1
|
Theme 5 Human Cell Biology and Pathology. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:158-184. [PMID: 39508672 DOI: 10.1080/21678421.2024.2403302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
2
|
Koehn LM, Jalaldeen R, Pelle J, Nicolazzo JA. Plasma, brain and spinal cord concentrations of caffeine are reduced in the SOD1 G93A mouse model of amyotrophic lateral sclerosis following oral administration. Eur J Pharm Biopharm 2024; 203:114434. [PMID: 39098618 DOI: 10.1016/j.ejpb.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Modifications to the small intestine and liver are known to occur during the symptomatic disease period of amyotrophic lateral sclerosis (ALS), a member of the motor neuron disease (MND) family of neurodegenerative disorders. How these modifications impact on oral absorption and pharmacokinetics of drugs remains unknown. In this study, model drugs representing different mechanisms of intestinal transport (caffeine for passive diffusion, digoxin for P-glycoprotein efflux, and sulfasalazine for breast cancer resistance protein efflux) were administered via oral gavage to postnatal day 114-120 male and female SOD1G93A mice (model of familial ALS) and wild-type (WT) littermates. Samples of blood, brain and spinal cord were taken at either 15, 30, 60 or 180 min after administration. In addition, the in vivo gastric emptying of 70 kDa fluorescein isothiocyanate-dextran (FITC-dextran) and the ex vivo intestinal permeability of caffeine were assessed. The area under the plasma concentration-time curves (AUCplasma) of digoxin and sulfasalazine were not significantly different between SOD1G93A and WT mice for both sexes. However, the AUCplasma of caffeine was significantly lower (female: 0.79-fold, male: 0.76-fold) in SOD1G93A compared to WT mice, which was associated with lower AUCbrain (female: 0.76-fold, male: 0.80-fold) and AUCspinal cord (female: 0.81-fold, male: 0.82-fold). The AUCstomach of caffeine was significantly higher (female: 1.5-fold, male: 1.9-fold) in SOD1G93A compared to WT mice, suggesting reduced gastric emptying in SOD1G93A mice. In addition, there was a significant reduction in gastric emptying of FITC-dextran (0.66-fold) and ex vivo intestinal permeability of caffeine (0.52-fold) in male SOD1G93A compared to WT mice. Reduced systemic and brain/spinal cord exposure of caffeine in SOD1G93A mice may therefore result from alterations to gastric emptying and small intestinal permeability. Specific dosing requirements may therefore be required for certain medicines in ALS to ensure that they remain in a safe and effective concentration range.
Collapse
Affiliation(s)
- Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| | - Roshan Jalaldeen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Joseph Pelle
- Helen Macpherson Smith Trust Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
3
|
Wasielewska JM, Chaves JCS, Cabral-da-Silva MC, Pecoraro M, Viljoen SJ, Nguyen TH, Bella VL, Oikari LE, Ooi L, White AR. A patient-derived amyotrophic lateral sclerosis blood-brain barrier model for focused ultrasound-mediated anti-TDP-43 antibody delivery. Fluids Barriers CNS 2024; 21:65. [PMID: 39138578 PMCID: PMC11323367 DOI: 10.1186/s12987-024-00565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder with minimally effective treatment options. An important hurdle in ALS drug development is the non-invasive therapeutic access to the motor cortex currently limited by the presence of the blood-brain barrier (BBB). Focused ultrasound and microbubble (FUS+ MB) treatment is an emerging technology that was successfully used in ALS patients to temporarily open the cortical BBB. However, FUS+ MB-mediated drug delivery across ALS patients' BBB has not yet been reported. Similarly, the effects of FUS+ MB on human ALS BBB cells remain unexplored. METHODS Here we established the first FUS+ MB-compatible, fully-human ALS patient-cell-derived BBB model based on induced brain endothelial-like cells (iBECs) to study anti-TDP-43 antibody delivery and FUS+ MB bioeffects in vitro. RESULTS Generated ALS iBECs recapitulated disease-specific hallmarks of BBB pathology, including reduced BBB integrity and permeability, and TDP-43 proteinopathy. The results also identified differences between sporadic ALS and familial (C9orf72 expansion carrying) ALS iBECs reflecting patient heterogeneity associated with disease subgroups. Studies in these models revealed successful ALS iBEC monolayer opening in vitro with no adverse cellular effects of FUS+ MB as reflected by lactate dehydrogenase (LDH) release viability assay and the lack of visible monolayer damage or morphology change in FUS+ MB treated cells. This was accompanied by the molecular bioeffects of FUS+ MB in ALS iBECs including changes in expression of tight and adherens junction markers, and drug transporter and inflammatory mediators, with sporadic and C9orf72 ALS iBECs generating transient specific responses. Additionally, we demonstrated an effective increase in the delivery of anti-TDP-43 antibody with FUS+ MB in C9orf72 (2.7-fold) and sporadic (1.9-fold) ALS iBECs providing the first proof-of-concept evidence that FUS+ MB can be used to enhance the permeability of large molecule therapeutics across the BBB in a human ALS in vitro model. CONCLUSIONS Together, this study describes the first characterisation of cellular and molecular responses of ALS iBECs to FUS+ MB and provides a fully-human platform for FUS+ MB-mediated drug delivery screening on an ALS BBB in vitro model.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| | - Juliana C S Chaves
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mauricio Castro Cabral-da-Silva
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute (MCRI), Parkville, VIC, Australia
| | - Martina Pecoraro
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Stephani J Viljoen
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Tam Hong Nguyen
- Flow Cytometry and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Vincenzo La Bella
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Lotta E Oikari
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lezanne Ooi
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
| | - Anthony R White
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
4
|
Kato C, Ueda K, Morimoto S, Takahashi S, Nakamura S, Ozawa F, Ito D, Daté Y, Okada K, Kobayashi N, Nakahara J, Okano H. Proteomic insights into extracellular vesicles in ALS for therapeutic potential of Ropinirole and biomarker discovery. Inflamm Regen 2024; 44:32. [PMID: 38997748 PMCID: PMC11241965 DOI: 10.1186/s41232-024-00346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) hold the potential for elucidating the pathogenesis of amyotrophic lateral sclerosis (ALS) and serve as biomarkers. Notably, the comparative and longitudinal alterations in the protein profiles of EVs in serum (sEVs) and cerebrospinal fluid (CSF; cEVs) of sporadic ALS (SALS) patients remain uncharted. Ropinirole hydrochloride (ROPI; dopamine D2 receptor [D2R] agonist), a new anti-ALS drug candidate identified through induced pluripotent stem cell (iPSC)-based drug discovery, has been suggested to inhibit ALS disease progression in the Ropinirole Hydrochloride Remedy for Amyotrophic Lateral Sclerosis (ROPALS) trial, but its mechanism of action is not well understood. Therefore, we tried to reveal longitudinal changes with disease progression and the effects of ROPI on protein profiles of EVs. METHODS We collected serum and CSF at fixed intervals from ten controls and from 20 SALS patients participating in the ROPALS trial. Comprehensive proteomic analysis of EVs, extracted from these samples, was conducted using liquid chromatography/mass spectrometer (LC/MS). Furthermore, we generated iPSC-derived astrocytes (iPasts) and performed RNA sequencing on astrocytes with or without ROPI treatment. RESULTS The findings revealed notable disparities yet high congruity in sEVs and cEVs protein profiles concerning disease status, time and ROPI administration. In SALS, both sEVs and cEVs presented elevated levels of inflammation-related proteins but reduced levels associated with unfolded protein response (UPR). These results mirrored the longitudinal changes after disease onset and correlated with the revised ALS Functional Rating Scale (ALSFRS-R) at sampling time, suggesting a link to the onset and progression of SALS. ROPI appeared to counteract these changes, attenuating inflammation-related protein levels and boosting those tied to UPR in SALS, proposing an anti-ALS impact on EV protein profiles. Reverse translational research using iPasts indicated that these changes may partly reflect the DRD2-dependent neuroinflammatory inhibitory effects of ROPI. We have also identified biomarkers that predict diagnosis and disease progression by machine learning-driven biomarker search. CONCLUSIONS Despite the limited sample size, this study pioneers in reporting time-series proteomic alterations in serum and CSF EVs from SALS patients, offering comprehensive insights into SALS pathogenesis, ROPI-induced changes, and potential prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Chris Kato
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Satoru Morimoto
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan.
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| | - Shinichi Takahashi
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Neurology and Cerebrovascular Medicine, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Shiho Nakamura
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Daisuke Ito
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yugaku Daté
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Naoki Kobayashi
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan.
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
5
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
6
|
Pineda SS, Lee H, Ulloa-Navas MJ, Linville RM, Garcia FJ, Galani K, Engelberg-Cook E, Castanedes MC, Fitzwalter BE, Pregent LJ, Gardashli ME, DeTure M, Vera-Garcia DV, Hucke ATS, Oskarsson BE, Murray ME, Dickson DW, Heiman M, Belzil VV, Kellis M. Single-cell dissection of the human motor and prefrontal cortices in ALS and FTLD. Cell 2024; 187:1971-1989.e16. [PMID: 38521060 PMCID: PMC11086986 DOI: 10.1016/j.cell.2024.02.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/09/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.
Collapse
Affiliation(s)
- S Sebastian Pineda
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Hyeseung Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Raleigh M Linville
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Francisco J Garcia
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyriakitsa Galani
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | | | - Brent E Fitzwalter
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Luc J Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Andre T S Hucke
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Myriam Heiman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA.
| |
Collapse
|
7
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
8
|
Scholpa NE, Simmons EC, Thompson AD, Carroll SS, Schnellmann RG. 5-HT 1F receptor agonism induces mitochondrial biogenesis and increases cellular function in brain microvascular endothelial cells. Front Cell Neurosci 2024; 18:1365158. [PMID: 38510106 PMCID: PMC10952819 DOI: 10.3389/fncel.2024.1365158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Vascular and mitochondrial dysfunction are well-established consequences of multiple central nervous system (CNS) disorders, including neurodegenerative diseases and traumatic injuries. We previously reported that 5-hydroxytryptamine 1F receptor (5-HT1FR) agonism induces mitochondrial biogenesis (MB) in multiple organ systems, including the CNS. Methods Lasmiditan is a selective 5-HT1FR agonist that is FDA-approved for the treatment of migraines. We have recently shown that lasmiditan treatment induces MB, promotes vascular recovery and improves locomotor function in a mouse model of spinal cord injury (SCI). To investigate the mechanism of this effect, primary cerebral microvascular endothelial cells from C57bl/6 mice (mBMEC) were used. Results Lasmiditan treatment increased the maximal oxygen consumption rate, mitochondrial proteins and mitochondrial density in mBMEC, indicative of MB induction. Lasmiditan also enhanced endothelial cell migration and tube formation, key components of angiogenesis. Trans-endothelial electrical resistance (TEER) and tight junction protein expression, including claudin-5, were also increased with lasmiditan, suggesting improved barrier function. Finally, lasmiditan treatment decreased phosphorylated VE-Cadherin and induced activation of the Akt-FoxO1 pathway, which decreases FoxO1-mediated inhibition of claudin-5 transcription. Discussion These data demonstrate that lasmiditan induces MB and enhances endothelial cell function, likely via the VE-Cadherin-Akt-FoxO1-claudin-5 signaling axis. Given the importance of mitochondrial and vascular dysfunction in neuropathologies, 5-HT1FR agonism may have broad therapeutic potential to address multiple facets of disease progression by promoting MB and vascular recovery.
Collapse
Affiliation(s)
- Natalie E. Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Epiphani C. Simmons
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Austin D. Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
| | - Seth S. Carroll
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Manora L, Borlongan CV, Garbuzova-Davis S. Cellular and Noncellular Approaches for Repairing the Damaged Blood-CNS-Barrier in Amyotrophic Lateral Sclerosis. Cells 2024; 13:435. [PMID: 38474399 PMCID: PMC10931261 DOI: 10.3390/cells13050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Numerous reports have demonstrated the breakdown of the blood-CNS barrier (B-CNS-B) in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Re-establishing barrier integrity in the CNS is critical to prevent further motor neuron degeneration from harmful components in systemic circulation. Potential therapeutic strategies for repairing the B-CNS-B may be achieved by the replacement of damaged endothelial cells (ECs) via stem cell administration or enhancement of endogenous EC survival through the delivery of bioactive particles secreted by stem cells. These cellular and noncellular approaches are thoroughly discussed in the present review. Specific attention is given to certain stem cell types for EC replacement. Also, various nanoparticles secreted by stem cells as well as other biomolecules are elucidated as promising agents for endogenous EC repair. Although the noted in vitro and in vivo studies show the feasibility of the proposed therapeutic approaches to the repair of the B-CNS-B in ALS, further investigation is needed prior to clinical transition.
Collapse
Affiliation(s)
- Larai Manora
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
| | - Cesario V. Borlongan
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Nuzum ND, Deady C, Kittel-Schneider S, Cryan JF, O'Mahony SM, Clarke G. More than just a number: the gut microbiota and brain function across the extremes of life. Gut Microbes 2024; 16:2418988. [PMID: 39567371 PMCID: PMC11583591 DOI: 10.1080/19490976.2024.2418988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the interrelationship between the gut microbiota and host physiology, although still in its relative infancy, has taken important steps forward over the past decade. In the context of brain disorders including those characterized by neurodevelopmental and neurodegenerative changes there have been important advances. However, initially research involved correlational analyses, had limited translational scope, and lacked functional assessments. Thus, largescale longitudinal clinical investigations that assess causation and underlying mechanisms via in depth analysis methods are needed. In neurodegeneration research, strong causal evidence now links the gut microbiome to Alzheimer's (AD), and Parkinson's Disease (PD), as supported by human-to-animal transplantation studies. Longitudinal interventions are being conducted in AD, PD, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Neurodevelopmental research has also seen a boon in microbiome-related clinical research including in autism, Attention-deficit/hyperactivity disorder, and schizophrenia, which is confirming prior animal model work regarding the key time-windows in the gut microbiome important for infant cognition. While recent research advances represent important progress, fundamental knowledge gaps and obstacles remain. Knowing how and why the gut microbiome changes at the extremes of life will develop our mechanistic understanding and help build the evidence base as we strive toward counteracting microbial missteps with precision therapeutic interventions.
Collapse
Affiliation(s)
- Nathan D Nuzum
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Sarah Kittel-Schneider
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Moon Y, Jeon HJ, Han SH, Min-Young N, Kim HJ, Kwon KJ, Moon WJ, Kim SH. Blood-brain barrier breakdown is linked to tau pathology and neuronal injury in a differential manner according to amyloid deposition. J Cereb Blood Flow Metab 2023; 43:1813-1825. [PMID: 37283062 PMCID: PMC10676138 DOI: 10.1177/0271678x231180035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
The blood-brain barrier (BBB) breakdown has been suggested as an early marker for Alzheimer's disease (AD); yet the relationship between BBB breakdown and AD-specific biomarkers based on the amyloid/tau/neurodegeneration framework is not clear. This study investigated the relationship between BBB permeability, AD-specific biomarkers, and cognition in patients with cognitive impairment. In this prospective study, we enrolled 62 participants with mild cognitive impairment or dementia between January 2019 and October 2020. All participants were assessed through cognitive tests, amyloid positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (MRI) for BBB permeability (Ktrans), cerebrospinal fluid studies for Aβ42/40 ratio, phosphorylated-tau Thr181 protein (p-tau), total tau protein (t-tau), and structural MRI for neurodegeneration. In amyloid PET (+) group, higher cortical Ktrans was associated with lower Aβ40 (r = -0.529 p = 0.003), higher Aβ42/40 ratio (r = 0.533, p = 0.003), lower p-tau (r = -0.452, p = 0.014) and lower hippocampal volume (r = -0.438, p = 0.017). In contrast, cortical Ktrans was positively related to t-tau level. (r = 0.489, p = 0.004) in amyloid PET (-) group. Our results suggest that BBB permeability is related to AD-specific biomarkers, but the relationship can vary by the presence of Aβ plaque accumulation.
Collapse
Affiliation(s)
- Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Hong Jun Jeon
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Noh Min-Young
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyoung Ja Kwon
- Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Won-Jin Moon
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Vu L, Garcia‐Mansfield K, Pompeiano A, An J, David‐Dirgo V, Sharma R, Venugopal V, Halait H, Marcucci G, Kuo Y, Uechi L, Rockne RC, Pirrotte P, Bowser R. Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression. Ann Clin Transl Neurol 2023; 10:2025-2042. [PMID: 37646115 PMCID: PMC10647001 DOI: 10.1002/acn3.51890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS We utilized mass spectrometry (MS)-based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state-transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state-transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP.
Collapse
Affiliation(s)
- Lucas Vu
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Krystine Garcia‐Mansfield
- Cancer & Cell Biology DivisionTranslational Genomics Research InstitutePhoenixArizona85004USA
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Antonio Pompeiano
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jiyan An
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Victoria David‐Dirgo
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Ritin Sharma
- Cancer & Cell Biology DivisionTranslational Genomics Research InstitutePhoenixArizona85004USA
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Vinisha Venugopal
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Harkeerat Halait
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Guido Marcucci
- Department of Hematologic Malignances Translational Science, Gehr Family Center for Leukemia ResearchBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Ya‐Huei Kuo
- Department of Hematologic Malignances Translational Science, Gehr Family Center for Leukemia ResearchBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Lisa Uechi
- Department of Computational and Quantitative MedicineBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Russell C. Rockne
- Department of Computational and Quantitative MedicineBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Patrick Pirrotte
- Cancer & Cell Biology DivisionTranslational Genomics Research InstitutePhoenixArizona85004USA
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Robert Bowser
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| |
Collapse
|
13
|
Garbuzova-Davis S, Borlongan CV. Transplanted Human Bone Marrow Endothelial Progenitor Cells Prolong Functional Benefits and Extend Survival of ALS Mice Likely via Blood-Spinal Cord Barrier Repair. Stem Cell Rev Rep 2023; 19:2284-2291. [PMID: 37354387 DOI: 10.1007/s12015-023-10579-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial disease with one of these factors being an impaired blood-spinal cord barrier (BSCB). In order to block harmful components in systemic circulation from accessing the CNS, barrier damage needs alleviation. Recently, we found that symptomatic ALS animals treated with intravenously delivered human bone marrow-derived CD34+ (hBM34+) cells or endothelial progenitor cells (hBMEPCs) showed delayed disease progression for 4 weeks post-transplant via BSCB repair. However, despite noted benefits from transplanted human bone marrow-derived stem cells, long-term effects of transplanted cells in ALS mice remain undetermined. This study aimed to determine prolonged effects of single equal doses of hBM34+ cells and hBMEPCs systemically transplanted into symptomatic G93A SOD1 mice on behavioral disease outcomes and mouse lifespan. Results showed that transplanted hBMEPCs better ameliorated disease behavioral outcomes than hBM34 + cells until near end-stage disease and significantly increased lifespan vs. media-treated mice. These results provide important evidence that transplanted hBMEPCs prolonged functional benefits and extended survival of ALS mice, potentially by repairing the damaged BSCB. However, due to modestly increased lifespan of hBMEPC-treated mice, repeated cell transplants into symptomatic ALS mice may more effectively delay motor function deficit and extend lifespan by continuous reparative processes via replacement of damaged endothelial cells during disease progression.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, United States of America.
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, United States of America.
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, United States of America
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, United States of America
| |
Collapse
|
14
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:648. [PMID: 37189395 PMCID: PMC10136045 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Steinruecke M, Lonergan RM, Selvaraj BT, Chandran S, Diaz-Castro B, Stavrou M. Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: Proposed mechanisms and clinical implications. J Cereb Blood Flow Metab 2023; 43:642-654. [PMID: 36704819 PMCID: PMC10108188 DOI: 10.1177/0271678x231153281] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There is strong evidence for blood-brain and blood-spinal cord barrier dysfunction at the early stages of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Since impairment of the blood-central nervous system barrier (BCNSB) occurs during the pre-symptomatic stages of ALS, the mechanisms underlying this pathology are likely also involved in the ALS disease process. In this review, we explore how drivers of ALS disease, particularly mitochondrial dysfunction, astrocyte pathology and neuroinflammation, may contribute to BCNSB impairment. Mitochondria are highly abundant in BCNSB tissue and mitochondrial dysfunction in ALS contributes to motor neuron death. Likewise, astrocytes adopt key physical, transport and metabolic functions at the barrier, many of which are impaired in ALS. Astrocytes also show raised expression of inflammatory markers in ALS and ablating ALS-causing transgenes in astrocytes slows disease progression. In addition, key drivers of neuroinflammation, including TAR DNA-binding protein 43 (TDP-43) pathology, matrix metalloproteinase activation and systemic inflammation, affect BCNSB integrity in ALS. Finally, we discuss the translational implications of BCNSB dysfunction in ALS, including the development of biomarkers for disease onset and progression, approaches aimed at restoring BCNSB integrity and in vitro modelling of the neurogliovascular system.
Collapse
Affiliation(s)
- Moritz Steinruecke
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.,University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Bhuvaneish T Selvaraj
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Blanca Diaz-Castro
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Molecular subtypes of ALS are associated with differences in patient prognosis. Nat Commun 2023; 14:95. [PMID: 36609402 PMCID: PMC9822908 DOI: 10.1038/s41467-022-35494-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with poorly understood clinical heterogeneity, underscored by significant differences in patient age at onset, symptom progression, therapeutic response, disease duration, and comorbidity presentation. We perform a patient stratification analysis to better understand the variability in ALS pathology, utilizing postmortem frontal and motor cortex transcriptomes derived from 208 patients. Building on the emerging role of transposable element (TE) expression in ALS, we consider locus-specific TEs as distinct molecular features during stratification. Here, we identify three unique molecular subtypes in this ALS cohort, with significant differences in patient survival. These results suggest independent disease mechanisms drive some of the clinical heterogeneity in ALS.
Collapse
|
17
|
Blood brain barrier-on-a-chip to model neurological diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Pan Y, Kagawa Y, Sun J, Turner BJ, Huang C, Shah AD, Schittenhelm RB, Nicolazzo JA. Altered Blood-Brain Barrier Dynamics in the C9orf72 Hexanucleotide Repeat Expansion Mouse Model of Amyotrophic Lateral Sclerosis. Pharmaceutics 2022; 14:pharmaceutics14122803. [PMID: 36559296 PMCID: PMC9783795 DOI: 10.3390/pharmaceutics14122803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For peripherally administered drugs to reach the central nervous system (CNS) and treat amyotrophic lateral sclerosis (ALS), they must cross the blood-brain barrier (BBB). As mounting evidence suggests that the ultrastructure of the BBB is altered in individuals with ALS and in animal models of ALS (e.g., SOD1G93A mice), we characterized BBB transporter expression and function in transgenic C9orf72 BAC (C9-BAC) mice expressing a hexanucleotide repeat expansion, the most common genetic cause of ALS. Using an in situ transcardiac brain perfusion technique, we identified a 1.4-fold increase in 3H-2-deoxy-D-glucose transport across the BBB in C9-BAC transgenic (C9) mice, relative to wild-type (WT) mice, which was associated with a 1.3-fold increase in brain microvascular glucose transporter 1 expression, while other general BBB permeability processes (passive diffusion, efflux transporter function) remained unaffected. We also performed proteomic analysis on isolated brain microvascular endothelial cells, in which we noted a mild (14.3%) reduction in zonula occludens-1 abundance in C9 relative to WT mice. Functional enrichment analysis highlighted trends in changes to various BBB transporters and cellular metabolism. To our knowledge, this is the first study to demonstrate altered BBB function in a C9orf72 repeat expansion model of ALS, which has implications on how therapeutics may access the brain in this mouse model.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA 6009, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anup D. Shah
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| |
Collapse
|
19
|
Monsour M, Garbuzova-Davis S, Borlongan CV. Patching Up the Permeability: The Role of Stem Cells in Lessening Neurovascular Damage in Amyotrophic Lateral Sclerosis. Stem Cells Transl Med 2022; 11:1196-1209. [PMID: 36181767 PMCID: PMC9801306 DOI: 10.1093/stcltm/szac072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating disease with poor prognosis. The pathophysiology of ALS is commonly debated, with theories involving inflammation, glutamate excitotoxity, oxidative stress, mitochondria malfunction, neurofilament accumulation, inadequate nutrients or growth factors, and changes in glial support predominating. These underlying pathological mechanisms, however, act together to weaken the blood brain barrier and blood spinal cord barrier, collectively considered as the blood central nervous system barrier (BCNSB). Altering the impermeability of the BCNSB impairs the neurovascular unit, or interdependent relationship between the brain and advances the concept that ALS is has a significant neurovascular component contributing to its degenerative presentation. This unique categorization of ALS opens a variety of treatment options targeting the reestablishment of BCNSB integrity. This review will critically assess the evidence implicating the significant neurovascular components of ALS pathophysiology, while also offering an in-depth discussion regarding the use of stem cells to repair these pathological changes within the neurovascular unit.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Corresponding author: Cesar V. Borlongan, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
20
|
Garbuzova-Davis S, Willing AE, Borlongan CV. Apolipoprotein A1 Enhances Endothelial Cell Survival in an In Vitro Model of ALS. eNeuro 2022; 9:ENEURO.0140-22.2022. [PMID: 35840315 PMCID: PMC9337612 DOI: 10.1523/eneuro.0140-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
Altered lipoprotein metabolism is considered a pathogenic component of amyotrophic lateral sclerosis (ALS). Apolipoprotein A1 (ApoA1), a major high-density lipoprotein (HDL) protein, is associated with prevention of vascular damage. However, ApoA1's effects on damaged endothelium in ALS are unknown. This study aimed to determine therapeutic potential of ApoA1 for endothelial cell (EC) repair under a pathologic condition reminiscent of ALS. We performed in vitro studies using mouse brain ECs (mBECs) exposed to plasma from symptomatic G93A SOD1 mice. Dosage effects of ApoA1, including inhibition of the phosphoinoside 3-kinase (PI3K)/Akt signaling pathway and integration of ApoA1 into mBECs were examined. Also, human bone marrow-derived endothelial progenitor cells (hBM-EPCs) and mBECs were co-cultured without cell contact to establish therapeutic mechanism of hBM-EPC transplantation. Results showed that ApoA1 significantly reduced mBEC death via the PI3K/Akt downstream signaling pathway. Also, ApoA1 was incorporated into mBECs as confirmed by blocked ApoA1 cellular integration. Co-culture system provided evidence that ApoA1 was secreted by hBM-EPCs and incorporated into injured mBECs. Thus, our study findings provide important evidence for ApoA1 as a potential novel therapeutic for endothelium protection in ALS. This in vitro study lays the groundwork for further in vivo research to fully determine therapeutic effects of ApoA1 in ALS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| | - Alison E Willing
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| |
Collapse
|
21
|
Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, Singla N, Jaiswal PK, Singh G, Barnwal RP. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain 2022; 15:49. [PMID: 35650613 PMCID: PMC9158215 DOI: 10.1186/s13041-022-00937-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
The integrity of the blood–brain barrier (BBB) is essential for normal central nervous system (CNS) functioning. Considering the significance of BBB in maintaining homeostasis and the neural environment, we aim to provide an overview of significant aspects of BBB. Worldwide, the treatment of neurological diseases caused by BBB disruption has been a major challenge. BBB also restricts entry of neuro-therapeutic drugs and hinders treatment modalities. Hence, currently nanotechnology-based approaches are being explored on large scale as alternatives to conventional methodologies. It is necessary to investigate the in-depth characteristic features of BBB to facilitate the discovery of novel drugs that can successfully cross the barrier and target the disease effectively. It is imperative to discover novel strategies to treat life-threatening CNS diseases in humans. Therefore, insights regarding building blocks of BBB, activation of immune response on breach of this barrier, and various autoimmune neurological disorders caused due to BBB dysfunction are discussed. Further, special emphasis is given on delineating BBB disruption leading to CNS disorders. Moreover, various mechanisms of transport pathways across BBB, several novel strategies, and alternative routes by which drugs can be properly delivered into CNS are also discussed.
Collapse
Affiliation(s)
- Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumedh Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shipali Thakur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Department of Biotechnology, UIET, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
22
|
Mirian A, Moszczynski A, Soleimani S, Aubert I, Zinman L, Abrahao A. Breached Barriers: A Scoping Review of Blood-Central Nervous System Barrier Pathology in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2022; 16:851563. [PMID: 35431812 PMCID: PMC9009245 DOI: 10.3389/fncel.2022.851563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Recent studies have implicated changes in the blood-central nervous system barriers (BCNSB) in amyotrophic lateral sclerosis (ALS). The objective of this scoping review is to synthesize the current evidence for BCNSB structure and functional abnormalities in ALS studies and propose how BCNSB pathology may impact therapeutic development. Methods A literature search was conducted using Ovid Medline, EMBASE, and Web of Science, from inception to November 2021 and limited to entries in English language. Simplified search strategy included the terms ALS/motor neuron disease and [BCNSB or blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB)]. Henceforth, BCNSB is used as a term that is inclusive of the BBB and BSCB. Four independent reviewers conducted a title and abstract screening, hand-searched the reference lists of review papers, and performed a full text review of eligible studies. Included studies were original peer-reviewed full text publications, evaluating the structure and function of the BCNSB in preclinical models of ALS, clinical ALS, or postmortem human ALS tissue. There was no restriction on study design. The four reviewers independently extracted the data. Results The search retrieved 2,221 non-duplicated articles and 48 original studies were included in the synthesis. There was evidence that the integrity of the BCNSB is disrupted throughout the course of the disease in rodent models, beginning prior to symptom onset and detectable neurodegeneration. Increased permeability, pharmacoresistance with upregulated efflux transporters, and morphological changes in the supporting cells of the BCNSB, including pericytes, astrocytes, and endothelial cells were observed in animal models. BCNSB abnormalities were also demonstrated in postmortem studies of ALS patients. Therapeutic interventions targeting BCNSB dysfunction were associated with improved motor neuron survival in animal models of ALS. Conclusion BCNSB structural and functional abnormalities are likely implicated in ALS pathophysiology and may occur upstream to neurodegeneration. Promising therapeutic strategies targeting BCNSB dysfunction have been tested in animals and can be translated into ALS clinical trials.
Collapse
Affiliation(s)
- Ario Mirian
- Clinical Neurological Sciences, Western University, London Health Sciences, London, ON, Canada
| | | | - Serena Soleimani
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
23
|
Addressing Blood–Brain Barrier Impairment in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040742. [PMID: 35453494 PMCID: PMC9029506 DOI: 10.3390/biomedicines10040742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the brain tissue. It facilitates communication while separating the peripheral circulation system from the brain parenchyma. However, normal aging and neurodegenerative diseases can alter and damage the physiological properties of the BBB. In this review, we first briefly present the essential pathways maintaining and regulating BBB integrity, and further review the mechanisms of BBB breakdown associated with normal aging and peripheral inflammation-causing neurodegeneration and cognitive impairments. We also discuss how BBB disruption can cause or contribute to Alzheimer’s disease (AD), the most common form of dementia and a devastating neurological disorder. Next, we document overlaps between AD and vascular dementia (VaD) and briefly sum up the techniques for identifying biomarkers linked to BBB deterioration. Finally, we conclude that BBB breakdown could be used as a biomarker to help diagnose cognitive impairment associated with normal aging and neurodegenerative diseases such as AD.
Collapse
|
24
|
Pan Y, Nicolazzo JA. Altered Blood-Brain Barrier and Blood-Spinal Cord Barrier Dynamics in Amyotrophic Lateral Sclerosis: Impact on Medication Efficacy and Safety. Br J Pharmacol 2022; 179:2577-2588. [PMID: 35048358 DOI: 10.1111/bph.15802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
The access of drugs into the central nervous system (CNS) is regulated by the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). A large body of evidence supports perturbation of these barriers in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Modifications to the BBB and BSCB are also reported in amyotrophic lateral sclerosis (ALS), albeit these modifications have received less attention relative to those in other neurodegenerative diseases. Such alterations to the BBB and BSCB have the potential to impact on CNS exposure of drugs in ALS, modulating the effectiveness of drugs intended to reach the brain and the toxicity of drugs that are not intended to reach the brain. Given the clinical importance of these phenomena, this review will summarise reported modifications to the BBB and BSCB in ALS, discuss their impact on CNS drug exposure and suggest further research directions so as to optimise medicine use in people with ALS.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
26
|
Sorrentino S, Polini A, Arima V, Romano A, Quattrini A, Gigli G, Mozetic P, Moroni L. Neurovascular signals in amyotrophic lateral sclerosis. Curr Opin Biotechnol 2021; 74:75-83. [PMID: 34800850 DOI: 10.1016/j.copbio.2021.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS) is a complex anatomic-functional unit that synergically works to maintain organs/tissues homeostasis of the entire body. NVS alterations have recently emerged as a common distinct feature in the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Despite their undeniable involvement, neurovascular signalling pathways remain still far unknown in ALS. This review underlines the importance of endothelial, mural, and fibroblast cells as novel targets for ALS investigation and identifies in the interplay between neuronal and vascular systems the way to disclose novel molecular mechanisms behind the pathogenesis of ALS.
Collapse
Affiliation(s)
- Stefano Sorrentino
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Polini
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Valentina Arima
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Romano
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Angelo Quattrini
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giuseppe Gigli
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Pamela Mozetic
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lorenzo Moroni
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229ER, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Prell T, Vlad B, Gaur N, Stubendorff B, Grosskreutz J. Blood-Brain Barrier Disruption Is Not Associated With Disease Aggressiveness in Amyotrophic Lateral Sclerosis. Front Neurosci 2021; 15:656456. [PMID: 34776835 PMCID: PMC8586537 DOI: 10.3389/fnins.2021.656456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of the fatal neurodegenerative condition amyotrophic lateral sclerosis (ALS) remains to be fully understood. Blood–brain barrier damage (BBBD) has been implicated as an exacerbating factor in several neurodegenerative conditions, including ALS. Therefore, this cross-sectional study used the novel D50 progression model to assess the clinical relevance of BBBD within a cohort of individuals with either ALS (n = 160) or ALS mimicking conditions (n = 31). Routine laboratory parameters in cerebrospinal fluid (CSF) and blood were measured, and the ratio of CSF to serum albumin levels (Qalb) was used as a proxy measure of BBBD. In the univariate analyses, Qalb levels correlated weakly with disease aggressiveness (as indicated by individual D50 values) and physical function (as measured by ALS Functional Rating Scale). However, after adjustment for cofactors in the elastic net regularization, only having limb-onset disease was associated with BBBD. The results reported here emphasize the clinical heterogeneity of ALS and the need for additional longitudinal and multi-modal studies to fully clarify the extent and effect of BBBD in ALS.
Collapse
Affiliation(s)
- Tino Prell
- Department of Geriatrics, Halle University Hospital, Jena, Germany
| | - Benjamin Vlad
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nayana Gaur
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Julian Grosskreutz
- Department of Neurology, Jena University Hospital, Jena, Germany.,Precision Neurology, University of Lüebeck, Lüebeck, Germany
| |
Collapse
|
28
|
Lan G, Wang P, Chan RB, Liu Z, Yu Z, Liu X, Yang Y, Zhang J. Astrocytic VEGFA: An essential mediator in blood-brain-barrier disruption in Parkinson's disease. Glia 2021; 70:337-353. [PMID: 34713920 DOI: 10.1002/glia.24109] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
The integrity of blood-brain-barrier (BBB) is essential for normal brain functions, synaptic remodeling, and angiogenesis. BBB disruption is a common pathology during Parkinson's disease (PD), and has been hypothesized to contribute to the progression of PD. However, the molecular mechanism of BBB disruption in PD needs further investigation. Here, A53T PD mouse and a 3-cell type in vitro BBB model were used to study the roles of α-synuclein (α-syn) in BBB disruption with the key results confirmed in the brains of PD patients obtained at autopsy. The A53T PD mouse studies showed that the expression of tight junction-related proteins decreased, along with increased vascular permeability and accumulation of oligomeric α-syn in activated astrocytes in the brain. The in vitro BBB model studies demonstrated that treatment with oligomeric α-syn, but not monomeric or fibrillar α-syn, resulted in significant disruption of BBB integrity. This process involved the expression and release of vascular endothelial growth factor A (VEGFA) and nitric oxide (NO) from oligomeric α-syn treated astrocytes. Increased levels of VEGFA and iNOS were also observed in the brain of PD patients. Blocking the VEGFA signaling pathway in the in vitro BBB model effectively protected the barrier against the harmful effects of oligomeric α-syn. Finally, the protective effects on BBB integrity associated with inhibition of VEGFA signaling pathway was also confirmed in PD mice. Taken together, our study concluded that oligomeric α-syn is critically involved in PD-associated BBB disruption, in a process that is mediated by astrocyte-derived VEGFA.
Collapse
Affiliation(s)
- Guoyu Lan
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Zongran Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaodan Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ying Yang
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Beneficial Effects of Transplanted Human Bone Marrow Endothelial Progenitors on Functional and Cellular Components of Blood-Spinal Cord Barrier in ALS Mice. eNeuro 2021; 8:ENEURO.0314-21.2021. [PMID: 34479980 PMCID: PMC8451202 DOI: 10.1523/eneuro.0314-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Convincing evidence of blood-spinal cord barrier (BSCB) alterations has been demonstrated in amyotrophic lateral sclerosis (ALS) and barrier repair is imperative to prevent motor neuron dysfunction. We showed benefits of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes. These gains likely occurred by replacement of damaged endothelial cells, prolonging motor neuron survival. However, additional investigations are needed to confirm the effects of administered cells on integrity of the microvascular endothelium. The aim of this study was to determine tight junction protein levels, capillary pericyte coverage, microvascular basement membrane, and endothelial filamentous actin (F-actin) status in spinal cord capillaries of G93A SOD1 mutant mice treated with human bone marrow-derived stem cells. Tight junction proteins were detected in the spinal cords of cell-treated versus non-treated mice via Western blotting at four weeks after transplant. Capillary pericyte, basement membrane laminin, and endothelial F-actin magnitudes were determined in cervical/lumbar spinal cord tissues in ALS mice, including controls, by immunohistochemistry and fluorescent staining. Results showed that cell-treated versus media-treated ALS mice substantially increased tight junction protein levels, capillary pericyte coverage, basement membrane laminin immunoexpressions, and endothelial cytoskeletal F-actin fluorescent expressions. The greatest benefits were detected in mice receiving hBM-EPCs versus hBM34+ cells. These study results support treatment with a specific cell type derived from human bone marrow toward BSCB repair in ALS. Thus, hBM-EPCs may be advanced for clinical applications as a cell-specific approach for ALS therapy through restored barrier integrity.
Collapse
|
30
|
Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun 2021; 9:144. [PMID: 34446086 PMCID: PMC8393479 DOI: 10.1186/s40478-021-01244-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving progressive degeneration of upper and lower motor neurons. The pattern of lower motor neuron loss along the spinal cord follows the pattern of deposition of phosphorylated TDP-43 aggregates. The blood-spinal cord barrier (BSCB) restricts entry into the spinal cord parenchyma of blood components that can promote motor neuron degeneration, but in ALS there is evidence for barrier breakdown. Here we sought to quantify BSCB breakdown along the spinal cord axis, to determine whether BSCB breakdown displays the same patterning as motor neuron loss and TDP-43 proteinopathy. Cerebrospinal fluid hemoglobin was measured in living ALS patients (n = 87 control, n = 236 ALS) as a potential biomarker of BSCB and blood–brain barrier leakage. Cervical, thoracic, and lumbar post-mortem spinal cord tissue (n = 5 control, n = 13 ALS) were then immunolabelled and semi-automated imaging and analysis performed to quantify hemoglobin leakage, lower motor neuron loss, and phosphorylated TDP-43 inclusion load. Hemoglobin leakage was observed along the whole ALS spinal cord axis and was most severe in the dorsal gray and white matter in the thoracic spinal cord. In contrast, motor neuron loss and TDP-43 proteinopathy were seen at all three levels of the ALS spinal cord, with most abundant TDP-43 deposition in the anterior gray matter of the cervical and lumbar cord. Our data show that leakage of the BSCB occurs during life, but at end-stage disease the regions with most severe BSCB damage are not those where TDP-43 accumulation is most abundant. This suggests BSCB leakage and TDP-43 pathology are independent pathologies in ALS.
Collapse
|
31
|
Wu YC, Sonninen TM, Peltonen S, Koistinaho J, Lehtonen Š. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells. Int J Mol Sci 2021; 22:7710. [PMID: 34299328 PMCID: PMC8307585 DOI: 10.3390/ijms22147710] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the delivery of oxygen and important nutrients to the brain through active and passive transport and prevents neurotoxins from entering the brain. It also has a clearance function and removes carbon dioxide and toxic metabolites from the central nervous system (CNS). Several drugs are unable to cross the BBB and enter the CNS, adding complexity to drug screens targeting brain disorders. A well-functioning BBB is essential for maintaining healthy brain tissue, and a malfunction of the BBB, linked to its permeability, results in toxins and immune cells entering the CNS. This impairment is associated with a variety of neurological diseases, including Alzheimer's disease and Parkinson's disease. Here, we summarize current knowledge about the BBB in neurodegenerative diseases. Furthermore, we focus on recent progress of using human-induced pluripotent stem cell (iPSC)-derived models to study the BBB. We review the potential of novel stem cell-based platforms in modeling the BBB and address advances and key challenges of using stem cell technology in modeling the human BBB. Finally, we highlight future directions in this area.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Tuuli-Maria Sonninen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Sanni Peltonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
32
|
Garbuzova-Davis S, Shell R, Mustafa H, Hailu S, Willing AE, Sanberg PR, Borlongan CV. Advancing Stem Cell Therapy for Repair of Damaged Lung Microvasculature in Amyotrophic Lateral Sclerosis. Cell Transplant 2021; 29:963689720913494. [PMID: 32207340 PMCID: PMC7444221 DOI: 10.1177/0963689720913494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron
degeneration in the brain and spinal cord. Progressive paralysis of
the diaphragm and other respiratory muscles leading to respiratory
dysfunction and failure is the most common cause of death in ALS
patients. Respiratory impairment has also been shown in animal models
of ALS. Vascular pathology is another recently recognized hallmark of
ALS pathogenesis. Central nervous system (CNS) capillary damage is a
shared disease element in ALS rodent models and ALS patients.
Microvascular impairment outside of the CNS, such as in the lungs, may
occur in ALS, triggering lung damage and affecting breathing function.
Stem cell therapy is a promising treatment for ALS. However, this
therapeutic strategy has primarily targeted rescue of degenerated
motor neurons. We showed functional benefits from intravenous delivery
of human bone marrow (hBM) stem cells on restoration of capillary
integrity in the CNS of an superoxide dismutase 1 (SOD1) mouse model
of ALS. Due to the widespread distribution of transplanted cells via
this route, administered cells may enter the lungs and effectively
restore microvasculature in this respiratory organ. Here, we provided
preliminary evidence of the potential role of microvasculature
dysfunction in prompting lung damage and treatment approaches for
repair of respiratory function in ALS. Our initial studies showed
proof-of-principle that microvascular damage in ALS mice results in
lung petechiae at the late stage of disease and that systemic
transplantation of mainly hBM-derived endothelial progenitor cells
shows potential to promote lung restoration via re-established
vascular integrity. Our new understanding of previously underexplored
lung competence in this disease may facilitate therapy targeting
restoration of respiratory function in ALS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Robert Shell
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hilmi Mustafa
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Surafuale Hailu
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Alison E Willing
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
33
|
Zhang L, López-Picón FR, Jia Y, Chen Y, Li J, Han C, Zhuang X, Xia H. Longitudinal [ 18F]FDG and [ 13N]NH 3 PET/CT imaging of brain and spinal cord in a canine hemisection spinal cord injury model. Neuroimage Clin 2021; 31:102692. [PMID: 33992987 PMCID: PMC8134064 DOI: 10.1016/j.nicl.2021.102692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/06/2022]
Abstract
To further understand the neurological changes induced by spinal cord injury (SCI) in its acute and subacute stages, we evaluated longitudinal changes in glucose and glutamate metabolism in the spinal cord and brain regions of a canine hemisection SCI model. [18F]FDG and [13N]NH3 positron-emission tomography (PET) with computed tomography (CT) was performed before SCI and at 1, 3, 7, 14, and 21 days after SCI. Spinal cord [18F]FDG uptake increased and peaked at 3 days post SCI. Similar changes were observed in the brain regions but were not statistically significant. Compared to the acute phase of SCI, [13N]NH3 uptake increased in the subacute stage and peaked at 7 days post SCI in all analyzed brain regions. But in spinal cord, no [13N]NH3 uptake was detected before SCI when the blood-spinal cord barrier (BSCB) was intact, then gradually increased when the BSCB was damaged after SCI. [13N]NH3 uptake was significantly correlated with plasma levels of the BSCB disruption marker, monocyte chemoattractant protein-1 (MCP-1). Overall, we showed that SCI induced in vivo changes in glucose uptake in both the spinal cord and the examined brain regions, and changes in glutamine synthetase activity in the latter. Moreover, our results suggest that [13N]NH3 PET may serve as a potential method for assessing BSCB permeability in vivo.
Collapse
Affiliation(s)
- Lijian Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Francisco R López-Picón
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Yingqin Jia
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yao Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Li
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chunlei Han
- Clinical Imaging Laboratory, Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Xiaoqing Zhuang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
34
|
Melnick M, Gonzales P, LaRocca TJ, Song Y, Wuu J, Benatar M, Oskarsson B, Petrucelli L, Dowell RD, Link CD, Prudencio M. Application of a bioinformatic pipeline to RNA-seq data identifies novel viruslike sequence in human blood. G3-GENES GENOMES GENETICS 2021; 11:6259144. [PMID: 33914880 PMCID: PMC8661426 DOI: 10.1093/g3journal/jkab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Numerous reports have suggested that infectious agents could play a role in neurodegenerative diseases, but specific etiological agents have not been convincingly demonstrated. To search for candidate agents in an unbiased fashion, we have developed a bioinformatic pipeline that identifies microbial sequences in mammalian RNA-seq data, including sequences with no significant nucleotide similarity hits in GenBank. Effectiveness of the pipeline was tested using publicly available RNA-seq data and in a reconstruction experiment using synthetic data. We then applied this pipeline to a novel RNA-seq dataset generated from a cohort of 120 samples from amyotrophic lateral sclerosis patients and controls, and identified sequences corresponding to known bacteria and viruses, as well as novel virus-like sequences. The presence of these novel virus-like sequences, which were identified in subsets of both patients and controls, were confirmed by quantitative RT-PCR. We believe this pipeline will be a useful tool for the identification of potential etiological agents in the many RNA-seq datasets currently being generated.
Collapse
Affiliation(s)
- Marko Melnick
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| | - Robin D Dowell
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, 80303, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| |
Collapse
|
35
|
Abstract
Cigarette smoke (CS) has been consistently demonstrated to be an environmental risk factor for amyotrophic lateral sclerosis (ALS), although the molecular pathogenic mechanisms involved are yet to be elucidated. Here, we propose different mechanisms by which CS exposure can cause sporadic ALS pathogenesis. Oxidative stress and neuroinflammation are widely implicated in ALS pathogenesis, with blood–spinal cord barrier disruption also recognised to be involved in the disease process. In addition, immunometabolic, epigenetic and microbiome alterations have been implicated in ALS recently. Identification of the underlying pathophysiological mechanisms that underpin CS-associated ALS will drive future research to be conducted into new targets for treatment.
Collapse
|
36
|
Banerjee A, Pradhan LK, Sahoo PK, Jena KK, Chauhan NR, Chauhan S, Das SK. Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Arch Microbiol 2021; 203:2895-2910. [PMID: 33763767 DOI: 10.1007/s00203-021-02276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Increasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases. Contrarily, the present life style with changing food habits and disturbed circadian rhythm may contribute to gut homeostatic imbalance and dysbiosis leading to progression of several neurological disorders. Therefore, dysbiosis, as a primary factor behind intestinal disorders, may also augment inflammation, intestinal and blood-brain barrier permeability through microbiota-gut-brain axis. This review primarily focuses on the gut-brain axis functions, specific gut microbial population, metabolites produced by gut microbiota, their role in regulating various metabolic processes and role of gut microbiota towards development of neurodegenerative diseases. However, several studies have reported a decrease in abundance of a specific gut microbial population and a corresponding increase in other microbial family, with few findings revealing some contradictions. Reports also showed that colonization of gut microbiota isolated from patients suffering from neurodegenerative disease leads to the development of enhance pathological outcomes in animal models. Hence, a systematic understanding of the dominant role of specific gut microbiome towards development of different neurodegenerative diseases could possibly provide novel insight into the use of probiotics and microbial transplantation as a substitute approach for treating/preventing such health maladies.
Collapse
Affiliation(s)
- Ankita Banerjee
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Kautilya Kumar Jena
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Nishant Ranjan Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
37
|
ALS-causing SOD1 mutants regulate occludin phosphorylation/ubiquitination and endocytic trafficking via the ITCH/Eps15/Rab5 axis. Neurobiol Dis 2021; 153:105315. [PMID: 33636390 DOI: 10.1016/j.nbd.2021.105315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
It is increasingly recognized that blood-spinal cord barrier (BSCB) breakdown is a hallmark of amyotrophic lateral sclerosis (ALS). BSCB integrity is disrupted prior to disease onset. Occludin, as the functional component of the endothelial barrier, is downregulated in mouse models expressing ALS-linked superoxide dismutase-1 (SOD1) mutants. However, the molecular mechanisms underlying the regulation of occludin expression remain elusive. Here, using SOD1G93A transgenic mice and endothelial cells expressing SOD1 mutants of different biochemical characteristics, we found that the SOD1 mutation disrupted endothelial barrier integrity and that the occludin expression level was downregulated with disease progression. Our mechanistic studies revealed that abnormal reactive oxygen species (ROS) in mutant SOD1-expressing cells induced occludin phosphorylation, which facilitated the subsequent occludin ubiquitination mediated by the E3 ligase ITCH. Moreover, ubiquitinated occludin interacted with Eps15 to initiate its internalization, then trafficked to Rab5-positive vesicles and be degraded by proteasomes, resulting in a reduction in cell surface localization and total abundance. Notably, either ITCH or Eps15 knockdown was sufficient to rescue occludin degradation and ameliorate endothelial barrier disruption. In conclusion, our study reveals a novel mechanism of occludin degradation mediated by ALS-causing SOD1 mutants and demonstrates a role for occludin in regulating BSCB integrity.
Collapse
|
38
|
Detection of endothelial cell-associated human DNA reveals transplanted human bone marrow stem cell engraftment into CNS capillaries of ALS mice. Brain Res Bull 2021; 170:22-28. [PMID: 33545308 DOI: 10.1016/j.brainresbull.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Repairing the altered blood-CNS-barrier in amyotrophic lateral sclerosis (ALS) is imperative to prevent entry of detrimental blood-borne substances into the CNS. Cell transplantation with the goal of replacing damaged endothelial cells (ECs) may be a new therapeutic approach for barrier restoration. We showed positive effects of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes. These benefits mainly occurred by administered cells engraftment into vascular walls in ALS mice; however, additional studies are needed to confirm cell engraftment within capillaries. The aim of this investigation was to determine the presence of human DNA within microvascular ECs isolated from the CNS tissues of G93A SOD1 mutant mice treated with human bone marrow-derived stem cells. The CNS tissues were obtained from previously cell-treated and media-treated G93A mice at 17 weeks of age. Real-time PCR (RT-PCR) assay for detection of human DNA was performed in ECs isolated from mouse CNS tissue. Viability of these ECs was determined using the LIVE/DEAD viability/cytotoxicity assay. Results showed appropriate EC isolation as verified by immunoexpression of endothelial cell marker. Human DNA was detected in isolated ECs from cell-treated mice with greater concentrations in mice receiving hBM-EPCs vs. hBM34+ cells. Also, higher numbers of live ECs were determined in mice treated with hBM-EPCs vs. hBM34+ cells or media-injection. Results revealed that transplanted human cells engrafted into mouse capillary walls and efficaciously maintained endothelium function. These study results support our previous findings showing that intravenous administration of hBM-EPCs into symptomatic ALS mice was more beneficial than hBM34+ cell treatment in repair of barrier integrity, likely due to replacement of damaged ECs in mouse CNS vessels. Based on this evidence, hBM-EPCs may be advanced as a cell-specific approach for ALS therapy through restored CNS barrier integrity.
Collapse
|
39
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
40
|
Ferrer I, Andrés-Benito P, Carmona M, Assialioui A, Povedano M. TDP-43 Vasculopathy in the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis (sALS) and Frontal Cortex in sALS/FTLD-TDP. J Neuropathol Exp Neurol 2021; 80:229-239. [PMID: 33421065 PMCID: PMC7899266 DOI: 10.1093/jnen/nlaa162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum.
Collapse
Affiliation(s)
- Isidro Ferrer
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Andrés-Benito
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Abdelilah Assialioui
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Utrecht, The Netherlands
| |
Collapse
|
41
|
Rajib D. Central nervous system diseases associated with blood brain barrier breakdown - A Comprehensive update of existing literatures. ACTA ACUST UNITED AC 2020. [DOI: 10.29328/journal.jnnd.1001035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood vessels that supply and feed the central nervous system (CNS) possess unique and exclusive properties, named as blood–brain barrier (BBB). It is responsible for tight regulation of the movement of ions, molecules, and cells between the blood and the brain thereby maintaining controlled chemical composition of the neuronal milieu required for appropriate functioning. It also protects the neural tissue from toxic plasma components, blood cells and pathogens from entering the brain. In this review the importance of BBB and its disruption causing brain pathology and progression to different neurological diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) etc. will be discussed.
Collapse
|
42
|
The Role of Neurovascular System in Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4373-4393. [PMID: 32725516 DOI: 10.1007/s12035-020-02023-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS), which consisted of neurons, glia, and vascular cells, is a functional and structural unit of the brain. The NVS regulates blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), thereby maintaining the brain's microenvironment for normal functioning, neuronal survival, and information processing. Recent studies have highlighted the role of vascular dysfunction in several neurodegenerative diseases. This is not unexpected since both nervous and vascular systems are functionally interdependent and show close anatomical apposition, as well as similar molecular pathways. However, despite extensive research, the precise mechanism by which neurovascular dysfunction contributes to neurodegeneration remains incomplete. Therefore, understanding the mechanisms of neurovascular dysfunction in disease conditions may allow us to develop potent and effective therapies for prevention and treatment of neurodegenerative diseases. This review article summarizes the current research in the context of neurovascular signaling associated with neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss the potential implication of neurovascular factor as a novel therapeutic target and prognostic marker in patients with neurodegenerative conditions. Graphical Abstract.
Collapse
|
43
|
Kumar V, Lee JD, Coulson EJ, Woodruff TM. A validated quantitative method for the assessment of neuroprotective barrier impairment in neurodegenerative disease models. J Neurochem 2020; 158:807-817. [PMID: 32628780 DOI: 10.1111/jnc.15119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) are highly specialized structures that limit molecule entry from the blood and maintain homeostasis within the central nervous system (CNS). BBB and BSCB breakdown are associated with multiple neurodegenerative diseases. Given the key role of neuroprotective barrier impairment in neurodegeneration, it is important to identify an effective quantitative method to assess barrier integrity in animal models. In this study, we developed and validated a quantitative method for assessing BBB and BSCB integrity using sodium fluorescein, a compound that outperformed other fluorescent dyes. We demonstrated using this method that multiple CNS regions progressively increase in permeability in models of Huntington's disease and amyotrophic lateral sclerosis, whereas biphasic disruption occurred in a mouse model of Alzheimer's disease with disease progression. Collectively, we report a quantitative fluorometric marker with validated reproducible experimental methods that allows the effective assessment of BBB and BSCB integrity in animal models. This method could be useful to further the understanding of the contribution of these neuroprotective barriers to neurodegeneration processes.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Qld, Australia
| |
Collapse
|
44
|
Saul J, Hutchins E, Reiman R, Saul M, Ostrow LW, Harris BT, Van Keuren-Jensen K, Bowser R, Bakkar N. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2020; 8:92. [PMID: 32586411 PMCID: PMC7318439 DOI: 10.1186/s40478-020-00968-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) is a highly vascularized structure located in the ventricles that forms the blood-CSF barrier (BCSFB) and separates the blood from the cerebrospinal fluid (CSF). In addition to its role as a physical barrier, the CP functions in CSF secretion, transport of nutrients into the central nervous system (CNS) and a gated point of entry of circulating immune cells into the CNS. Aging and neurodegeneration have been reported to affect CP morphology and function and increase protein leakage from blood to the CSF. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease associated with both upper and lower motor neuron loss, as well as altered proteomic and metabolomic signatures in the CSF. The role of the BCSFB and the CP in ALS is unknown. Here we describe a transcriptomic and ultrastructural analysis of BCSFB and CP alterations in human postmortem tissues from ALS and non-neurologic disease controls. ALS-CP exhibited widespread disruptions in tight junctional components of the CP epithelial layer and vascular integrity. In addition, we detected loss of pericytes around ALS blood vessels, accompanied by activation of platelet aggregation markers vWF and Fibrinogen, reminiscent of vascular injury. To investigate the immune component of ALS-CP, we conducted a comprehensive analysis of cytokines and chemokine panels in CP lysates and found a significant down-regulation of M-CSF and V-CAM1 in ALS, as well as up-regulation of VEGF-A protein. This phenotype was accompanied by an infiltration of MERTK positive macrophages into the parenchyma of the ALS-CP when compared to controls. Taken together, we demonstrate widespread structural and functional disruptions of the BCSFB in human ALS increasing our understanding of the disease pathology and identifying potential new targets for ALS therapeutic development.
Collapse
|
45
|
Liu Z, Cheng X, Zhong S, Zhang X, Liu C, Liu F, Zhao C. Peripheral and Central Nervous System Immune Response Crosstalk in Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:575. [PMID: 32612503 PMCID: PMC7308438 DOI: 10.3389/fnins.2020.00575] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by muscle weakness due to the degeneration of the upper and lower motor neurons. Neuroinflammation is known as a prominent pathological feature of ALS. Although neuroinflammation cannot trigger ALS, activated central nervous system (CNS) microglia and astrocytes, proinflammatory periphery monocytes/macrophages and T lymphocytes, and infiltrated monocytes/macrophages and T lymphocytes, as well as the immunoreactive molecules they release, are closely related to disease progression. The crosstalk between the peripheral and CNS immune components mentioned above significantly correlates with survival in patients with ALS. This review provides an update on the role of this crosstalk between the CNS and peripheral immune responses in ALS. Additionally, we discuss changes in the composition of gut microbiota because these can directly or indirectly influence this crosstalk. These recent advances may well provide innovative ways for targeting the molecules associated with this crosstalk and breaking the current treatment impasse in ALS.
Collapse
Affiliation(s)
- Zhouyang Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiuchun Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chang Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
- Stroke Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
47
|
Zhao W, Beers DR, Thonhoff JR, Thome AD, Faridar A, Wang J, Wen S, Ornelas L, Sareen D, Goodridge HS, Svendsen CN, Appel SH. Immunosuppressive Functions of M2 Macrophages Derived from iPSCs of Patients with ALS and Healthy Controls. iScience 2020; 23:101192. [PMID: 32521508 PMCID: PMC7286967 DOI: 10.1016/j.isci.2020.101192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disorder with immune alterations that augment disease severity. M2 macrophages benefit diabetic and nephrotic mice by suppressing the pro-inflammatory state. However, neither have M2 cells been investigated in ALS nor have human induced pluripotent stem cell (iPSC)-derived M2 cells been thoroughly studied for immunosuppressive potentials. Here, iPSCs of C9orf72 mutated or sporadic ALS patients were differentiated into M2 macrophages, which suppressed activation of pro-inflammatory M1 macrophages as well as proliferation of ALS CD4+CD25- Tc (Teffs). M2 cells converted ALS Teffs into CD4+CD25+Foxp3+ regulatory T cells (Tregs) and rescued Tregs of ALS patients from losing CD25 and Foxp3. Furthermore, Tregs induced or rescued by iPSC-derived M2 had strong suppressive functions. ALS iPSC-derived M2 cells including those with C9orf72 mutation had similar immunomodulatory activity as control iPSC-derived M2 cells. This study demonstrates that M2 cells differentiated from iPSCs of ALS patients are immunosuppressive, boost ALS Tregs, and may serve as a candidate for immune-cell-based therapy to mitigate inflammation in ALS.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA
| | - David R Beers
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA
| | - Jason R Thonhoff
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA
| | - Aaron D Thome
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA
| | - Alireza Faridar
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA
| | - Jinghong Wang
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA
| | - Shixiang Wen
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA
| | - Loren Ornelas
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA 90069, USA
| | - Dhruv Sareen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA 90069, USA
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stanley H Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Yu X, Ji C, Shao A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Front Neurosci 2020; 14:334. [PMID: 32410936 PMCID: PMC7201055 DOI: 10.3389/fnins.2020.00334] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU), composed of vascular cells, glial cells, and neurons, is the minimal functional unit of the brain. The NVU maintains integrity of the blood–brain barrier (BBB) and regulates supply of the cerebral blood flow (CBF), both of which are keys to maintaining normal brain function. BBB dysfunction and a decreased CBF are early pathophysiological changes in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this review, we primarily focus on the NVU in AD as much research has been performed on the connection between NVU dysfunction and AD. We also discuss the role of NVU dysfunction in the pathophysiological mechanisms of PD and ALS. As most neurodegenerative diseases are difficult to treat, we discuss several potential drug targets that focus on the NVU that may inform novel vascular-targeted therapies for AD, PD, and ALS.
Collapse
Affiliation(s)
- Xing Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Ji
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res Bull 2020; 160:121-140. [PMID: 32315731 DOI: 10.1016/j.brainresbull.2020.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Barriers are the hallmark of a healthy physiology, blood-brain barrier (BBB) being a tough nut to crack for most of the antigens and chemical substances. The presence of tight junctions plays a remarkable role in defending the brain from antigenic and pathogenic attacks. BBB constitutes a diverse assemblage of multiple physical and chemical barriers that judiciously restrict the flux of blood solutes into and out of the brain. Restrictions through the paracellular pathway and the tight junctions between intercellular clefts, together create well regulated metabolic and transport barricades, critical to brain pathophysiology. The brain being impermeable to many essential metabolites and nutrients regulates transportation via specialized transport systems across the endothelial abluminal and luminal membranes. The epithelial cells enveloping capillaries of the choroid plexus regulates the transport of complement, growth factors, hormones, microelements, peptides and trace elements into ventricles. Nerve terminals, microglia, and pericytes associated with the endothelium support barrier induction and function, ensuring an optimally stable ionic microenvironment that facilitates neurotransmission, orchestrated by multiple ion channels (Na+, K+ Mg2+, Ca2+) and transporters. Brain pathology which can develop due to genetic mutations or secondary to other cerebrovascular, neurodegenerative diseases can cause aberration in the microvasculature of CNS which is the uniqueness of BBB. This can also alter BBB permeation and result in BBB breakdown and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The concluding section outlines contemporary trends in drug discovery, focusing on molecular determinants of BBB permeation and novel drug-delivery systems, such as dendrimers, liposomes, nanoparticles, nanogels, etc.
Collapse
|
50
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|