1
|
Leuzy A, Bollack A, Pellegrino D, Teunissen CE, La Joie R, Rabinovici GD, Franzmeier N, Johnson K, Barkhof F, Shaw LM, Arkhipenko A, Schindler SE, Honig LS, Moscoso Rial A, Schöll M, Zetterberg H, Blennow K, Hansson O, Farrar G. Considerations in the clinical use of amyloid PET and CSF biomarkers for Alzheimer's disease. Alzheimers Dement 2025; 21:e14528. [PMID: 40042435 PMCID: PMC11881640 DOI: 10.1002/alz.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025]
Abstract
Amyloid-β (Aβ) positron emission tomography (PET) imaging and cerebrospinal fluid (CSF) biomarkers are now established tools in the diagnostic workup of patients with Alzheimer's disease (AD), and their use is anticipated to increase with the introduction of new disease-modifying therapies. Although these biomarkers are comparable alternatives in research settings to determine Aβ status, biomarker testing in clinical practice requires careful consideration of the strengths and limitations of each modality, as well as the specific clinical context, to identify which test is best suited for each patient. This article provides a comprehensive review of the pathologic processes reflected by Aβ-PET and CSF biomarkers, their performance, and their current and future applications and contexts of use. The primary aim is to assist clinicians in making better-informed decisions about the suitability of each biomarker in different clinical situations, thereby reducing the risk of misdiagnosis or incorrect interpretation of biomarker results. HIGHLIGHTS: Recent advances have positioned Aβ PET and CSF biomarkers as pivotal in AD diagnosis. It is crucial to understand the differences in the clinical use of these biomarkers. A team of experts reviewed the state of Aβ PET and CSF markers in clinical settings. Differential features in the clinical application of these biomarkers were reviewed. We discussed the role of Aβ PET and CSF in the context of novel plasma biomarkers.
Collapse
Grants
- AF-930351 Neurodegenerative Disease Research
- 101053962 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- R01 AG066107 NIA NIH HHS
- FO2022-0270 Bluefield Project, Olav Thon Foundation, Erling-Persson Family Foundation
- 101112145 European Union's Horizon Europe
- Alzheimer Netherlands
- ZEN-21-848495 Alzheimer's Association 2021 Zenith Award
- 2022-0231 Knut and Alice Wallenberg foundation
- KAW 2023.0371 Knut and Alice Wallenberg Foundation
- U19 ADNI4 Harvard Aging Brain Study
- R01 AG081394 NIA NIH HHS
- ADRC P30-AG-072979 Harvard Aging Brain Study
- 2022-1259 Regionalt Forskningsstöd
- Shanendoah Foundation
- 2020-O000028 Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, Skåne University Hospital Foundation
- The Selfridges Group Foundation
- R56 AG057195 NIA NIH HHS
- U01 NS100600 NINDS NIH HHS
- ALZ2022-0006 Hjärnfonden, Sweden
- U01 AG057195 NIA NIH HHS
- Dutch National Dementia Strategy
- ZEN24-1069572 Alzheimer's Association
- R01AG072474 Harvard Aging Brain Study
- 860197 Marie Curie International Training Network
- AF-939721 Neurodegenerative Disease Research
- R01 AG070941 NIA NIH HHS
- P01 AG036694 NIA NIH HHS
- JPND2021-00694 Neurodegenerative Disease Research
- ADSF-21-831376-C AD Strategic Fund, and Alzheimer's Association
- AF-994900 Swedish Alzheimer Foundation
- NIH
- ALFGBG-813971 County Councils, the ALF-agreement
- FO2021-0293 Swedish Brain Foundation
- U19AG063893 NINDS NIH HHS
- 2022-01018 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- 201809-2016862 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- 831434 Innovative Medicines Initiatives 3TR
- 101132933 European Union's Horizon Europe
- European Union Joint Programme
- Cure Alzheimer's fund, Rönström Family Foundation
- ID 390857198 Munich Cluster for Systems Neurology
- U01-AG057195 NIA NIH HHS
- Deutsche Forschungsgemeinschaft
- 2021-06545 Swedish Research Council
- Sahlgrenska Academy at the University of Gothenburg
- U19 AG024904 NIA NIH HHS
- GE Healthcare
- JPND2019-466-236 European Union Joint Program for Neurodegenerative Disorders
- P30 AG062422 NIA NIH HHS
- ADG-101096455 European Research Council
- 2022-00732 Neurodegenerative Disease Research
- 860197 Marie Skłodowska-Curie
- P01 AG019724 NIA NIH HHS
- U01NS100600 NINDS NIH HHS
- AF-980907 Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson's disease) at Lund University, Swedish Alzheimer Foundation
- P30 AG066462 NIA NIH HHS
- 2022-00775 GHR Foundation, Swedish Research Council
- R44 AG071388 NIA NIH HHS
- FO2017-0243 Hjärnfonden, Sweden
- AF-968270 Neurodegenerative Disease Research
- KAW2014.0363 Knut and Alice Wallenberg Foundation
- SG-23-1061717 Alzheimer's Association
- 2021-02678 Swedish Research Council
- R01 AG059013 NIA NIH HHS
- R35 AG072362 NIA NIH HHS
- VGFOUREG-995510 Västra Götaland Region R&D
- American College of Radiology
- R01 AG081394-01 European Union's Horizon Europe
- R21 AG070768 NIA NIH HHS
- U19 AG063893 NIA NIH HHS
- 2022-Projekt0080 Swedish Federal Government under the ALF agreement
- ALFGBG-965326 County Councils, the ALF-agreement
- Alzheimer Drug Discovery Foundation
- Rainwater Charitable Foundation
- Research of the European Commission
- R01AG083740 National Institute of Aging
- ADSF-21-831381-C AD Strategic Fund, and Alzheimer's Association
- SG-23-1038904 Alzheimer's Association 2022-2025
- RS-2023-00263612 National Research Foundation of Korea
- P30-AG062422 NIA NIH HHS
- R21AG070768 Harvard Aging Brain Study
- 2017-02869 Swedish Research Council
- 101034344 Joint Undertaking
- ALFGBG-715986 Swedish state under the agreement between the Swedish government and the County Councils, ALF-agreement
- ERAPERMED2021-184 ERA PerMed
- U19AG024904 Harvard Aging Brain Study
- R01 AG072474 NIA NIH HHS
- UKDRI-1003 Neurodegenerative Disease Research
- 10510032120003 Health Holland, the Dutch Research Council
- 2019-02397 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- EXC 2145 SyNergy Munich Cluster for Systems Neurology
- 1412/22 Parkinson foundation of Sweden
- R01 AG046396 NIA NIH HHS
- ALFGBG-71320 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- P01-AG019724 NIA NIH HHS
- ALFGBG-965240 Swedish state under the agreement between the Swedish government and the County Councils, ALF-agreement
- Deutsche Parkinson Gesellschaft
- ADSF-21-831377-C AD Strategic Fund, and Alzheimer's Association
- National MS Society
- R01 AG083740 NIA NIH HHS
- 2017-00915 Neurodegenerative Disease Research
- 2023-06188 Swedish Research Council
- Alzheimer Association
- National MS Society
- Alzheimer Netherlands
- NIH
- NIA
- National Institute of Neurological Disorders and Stroke
- American College of Radiology
- Rainwater Charitable Foundation
- Deutsche Forschungsgemeinschaft
- NINDS
- Knut and Alice Wallenberg Foundation
- Swedish Research Council
- National Research Foundation of Korea
- Swedish Brain Foundation
- European Research Council
- Alzheimer's Association
- GE Healthcare
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Department of NeuropsychiatrySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
| | - Ariane Bollack
- The Grove CentreWhite Lion Road BuckinghamshireGE HealthCareAmershamUK
- Department of Medical Physics and BioengineeringCentre for Medical Image Computing (CMIC)University College LondonLondonUK
| | | | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam NeuroscienceNeurodegenerationAmsterdam UMC Vrije UniversiteitAmsterdamThe Netherlands
| | - Renaud La Joie
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Nicolai Franzmeier
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Keith Johnson
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentBrigham and Women's HospitalBostonMassachusettsUSA
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain imagingAmsterdamThe Netherlands
- UCL Queen Square Institute of Neurology and Center for Medical Image ComputingUniversity College LondonLondonUK
| | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Suzanne E. Schindler
- Department of NeurologyKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Lawrence S. Honig
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Alexis Moscoso Rial
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Nuclear Medicine Department and Molecular Imaging GroupInstituto de Investigación Sanitaria de Santiago de CompostelaSantiago de CompostelaSpain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Department of NeuropsychiatrySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
- Dementia Research CentreInstitute of NeurologyUniversity College LondonLondonUK
| | - Henrik Zetterberg
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research InstituteUniversity College LondonLondonUK
- Hong Kong Center for Neurodegenerative DiseasesScience ParkHong KongChina
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of WisconsinUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiChina
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Gill Farrar
- The Grove CentreWhite Lion Road BuckinghamshireGE HealthCareAmershamUK
| |
Collapse
|
2
|
Pezzoli S, Giorgio J, Chen X, Ward TJ, Harrison TM, Jagust WJ. Cognitive aging outcomes are related to both tau pathology and maintenance of cingulate cortex structure. Alzheimers Dement 2025; 21:e14515. [PMID: 39807642 PMCID: PMC11848174 DOI: 10.1002/alz.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Successful cognitive aging is related to both maintaining brain structure and avoiding Alzheimer's disease (AD) pathology, but how these factors interplay is unclear. METHODS A total of 109 cognitively normal older adults (70+ years old) underwent amyloid beta (Aβ) and tau positron emission tomography (PET) imaging, structural magnetic resonance imaging (MRI), and cognitive testing. Cognitive aging was quantified using the cognitive age gap (CAG), subtracting chronological age from predicted cognitive age. RESULTS Lower CAG (younger cognitive age) was related to slower decline in episodic memory, multi-domain cognition, and atrophy of the midcingulate cortex (MCC). Lower entorhinal cortical tau was linked to slower decline in episodic memory, multi-domain cognition, and hippocampal atrophy. DISCUSSION These results suggest that aging outcomes may be influenced by two independent pathways: one associated with tau accumulation, affecting primarily memory and hippocampal atrophy, and another involving tau-independent structural preservation of the MCC, benefiting multi-domain cognition over time. HIGHLIGHTS Younger cognitive age (lower cognitive age gap [CAG]) is related to slower cognitive decline. Lower CAG is linked to slower midcingulate cortex (MCC) atrophy. Reduced tau in the entorhinal cortex is related to less hippocampal atrophy and cognitive decline. Structural preservation of the MCC benefits multi-domain cognition over time. Two independent pathways influence cognitive aging: tau accumulation and MCC preservation.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Joseph Giorgio
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- School of Psychological Sciences, College of EngineeringScience and the EnvironmentUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Xi Chen
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Department of PsychologyStony Brook UniversityStony BrookNew YorkUSA
| | - Tyler J. Ward
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
| | | | - William J. Jagust
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
3
|
Bi T, Feng R, Ren W, Hang T, Zhao T, Zhan L. ZiBu PiYin recipe regulates central and peripheral Aβ metabolism and improves diabetes-associated cognitive decline in ZDF rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118808. [PMID: 39299360 DOI: 10.1016/j.jep.2024.118808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive impairment caused by central neuropathy in type 2 diabetes mellitus (T2DM), namely diabetes-associated cognitive decline (DACD), is one of the common complications in patients with T2DM. Studies have shown that brain β-amyloid (Aβ) deposition is a typical pathological change in patients with DACD, and that there is a close relationship between intestinal microorganisms and cognitive impairment. However, the specific mechanism(s) of alteration in Aβ metabolism in DACD, and of the correlation between Aβ metabolism and intestinal microorganisms remain unknown. AIM OF THE STUDY Revealing the mechanism of ZBPYR regulating Aβ metabolism and providing theoretical basis for clinical evaluation and diagnosis of DACD. MATERIALS AND METHODS We characterized Aβ metabolism in the central and peripheral tissues of Zucker diabetic fatty (ZDF) rats with DACD, and then explored the preventive and therapeutic effects of ZiBu PiYin Recipe (ZBPYR). Specifically, we assessed these animals for the formation, transport, and clearance of Aβ; the morphological structure of the blood-brain barrier (BBB); and the potential correlation between Aβ metabolism and intestinal microorganisms. RESULTS ZBPYR provided improvements in the structure of the BBB, attenuation of Aβ deposition in the central and peripheral tissues, and a delay in the development of DACD by improving the expression of Aβ production, transport, and clearance related protein in ZDF rats. In addition, ZBPYR improved the diversity and composition of intestinal microorganisms, decreased the abundance of Coprococcus, a bacterium closely related to Aβ production, and up regulate the abundance of Streptococcus, a bacterium closely related to Aβ clearance. CONCLUSION The mechanism of ZBPYR ability to ameliorate DACD may be closely related to changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Tingting Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ruiqi Feng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Weiming Ren
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tianyi Hang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tian Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Libin Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
4
|
Phang KAS, Tan CH. Cognitive variation reflects amyloid, tau, and neurodegenerative biomarkers in Alzheimer's disease. GeroScience 2025:10.1007/s11357-025-01541-9. [PMID: 39873919 DOI: 10.1007/s11357-025-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes. In this study, we comprehensively evaluated the global and regional associations of IICV with positron emission tomography (PET) and magnetic resonance imaging (MRI) measures of AD biomarkers in cognitively normal (CN) and mild cognitive impairment (MCI) participants. We found that higher IICV was robustly associated with increased Aβ, increased tau, decreased brain glucose metabolism, and reduced cortical thickness. Higher IICV was also associated with tau (OR = 2.53, P < .001) and fluorodeoxyglucose (OR = 1.34, P < .001) positivity but not Aβ positivity (OR = 1.15, P = .107). In regional analyses, IICV showed widespread associations with AD biomarkers, with the strongest Aβ and tau effects in the frontal and temporal regions, respectively. The strongest regional cortical thickness effects were found in the entorhinal and parahippocampal cortices. Our findings suggest that IICV may be a useful neuropsychological marker for increased Aβ, and especially increased tau and neurodegeneration that are reflective of emerging AD pathology in individuals without dementia.
Collapse
Affiliation(s)
- Kia Ann Sean Phang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chin Hong Tan
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Jutten RJ, Soberanes D, Molinare CP, Hsieh S, Farrell ME, Schultz AS, Rentz DM, Marshall GA, Johnson KA, Sperling RA, Amariglio RE, Papp KV. Detecting early cognitive deficits in preclinical Alzheimer's disease using a remote digital multi-day learning paradigm. NPJ Digit Med 2025; 8:24. [PMID: 39806194 PMCID: PMC11729905 DOI: 10.1038/s41746-024-01347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Remote, digital cognitive testing on an individual's own device provides the opportunity to deploy previously understudied but promising cognitive paradigms in preclinical Alzheimer's disease (AD). The Boston Remote Assessment for NeuroCognitive Health (BRANCH) captures a personalized learning curve for the same information presented over seven consecutive days. Here, we examined BRANCH multi-day learning curves (MDLCs) in 167 cognitively unimpaired older adults (age = 74.3 ± 7.5, 63% female) with different amyloid-β (A) and tau (T) biomarker profiles on positron emission tomography. MDLC scores decreased across ascending biomarker groups, with the A + T- group performing numerically worse (β = -0.24, 95%CI[-0.55,0.07], p = 0.128) and the A + T+ group performing significantly worse (β = -0.58, 95%CI[-1.06,-0.10], p = 0.018) than the A-T- group. Further, lower MDLC scores were associated with greater cortical thinning (β = 0.18, 95%CI[0.04,0.34], p = 0.013). Our results suggest that diminished MDLCs track with advanced AD pathophysiology, and demonstrate how a digital multi-day learning paradigm can provide novel insights about cognitive decline during preclinical AD.
Collapse
Affiliation(s)
- Roos J Jutten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| | - Daniel Soberanes
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cassidy P Molinare
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Hsieh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michelle E Farrell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Aaron S Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gad A Marshall
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca E Amariglio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathryn V Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Cui L, Zhang Z, Tu Y, Wang M, Guan Y, Li Y, Xie F, Guo Q. Association of precuneus Aβ burden with default mode network function. Alzheimers Dement 2025; 21:e14380. [PMID: 39559982 PMCID: PMC11772721 DOI: 10.1002/alz.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION It remains unclear whether the local amyloid-beta (Aβ) burden in key regions within the default mode network (DMN) affects network and cognitive functions. METHODS Participants included 1002 individuals from the Chinese Preclinical Alzheimer's Disease Study cohort who underwent 18F-florbetapir positron emission tomography resting-state functional magnetic resonance imaging scanning and neuropsychological tests. The correlations between precuneus (PRC) Aβ burden, DMN function, and cognitive function were investigated. RESULTS In individuals with high PRC Aβ burden, there is a bidirectional relationship between DMN local function or functional connectivity and PRC Aβ deposition across various cognitive states, which is also linked to cognitive function. Even below the PRC Aβ threshold, DMN function remains related to PRC Aβ deposition and cognitive performance. DISCUSSION The findings reveal the critical role of PRC Aβ deposition in disrupting neural networks associated with cognitive decline and the necessity of early detection and monitoring of PRC Aβ deposition. HIGHLIGHTS Precuneus (PRC) Aβ burden impacts DMN function in different cognitive stages. High PRC Aβ burden is linked to early neural compensation and subsequent dysfunction. Low PRC Aβ burden correlates with neural changes before significant Aβ accumulation. Changes in DMN function and connectivity provide insights into AD progression. Early detection of regional Aβ burden can help monitor the risk of cognitive decline.
Collapse
Affiliation(s)
- Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhen Zhang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - You‐Yi Tu
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Yi‐Hui Guan
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Yue‐Hua Li
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Qi‐Hao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Chen X, Juarez A, Mason S, Kobayashi S, Baker SL, Harrison TM, Landau SM, Jagust WJ. Longitudinal relationships between Aβ and tau to executive function and memory in cognitively normal older adults. Neurobiol Aging 2025; 145:32-41. [PMID: 39490245 DOI: 10.1016/j.neurobiolaging.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
The early accumulation of AD pathology such as Aβ and tau in cognitively normal older people is predictive of cognitive decline, but it has been difficult to dissociate the cognitive effects of these two proteins. Early Aβ and tau target distinct brain regions that have different functional roles. Here, we assessed specific longitudinal pathology-cognition associations in seventy-six cognitively normal older adults from the Berkeley Aging Cohort Study who underwent longitudinal PiB PET, FTP PET, and cognitive assessments. Using linear mixed-effects models to estimate longitudinal changes and residual approach to characterizing cognitive domain-specific associations, we found that Aβ accumulation, especially in frontal/parietal regions, was associated with faster decline in executive function, not memory, whereas tau accumulation, especially in left entorhinal/parahippocampal regions, was associated with faster decline in memory, not executive function, supporting an "Aβ-executive function, tau-memory" double-dissociation in cognitively normal older people. These specific relationships between accumulating pathology and domain-specific cognitive decline may be due to the particular vulnerabilities of the frontal-parietal executive network to Aβ and temporal memory network to tau.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Alexis Juarez
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Mason
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Sarah Kobayashi
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Theresa M Harrison
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Susan M Landau
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - William J Jagust
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Weinstein AM, Fang F, Chang CCH, Cohen A, Lopresti BJ, Laymon CM, Nadkarni NK, Aizenstein HJ, Villemagne VL, Kamboh MI, Shaaban CE, Gogniat MA, Wu M, Karikari TK, Ganguli M, Snitz BE. Multimodal neuroimaging biomarkers and subtle cognitive decline in a population-based cohort without dementia. J Alzheimers Dis 2025; 103:570-581. [PMID: 39702989 PMCID: PMC11798718 DOI: 10.1177/13872877241303926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND The relationship between subtle cognitive decline and Alzheimer's disease (AD) pathology as measured by biomarkers in settings outside of specialty memory clinics is not well characterized. OBJECTIVE To investigate how subtle longitudinal cognitive decline relates to neuroimaging biomarkers in individuals drawn from a population-based study in an economically depressed, small-town area in southwestern Pennsylvania, USA. METHODS A subset of participants without dementia (N = 115, age 76.53 years ± 6.25) from the Monongahela Youghiogheny Healthy Aging Team (MYHAT) study completed neuroimaging including magnetic resonance imaging (MRI) measures of AD-signature region cortical thickness and white matter hyperintensities (WMH), Pittsburgh compound B (PiB)-positron emission tomography (PET) for amyloid-β (Aβ) deposition, and [18F]AV-1451-PET for tau deposition. Neuropsychological evaluations were completed at multiple timepoints up to 11 years prior to neuroimaging. Aβ positivity was determined using a regional approach. We used linear mixed models to examine neuroimaging biomarker associations with retrospective cognitive slopes in five domains and a global cognitive composite. RESULTS Among Aβ(+) participants (38%), there were associations between (i) tau Braak III/IV and language decline (p < 0.05), (ii) cortical thickness and both memory decline (p < 0.001) and global cognitive decline (p < 0.01), and (iii) WMH and decline in executive function (p < 0.05) and global cognition (p < 0.05). Among Aβ(-) participants, there was an association between tau Braak III/IV and decline on tests of attention/psychomotor speed (p < 0.05). CONCLUSIONS These findings confirm an Aβ-dependent early AD biomarker pathway, and suggest a possible Aβ-independent, non-AD process underlying subtle cognitive decline in a population-based sample of older adults without dementia.
Collapse
Affiliation(s)
- Andrea M Weinstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Fang Fang
- Research & Infrastructure Service Enterprise (RISE), Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23501 USA
| | - Chung-Chou H Chang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261 USA
| | - Ann Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15260 USA
| | - Neelesh K Nadkarni
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15213 USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15260 USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261 USA
| | - C. Elizabeth Shaaban
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261 USA
| | - Marissa A. Gogniat
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15213 USA
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Mary Ganguli
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261 USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15213 USA
| |
Collapse
|
9
|
Gonzales MM, O'Donnell A, Ghosh S, Thibault E, Tanner J, Satizabal CL, Decarli CS, Fakhri GE, Johnson KA, Beiser AS, Seshadri S, Pase M. Associations of cerebral amyloid beta and tau with cognition from midlife. Alzheimers Dement 2024; 20:5901-5911. [PMID: 39039896 PMCID: PMC11497641 DOI: 10.1002/alz.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Understanding early neuropathological changes and their associations with cognition may aid dementia prevention. This study investigated associations of cerebral amyloid and tau positron emission tomography (PET) retention with cognition in a predominately middle-aged community-based cohort and examined factors that may modify these relationships. METHODS 11C-Pittsburgh compound B amyloid and 18F-flortaucipir tau PET imaging were performed. Associations of amyloid and tau PET with cognition were evaluated using linear regression. Interactions with age, apolipoprotein E (APOE) ε4 status, and education were examined. RESULTS Amyloid and tau PET were not associated with cognition in the overall sample (N = 423; mean: 57 ± 10 years; 50% female). However, younger age (< 55 years) and APOE ε4 were significant effect modifiers, worsening cognition in the presence of higher amyloid and tau. DISCUSSION Higher levels of Aβ and tau may have a pernicious effect on cognition among APOE ε4 carriers and younger adults, suggesting a potential role for targeted early interventions. HIGHLIGHTS Risk and resilience factors influenced cognitive vulnerability due to Aβ and tau. Higher fusiform tau associated with poorer visuospatial skills in younger adults. APOE ε4 interacted with Aβ and tau to worsen cognition across multiple domains.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Department of NeurologyCedars Sinai Medical CenterLos AngelesCaliforniaUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Adrienne O'Donnell
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Saptaparni Ghosh
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Emma Thibault
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeremy Tanner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyUniversity of California DavisSacramentoCaliforniaUSA
| | - Charles S. Decarli
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Georges El Fakhri
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyYale School of MedicineNew HavenUnited States
| | - Keith A. Johnson
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Matthew Pase
- The Framingham Heart StudyFraminghamMassachusettsUSA
- School of Psychological SciencesTurner Institute for Brain and Mental HealthMonash UniversityClaytonVICAustralia
| |
Collapse
|
10
|
Wiesman AI, Gallego‐Rudolf J, Villeneuve S, Baillet S, Wilson TW. Neurochemical organization of cortical proteinopathy and neurophysiology along the Alzheimer's disease continuum. Alzheimers Dement 2024; 20:6316-6331. [PMID: 39001629 PMCID: PMC11497661 DOI: 10.1002/alz.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Despite parallel research indicating amyloid-β accumulation, alterations in cortical neurophysiological signaling, and multi-system neurotransmitter disruptions in Alzheimer's disease (AD), the relationships between these phenomena remains unclear. METHODS Using magnetoencephalography, positron emission tomography, and an atlas of 19 neurotransmitters, we studied the alignment between neurophysiological alterations, amyloid-β deposition, and the neurochemical gradients of the cortex. RESULTS In patients with mild cognitive impairment and AD, changes in cortical rhythms were topographically aligned with cholinergic, serotonergic, and dopaminergic systems. These alignments correlated with the severity of clinical impairments. Additionally, cortical amyloid-β plaques were preferentially deposited along neurochemical boundaries, influencing how neurophysiological alterations align with muscarinic acetylcholine receptors. Most of the amyloid-β-neurochemical and alpha-band neuro-physio-chemical alignments replicated in an independent dataset of individuals with asymptomatic amyloid-β accumulation. DISCUSSION Our findings demonstrate that AD pathology aligns topographically with the cortical distribution of chemical neuromodulator systems and scales with clinical severity, with implications for potential pharmacotherapeutic pathways. HIGHLIGHTS Changes in cortical rhythms in Alzheimer's are organized along neurochemical boundaries. The strength of these alignments is related to clinical symptom severity. Deposition of amyloid-β (Aβ) is aligned with similar neurotransmitter systems. Aβ deposition mediates the alignment of beta rhythms with cholinergic systems. Most alignments replicate in participants with pre-clinical Alzheimer's pathology.
Collapse
Affiliation(s)
- Alex I. Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Department of Biomedical Physiology & KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Jonathan Gallego‐Rudolf
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | | |
Collapse
|
11
|
Kang DW, Wang SM, Um YH, Kim S, Kim T, Kim D, Lee CU, Lim HK. Effects of transcranial direct current stimulation on cognition in MCI with Alzheimer's disease risk factors using Bayesian analysis. Sci Rep 2024; 14:18818. [PMID: 39138281 PMCID: PMC11322558 DOI: 10.1038/s41598-024-67664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Despite the growing interest in precision medicine-based therapies for Alzheimer's disease (AD), little research has been conducted on how individual AD risk factors influence changes in cognitive function following transcranial direct current stimulation (tDCS). This study evaluates the cognitive effects of sequential tDCS on 63 mild cognitive impairment (MCI) patients, considering AD risk factors such as amyloid-beta deposition, APOE ε4, BDNF polymorphism, and sex. Using both frequentist and Bayesian methods, we assessed the interaction of tDCS with these risk factors on cognitive performance. Notably, we found that amyloid-beta deposition significantly interacted with tDCS in improving executive function, specifically Stroop Word-Color scores, with strong Bayesian support for this finding. Memory enhancements were differentially influenced by BDNF Met carrier status. However, sex and APOE ε4 status did not show significant effects. Our results highlight the importance of individual AD risk factors in modulating cognitive outcomes from tDCS, suggesting that precision medicine may offer more effective tDCS treatments tailored to individual risk profiles in early AD stages.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea.
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Munro CE, Farrell M, Hanseeuw B, Rentz DM, Buckley R, Properzi M, Yuan Z, Vannini P, Amariglio RE, Quiroz YT, Blacker D, Sperling RA, Johnson KA, Marshall GA, Gatchel JR. Change in Depressive Symptoms and Longitudinal Regional Amyloid Accumulation in Unimpaired Older Adults. JAMA Netw Open 2024; 7:e2427248. [PMID: 39207757 PMCID: PMC11362871 DOI: 10.1001/jamanetworkopen.2024.27248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024] Open
Abstract
Importance Depressive symptoms in older adults may be a harbinger of Alzheimer disease (AD), even in preclinical stages. It is unclear whether worsening depressive symptoms are manifestations of regional distributions of core AD pathology (amyloid) and whether cognitive changes affect this relationship. Objective To evaluate whether increasing depressive symptoms are associated with amyloid accumulation in brain regions important for emotional regulation and whether those associations vary by cognitive performance. Design, Setting, and Participants Participants from the Harvard Aging Brain Study, a longitudinal cohort study, underwent annual assessments of depressive symptoms and cognition alongside cortical amyloid positron emission tomography (PET) imaging at baseline and every 2 to 3 years thereafter (mean [SD] follow-up, 8.6 [2.2] years). Data collection was conducted from September 2010 to October 2022 in a convenience sample of community-dwelling older adults who were cognitively unimpaired with, at most, mild baseline depression. Data were analyzed from October 2022 to December 2023. Main Outcomes and Measures Depression (Geriatric Depression Scale [GDS]-30-item), cognition (Preclinical Alzheimer Cognitive Composite-5 [PACC]), and a continuous measure of cerebral amyloid (Pittsburgh compound B [PiB] PET) examined in a priori-defined regions (medial orbitofrontal cortex [mOFC], lateral orbitofrontal cortex, middle frontal cortex [MFC], superior frontal cortex, anterior cingulate cortex, isthmus cingulate cortex [IC], posterior cingulate cortex, and amygdala). Associations between longitudinal GDS scores, regional amyloid slopes, and PACC slopes were assessed using linear mixed-effects models. Results In this sample of 154 individuals (94 [61%] female; mean [SD] age, 72.6 [6.4] years; mean (SD) education, 15.9 [3.1] years), increasing PiB slopes in the bilateral mOFC, IC, and MFC were associated with increasing GDS scores (mOFC: β = 11.07 [95% CI, 5.26-16.87]; t = 3.74 [SE, 2.96]; P = .004; IC: β = 12.83 [95% CI, 5.68-19.98]; t = 3.51 [SE, 3.65]; P = .004; MFC: β = 9.22 [95% CI, 2.25-16.20]; t = 2.59 [SE, 3.56]; P = .03). Even with PACC slope as an additional covariate, associations remained significant in these regions. Conclusions and Relevance In this cohort study of cognitively unimpaired older adults with, at most, mild baseline depressive symptoms, greater depressive symptoms over time were associated with amyloid accumulation in regions associated with emotional control. Furthermore, these associations persisted in most regions independent of cognitive changes. These results shed light on the neurobiology of depressive symptoms in older individuals and underscore the importance of monitoring for elevated mood symptoms early in AD.
Collapse
Affiliation(s)
- Catherine E. Munro
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michelle Farrell
- Massachusetts General Hospital, Harvard Medical School, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Bernard Hanseeuw
- Massachusetts General Hospital, Harvard Medical School, Boston
- Institute of Neuroscience, Université Catholique de Louvain/Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Dorene M. Rentz
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rachel Buckley
- Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Ziwen Yuan
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Patrizia Vannini
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rebecca E. Amariglio
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Yakeel T. Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Deborah Blacker
- Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Reisa A. Sperling
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Keith A. Johnson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gad A. Marshall
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jennifer R. Gatchel
- Massachusetts General Hospital, Harvard Medical School, Boston
- McLean Hospital, Belmont, Massachusetts
- Baylor College of Medicine, Houston, Texas
- Michael E. Debakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
13
|
Farrell ME, Thibault EG, Becker JA, Price JC, Healy BC, Hanseeuw BJ, Buckley RF, Jacobs HIL, Schultz AP, Chen CD, Sperling RA, Johnson KA. Spatial extent as a sensitive amyloid-PET metric in preclinical Alzheimer's disease. Alzheimers Dement 2024; 20:5434-5449. [PMID: 38988055 PMCID: PMC11350060 DOI: 10.1002/alz.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Spatial extent-based measures of how far amyloid beta (Aβ) has spread throughout the neocortex may be more sensitive than traditional Aβ-positron emission tomography (PET) measures of Aβ level for detecting early Aβ deposits in preclinical Alzheimer's disease (AD) and improve understanding of Aβ's association with tau proliferation and cognitive decline. METHODS Pittsburgh Compound-B (PIB)-PET scans from 261 cognitively unimpaired older adults from the Harvard Aging Brain Study were used to measure Aβ level (LVL; neocortical PIB DVR) and spatial extent (EXT), calculated as the proportion of the neocortex that is PIB+. RESULTS EXT enabled earlier detection of Aβ deposits longitudinally confirmed to reach a traditional LVL-based threshold for Aβ+ within 5 years. EXT improved prediction of cognitive decline (Preclinical Alzheimer Cognitive Composite) and tau proliferation (flortaucipir-PET) over LVL. DISCUSSION These findings indicate EXT may be more sensitive to Aβ's role in preclinical AD than level and improve targeting of individuals for AD prevention trials. HIGHLIGHTS Aβ spatial extent (EXT) was measured as the percentage of the neocortex with elevated Pittsburgh Compound-B. Aβ EXT improved detection of Aβ below traditional PET thresholds. Early regional Aβ deposits were spatially heterogeneous. Cognition and tau were more closely tied to Aβ EXT than Aβ level. Neocortical tau onset aligned with reaching widespread neocortical Aβ.
Collapse
Affiliation(s)
- Michelle E. Farrell
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Emma G. Thibault
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - J. Alex Becker
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Julie C. Price
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Brian C. Healy
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Biostatistics CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Bernard J. Hanseeuw
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyCliniques Universitaires Saint‐LucUniversité Catholique de LouvainBruxellesBelgium
| | - Rachel F. Buckley
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Heidi I. L. Jacobs
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Aaron P. Schultz
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Charles D. Chen
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Reisa A. Sperling
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Keith A. Johnson
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
14
|
Pahl J, Prokopiou PC, Bueichekú E, Schultz AP, Papp KV, Farrell ME, Rentz DM, Sperling RA, Johnson KA, Jacobs HIL. Locus coeruleus integrity and left frontoparietal connectivity provide resilience against attentional decline in preclinical alzheimer's disease. Alzheimers Res Ther 2024; 16:119. [PMID: 38822365 PMCID: PMC11140954 DOI: 10.1186/s13195-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aβ)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aβ)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS Our findings demonstrate that the LC can provide resilience against Aβ-related attention decline. However, when Aβ accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aβ-related cognitive decline.
Collapse
Affiliation(s)
- Jennifer Pahl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Prokopis C Prokopiou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn V Papp
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle E Farrell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dorene M Rentz
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Wiesman AI, Gallego-Rudolf J, Villeneuve S, Baillet S, Wilson TW. Alignments between cortical neurochemical systems, proteinopathy and neurophysiological alterations along the Alzheimer's disease continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.13.24305551. [PMID: 38645027 PMCID: PMC11030470 DOI: 10.1101/2024.04.13.24305551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Two neuropathological hallmarks of Alzheimer's disease (AD) are the accumulation of amyloid-β (Aβ) proteins and alterations in cortical neurophysiological signaling. Despite parallel research indicating disruption of multiple neurotransmitter systems in AD, it has been unclear whether these two phenomena are related to the neurochemical organization of the cortex. We leveraged task-free magnetoencephalography and positron emission tomography, with a cortical atlas of 19 neurotransmitters to study the alignment and interactions between alterations of neurophysiological signaling, Aβ deposition, and the neurochemical gradients of the human cortex. In patients with amnestic mild cognitive impairment (N = 18) and probable AD (N = 20), we found that changes in rhythmic, but not arrhythmic, cortical neurophysiological signaling relative to healthy controls (N = 20) are topographically aligned with cholinergic, serotonergic, and dopaminergic neurochemical systems. These neuro-physio-chemical alignments are related to the severity of cognitive and behavioral impairments. We also found that cortical Aβ plaques are preferentially deposited along neurochemical boundaries, and mediate how beta-band rhythmic cortical activity maps align with muscarinic acetylcholine receptors. Finally, we show in an independent dataset that many of these alignments manifest in the asymptomatic stages of cortical Aβ accumulation (N = 33; N = 71 healthy controls), particularly the Aβ-neurochemical alignments (57.1%) and neuro-physio-chemical alignments in the alpha frequency band (62.5%). Overall, the present study demonstrates that the expression of pathology in pre-clinical and clinical AD aligns topographically with the cortical distribution of chemical neuromodulator systems, scaling with clinical severity and with implications for potential pharmacotherapeutic pathways.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jonathan Gallego-Rudolf
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
16
|
Momota Y, Bun S, Hirano J, Kamiya K, Ueda R, Iwabuchi Y, Takahata K, Yamamoto Y, Tezuka T, Kubota M, Seki M, Shikimoto R, Mimura Y, Kishimoto T, Tabuchi H, Jinzaki M, Ito D, Mimura M. Amyloid-β prediction machine learning model using source-based morphometry across neurocognitive disorders. Sci Rep 2024; 14:7633. [PMID: 38561395 PMCID: PMC10984960 DOI: 10.1038/s41598-024-58223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Previous studies have developed and explored magnetic resonance imaging (MRI)-based machine learning models for predicting Alzheimer's disease (AD). However, limited research has focused on models incorporating diverse patient populations. This study aimed to build a clinically useful prediction model for amyloid-beta (Aβ) deposition using source-based morphometry, using a data-driven algorithm based on independent component analyses. Additionally, we assessed how the predictive accuracies varied with the feature combinations. Data from 118 participants clinically diagnosed with various conditions such as AD, mild cognitive impairment, frontotemporal lobar degeneration, corticobasal syndrome, progressive supranuclear palsy, and psychiatric disorders, as well as healthy controls were used for the development of the model. We used structural MR images, cognitive test results, and apolipoprotein E status for feature selection. Three-dimensional T1-weighted images were preprocessed into voxel-based gray matter images and then subjected to source-based morphometry. We used a support vector machine as a classifier. We applied SHapley Additive exPlanations, a game-theoretical approach, to ensure model accountability. The final model that was based on MR-images, cognitive test results, and apolipoprotein E status yielded 89.8% accuracy and a receiver operating characteristic curve of 0.888. The model based on MR-images alone showed 84.7% accuracy. Aβ-positivity was correctly detected in non-AD patients. One of the seven independent components derived from source-based morphometry was considered to represent an AD-related gray matter volume pattern and showed the strongest impact on the model output. Aβ-positivity across neurological and psychiatric disorders was predicted with moderate-to-high accuracy and was associated with a probable AD-related gray matter volume pattern. An MRI-based data-driven machine learning approach can be beneficial as a diagnostic aid.
Collapse
Affiliation(s)
- Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Shogyoku Bun
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Kei Kamiya
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yu Iwabuchi
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Yasuharu Yamamoto
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Toshiki Tezuka
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masahito Kubota
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryo Shikimoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Taishiro Kishimoto
- Psychiatry Department, Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Mori JP Tower F7, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Daisuke Ito
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Memory Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Center for Preventive Medicine, Keio University, Mori JP Tower 7th Floor, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
| |
Collapse
|
17
|
Young CB, Smith V, Karjadi C, Grogan S, Ang TFA, Insel PS, Henderson VW, Sumner M, Poston KL, Au R, Mormino EC. Speech patterns during memory recall relates to early tau burden across adulthood. Alzheimers Dement 2024; 20:2552-2563. [PMID: 38348772 PMCID: PMC11032578 DOI: 10.1002/alz.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Early cognitive decline may manifest in subtle differences in speech. METHODS We examined 238 cognitively unimpaired adults from the Framingham Heart Study (32-75 years) who completed amyloid and tau PET imaging. Speech patterns during delayed recall of a story memory task were quantified via five speech markers, and their associations with global amyloid status and regional tau signal were examined. RESULTS Total utterance time, number of between-utterance pauses, speech rate, and percentage of unique words significantly correlated with delayed recall score although the shared variance was low (2%-15%). Delayed recall score was not significantly different between β-amyoid-positive (Aβ+) and -negative (Aβ-) groups and was not associated with regional tau signal. However, longer and more between-utterance pauses, and slower speech rate were associated with increased tau signal across medial temporal and early neocortical regions. DISCUSSION Subtle speech changes during memory recall may reflect cognitive impairment associated with early Alzheimer's disease pathology. HIGHLIGHTS Speech during delayed memory recall relates to tau PET signal across adulthood. Delayed memory recall score was not associated with tau PET signal. Speech shows greater sensitivity to detecting subtle cognitive changes associated with early tau accumulation. Our cohort spans adulthood, while most PET imaging studies focus on older adults.
Collapse
Affiliation(s)
- Christina B. Young
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Viktorija Smith
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Cody Karjadi
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Selah‐Marie Grogan
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Philip S. Insel
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Victor W. Henderson
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
| | - Meghan Sumner
- Department of LinguisticsStanford UniversityStanfordCaliforniaUSA
| | - Kathleen L. Poston
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neuroscience InstituteStanford UniversityStanfordCaliforniaUSA
| | - Rhoda Au
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Elizabeth C. Mormino
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neuroscience InstituteStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
18
|
Fonseca CS, Baker SL, Dobyns L, Janabi M, Jagust WJ, Harrison TM. Tau accumulation and atrophy predict amyloid independent cognitive decline in aging. Alzheimers Dement 2024; 20:2526-2537. [PMID: 38334195 PMCID: PMC11032527 DOI: 10.1002/alz.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Amyloid beta (Aβ) and tau pathology are cross-sectionally associated with atrophy and cognitive decline in aging and Alzheimer's disease (AD). METHODS We investigated relationships between concurrent longitudinal measures of Aβ (Pittsburgh compound B [PiB] positron emission tomography [PET]), tau (flortaucipir [FTP] PET), atrophy (structural magnetic resonance imaging), episodic memory (EM), and non-memory (NM) in 78 cognitively healthy older adults (OA). RESULTS Entorhinal FTP change was correlated with EM decline regardless of Aβ, but meta-temporal FTP and global PiB change were only associated with EM and NM decline in Aβ+ OA. Voxel-wise analyses revealed significant associations between temporal lobe FTP change and EM decline in all groups. PiB and FTP change were not associated with structural change, suggesting a functional or microstructural mechanism linking these measures to cognitive decline. DISCUSSION Our results show that longitudinal Aβ is linked to cognitive decline only in the presence of elevated Aβ, but longitudinal temporal lobe tau is associated with memory decline regardless of Aβ status. HIGHLIGHTS Entorhinal tau change was associated with memory decline in older adults (OA), regardless of amyloid beta (Aβ). Greater meta-region of interest (ROI) tau change correlated with memory decline in Aβ+ OA. Voxel-wise temporal tau change correlated with memory decline, regardless of Aβ. Meta-ROI tau and global amyloid change correlated with non-memory change in Aβ+ OA. Tau and amyloid accumulation were not associated with structural change in OA.
Collapse
Affiliation(s)
- Corrina S. Fonseca
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | | | - Lindsey Dobyns
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Mustafa Janabi
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - William J. Jagust
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Theresa M. Harrison
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
19
|
Maturana-Quijada P, Chavarría-Elizondo P, Del Cerro I, Martínez-Zalacaín I, Juaneda-Seguí A, Guinea-Izquierdo A, Gascón-Bayarri J, Reñé R, Urretavizcaya M, Menchón JM, Ferrer I, Soria V, Soriano-Mas C. Effective connectivity of the locus coeruleus in patients with late-life Major Depressive Disorder or mild cognitive impairment. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00015-2. [PMID: 38453029 DOI: 10.1016/j.sjpmh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION We compared effective connectivity from the locus coeruleus (LC) during the resting-state in patients with late-life Major Depressive Disorder (MDD), individuals with amnestic Mild Cognitive Impairment (aMCI), and Healthy Controls (HCs). PARTICIPANTS 23 patients with late-life MDD, 22 patients with aMCI, and 28 HCs. MATERIAL AND METHODS Participants were assessed in two time-points, 2 years apart. They underwent a resting-state functional magnetic resonance imaging and a high-resolution anatomical acquisition, as well as clinical assessments. Functional imaging data were analyzed with dynamic causal modeling, and parametric empirical Bayes model was used to map effective connectivity between 7 distinct nodes: 4 from the locus coeruleus and 3 regions displaying gray matter decreases during the two-year follow-up period. RESULTS Longitudinal analysis of structural data identified three clusters of larger over-time gray matter volume reduction in patients (MDD+aMCI vs. HCs): the right precuneus, and the visual association and parahippocampal cortices. aMCI patients showed decreased effective connectivity from the left rostral to caudal portions of the LC, while connectivity from the left rostral LC to the parahippocampal cortex increased. In MDD, there was a decline in effective connectivity across LC caudal seeds, and increased connectivity from the left rostral to the left caudal LC seed over time. Connectivity alterations with cortical regions involved cross-hemisphere increases and same-hemisphere decreases. CONCLUSIONS Our discoveries provide insight into the dynamic changes in effective connectivity in individuals with late-life MDD and aMCI, also shedding light on the mechanisms potentially contributing to the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Pablo Maturana-Quijada
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Pamela Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Inés Del Cerro
- Department of Psychology, Medical School, Catholic University of Murcia, Murcia, Spain
| | - Ignacio Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Asier Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Andrés Guinea-Izquierdo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jordi Gascón-Bayarri
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Ramón Reñé
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Mikel Urretavizcaya
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - José M Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Virginia Soria
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Papp KV, Jutten RJ, Soberanes D, Weizenbaum E, Hsieh S, Molinare C, Buckley R, Betensky RA, Marshall GA, Johnson KA, Rentz DM, Sperling R, Amariglio RE. Early Detection of Amyloid-Related Changes in Memory among Cognitively Unimpaired Older Adults with Daily Digital Testing. Ann Neurol 2024; 95:507-517. [PMID: 37991080 PMCID: PMC10922126 DOI: 10.1002/ana.26833] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE This study was undertaken to determine whether assessing learning over days reveals Alzheimer disease (AD) biomarker-related declines in memory consolidation that are otherwise undetectable with single time point assessments. METHODS Thirty-six (21.9%) cognitively unimpaired older adults (aged 60-91 years) were classified with elevated β-amyloid (Aβ+) and 128 (78%) were Aβ- using positron emission tomography with 11C Pittsburgh compound B. Participants completed the multiday Boston Remote Assessment for Neurocognitive Health (BRANCH) for 12 min/day on personal devices (ie, smartphones, laptops), which captures the trajectory of daily learning of the same content on 3 repeated tests (Digit Signs, Groceries-Prices, Face-Name). Learning is computed as a composite of accuracy across all 3 measures. Participants also completed standard in-clinic cognitive tests as part of the Preclinical Alzheimer's Cognitive Composite (PACC-5), with 123 participants undergoing PACC-5 follow-up after 1.07 (standard deviation = 0.25) years. RESULTS At the cross-section, there were no statistically significant differences in performance between Aβ+/- participants on any standard in-clinic cognitive tests (eg, PACC-5) or on day 1 of multiday BRANCH. Aβ+ participants exhibited diminished 7-day learning curves on multiday BRANCH after 4 days of testing relative to Aβ- participants (Cohen d = 0.49, 95% confidence interval = 0.10-0.87). Diminished learning curves were associated with greater annual PACC-5 decline (r = 0.54, p < 0.001). INTERPRETATION Very early Aβ-related memory declines can be revealed by assessing learning over days, suggesting that failures in memory consolidation predate other conventional amnestic deficits in AD. Repeated digital memory assessments, increasingly feasible and uniquely able to assess memory consolidation over short time periods, have the potential to be transformative for detecting the earliest cognitive changes in preclinical AD. ANN NEUROL 2024;95:507-517.
Collapse
Affiliation(s)
- Kathryn V. Papp
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Roos J. Jutten
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Daniel Soberanes
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Emma Weizenbaum
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
| | - Stephanie Hsieh
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Cassidy Molinare
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Rachel Buckley
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Rebecca A. Betensky
- Department of Biostatistics, New York University School of Global Public Health, New York, NY, 10003
| | - Gad A. Marshall
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
- Department of Radiology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Dorene M. Rentz
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Rebecca E. Amariglio
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
21
|
Keegan AP, Savage K, Bousman CA, Nolidin K, Cribb L, Pipingas A, Stough C. Interleukin 10 (IL10) promoter region polymorphism is associated with IL10 serum concentrations and processing speed in healthy community-dwelling older adults. Behav Brain Res 2024; 458:114756. [PMID: 37951418 DOI: 10.1016/j.bbr.2023.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Inflammation is repressed by interleukin 10 (IL10), a potent anti-inflammatory cytokine, and unchecked inflammation can have detrimental effects on cognition. In healthy older adults enrolled in the Australian Research Council Longevity Intervention (ARCLI) cohort we explored whether a known functional single nucleotide polymorphism (SNP) in the promoter region of IL10, -1082 G/A (rs1800896), was associated with reaction times on computerized cognitive testing that included elements of processing speed (i.e., reaction time). Participants were aged 60-75 years (240 females, 158 males), free of dementia and psychiatric disorders, and provide a blood sample. Processing speed was measured using the Swinburne University Computerized Cognitive Assessment Battery (SUCCAB), which includes measures of reaction time (in milliseconds, ms) on six tasks. Blood-derived DNA was genotyped for the IL10 rs1800896 SNP and presence of the APOE E4 allele. General linear models for each SUCCAB subtest were fitted, with age, sex, education (years), APOE E4 carrier status, and IL10 genotype as independent variables. Carriers of the IL10 AA genotype had significantly slower reaction times on multiple tests compared to carriers of the minor allele (AG, GG) and lower IL10 serum levels. Although IL10 SNPs have not been detected in Alzheimer's disease genome-wide associated studies, these results support further exploration of IL10 mechanisms as a possible resilience factor.
Collapse
Affiliation(s)
| | - Karen Savage
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Chad A Bousman
- Department of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Karen Nolidin
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Lachlan Cribb
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Pipingas
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Con Stough
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
22
|
Lopez OL, Villemagne VL, Chang YF, Cohen AD, Klunk WE, Mathis CA, Pascoal T, Ikonomovic MD, Rowe C, Dore V, Snitz BE, Lopresti BJ, Kamboh MI, Aizenstein HJ, Kuller LH. Association Between β-Amyloid Accumulation and Incident Dementia in Individuals 80 Years or Older Without Dementia. Neurology 2024; 102:e207920. [PMID: 38165336 PMCID: PMC10870745 DOI: 10.1212/wnl.0000000000207920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES While the highest prevalence of dementia occurs in individuals older than 80 years, most imaging studies focused on younger populations. The rates of β-amyloid (Aβ) accumulation and the effect of Alzheimer disease (AD) pathology on progression to dementia in this age group remain unexplored. In this study, we examined the relationship between changes in Aβ deposition over time and incident dementia in nondemented individuals followed during a period of 11 years. METHODS We examined 94 participants (age 85.9 + 2.8 years) who had up to 5 measurements of Pittsburgh compound-B (PiB)-PET and clinical evaluations from 2009 to 2020. All 94 participants had 2 PiB-PET scans, 76 participants had 3 PiB-PET scans, 18 participants had 4 PiB-PET scans, and 10 participants had 5 PiB-PET scans. The rates of Aβ deposition were compared with 120 nondemented individuals younger than 80 years (69.3 ± 5.4 years) from the Australian Imaging, Biomarker, and Lifestyle (AIBL) study who had 3 or more annual PiB-PET assessments. RESULTS By 2020, 49% of the participants developed dementia and 63% were deceased. There was a gradual increase in Aβ deposition in all participants whether they were considered Aβ positive or negative at baseline. In a Cox model controlled for age, sex, education level, APOE-4 allele, baseline Mini-Mental State Examination, and mortality, short-term change in Aβ deposition was not significantly associated with incident dementia (HR 2.19 (0.41-11.73). However, baseline Aβ burden, cortical thickness, and white matter lesions volume were the predictors of incident dementia. Aβ accumulation was faster (p = 0.01) in the older cohort (5.6%/year) when compared with AIBL (4.1%/year). In addition, baseline Aβ deposition was a predictor of short-term change (mean time 1.88 years). DISCUSSION There was an accelerated Aβ accumulation in cognitively normal individuals older than 80 years. Baseline Aβ deposition was a determinant of incident dementia and short-term change in Aβ deposition suggesting that an active Aβ pathologic process was present when these participants were cognitively normal. Consequently, age may not be a limiting factor for the use of the emergent anti-Aβ therapies.
Collapse
Affiliation(s)
- Oscar L Lopez
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Victor L Villemagne
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Yue-Fang Chang
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Ann D Cohen
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - William E Klunk
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Chester A Mathis
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Tharick Pascoal
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Milos D Ikonomovic
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Christopher Rowe
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Vincent Dore
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Beth E Snitz
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Brian J Lopresti
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - M Ilyas Kamboh
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Howard J Aizenstein
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Lewis H Kuller
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| |
Collapse
|
23
|
Aschenbrenner AJ, Hassenstab JJ, Schindler SE, Janelidze S, Hansson O, Morris JC, Grober E. Free Recall Outperforms Story Recall in Associations with Plasma Biomarkers in Preclinical Alzheimer Disease. J Prev Alzheimers Dis 2024; 11:1696-1702. [PMID: 39559880 PMCID: PMC11573877 DOI: 10.14283/jpad.2024.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND A decline in episodic memory is one of the earliest cognitive characteristics of Alzheimer disease and memory tests are heavily featured in cognitive composite endpoints that are used to demonstrate treatment efficacy. Assessments of episodic memory can take many forms including free recall, associate learning, and paragraph or story recall. Plasma biomarkers of Alzheimer disease are now widely available and will likely form the backbone of cohort enrichment strategies for future clinical trials. Thus, it is critical to evaluate which episodic memory measures are most sensitive to plasma markers of Alzheimer disease pathology. OBJECTIVES To compare the associations of common episodic memory tests with plasma biomarkers of Alzheimer disease. DESIGN Longitudinal cohort study. SETTING Academic medical center in the midwestern United States. PARTICIPANTS A total of 161 cognitively normal older adults with at least one plasma biomarker assessment and two or more annual clinical and cognitive assessments which included up to three different tests of episodic memory. MEASUREMENTS Episodic memory performance using free recall, paired associates recall or paragraph recall. Plasma Aβ42, Aβ40, ptau217, and neurofilament light chain were measured. RESULTS Free recall on the Free and Cued Selective Reminding Test with Immediate Recall (FCSRT + IR) was substantially more sensitive to longitudinal cognitive change associated with abnormal baseline plasma Aβ42/Aβ40 and ptau217 compared to other measures of episodic memory. A cognitive composite that included only free recall showed larger decline associated with baseline Aβ42/Aβ40 when compared to those that included paragraph recall. Differences in decline across composites were minimal when considering baseline ptau217 or NfL. CONCLUSION Episodic memory is a critical domain to assess in preclinical Alzheimer disease. Methods of assessing memory are not equal and longitudinal change in free recall substantially outperformed both paired associates and paragraph recall. Clinical trial results will depend critically on the episodic memory test(s) that are chosen for a composite endpoint and free recall from the FCSRT + IR is an optimal memory measure to include rather than paired associates or paragraph recall.
Collapse
Affiliation(s)
- A J Aschenbrenner
- Andrew Aschenbrenner, PhD, 4488 Forest Park Ave, STE 301, St. Louis, MO, 63108, , 314-273-1041
| | | | | | | | | | | | | |
Collapse
|
24
|
Walkiewicz G, Ronisz A, Van Ginderdeuren R, Lemmens S, Bouwman FH, Hoozemans JJM, Morrema THJ, Rozemuller AJ, Hart de Ruyter FJ, De Groef L, Stalmans I, Thal DR. Primary retinal tauopathy: A tauopathy with a distinct molecular pattern. Alzheimers Dement 2024; 20:330-340. [PMID: 37615275 PMCID: PMC10916964 DOI: 10.1002/alz.13424] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Phosphorylated tau (p-tau) accumulation, a hallmark of Alzheimer's disease (AD), can also be found in the retina. However, it is uncertain whether it is linked to AD or another tauopathy. METHODS Retinas from 164 individuals, with and without AD, were analyzed for p-tau accumulation and its relationship with age, dementia, and vision impairment. RESULTS Retinal p-tau pathology showed a consistent pattern with four stages and a molecular composition distinct from that of cerebral tauopathies. The stage of retinal p-tau pathology correlated with age (r = 0.176, P = 0.024) and was associated with AD (odds ratio [OR] 3.193; P = 0.001), and inflammation (OR = 2.605; P = 0.001). Vision impairment was associated with underlying eye diseases (β = 0.292; P = 0.001) and the stage of retinal p-tau pathology (β = 0.192; P = 0.030) in a linear regression model. CONCLUSIONS The results show the presence of a primary retinal tauopathy that is distinct from cerebral tauopathies.
Collapse
Affiliation(s)
- Grzegorz Walkiewicz
- Laboratory of NeuropathologyDepartment of Imaging and PathologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Alicja Ronisz
- Laboratory of NeuropathologyDepartment of Imaging and PathologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Rita Van Ginderdeuren
- Department of PathologyUZ LeuvenLeuvenBelgium
- Department of OphthalmologyUZ LeuvenLeuvenBelgium
| | | | | | | | - Tjado H. J. Morrema
- Amsterdam UMCDepartment of PathologyAmsterdam NeuroscienceAmsterdamthe Netherlands
| | | | - Frederique J. Hart de Ruyter
- Amsterdam UMCAlzheimer CenterNeurologyAmsterdamthe Netherlands
- Amsterdam UMCDepartment of PathologyAmsterdam NeuroscienceAmsterdamthe Netherlands
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research GroupDepartment of BiologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Ingeborg Stalmans
- Department of OphthalmologyUZ LeuvenLeuvenBelgium
- Research Group OphthalmologyDepartment of NeuroscienceLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory of NeuropathologyDepartment of Imaging and PathologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUZ LeuvenLeuvenBelgium
| |
Collapse
|
25
|
Boots EA, Frank RD, Fan WZ, Christianson TJ, Kremers WK, Stricker JL, Machulda MM, Fields JA, Hassenstab J, Graff-Radford J, Vemuri P, Jack CR, Knopman DS, Petersen RC, Stricker NH. Continuous Associations between Remote Self-Administered Cognitive Measures and Imaging Biomarkers of Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:1467-1479. [PMID: 39350394 PMCID: PMC11436415 DOI: 10.14283/jpad.2024.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Easily accessible and self-administered cognitive assessments that can aid early detection for Alzheimer's disease (AD) dementia risk are critical for timely intervention. OBJECTIVES/DESIGN This cross-sectional study investigated continuous associations between Mayo Test Drive (MTD) - a remote, self-administered, multi-device compatible, web-based cognitive assessment - and AD-related imaging biomarkers. PARTICIPANTS/SETTING 684 adults from the Mayo Clinic Study of Aging and Mayo Clinic Alzheimer's Disease Research Center participated (age=70.4±11.2, 49.7% female). Participants were predominantly cognitively unimpaired (CU; 94.0%). MEASUREMENTS Participants completed (1) brain amyloid and tau PET scans and MRI scans for hippocampal volume (HV) and white matter hyperintensities (WMH); (2) MTD remotely, consisting of the Stricker Learning Span and Symbols Test which combine into an MTD composite; and (3) in-person neuropsychological assessment including measures to obtain Mayo Preclinical Alzheimer's disease Cognitive Composite (Mayo-PACC) and Global-z. Multiple regressions adjusted for age, sex, and education queried associations between imaging biomarkers and scores from remote and in-person cognitive measures. RESULTS Lower performances on MTD were associated with greater amyloid, entorhinal tau, and global tau PET burden, lower HV, and higher WMH. Mayo-PACC and Global-z were associated with all imaging biomarkers except global tau PET burden. MCI/Dementia participants showed lower performance on all MTD measures compared to CU with large effect sizes (Hedge's g's=1.65-2.02), with similar findings for CU versus MCI only (Hedge's g's=1.46-1.83). CONCLUSION MTD is associated with continuous measures of AD-related imaging biomarkers, demonstrating ability to detect subtle cognitive change using a brief, remote assessment in predominantly CU individuals and criterion validity for MTD.
Collapse
Affiliation(s)
- E A Boots
- Nikki H. Stricker, Ph.D., ABPP-CN, Mayo Clinic, 200 First Street SW, Rochester, MN 55905; 507-284-2649 (phone), 507-284-4158 (fax), (email)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
27
|
Prokopiou PC, Engels-Domínguez N, Schultz AP, Sepulcre J, Koops EA, Papp KV, Marshall GA, Normandin MD, El Fakhri G, Rentz D, Sperling RA, Johnson KA, Jacobs HIL. Association of Novelty-Related Locus Coeruleus Function With Entorhinal Tau Deposition and Memory Decline in Preclinical Alzheimer Disease. Neurology 2023; 101:e1206-e1217. [PMID: 37491329 PMCID: PMC10516269 DOI: 10.1212/wnl.0000000000207646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The predictable Braak staging scheme suggests that cortical tau progression may be related to synaptically connected neurons. Animal and human neuroimaging studies demonstrated that changes in neuronal activity contribute to tau spreading. Whether similar mechanisms explain tau progression from the locus coeruleus (LC), a tiny noradrenergic brainstem nucleus involved in novelty, learning, and memory and among the earliest regions to accumulate tau, has not yet been established. We aimed to investigate whether novelty-related LC activity was associated with the accumulation of cortical tau and its implications for cognitive decline. METHODS We combined functional MRI data of a novel vs repeated face-name learning paradigm, [18F]-FTP-PET, [11C]-PiB-PET, and longitudinal cognitive data from 92 well-characterized older individuals in the Harvard Aging Brain Study. We related novelty vs repetition LC activity to cortical tau deposition and to longitudinal decline in memory, executive function, and the Preclinical Alzheimer Disease Cognitive Composite (version 5; PACC5). Structural equation modeling was used to examine whether entorhinal cortical (EC) tau mediated the relationship between LC activity and cognitive decline and whether this depended on beta-amyloid deposition. RESULTS The participants' average age at baseline was 69.67 ± 10.14 years. Fifty-one participants were female. Ninety-one participants were cognitively normal (CDR global = 0), and one participant had mild cognitive impairment (CDR global = 0.5) at baseline. Lower novelty-related LC activity was specifically related to greater tau deposition in the medial-lateral temporal cortex and steeper memory decline. LC activity during novelty vs repetition was not related to executive dysfunction or decline on the PACC5. The relationship between LC activity and memory decline was partially mediated by EC tau, particularly in individuals with elevated beta-amyloid deposition. DISCUSSION Our results suggested that lower novelty-related LC activity is associated with the emergence of EC tau and that the downstream effects of this LC-EC pathway on memory decline also require the presence of elevated beta-amyloid. Longitudinal studies are required to investigate whether optimal LC activity has the potential to delay tau spread and memory decline, which may have implications for designing targeted interventions promoting resilience.
Collapse
Affiliation(s)
- Prokopis C Prokopiou
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nina Engels-Domínguez
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Aaron P Schultz
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jorge Sepulcre
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elouise A Koops
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kathryn V Papp
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gad A Marshall
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marc D Normandin
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Georges El Fakhri
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dorene Rentz
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Reisa A Sperling
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keith A Johnson
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Heidi I L Jacobs
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
28
|
Jagust WJ, Teunissen CE, DeCarli C. The complex pathway between amyloid β and cognition: implications for therapy. Lancet Neurol 2023; 22:847-857. [PMID: 37454670 DOI: 10.1016/s1474-4422(23)00128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
For decades, the hypothesis that brain deposition of the amyloid β protein initiates Alzheimer's disease has dominated research and clinical trials. Targeting amyloid β is starting to produce therapeutic benefit, although whether amyloid-lowering drugs will be widely and meaningfully effective is still unclear. Despite extensive in-vivo biomarker evidence in humans showing the importance of an amyloid cascade that drives cognitive decline, the amyloid hypothesis does not fully account for the complexity of late-life cognitive impairment. Multiple brain pathological changes, inflammation, and host factors of resilience might also be involved in contributing to the development of dementia. This variability suggests that the benefits of lowering amyloid β might depend on how strongly an amyloid pathway is manifest in an individual in relation to other coexisting pathophysiological processes. A new approach to research and treatment, which fully considers the multiple factors that drive cognitive decline, is necessary.
Collapse
Affiliation(s)
- William J Jagust
- School of Public Health, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, CA, USA
| |
Collapse
|
29
|
Hammers DB, Kostadinova RV, Spencer RJ, Ikanga JN, Unverzagt FW, Risacher SL, Apostolova LG. Sensitivity of memory subtests and learning slopes from the ADAS-Cog to distinguish along the continuum of the NIA-AA Research Framework for Alzheimer's Disease. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:866-884. [PMID: 36074015 PMCID: PMC9992455 DOI: 10.1080/13825585.2022.2120957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Despite extensive use of the Alzheimer's Disease (AD) Assessment Scale - Cognitive Subscale (ADAS-Cog) in AD research, exploration of memory subtests or process scores from the measure has been limited. The current study sought to establish validity for the ADAS-Cog Word Recall Immediate and Delayed Memory subtests and learning slope scores by showing that they are sensitive to AD biomarker status. Word Recall subtest and learning slope scores were calculated for 441 participants from the Alzheimer's Disease Neuroimaging Initiative (aged 55 to 90). All participants were categorized using the NIA-AA Research Framework - based on PET-imaging of β-amyloid (A) and tau (T) deposition - as Normal AD Biomarkers (A-T-), Alzheimer's Pathologic Change (A + T-), or Alzheimer's disease (A + T+). Memory subtest and learning slope performances were compared between biomarker status groups, and with regard to how well they discriminated samples with (A + T+) and without (A-T-) biomarkers. Lower Word Recall memory subtest scores - and scores for a particular learning slope calculation, the Learning Ratio - were observed for the AD (A + T+) group than the other biomarker groups. Memory subtest and Learning Ratio scores further displayed fair to good receiver operator characteristics when differentiating those with and without AD biomarkers. When comparing across learning slopes, the Learning Ratio metric consistently outperformed others. ADAS-Cog memory subtests and the Learning Ratio score are sensitive to AD biomarker status along the continuum of the NIA-AA Research Framework, and the results offer criterion validity for use of these subtests and process scores as unique markers of memory capacity.
Collapse
Affiliation(s)
- Dustin B. Hammers
- Indiana University School of Medicine, Department of Neurology, Indianapolis, IN, USA
| | | | - Robert J. Spencer
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor MI, USA
- Michigan Medicine, Department of Psychiatry, Neuropsychology Section, Ann Arbor MI, USA
| | - Jean N. Ikanga
- Emory University, School of Medicine, Department of Rehabilitation Medicine, GA, USA
- University of Kinshasa, Department of Psychiatry, Democratic Republic of Congo (DRC)
| | | | - Shannon L. Risacher
- Indiana University School of Medicine, Department of Radiology, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Indiana University School of Medicine, Department of Neurology, Indianapolis, IN, USA
| |
Collapse
|
30
|
Veréb D, Mijalkov M, Canal-Garcia A, Chang YW, Gomez-Ruiz E, Gerboles BZ, Kivipelto M, Svenningsson P, Zetterberg H, Volpe G, Betts M, Jacobs HIL, Pereira JB. Age-related differences in the functional topography of the locus coeruleus and their implications for cognitive and affective functions. eLife 2023; 12:RP87188. [PMID: 37650882 PMCID: PMC10471162 DOI: 10.7554/elife.87188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging, and whether it is associated with cognition and mood. Here, we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years of age (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project [HCP] 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory, and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography, and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale (HADS) ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg UniversityGoteborgSweden
| | | | - Blanca Zufiria Gerboles
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- University of Eastern FinlandKuopioFinland
| | - Per Svenningsson
- University of Eastern FinlandKuopioFinland
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Institute of NeurologyLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Giovanni Volpe
- Department of Physics, Goteborg UniversityGoteborgSweden
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences, University of MagdeburgMagdeburgGermany
| | - Heidi IL Jacobs
- Maastricht UniversityMaastrichtNetherlands
- Massachusetts General HospitalBostonUnited States
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund UniversityLundSweden
| |
Collapse
|
31
|
Gong HJ, Tang X, Chai YH, Qiao YS, Xu H, Patel I, Zhang JY, Zhou JB. Predicted lean body mass in relation to cognitive function in the older adults. Front Endocrinol (Lausanne) 2023; 14:1172233. [PMID: 37484948 PMCID: PMC10358760 DOI: 10.3389/fendo.2023.1172233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Background Previous findings about lean body mass (LBM) and cognitive function remain unclear. We aimed to examine this association by using data from the National Health and Nutrition Examination Survey (NHANES). Methods Using data from the NHANES 2011-2014, we conducted logistic regression models to investigate the relation between the predicted LBM and domain-specific cognitive function assessed by Digit Symbol Substitution Test (DSST), Consortium to Establish a Registry for Alzheimer's Disease Word Learning test (CERAD-WL) and Delayed Recall test (CERAD-DR), and Animal Fluency (AF) for information processing speed, memory, and executive function, respectively. Cognitive impairment was defined as the lowest quartile of each cognitive test in the total population. Sex-stratified analysis was further made. Results A total of 2955 participants aged 60 and above (mean [SD] age, 69.17[0.20] years; 1511 female [51.13%]) were included in the study. After being adjusted for social economic factors, anthropometric parameters, and diseases, we found a positive association between predicted LBM and information processing speed (Odds ratio of DSST impairment= 0.95, 95%CI= 0.91 to 0.99) regardless of body mass index and sex. Compared with patients in the first quartile of predicted LBM, those in the fourth quartile had an odds ratio of 0.355 (95% confidence interval 0.153-0.822) for DSST impairment. No significant relation in other cognitive tests and predicted LBM was found whether stratified by sex or not. Conclusion Our findings point to the association between predicted lean body mass and cognitive dysfunction in information processing speed, which could be used for early detection and prevention of deterioration of cognitive function among older adults.
Collapse
Affiliation(s)
- Hong-Jian Gong
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xingyao Tang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yin-He Chai
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu-Shun Qiao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ikramulhaq Patel
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Yan Zhang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Veréb D, Mijalkov M, Canal-Garcia A, Chang YW, Gomez-Ruis E, Gerboles BZ, Kivipelto M, Svenningsson P, Zetterberg H, Volpe G, Betts MJ, Jacobs H, Pereira JB. Age-related differences in the functional topography of the locus coeruleus: implications for cognitive and affective functions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.25.23286442. [PMID: 37333117 PMCID: PMC10274957 DOI: 10.1101/2023.02.25.23286442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging and whether it is associated with cognition and mood. Here we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years old (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg University, Goteborg, Sweden
| | | | - Blanca Zufiria Gerboles
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- University of Eastern Finland, Kuopio, Finland
| | - Per Svenningsson
- University of Eastern Finland, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Mathew J. Betts
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Heidi Jacobs
- Maastricht University, Maastricht, The Netherlands
- Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Joana B. Pereira
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Dobyns L, Zhuang K, Baker SL, Mungas D, Jagust WJ, Harrison TM. An empirical measure of resilience explains individual differences in the effect of tau pathology on memory change in aging. NATURE AGING 2023; 3:229-237. [PMID: 37118122 PMCID: PMC10148952 DOI: 10.1038/s43587-022-00353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Accurately measuring resilience to preclinical Alzheimer's disease (AD) pathology is essential to understanding an important source of variability in cognitive aging. In a cohort of cognitively normal older adults (n = 123, age 76.75 ± 6.15 yr), we built a multifactorial measure of resilience which moderated the effect of AD pathology on longitudinal cognitive change. Linear residuals-based measures of resilience, along with other proxy measures (education and vocabulary), were entered into a hierarchical partial least-squares path model defining a putative consolidated resilience latent factor (model goodness of fit = 0.77). In a set of validation analyses using linear mixed models predicting longitudinal cognitive change, there was a significant three-way interaction among consolidated resilience, tau and time on episodic memory change (P = 0.001) such that higher resilience blunted the effect of tau pathology on episodic memory decline. Interactions between consolidated resilience and amyloid pathology on non-memory cognition decline suggested that resilience moderates pathology-specific effects on different cognitive domains.
Collapse
Affiliation(s)
- Lindsey Dobyns
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dan Mungas
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
34
|
Ashton NJ, Janelidze S, Mattsson-Carlgren N, Binette AP, Strandberg O, Brum WS, Karikari TK, González-Ortiz F, Di Molfetta G, Meda FJ, Jonaitis EM, Koscik RL, Cody K, Betthauser TJ, Li Y, Vanmechelen E, Palmqvist S, Stomrud E, Bateman RJ, Zetterberg H, Johnson SC, Blennow K, Hansson O. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring. Nat Med 2022; 28:2555-2562. [PMID: 36456833 PMCID: PMC9800279 DOI: 10.1038/s41591-022-02074-w] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022]
Abstract
Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6 years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fernándo González-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Guglielmo Di Molfetta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Francisco J Meda
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Rebecca Langhough Koscik
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Karly Cody
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sebastian Palmqvist
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium.
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
35
|
Butts AM, Machulda MM, Martin P, Przybelski SA, Duffy JR, Graff-Radford J, Knopman DS, Petersen RC, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Temporal Cortical Thickness and Cognitive Associations among Typical and Atypical Phenotypes of Alzheimer's Disease. J Alzheimers Dis Rep 2022; 6:479-491. [PMID: 36186727 PMCID: PMC9484150 DOI: 10.3233/adr-220010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background The hippocampus and temporal lobe are atrophic in typical amnestic Alzheimer's disease (tAD) and are used as imaging biomarkers in treatment trials. However, a better understanding of how temporal structures differ across atypical AD phenotypes and relate to cognition is needed. Objective Our goal was to compare temporal lobe regions between tAD and two atypical AD phenotypes (logopenic progressive aphasia (LPA) and posterior cortical atrophy (PCA)), and assess cognitive associations. Methods We age and gender-matched 77 tAD participants to 50 LPA and 27 PCA participants, all of which were amyloid-positive. We used linear mixed-effects models to compare FreeSurfer-derived hippocampal volumes and cortical thickness of entorhinal, inferior and middle temporal, and fusiform gyri, and to assess relationships between imaging and memory, naming, and visuospatial function across and within AD phenotype. Results Hippocampal volume and entorhinal thickness were smaller bilaterally in tAD than LPA and PCA. PCA showed greater right inferior temporal and bilateral fusiform thinning and LPA showed greater left middle and inferior temporal and left fusiform thinning. Atypical AD phenotypes differed with greater right hemisphere thinning in PCA and greater left hemisphere thinning in LPA. Verbal and visual memory related most strongly to hippocampal volume; naming related to left temporal thickness; and visuospatial related to bilateral fusiform thickness. Fewer associations remained when examined within AD group. Conclusion Atypical AD phenotypes are associated with greater thinning of lateral temporal structures, with relative sparing of medial temporal lobe, compared to tAD. These findings may have implications for future clinical trials in AD.
Collapse
Affiliation(s)
- Alissa M. Butts
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, USA,External Research Collaborator, Mayo Clinic, Rochester, MN, USA
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Division of Neuropsychology, Mayo Clinic, Rochester, MN, USA
| | - Peter Martin
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer L. Whitwell
- Department of Radiology, Mayo Clinic, Rochester, MN, USA,Correspondence to: Jennifer L. Whitwell, PhD, Professor of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA. E-mail:
| |
Collapse
|
36
|
Petersen RC. Detecting Alzheimer Disease Clinically: How Early Can We Go? Neurology 2022; 98:607-608. [PMID: 35338082 DOI: 10.1212/wnl.0000000000200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|