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Renato Dall'Oglio
- Faculdade Evangélica Mackenzie do Paraná (FEMPAR), Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | - Camilla Costa Sallem
- Faculdade de Medicina, Centro Universitário Christus, UNICHRISTUS, Fortaleza, CE, Brazil
| | - Tulia Fernanda Meira Garcia
- Escola Multicampi de Ciências Médicas do RN, Universidade Federal do Rio Grande do Norte (EMCM-UFRN), Caicó, RN, Brazil
| | | | | | - Mikaio de Sousa Jucá
- Faculdade de Medicina, Centro Universitário Christus, UNICHRISTUS, Fortaleza, CE, Brazil
| | - Sarah Távora Barroso
- Faculdade de Medicina, Centro Universitário Christus, UNICHRISTUS, Fortaleza, CE, Brazil
| | - Júlio César Claudino Dos Santos
- Faculdade de Medicina, Centro Universitário Christus, UNICHRISTUS, Fortaleza, CE, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Fu JF, Lois C, Sanchez J, Becker JA, Rubinstein ZB, Thibault E, Salvatore AN, Sari H, Farrell ME, Guehl NJ, Normandin MD, Fakhri GE, Johnson KA, Price JC. Kinetic evaluation and assessment of longitudinal changes in reference region and extracerebral [ 18F]MK-6240 PET uptake. J Cereb Blood Flow Metab 2023; 43:581-594. [PMID: 36420769 PMCID: PMC10063833 DOI: 10.1177/0271678x221142139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | - Cristina Lois
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Justin Sanchez
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - J Alex Becker
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Zoe B Rubinstein
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Emma Thibault
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew N Salvatore
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hasan Sari
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | | | - Nicolas J Guehl
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Marc D Normandin
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Georges El Fakhri
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| |
Collapse
|
23
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
24
|
Therriault J, Gauthier S, Rosa-Neto P. Applications of Alzheimer's disease staging to clinical trials. Aging (Albany NY) 2023; 15:4-5. [PMID: 36622284 PMCID: PMC9876645 DOI: 10.18632/aging.204482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Canada
- Department of Neurology and Neurosurgery, McGill University, Canada
- Montreal Neurological Institute, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Canada
- Department of Neurology and Neurosurgery, McGill University, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Canada
- Department of Neurology and Neurosurgery, McGill University, Canada
- Montreal Neurological Institute, Canada
| |
Collapse
|
25
|
Ferrari-Souza JP, Ferreira PCL, Bellaver B, Tissot C, Wang YT, Leffa DT, Brum WS, Benedet AL, Ashton NJ, De Bastiani MA, Rocha A, Therriault J, Lussier FZ, Chamoun M, Servaes S, Bezgin G, Kang MS, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, Klunk WE, Tudorascu DL, Cohen AD, Villemagne VL, Gauthier S, Blennow K, Zetterberg H, Souza DO, Karikari TK, Zimmer ER, Rosa-Neto P, Pascoal TA. Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer's disease. Mol Psychiatry 2022; 27:4781-4789. [PMID: 35948658 PMCID: PMC9734046 DOI: 10.1038/s41380-022-01716-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023]
Abstract
Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-β (Aβ) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aβ ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aβ-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aβ-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aβ and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aβ and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cécile Tissot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Douglas T Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andréia Rocha
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nina Margherita Poltronetti
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Therriault J, Pascoal TA, Savard M, Mathotaarachchi S, Benedet AL, Chamoun M, Tissot C, Lussier FZ, Rahmouni N, Stevenson J, Qureshi MNI, Kang MS, Thomas É, Vitali P, Soucy JP, Massarweh G, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Intrinsic connectivity of the human brain provides scaffold for tau aggregation in clinical variants of Alzheimer's disease. Sci Transl Med 2022; 14:eabc8693. [PMID: 36001678 DOI: 10.1126/scitranslmed.abc8693] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) phenotypes might result from differences in selective vulnerability. Evidence from preclinical models suggests that tau pathology has cell-to-cell propagation properties. Therefore, here, we tested the cell-to-cell propagation framework in the amnestic, visuospatial, language, and behavioral/dysexecutive phenotypes of AD. We report that each AD phenotype is associated with a distinct network-specific pattern of tau aggregation, where tau aggregation is concentrated in brain network hubs. In all AD phenotypes, regional tau load could be predicted by connectivity patterns of the human brain. Furthermore, regions with greater connectivity displayed similar rates of longitudinal tau accumulation in an independent cohort. Connectivity-based tau deposition was not restricted to a specific vulnerable network but was rather a general property of brain organization, linking selective vulnerability and transneuronal spreading models of neurodegeneration. Together, this study indicates that intrinsic brain connectivity provides a framework for tau aggregation across diverse phenotypic manifestations of AD.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Mélissa Savard
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Muhammad Naveed Iqbal Qureshi
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Émilie Thomas
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada.,Department of Radiochemistry, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
27
|
Perez SD, Phillips JS, Norise C, Kinney NG, Vaddi P, Halpin A, Rascovsky K, Irwin DJ, McMillan CT, Xie L, Wisse LE, Yushkevich PA, Kallogjeri D, Grossman M, Cousins KA. Neuropsychological and Neuroanatomical Features of Patients with Behavioral/Dysexecutive Variant Alzheimer’s disease (AD): A Comparison to Behavioral Variant Frontotemporal Dementia and Amnestic AD Groups. J Alzheimers Dis 2022; 89:641-658. [PMID: 35938245 PMCID: PMC10117623 DOI: 10.3233/jad-215728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: An understudied variant of Alzheimer’s disease (AD), the behavioral/dysexecutive variant of AD (bvAD), is associated with progressive personality, behavior, and/or executive dysfunction and frontal atrophy. Objective: This study characterizes the neuropsychological and neuroanatomical features associated with bvAD by comparing it to behavioral variant frontotemporal dementia (bvFTD), amnestic AD (aAD), and subjects with normal cognition. Methods: Subjects included 16 bvAD, 67 bvFTD, and 18 aAD patients, and 26 healthy controls. Neuropsychological assessment and MRI data were compared between these groups. Results: Compared to bvFTD, bvAD showed more significant visuospatial impairments (Rey Figure copy and recall), more irritability (Neuropsychological Inventory), and equivalent verbal memory (Philadelphia Verbal Learning Test). Compared to aAD, bvAD indicated more executive dysfunction (F-letter fluency) and better visuospatial performance. Neuroimaging analysis found that bvAD showed cortical thinning relative to bvFTD posteriorly in left temporal-occipital regions; bvFTD had cortical thinning relative to bvAD in left inferior frontal cortex. bvAD had cortical thinning relative to aAD in prefrontal and anterior temporal regions. All patient groups had lower volumes than controls in both anterior and posterior hippocampus. However, bvAD patients had higher average volume than aAD patients in posterior hippocampus and higher volume than bvFTD patients in anterior hippocampus after adjustment for age and intracranial volume. Conclusion: Findings demonstrated that underlying pathology mediates disease presentation in bvAD and bvFTD.
Collapse
Affiliation(s)
- Sophia Dominguez Perez
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Jeffrey S. Phillips
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Norise
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolas G. Kinney
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prerana Vaddi
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Halpin
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Maine, Orono, ME, USA
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Irwin
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Long Xie
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Lab & Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura E.M. Wisse
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Lab & Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Paul A. Yushkevich
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Lab & Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorina Kallogjeri
- Department of Otolaryngology, Washington University, St. Louis, MO, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A.Q. Cousins
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Staging of Alzheimer's disease: past, present, and future perspectives. Trends Mol Med 2022; 28:726-741. [PMID: 35717526 DOI: 10.1016/j.molmed.2022.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
For many years Alzheimer's disease (AD) was associated with the dementia stage of the disease, the tail end of a pathophysiological process that lasts approximately two decades. Whereas early disease staging assessments focused on progressive deterioration of clinical functioning, brain imaging with positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarker studies highlighted the long preclinical phase of AD in which a cascade of detectable biological abnormalities precede cognitive decline. The recent proliferation of imaging and fluid biomarkers of AD pathophysiology provide an opportunity for the identification of several biological stages in the preclinical phase of AD. We discuss the use of clinical and biomarker information in past, present, and future staging of AD. We highlight potential applications of PET, CSF, and plasma biomarkers for staging AD severity in vivo.
Collapse
|
29
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
30
|
Therriault J, Pascoal TA, Lussier FZ, Tissot C, Chamoun M, Bezgin G, Servaes S, Benedet AL, Ashton NJ, Karikari TK, Lantero-Rodriguez J, Kunach P, Wang YT, Fernandez-Arias J, Massarweh G, Vitali P, Soucy JP, Saha-Chaudhuri P, Blennow K, Zetterberg H, Gauthier S, Rosa-Neto P. Biomarker modeling of Alzheimer's disease using PET-based Braak staging. NATURE AGING 2022; 2:526-535. [PMID: 37118445 PMCID: PMC10154209 DOI: 10.1038/s43587-022-00204-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/08/2022] [Indexed: 04/30/2023]
Abstract
Gold-standard diagnosis of Alzheimer's disease (AD) relies on histopathological staging systems. Using the topographical information from [18F]MK6240 tau positron-emission tomography (PET), we applied the Braak tau staging system to 324 living individuals. We used PET-based Braak stage to model the trajectories of amyloid-β, phosphorylated tau (pTau) in cerebrospinal fluid (pTau181, pTau217, pTau231 and pTau235) and plasma (pTau181 and pTau231), neurodegeneration and cognitive symptoms. We identified nonlinear AD biomarker trajectories corresponding to the spatial extent of tau-PET, with modest biomarker changes detectable by Braak stage II and significant changes occurring at stages III-IV, followed by plateaus. Early Braak stages were associated with isolated memory impairment, whereas Braak stages V-VI were incompatible with normal cognition. In 159 individuals with follow-up tau-PET, progression beyond stage III took place uniquely in the presence of amyloid-β positivity. Our findings support PET-based Braak staging as a framework to model the natural history of AD and monitor AD severity in living humans.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas J Ashton
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- Biomedical Research Unit for Dementia at South London, NIHR Biomedical Research Centre for Mental Health and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Juan Lantero-Rodriguez
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Kunach
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Gassan Massarweh
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Cassidy CM, Therriault J, Pascoal TA, Cheung V, Savard M, Tuominen L, Chamoun M, McCall A, Celebi S, Lussier F, Massarweh G, Soucy JP, Weinshenker D, Tardif C, Ismail Z, Gauthier S, Rosa-Neto P. Association of locus coeruleus integrity with Braak stage and neuropsychiatric symptom severity in Alzheimer's disease. Neuropsychopharmacology 2022; 47:1128-1136. [PMID: 35177805 PMCID: PMC8938499 DOI: 10.1038/s41386-022-01293-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
Abstract
The clinical and pathophysiological correlates of locus coeruleus (LC) degeneration in Alzheimer's disease (AD) could be clarified using a method to index LC integrity in vivo, neuromelanin-sensitive MRI (NM-MRI). We examined whether integrity of the LC-norepinephrine system, assessed with NM-MRI, is associated with stage of AD and with neuropsychiatric symptoms (NPS), independent of cortical pathophysiology (amyloid-β and tau burden). Cognitively normal older adults (n = 118), and individuals with mild cognitive impairment (MCI, n = 44), and AD (n = 28) underwent MR imaging and tau and amyloid-β positron emission tomography (with [18F]MK6240 and [18F]AZD4694, respectively). Integrity of the LC-norepinephrine system was assessed based on contrast-to-noise ratio of the LC on NM-MRI images. Braak stage of AD was derived from regional binding of [18F]MK6240. NPS were assessed with the Mild Behavioral Impairment Checklist (MBI-C). LC signal contrast was decreased in tau-positive participants (t186 = -4.00, p = 0.0001) and negatively correlated to Braak stage (Spearman ρ = -0.31, p = 0.00006). In tau-positive participants (n = 51), higher LC signal predicted NPS severity (ρ = 0.35, p = 0.019) independently of tau burden, amyloid-β burden, and cortical gray matter volume. This relationship appeared to be driven by the impulse dyscontrol domain of NPS, which was highly correlated to LC signal (ρ = 0.44, p = 0.0027). NM-MRI reveals loss of LC integrity that correlates to severity of AD. However, LC preservation in AD may also have negative consequences by conferring risk for impulse control symptoms. NM-MRI shows promise as a practical biomarker that could have utility in predicting the risk of NPS or guiding their treatment in AD.
Collapse
Affiliation(s)
- Clifford M. Cassidy
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada ,grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada
| | - Joseph Therriault
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Tharick A. Pascoal
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Victoria Cheung
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Melissa Savard
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Lauri Tuominen
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Mira Chamoun
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Adelina McCall
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Seyda Celebi
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Firoza Lussier
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Gassan Massarweh
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Jean-Paul Soucy
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - David Weinshenker
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Christine Tardif
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Zahinoor Ismail
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Serge Gauthier
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Alzheimer’s Disease Research Unit, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC Canada
| | - Pedro Rosa-Neto
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
32
|
Clouston SAP, Hall CB, Kritikos M, Bennett DA, DeKosky S, Edwards J, Finch C, Kreisl WC, Mielke M, Peskind ER, Raskind M, Richards M, Sloan RP, Spiro A, Vasdev N, Brackbill R, Farfel M, Horton M, Lowe S, Lucchini RG, Prezant D, Reibman J, Rosen R, Seil K, Zeig-Owens R, Deri Y, Diminich ED, Fausto BA, Gandy S, Sano M, Bromet EJ, Luft BJ. Cognitive impairment and World Trade Centre-related exposures. Nat Rev Neurol 2022; 18:103-116. [PMID: 34795448 PMCID: PMC8938977 DOI: 10.1038/s41582-021-00576-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
On 11 September 2001 the World Trade Center (WTC) in New York was attacked by terrorists, causing the collapse of multiple buildings including the iconic 110-story 'Twin Towers'. Thousands of people died that day from the collapse of the buildings, fires, falling from the buildings, falling debris, or other related accidents. Survivors of the attacks, those who worked in search and rescue during and after the buildings collapsed, and those working in recovery and clean-up operations were exposed to severe psychological stressors. Concurrently, these 'WTC-affected' individuals breathed and ingested a mixture of organic and particulate neurotoxins and pro-inflammogens generated as a result of the attack and building collapse. Twenty years later, researchers have documented neurocognitive and motor dysfunctions that resemble the typical features of neurodegenerative disease in some WTC responders at midlife. Cortical atrophy, which usually manifests later in life, has also been observed in this population. Evidence indicates that neurocognitive symptoms and corresponding brain atrophy are associated with both physical exposures at the WTC and chronic post-traumatic stress disorder, including regularly re-experiencing traumatic memories of the events while awake or during sleep. Despite these findings, little is understood about the long-term effects of these physical and mental exposures on the brain health of WTC-affected individuals, and the potential for neurocognitive disorders. Here, we review the existing evidence concerning neurological outcomes in WTC-affected individuals, with the aim of contextualizing this research for policymakers, researchers and clinicians and educating WTC-affected individuals and their friends and families. We conclude by providing a rationale and recommendations for monitoring the neurological health of WTC-affected individuals.
Collapse
Affiliation(s)
- Sean A P Clouston
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Charles B Hall
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minos Kritikos
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, USA
| | - Steven DeKosky
- Evelyn F. and William L. McKnight Brain Institute and Florida Alzheimer's Disease Research Center, Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jerri Edwards
- Department of Psychiatry and Behavioral Neuroscience, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Caleb Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | - Michelle Mielke
- Specialized Center of Research Excellence on Sex Differences, Department of Neurology, Department of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Elaine R Peskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Murray Raskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing, Population Health Sciences, University College London, London, UK
| | - Richard P Sloan
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Avron Spiro
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Department of Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Center, Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Brackbill
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Mark Farfel
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Lowe
- The World Trade Center Mental Health Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - David Prezant
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University Langone Health, New York, NY, USA
| | - Rebecca Rosen
- World Trade Center Environmental Health Center, Department of Psychiatry, New York University, New York, NY, USA
| | - Kacie Seil
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Rachel Zeig-Owens
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yael Deri
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erica D Diminich
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Bernadette A Fausto
- Center for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Mary Sano
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
Singleton EH, Pijnenburg YAL, Gami-Patel P, Boon BDC, Bouwman F, Papma JM, Seelaar H, Scheltens P, Grinberg LT, Spina S, Nana AL, Rabinovici GD, Seeley WW, Ossenkoppele R, Dijkstra AA. The behavioral variant of Alzheimer's disease does not show a selective loss of Von Economo and phylogenetically related neurons in the anterior cingulate cortex. Alzheimers Res Ther 2022; 14:11. [PMID: 35057846 PMCID: PMC8772094 DOI: 10.1186/s13195-021-00947-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The neurobiological origins of the early and predominant behavioral changes seen in the behavioral variant of Alzheimer's disease (bvAD) remain unclear. A selective loss of Von Economo neurons (VENs) and phylogenetically related neurons have been observed in behavioral variant frontotemporal dementia (bvFTD) and several psychiatric diseases. Here, we assessed whether these specific neuronal populations show a selective loss in bvAD. METHODS VENs and GABA receptor subunit theta (GABRQ)-immunoreactive pyramidal neurons of the anterior cingulate cortex (ACC) were quantified in post-mortem tissue of patients with bvAD (n = 9) and compared to typical AD (tAD, n = 6), bvFTD due to frontotemporal lobar degeneration based on TDP-43 pathology (FTLD, n = 18) and controls (n = 13) using ANCOVAs adjusted for age and Bonferroni corrected. In addition, ratios of VENs and GABRQ-immunoreactive (GABRQ-ir) pyramidal neurons over all Layer 5 neurons were compared between groups to correct for overall Layer 5 neuronal loss. RESULTS The number of VENs or GABRQ-ir neurons did not differ significantly between bvAD (VENs: 26.0 ± 15.3, GABRQ-ir pyramidal: 260.4 ± 87.1) and tAD (VENs: 32.0 ± 18.1, p = 1.00, GABRQ-ir pyramidal: 349.8 ± 109.6, p = 0.38) and controls (VENs: 33.5 ± 20.3, p = 1.00, GABRQ-ir pyramidal: 339.4 ± 95.9, p = 0.37). Compared to bvFTD, patients with bvAD showed significantly more GABRQ-ir pyramidal neurons (bvFTD: 140.5 ± 82.658, p = 0.01) and no significant differences in number of VENs (bvFTD: 10.9 ± 13.8, p = 0.13). Results were similar when assessing the number of VENs and GABRQ-ir relative to all neurons of Layer 5. DISCUSSION VENs and phylogenetically related neurons did not show a selective loss in the ACC in patients with bvAD. Our results suggest that, unlike in bvFTD, the clinical presentation in bvAD may not be related to the loss of VENs and related neurons in the ACC.
Collapse
Affiliation(s)
- E. H. Singleton
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Y. A. L. Pijnenburg
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - P. Gami-Patel
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - B. D. C. Boon
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - F. Bouwman
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - J. M. Papma
- grid.5645.2000000040459992XNeurology, Erasmus University Medical Center, Rotterdam, the Netherlands ,grid.5645.2000000040459992XRadiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - H. Seelaar
- grid.5645.2000000040459992XNeurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - P. Scheltens
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - L. T. Grinberg
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA ,grid.266102.10000 0001 2297 6811Departments of Neurology, University of California San Francisco, San Francisco, USA
| | - S. Spina
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA
| | - A. L. Nana
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA
| | - G. D. Rabinovici
- grid.266102.10000 0001 2297 6811Departments of Neurology, University of California San Francisco, San Francisco, USA ,grid.266102.10000 0001 2297 6811Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - W. W. Seeley
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA ,grid.266102.10000 0001 2297 6811Departments of Neurology, University of California San Francisco, San Francisco, USA
| | - R. Ossenkoppele
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands ,grid.4514.40000 0001 0930 2361Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A. A. Dijkstra
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Jiang C, Wang Q, Xie S, Chen Z, Fu L, Peng Q, Liang Y, Guo H, Guo T. OUP accepted manuscript. Brain Commun 2022; 4:fcac084. [PMID: 35441134 PMCID: PMC9014538 DOI: 10.1093/braincomms/fcac084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Jiang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518107, China
| | - Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhicheng Chen
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, 2 Yinghuayuan Dongjie, Beijing 100029, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Hongbo Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence to: Tengfei Guo, PhD Institute of Biomedical Engineering Shenzhen Bay Laboratory, No.5 Kelian Road Shenzhen 518132, China E-mail:
| | | |
Collapse
|
35
|
Ossenkoppele R, Singleton EH, Groot C, Dijkstra AA, Eikelboom WS, Seeley WW, Miller B, Laforce RJ, Scheltens P, Papma JM, Rabinovici GD, Pijnenburg YAL. Research Criteria for the Behavioral Variant of Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Neurol 2021; 79:48-60. [PMID: 34870696 PMCID: PMC8649917 DOI: 10.1001/jamaneurol.2021.4417] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance The behavioral variant of Alzheimer disease (bvAD) is characterized by early and predominant behavioral deficits caused by AD pathology. This AD phenotype is insufficiently understood and lacks standardized clinical criteria, limiting reliability and reproducibility of diagnosis and scientific reporting. Objective To perform a systematic review and meta-analysis of the bvAD literature and use the outcomes to propose research criteria for this syndrome. Data Sources A systematic literature search in PubMed/MEDLINE and Web of Science databases (from inception through April 7, 2021) was performed in duplicate. Study Selection Studies reporting on behavioral, neuropsychological, or neuroimaging features in bvAD and, when available, providing comparisons with typical amnestic-predominant AD (tAD) or behavioral variant frontotemporal dementia (bvFTD). Data Extraction and Synthesis This analysis involved random-effects meta-analyses on group-level study results of clinical data and systematic review of the neuroimaging literature. The study was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Main Outcomes and Measures Behavioral symptoms (neuropsychiatric symptoms and bvFTD core clinical criteria), cognitive function (global cognition, episodic memory, and executive functioning), and neuroimaging features (structural magnetic resonance imaging, [18F]fluorodeoxyglucose-positron emission tomography, perfusion single-photon emission computed tomography, amyloid positron emission tomography, and tau positron emission tomography). Results The search led to the assessment of 83 studies, including 13 suitable for meta-analysis. Data were collected for 591 patients with bvAD. There was moderate to substantial heterogeneity and moderate risk of bias across studies. Cases with bvAD showed more severe behavioral symptoms than tAD (standardized mean difference [SMD], 1.16 [95% CI, 0.74-1.59]; P < .001) and a trend toward less severe behavioral symptoms compared with bvFTD (SMD, -0.22 [95% CI, -0.47 to 0.04]; P = .10). Meta-analyses of cognitive data indicated worse executive performance in bvAD vs tAD (SMD, -1.03 [95% CI, -1.74 to -0.32]; P = .008) but not compared with bvFTD (SMD, -0.61 [95% CI, -1.75 to 0.53]; P = .29). Cases with bvAD showed a nonsignificant difference of worse memory performance compared with bvFTD (SMD, -1.31 [95% CI, -2.75 to 0.14]; P = .08) but did not differ from tAD (SMD, 0.43 [95% CI, -0.46 to 1.33]; P = .34). The neuroimaging literature revealed 2 distinct bvAD neuroimaging phenotypes: an AD-like pattern with relative frontal sparing and a relatively more bvFTD-like pattern characterized by additional anterior involvement, with the AD-like pattern being more prevalent. Conclusions and Relevance These data indicate that bvAD is clinically most similar to bvFTD, while it shares most pathophysiological features with tAD. Based on these insights, we propose research criteria for bvAD aimed at improving the consistency and reliability of future research and aiding the clinical assessment of this AD phenotype.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Lund University, Clinical Memory Research Unit, Lund, Sweden
| | - Ellen H Singleton
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Location VUMC, Amsterdam, the Netherlands
| | - Willem S Eikelboom
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Pini L, Wennberg AM, Salvalaggio A, Vallesi A, Pievani M, Corbetta M. Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Res Rev 2021; 72:101482. [PMID: 34606986 DOI: 10.1016/j.arr.2021.101482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.
Collapse
|
37
|
Singleton E, Hansson O, Pijnenburg YAL, La Joie R, Mantyh WG, Tideman P, Stomrud E, Leuzy A, Johansson M, Strandberg O, Smith R, Berendrecht E, Miller BL, Iaccarino L, Edwards L, Strom A, Wolters EE, Coomans E, Visser D, Golla SSV, Tuncel H, Bouwman F, Van Swieten JC, Papma JM, van Berckel B, Scheltens P, Dijkstra AA, Rabinovici GD, Ossenkoppele R. Heterogeneous distribution of tau pathology in the behavioural variant of Alzheimer's disease. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-325497. [PMID: 33850001 PMCID: PMC8292599 DOI: 10.1136/jnnp-2020-325497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The clinical phenotype of the rare behavioural variant of Alzheimer's disease (bvAD) is insufficiently understood. Given the strong clinico-anatomical correlations of tau pathology in AD, we investigated the distribution of tau deposits in bvAD, in-vivo and ex-vivo, using positron emission tomography (PET) and postmortem examination. METHODS For the tau PET study, seven amyloid-β positive bvAD patients underwent [18F]flortaucipir or [18F]RO948 PET. We converted tau PET uptake values into standardised (W-)scores, adjusting for age, sex and mini mental state examination in a 'typical' memory-predominant AD (n=205) group. W-scores were computed within entorhinal, temporoparietal, medial and lateral prefrontal, insular and whole-brain regions-of-interest, frontal-to-entorhinal and frontal-to-parietal ratios and within intrinsic functional connectivity network templates. For the postmortem study, the percentage of AT8 (tau)-positive area in hippocampus CA1, temporal, parietal, frontal and insular cortices were compared between autopsy-confirmed patients with bvAD (n=8) and typical AD (tAD;n=7). RESULTS Individual regional W-scores ≥1.96 (corresponding to p<0.05) were observed in three cases, that is, case #5: medial prefrontal cortex (W=2.13) and anterior default mode network (W=3.79), case #2: lateral prefrontal cortex (W=2.79) and salience network (W=2.77), and case #7: frontal-to-entorhinal ratio (W=2.04). The remaining four cases fell within the normal distributions of the tAD group. Postmortem AT8 staining indicated no group-level regional differences in phosphorylated tau levels between bvAD and tAD (all p>0.05). CONCLUSIONS Both in-vivo and ex-vivo, patients with bvAD showed heterogeneous distributions of tau pathology. Since key regions involved in behavioural regulation were not consistently disproportionally affected by tau pathology, other factors are more likely driving the clinical phenotype in bvAD.
Collapse
Affiliation(s)
- Ellen Singleton
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - William G Mantyh
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital Lund, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital Lund, Lund, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Maurits Johansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Evi Berendrecht
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Emma E Wolters
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Emma Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Denise Visser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hayel Tuncel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Femke Bouwman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Janne M Papma
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|