1
|
Wang J, Christensen D, Coombes SA, Wang Z. Cognitive and brain morphological deviations in middle-to-old aged autistic adults: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 163:105782. [PMID: 38944227 PMCID: PMC11283673 DOI: 10.1016/j.neubiorev.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Cognitive challenges and brain structure variations are common in autism spectrum disorder (ASD) but are rarely explored in middle-to-old aged autistic adults. Cognitive deficits that overlap between young autistic individuals and elderlies with dementia raise an important question: does compromised cognitive ability and brain structure during early development drive autistic adults to be more vulnerable to pathological aging conditions, or does it protect them from further decline? To answer this question, we have synthesized current theoretical models of aging in ASD and conducted a systematic literature review (Jan 1, 1980 - Feb 29, 2024) and meta-analysis to summarize empirical studies on cognitive and brain deviations in middle-to-old aged autistic adults. We explored findings that support different aging theories in ASD and addressed study limitations and future directions. This review sheds light on the poorly understood consequences of aging question raised by the autism community to pave the way for future studies to identify sensitive and reliable measures that best predict the onset, progression, and prognosis of pathological aging in ASD.
Collapse
Affiliation(s)
- Jingying Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Danielle Christensen
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zheng Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA.
| |
Collapse
|
2
|
Tazwar M, Evia AM, Ridwan AR, Leurgans SE, Bennett DA, Schneider JA, Arfanakis K. Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is associated with abnormalities in white matter structural integrity and connectivity: An ex-vivo diffusion MRI and pathology investigation. Neurobiol Aging 2024; 140:81-92. [PMID: 38744041 PMCID: PMC11182335 DOI: 10.1016/j.neurobiolaging.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Limbic predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is common in older adults and is associated with neurodegeneration, cognitive decline and dementia. In this MRI and pathology investigation we tested the hypothesis that LATE-NC is associated with abnormalities in white matter structural integrity and connectivity of a network of brain regions typically harboring TDP-43 inclusions in LATE, referred to here as the "LATE-NC network". Ex-vivo diffusion MRI and detailed neuropathological data were collected on 184 community-based older adults. Linear regression revealed an independent association of higher LATE-NC stage with lower diffusion anisotropy in a set of white matter connections forming a pattern of connectivity that is consistent with the stereotypical spread of this pathology in the brain. Graph theory analysis revealed an association of higher LATE-NC stage with weaker integration and segregation in the LATE-NC network. Abnormalities were significant in stage 3, suggesting that they are detectable in later stages of the disease. Finally, LATE-NC network abnormalities were associated with faster cognitive decline, specifically in episodic and semantic memory.
Collapse
Affiliation(s)
- Mahir Tazwar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Arnold M Evia
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Abdur Raquib Ridwan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Zhang S, Yuan J, Sun Y, Wu F, Liu Z, Zhai F, Zhang Y, Somekh J, Peleg M, Zhu YC, Huang Z. Machine learning on longitudinal multi-modal data enables the understanding and prognosis of Alzheimer's disease progression. iScience 2024; 27:110263. [PMID: 39040055 PMCID: PMC11261013 DOI: 10.1016/j.isci.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease (AD) is a complex pathophysiological disease. Allowing for heterogeneity, not only in disease manifestations but also in different progression patterns, is critical for developing effective disease models that can be used in clinical and research settings. We introduce a machine learning model for identifying underlying patterns in Alzheimer's disease (AD) trajectory using longitudinal multi-modal data from the ADNI cohort and the AIBL cohort. Ten biologically and clinically meaningful disease-related states were identified from data, which constitute three non-overlapping stages (i.e., neocortical atrophy [NCA], medial temporal atrophy [MTA], and whole brain atrophy [WBA]) and two distinct disease progression patterns (i.e., NCA → WBA and MTA → WBA). The index of disease-related states provided a remarkable performance in predicting the time to conversion to AD dementia (C-Index: 0.923 ± 0.007). Our model shows potential for promoting the understanding of heterogeneous disease progression and early predicting the conversion time to AD dementia.
Collapse
Affiliation(s)
- Suixia Zhang
- Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, P.R. China
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830017, China
| | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yu Sun
- Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, P.R. China
| | - Fei Wu
- Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, P.R. China
| | - Ziyue Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Feifei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yaoyun Zhang
- DAMO Academy, Alibaba Group, 969 Wenyixi Rd, Hangzhou 310058, P.R. China
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa 3303220, Israel
| | - Mor Peleg
- Department of Information Systems, University of Haifa, Haifa 3303220, Israel
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhengxing Huang
- Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, P.R. China
| | - for the Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Study of Aging
- Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, P.R. China
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- DAMO Academy, Alibaba Group, 969 Wenyixi Rd, Hangzhou 310058, P.R. China
- Department of Information Systems, University of Haifa, Haifa 3303220, Israel
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
4
|
Chiu SY, Chen R, Wang WE, Armstrong MJ, Boeve BF, Savica R, Ramanan V, Fields JA, Graff-Radford N, Ferman TJ, Kantarci K, Vaillancourt DE. Longitudinal Free-Water Changes in Dementia with Lewy Bodies. Mov Disord 2024; 39:836-846. [PMID: 38477399 PMCID: PMC11102324 DOI: 10.1002/mds.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/06/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diffusion-weighted magnetic resonance imaging (dMRI) examines tissue microstructure integrity in vivo. Prior dementia with Lewy bodies (DLB) diffusion tensor imaging studies yielded mixed results. OBJECTIVE We employed free-water (FW) imaging to assess DLB progression and correlate with clinical decline in DLB. METHODS Baseline and follow-up MRIs were obtained at 12 and/or 24 months for 27 individuals with DLB or mild cognitive impairment with Lewy bodies (MCI-LB). FW was analyzed using the Mayo Clinic Adult Lifespan Template. Primary outcomes were FW differences between baseline and 12 or 24 months. To compare FW change longitudinally, we included 20 cognitively unimpaired individuals from the Alzheimer's Disease Neuroimaging Initiative. RESULTS We followed 23 participants to 12 months and 16 participants to 24 months. Both groups had worsening in Montreal Cognitive Assessment (MoCA) and Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores. We found significant FW increases at both time points compared to baseline in the insula, amygdala, posterior cingulum, parahippocampal, entorhinal, supramarginal, fusiform, retrosplenial, and Rolandic operculum regions. At 24 months, we found more widespread microstructural changes in regions implicated in visuospatial processing, motor, and cholinergic functions. Between-group analyses (DLB vs. controls) confirmed significant FW changes over 24 months in most of these regions. FW changes were associated with longitudinal worsening of MDS-UPDRS and MoCA scores. CONCLUSIONS FW increased in gray and white matter regions in DLB, likely due to neurodegenerative pathology associated with disease progression. FW change was associated with clinical decline. The findings support dMRI as a promising tool to track disease progression in DLB. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shannon Y. Chiu
- Department of Neurology, University of Florida, Gainesville, FL
- Department of Neurology, Mayo Clinic, Scottsdale, AZ
| | - Robin Chen
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL
| | - Wei-en Wang
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL
| | | | | | | | | | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | | | - Tanis J. Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- Department of Neuroradiology, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
5
|
Singh NA, Goodrich AW, Graff-Radford J, Machulda MM, Sintini I, Carlos AF, Robinson CG, Reid RI, Lowe VJ, Jack CR, Petersen RC, Boeve BF, Josephs KA, Kantarci K, Whitwell JL. Altered structural and functional connectivity in Posterior Cortical Atrophy and Dementia with Lewy bodies. Neuroimage 2024; 290:120564. [PMID: 38442778 PMCID: PMC11019668 DOI: 10.1016/j.neuroimage.2024.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/07/2024] Open
Abstract
Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) show distinct atrophy and overlapping hypometabolism profiles, but it is unknown how disruptions in structural and functional connectivity compare between these disorders and whether breakdowns in connectivity relate to either atrophy or hypometabolism. Thirty amyloid-positive PCA patients, 24 amyloid-negative DLB patients and 30 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN, and underwent a 3T head MRI, including structural MRI, resting state functional MRI (rsfMRI) and diffusion tensor imaging (DTI) sequences, as well as [18F] fluorodeoxyglucose (FDG) PET. We assessed functional connectivity within and between 12 brain networks using rsfMRI and the CONN functional connectivity toolbox and calculated regional DTI metrics using the Johns Hopkins atlas. Multivariate linear-regression models corrected for multiple comparisons and adjusted for age and sex compared DTI metrics and within-network and between-network functional connectivity across groups. Regional gray-matter volumes and FDG-PET standard uptake value ratios (SUVRs) were calculated and analyzed at the voxel-level using SPM12. We used univariate linear-regression models to investigate the relationship between connectivity measures, gray-matter volume, and FDG-PET SUVR. On DTI, PCA showed degeneration in occipito-parietal white matter, posterior thalamic radiations, splenium of the corpus collosum and sagittal stratum compared to DLB and CU, with greater degeneration in the temporal white matter and the fornix compared to CU. We observed no white-matter degeneration in DLB compared to CU. On rsfMRI, reduced within-network connectivity was present in dorsal and ventral default mode networks (DMN) and the dorsal-attention network in PCA compared to DLB and CU, with reduced within-network connectivity in the visual and sensorimotor networks compared to CU. DLB showed reduced connectivity in the cerebellar network compared to CU. Between-network analysis showed increased connectivity in both cerebellar-to-sensorimotor and cerebellar-to-dorsal attention network connectivity in PCA and DLB. PCA showed reduced anterior DMN-to-cerebellar and dorsal attention-to-sensorimotor connectivity, while DLB showed reduced posterior DMN-to-sensorimotor connectivity compared to CU. PCA showed reduced dorsal DMN-to-visual connectivity compared to DLB. The multimodal analysis revealed weak associations between functional connectivity and volume in PCA, and between functional connectivity and metabolism in DLB. These findings suggest that PCA and DLB have unique connectivity alterations, with PCA showing more widespread disruptions in both structural and functional connectivity; yet some overlap was observed with both disorders showing increased connectivity from the cerebellum.
Collapse
Affiliation(s)
| | - Austin W Goodrich
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States
| | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Department of Information Technology, Mayo Clinic, Rochester, MN, United States
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
6
|
Mak E, Reid RI, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Raghavan S, Vemuri P, Jack CR, Min HK, Jain MK, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Dickson DW, Graff-Radford NR, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, O'Brien JT, Kantarci K. Influences of amyloid-β and tau on white matter neurite alterations in dementia with Lewy bodies. NPJ Parkinsons Dis 2024; 10:76. [PMID: 38570511 PMCID: PMC10991290 DOI: 10.1038/s41531-024-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a neurodegenerative condition often co-occurring with Alzheimer's disease (AD) pathology. Characterizing white matter tissue microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) may help elucidate the biological underpinnings of white matter injury in individuals with DLB. In this study, diffusion tensor imaging (DTI) and NODDI metrics were compared in 45 patients within the dementia with Lewy bodies spectrum (mild cognitive impairment with Lewy bodies (n = 13) and probable dementia with Lewy bodies (n = 32)) against 45 matched controls using conditional logistic models. We evaluated the associations of tau and amyloid-β with DTI and NODDI parameters and examined the correlations of AD-related white matter injury with Clinical Dementia Rating (CDR). Structural equation models (SEM) explored relationships among age, APOE ε4, amyloid-β, tau, and white matter injury. The DLB spectrum group exhibited widespread white matter abnormalities, including reduced fractional anisotropy, increased mean diffusivity, and decreased neurite density index. Tau was significantly associated with limbic and temporal white matter injury, which was, in turn, associated with worse CDR. SEM revealed that amyloid-β exerted indirect effects on white matter injury through tau. We observed widespread disruptions in white matter tracts in DLB that were not attributed to AD pathologies, likely due to α-synuclein-related injury. However, a fraction of the white matter injury could be attributed to AD pathology. Our findings underscore the impact of AD pathology on white matter integrity in DLB and highlight the utility of NODDI in elucidating the biological basis of white matter injury in DLB.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Hoon Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Manoj K Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Dennis W Dickson
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tanis J Ferman
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Silva-Rudberg JA, Salardini E, O'Dell RS, Chen MK, Ra J, Georgelos JK, Morehouse MR, Melino KP, Varma P, Toyonaga T, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of Gray Matter Microstructure and Synaptic Density in Alzheimer's Disease: A Multimodal Imaging Study With DTI and SV2A PET. Am J Geriatr Psychiatry 2024; 32:17-28. [PMID: 37673749 PMCID: PMC10840732 DOI: 10.1016/j.jagp.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.
Collapse
Affiliation(s)
- Jason A Silva-Rudberg
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Jocelyn Ra
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Jamie K Georgelos
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Mackenzie R Morehouse
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Kaitlyn P Melino
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Pradeep Varma
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Neuroscience (CHvD), Yale University School of Medicine, New Haven, CT; Department of Neurology (CHvD), Yale University School of Medicine, New Haven, CT
| | - Adam P Mecca
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
8
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
9
|
Chouliaras L, O'Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28:4084-4097. [PMID: 37608222 PMCID: PMC10827668 DOI: 10.1038/s41380-023-02215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Dementia is a leading cause of disability and death worldwide. At present there is no disease modifying treatment for any of the most common types of dementia such as Alzheimer's disease (AD), Vascular dementia, Lewy Body Dementia (LBD) and Frontotemporal dementia (FTD). Early and accurate diagnosis of dementia subtype is critical to improving clinical care and developing better treatments. Structural and molecular imaging has contributed to a better understanding of the pathophysiology of neurodegenerative dementias and is increasingly being adopted into clinical practice for early and accurate diagnosis. In this review we summarise the contribution imaging has made with particular focus on multimodal magnetic resonance imaging (MRI) and positron emission tomography imaging (PET). Structural MRI is widely used in clinical practice and can help exclude reversible causes of memory problems but has relatively low sensitivity for the early and differential diagnosis of dementia subtypes. 18F-fluorodeoxyglucose PET has high sensitivity and specificity for AD and FTD, while PET with ligands for amyloid and tau can improve the differential diagnosis of AD and non-AD dementias, including recognition at prodromal stages. Dopaminergic imaging can assist with the diagnosis of LBD. The lack of a validated tracer for α-synuclein or TAR DNA-binding protein 43 (TDP-43) imaging remain notable gaps, though work is ongoing. Emerging PET tracers such as 11C-UCB-J for synaptic imaging may be sensitive early markers but overall larger longitudinal multi-centre cross diagnostic imaging studies are needed.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret's Hospital, Epping, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
10
|
Yu JJ, Li C, Qian ZM, Liu Y. Brain iron deposition is positively correlated with cognitive impairment in patients with chronic cerebral hypoperfusion: a MRI susceptibility mapping study. Clin Radiol 2023; 78:601-607. [PMID: 37003892 DOI: 10.1016/j.crad.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023]
Abstract
AIM To investigate the relationship of brain iron deposition with cognitive impairment in patients with chronic cerebral hypoperfusion (CHP). MATERIALS AND METHODS Brain iron deposition was detected using quantitative susceptibility mapping (QSM), and cognitive function by neuropsychological tests including the Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Activities of Daily Living (ADLs), and verbal fluency tests in a total of 40 participants, 23 with CHP and 17 age- and sex-matched healthy participants without CHP (controls). RESULTS The neuropsychological tests revealed that cognitive impairment (p<0.05) and susceptibility values (p<0.05) of the bilateral hippocampus (HP) and substantia nigra (SN) in CHP patients were significantly higher than those of the controls. The susceptibility values of bilateral HP and left putamen correlated closely with the scores of neuropsychological tests in the CHP patients (p<0.05, r2>0.1). The susceptibility values in the left putamen and bilateral HP were significantly higher in CHP patients with mild cognitive impairment (MCI; n=8) than those of CHP patients without MCI (n=15; p<0.05). CONCLUSIONS The present findings indicated that brain iron deposition in specific areas may be responsible for the cognitive impairment in CHP patients, and that QSM is a useful tool to determine brain iron, predicting cognitive impairment in CHP patients.
Collapse
Affiliation(s)
- J-J Yu
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing 400038, China
| | - C Li
- Department of Medical Imaging, Chongqing University Central Hospital, Chongqing, China
| | - Z-M Qian
- Institute of Translational & Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, JS 226019, China.
| | - Y Liu
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Bhome R, Thomas GEC, Zarkali A, Weil RS. Structural and Functional Imaging Correlates of Visual Hallucinations in Parkinson's Disease. Curr Neurol Neurosci Rep 2023; 23:287-299. [PMID: 37126201 PMCID: PMC10257588 DOI: 10.1007/s11910-023-01267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE OF REVIEW To review recent structural and functional MRI studies of visual hallucinations in Parkinson's disease. RECENT FINDINGS Previously, neuroimaging had shown inconsistent findings in patients with Parkinson's hallucinations, especially in studies examining grey matter volume. However, recent advances in structural and functional MRI techniques allow better estimates of structural connections, as well as the direction of connectivity in functional MRI. These provide more sensitive measures of changes in structural connectivity and allow models of the changes in directional functional connectivity to be tested. We identified 27 relevant studies and found that grey matter imaging continues to show heterogeneous findings in Parkinson's patients with visual hallucinations. Newer approaches in diffusion imaging and functional MRI are consistent with emerging models of Parkinson's hallucinations, suggesting shifts in attentional networks. In particular, reduced bottom-up, incoming sensory information, and over-weighting of top-down signals appear to be important drivers of visual hallucinations in Parkinson's disease.
Collapse
Affiliation(s)
- Rohan Bhome
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
| | | | - Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Rimona Sharon Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Centre, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
12
|
Ou YN, Wu BS, Ge YJ, Zhang Y, Jiang YC, Kuo K, Yang L, Tan L, Feng JF, Cheng W, Yu JT. The genetic architecture of human amygdala volumes and their overlap with common brain disorders. Transl Psychiatry 2023; 13:90. [PMID: 36906575 PMCID: PMC10008562 DOI: 10.1038/s41398-023-02387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
The amygdala is a crucial interconnecting structure in the brain that performs several regulatory functions, yet its genetic architectures and involvement in brain disorders remain largely unknown. We carried out the first multivariate genome-wide association study (GWAS) of amygdala subfield volumes in 27,866 UK Biobank individuals. The whole amygdala was segmented into nine nuclei groups using Bayesian amygdala segmentation. The post-GWAS analysis allowed us to identify causal genetic variants in phenotypes at the SNP, locus, and gene levels, as well as genetic overlap with brain health-related traits. We further generalized our GWAS in Adolescent Brain Cognitive Development (ABCD) cohort. The multivariate GWAS identified 98 independent significant variants within 32 genomic loci associated (P < 5 × 10-8) with amygdala volume and its nine nuclei. The univariate GWAS identified significant hits for eight of the ten volumes, tagging 14 independent genomic loci. Overall, 13 of the 14 loci identified in the univariate GWAS were replicated in the multivariate GWAS. The generalization in ABCD cohort supported the GWAS results with the 12q23.2 (RNA gene RP11-210L7.1) being discovered. All of these imaging phenotypes are heritable, with heritability ranging from 15% to 27%. Gene-based analyses revealed pathways relating to cell differentiation/development and ion transporter/homeostasis, with the astrocytes found to be significantly enriched. Pleiotropy analyses revealed shared variants with neurological and psychiatric disorders under the conjFDR threshold of 0.05. These findings advance our understanding of the complex genetic architectures of amygdala and their relevance in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu-Chao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.,Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China. .,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China. .,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China. .,Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
13
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
14
|
Shih NC, Kurniawan ND, Cabeen RP, Korobkova L, Wong E, Chui HC, Clark KA, Miller CA, Hawes D, Jones KT, Sepehrband F. Microstructural mapping of dentate gyrus pathology in Alzheimer's disease: A 16.4 Tesla MRI study. Neuroimage Clin 2023; 37:103318. [PMID: 36630864 PMCID: PMC9841366 DOI: 10.1016/j.nicl.2023.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.
Collapse
Affiliation(s)
- Nien-Chu Shih
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nyoman D Kurniawan
- Center for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089. USA
| | - Ellen Wong
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Debra Hawes
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Kymry T Jones
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Habich A, Wahlund LO, Westman E, Dierks T, Ferreira D. (Dis-)Connected Dots in Dementia with Lewy Bodies-A Systematic Review of Connectivity Studies. Mov Disord 2023; 38:4-15. [PMID: 36253921 PMCID: PMC10092805 DOI: 10.1002/mds.29248] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023] Open
Abstract
Studies on dementia with Lewy bodies (DLB) have mainly focused on the degeneration of distinct cortical and subcortical regions related to the deposition of Lewy bodies. In view of the proposed trans-synaptic spread of the α-synuclein pathology, investigating the disease only in this segregated fashion would be detrimental to our understanding of its progression. In this systematic review, we summarize findings on structural and functional brain connectivity in DLB, as connectivity measures may offer better insights on how the brain is affected by the spread of the pathology. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched Web of Science, PubMed, and SCOPUS for relevant articles published up to November 1, 2021. Of 1215 identified records, we selected and systematically reviewed 53 articles that compared connectivity features between patients with DLB and healthy controls. Structural and functional magnetic resonance imaging, positron emission tomography, single-positron emission computer tomography, and electroencephalography assessments of patients revealed widespread abnormalities within and across brain networks in DLB. Frontoparietal, default mode, and visual networks and their connections to other brain regions featured the most consistent disruptions, which were also associated with core clinical features and cognitive impairments. Furthermore, graph theoretical measures revealed disease-related decreases in local and global network efficiency. This systematic review shows that structural and functional connectivity characteristics in DLB may be particularly valuable at early stages, before overt brain atrophy can be observed. This knowledge may help improve the diagnosis and prognosis in DLB as well as pinpoint targets for future disease-modifying treatments. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Chu W, Hall J, Gurrala A, Becsey A, Raman S, Okun MS, Flores CT, Giasson BI, Vaillancourt DE, Vedam-Mai V. Evaluation of an Adoptive Cellular Therapy-Based Vaccine in a Transgenic Mouse Model of α-synucleinopathy. ACS Chem Neurosci 2022; 14:235-245. [PMID: 36571847 PMCID: PMC9853504 DOI: 10.1021/acschemneuro.2c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregated α-synuclein, a major constituent of Lewy bodies plays a crucial role in the pathogenesis of α-synucleinopathies (SPs) such as Parkinson's disease (PD). PD is affected by the innate and adaptive arms of the immune system, and recently both active and passive immunotherapies targeted against α-synuclein are being trialed as potential novel treatment strategies. Specifically, dendritic cell-based vaccines have shown to be an effective treatment for SPs in animal models. Here, we report on the development of adoptive cellular therapy (ACT) for SP and demonstrate that adoptive transfer of pre-activated T-cells generated from immunized mice can improve survival and behavior, reduce brain microstructural impairment via magnetic resonance imaging (MRI), and decrease α-synuclein pathology burden in a peripherally induced preclinical SP model (M83) when administered prior to disease onset. This study provides preclinical evidence for ACT as a potential immunotherapy for LBD, PD and other related SPs, and future work will provide necessary understanding of the mechanisms of its action.
Collapse
Affiliation(s)
- Winston
T. Chu
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida32611, United States,Department
of Applied Physiology and Kinesiology, University
of Florida, Gainesville, Florida32611, United States
| | - Jesse Hall
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Anjela Gurrala
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Alexander Becsey
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Shreya Raman
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Michael S. Okun
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States,Department
of Neurosurgery, University of Florida, Gainesville, Florida32611, United States,Norman
Fixel
Institute for Neurological Diseases, Gainesville, Florida32608, United States
| | - Catherine T. Flores
- Department
of Neurosurgery, University of Florida, Gainesville, Florida32611, United States
| | - Benoit I. Giasson
- Department
of Neuroscience, University of Florida, Gainesville, Florida32611, United States
| | - David E. Vaillancourt
- Department
of Applied Physiology and Kinesiology, University
of Florida, Gainesville, Florida32611, United States
| | - Vinata Vedam-Mai
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States,Norman
Fixel
Institute for Neurological Diseases, Gainesville, Florida32608, United States,. Phone: (352) 273-5557. Fax:(352) 273-5575
| |
Collapse
|
17
|
Multi-modality MRI for Alzheimer's disease detection using deep learning. Phys Eng Sci Med 2022; 45:1043-1053. [PMID: 36063346 DOI: 10.1007/s13246-022-01165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
Diffusion tensor imaging (DTI) is a new technology in magnetic resonance imaging, which allows us to observe the insightful structure of the human body in vivo and non-invasively. It identifies the microstructure of white matter (WM) connectivity by estimating the movement of water molecules at each voxel. This makes possible the identification of the damage to WM integrity caused by Alzheimer's disease (AD) at its early stage, called mild cognitive impairment (MCI). Furthermore, the brain's gray matter (GM) atrophy characterizes the main structural changes in AD, which can be sensitively detected by structural MRI (sMRI) modality. In this research, we aimed to classify the Alzheimer's diseases stages by developing a novel multi-modality MRI (DTI and sMRI) fusion strategy to detect WM alterations and GM atrophy in AD patients. The latter is based on a 2-dimensional deep convolutional neural network (CNN) features extractor and a support vector machine (SVM) classifier. The fusion framework consists of merging features extracted from DTI scalar metrics [(fractional anisotropy (FA) and mean diffusivity (MD)], and GM using 2D-CNN and feeding them to SVM to classify AD versus cognitively normal (CN), AD versus MCI, and MCI versus CN. Our novel multimodal AD method demonstrates a superior performance with an accuracy of 99.79%, 99.6%, and 97.00% for AD/CN, AD/MCI, and MCI/CN respectively.
Collapse
|
18
|
Coughlin DG, Hiniker A, Peterson C, Kim Y, Arezoumandan S, Giannini L, Pizzo D, Weintraub D, Siderowf A, Litvan I, Rissman RA, Galasko D, Hansen L, Trojanowski JQ, Lee E, Grossman M, Irwin D. Digital Histological Study of Neocortical Grey and White Matter Tau Burden Across Tauopathies. J Neuropathol Exp Neurol 2022; 81:953-964. [PMID: 36269086 PMCID: PMC9677241 DOI: 10.1093/jnen/nlac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
3R/4R-tau species are found in Alzheimer disease (AD) and ∼50% of Lewy body dementias at autopsy (LBD+tau); 4R-tau accumulations are found in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Digital image analysis techniques can elucidate patterns of tau pathology more precisely than traditional methods but repeatability across centers is unclear. We calculated regional percentage areas occupied by tau pathological inclusions from the middle frontal cortex (MFC), superior temporal cortex (STC), and angular gyrus (ANG) from cases from the University of Pennsylvania and the University of California San Diego with AD, LBD+tau, PSP, or CBD (n = 150) using QuPath. In both cohorts, AD and LBD+tau had the highest grey and white matter tau burden in the STC (p ≤ 0.04). White matter tau burden was relatively higher in 4R-tauopathies than 3R/4R-tauopathies (p < 0.003). Grey and white matter tau were correlated in all diseases (R2=0.43-0.79, p < 0.04) with the greatest increase of white matter per unit grey matter tau observed in PSP (p < 0.02 both cohorts). Grey matter tau negatively correlated with MMSE in AD and LBD+tau (r = -4.4 to -5.4, p ≤ 0.02). These data demonstrate the feasibility of cross-institutional digital histology studies that generate finely grained measurements of pathology which can be used to support biomarker development and models of disease progression.
Collapse
Affiliation(s)
- David G Coughlin
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yongya Kim
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sanaz Arezoumandan
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucia Giannini
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Erasmus University Medical Center, Alzheimer Center, Rotterdam, The Netherlands
| | - Donald Pizzo
- Center for Advanced Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Daniel Weintraub
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irene Litvan
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Robert A Rissman
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Douglas Galasko
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Lawrence Hansen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Irwin
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Ejaz SA, Fayyaz A, Mahmood HMK, Aziz M, Ejaz SR, Alkhuriji AF, Al-Megrin WAI, Aborode AT, Batiha GES. 4-Phthalimidobenzenesulfonamide Derivatives as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: DFTs, 3D-QSAR, ADMET, and Molecular Dynamics Simulation. NEURODEGENER DIS 2022; 22:122-138. [PMID: 36288689 DOI: 10.1159/000527516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 10/10/2023] Open
Abstract
INTRODUCTION Alzheimer's disease is a form of dementia which affects majority of the people. It is characterized by memory loss and other cognitive function disabilities and is one of the most challenging neurodegenerative disorders to treat because of its progressive nature. The disease affects millions of people all around the world, and the number of those affected is expanding every day. In the previous study, the 4-phthalimidobenzenesulfonamide derivatives were synthesized as AChE and BChE inhibitors, and here, we were aiming to further reporting in silico studies of these compounds for efficient drug discovery process and to find out the potential lead compounds. METHODS In silico characterization included density functional theory (DFT) studies, 3D-QSAR, ADMET properties, molecular docking, and molecular dynamic simulations. The geometries of all derivatives were optimized using B3LYP method and 6-311G basis set. RESULTS The findings of the current study revealed that 4-phthalimidobenzenesulfonamide derivatives exhibited a reactive electronic property which is essential for anticholinesterase activity. Moreover, optimized structures were subjected to molecular docking studies with targeted protein. The compounds 2c and 2g showed excellent binding score of -37.44 and -33.67 kJ/mol with BChE and AChE, respectively, and exhibited strong binding affinity. The potent derivatives produced stable complex with amino acid residues of active pocket of both BChE and AChE. The stability of protein-ligand complexes was determined by molecular dynamic simulation studies, and results were found in correlation with molecular docking findings. CONCLUSION Findings of the current study suggested that these derivatives are potent inhibitors of cholinesterase enzyme.
Collapse
Affiliation(s)
- Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Mohammad Kashif Mahmood
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Syeda Rabia Ejaz
- Department of Physics, The Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Afrah Fahad Alkhuriji
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa Abdullah I Al-Megrin
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
20
|
Nara S, Fujii H, Tsukada H, Tsuda I. Visual hallucinations in dementia with Lewy bodies originate from necrosis of characteristic neurons and connections in three-module perception model. Sci Rep 2022; 12:14172. [PMID: 35986200 PMCID: PMC9391481 DOI: 10.1038/s41598-022-18313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Mathematical and computational approaches were used to investigate dementia with Lewy bodies (DLB), in which recurrent complex visual hallucinations (RCVH) is a very characteristic symptom. Beginning with interpretative analyses of pathological symptoms of patients with RCVH-DLB in comparison with the veridical perceptions of normal subjects, we constructed a three-module scenario concerning function giving rise to perception. The three modules were the visual input module, the memory module, and the perceiving module. Each module interacts with the others, and veridical perceptions were regarded as a certain convergence to one of the perceiving attractors sustained by self-consistent collective fields among the modules. Once a rather large but inhomogeneously distributed area of necrotic neurons and dysfunctional synaptic connections developed due to network disease, causing irreversible damage, then bottom-up information from the input module to both the memory and perceiving modules were severely impaired. These changes made the collective fields unstable and caused transient emergence of mismatched perceiving attractors. This may account for the reason why DLB patients see things that are not there. With the use of our computational model and experiments, the scenario was recreated with complex bifurcation phenomena associated with the destabilization of collective field dynamics in very high-dimensional state space.
Collapse
|
21
|
Maharjan S, Tsai AP, Lin PB, Ingraham C, Jewett MR, Landreth GE, Oblak AL, Wang N. Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging. Front Neurosci 2022; 16:964654. [PMID: 36061588 PMCID: PMC9428354 DOI: 10.3389/fnins.2022.964654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the age-dependent microstructure changes in 5xFAD mice using high-resolution diffusion tensor imaging (DTI). Methods The 5xFAD mice at 4, 7.5, and 12 months and the wild-type controls at 4 months were scanned at 9.4T using a 3D echo-planar imaging (EPI) pulse sequence with the isotropic spatial resolution of 100 μm. The b-value was 3000 s/mm2 for all the diffusion MRI scans. The samples were also acquired with a gradient echo pulse sequence at 50 μm isotropic resolution. The microstructure changes were quantified with DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD). The conventional histology was performed to validate with MRI findings. Results The FA values (p = 0.028) showed significant differences in the cortex between wild-type (WT) and 5xFAD mice at 4 months, while hippocampus, anterior commissure, corpus callosum, and fornix showed no significant differences for either FA and MD. FA values of 5xFAD mice gradually decreased in cortex (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) and fornix (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) with aging. Both FA (p = 0.029) and MD (p = 0.037) demonstrated significant differences in corpus callosum between 4 and 12 months age old. FA and MD were not significantly different in the hippocampus or anterior commissure. The age-dependent microstructure alterations were better captured by FA when compared to MD. Conclusion FA showed higher sensitivity to monitor amyloid deposition in 5xFAD mice. DTI may be utilized as a sensitive biomarker to monitor beta-amyloid progression for preclinical studies.
Collapse
Affiliation(s)
- Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Megan R. Jewett
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN, United States
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
22
|
Association of life course adiposity with risk of incident dementia: a prospective cohort study of 322,336 participants. Mol Psychiatry 2022; 27:3385-3395. [PMID: 35538193 DOI: 10.1038/s41380-022-01604-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023]
Abstract
Cohort studies report inconsistent associations between body mass index (BMI) and all-cause incident dementia. Furthermore, evidence on fat distribution and body composition measures are scarce and few studies estimated the association between early life adiposity and dementia risk. Here, we included 322,336 participants from UK biobank to investigate the longitudinal association between life course adiposity and risk of all-cause incident dementia and to explore the underlying mechanisms driven by metabolites, inflammatory cells and brain structures. Among the 322,336 individuals (mean (SD) age, 62.24 (5.41) years; 53.9% women) in the study, during a median 8.74 years of follow-up, 5083 all-cause incident dementia events occurred. The risk of dementia was 22% higher with plumper childhood body size (p < 0.001). A strong U-shaped association was observed between adult BMI and dementia. More fat and less fat-free mass distribution on arms were associated with a higher risk of dementia. Interestingly, similar U-shaped associations were found between BMI and four metabolites (i.e., 3-hydroxybutrate, acetone, citrate and polyunsaturated fatty acids), four inflammatory cells (i.e., neutrophil, lymphocyte, monocyte and leukocyte) and abnormalities in brain structure that were also related to dementia. The findings that adiposity is associated with metabolites, inflammatory cells and abnormalities in brain structure that were related to dementia risk might provide clues to underlying biological mechanisms. Interventions to prevent dementia should begin early in life and include not only BMI control but fat distribution and body composition.
Collapse
|
23
|
Dutta D, Paidi RK, Raha S, Roy A, Chandra S, Pahan K. Treadmill exercise reduces α-synuclein spreading via PPARα. Cell Rep 2022; 40:111058. [PMID: 35830804 PMCID: PMC9308946 DOI: 10.1016/j.celrep.2022.111058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/29/2021] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
This study underlines the importance of treadmill exercise in reducing α-synuclein (α-syn) spreading in the A53T brain and protecting nigral dopaminergic neurons. Preformed α-syn fibril (PFF) seeding in the internal capsule of young A53T α-syn mice leads to increased spreading of α-syn to substantia nigra and motor cortex and concomitant loss of nigral dopaminergic neurons. However, regular treadmill exercise decreases α-syn spreading in the brain and protects nigral dopaminergic neurons in PFF-seeded mice. Accordingly, treadmill exercise also mitigates α-synucleinopathy in aged A53T mice. While investigating this mechanism, we have observed that treadmill exercise induces the activation of peroxisome proliferator-activated receptor α (PPARα) in the brain to stimulate lysosomal biogenesis via TFEB. Accordingly, treadmill exercise remains unable to stimulate TFEB and reduce α-synucleinopathy in A53T mice lacking PPARα, and fenofibrate, a prototype PPARα agonist, reduces α-synucleinopathy. These results delineate a beneficial function of treadmill exercise in reducing α-syn spreading in the brain via PPARα.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramesh Kumar Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
24
|
Nishioka C, Liang HF, Ong S, Sun SW. Axonal transport impairment and its relationship with diffusion tensor imaging metrics of a murine model of p301L tau induced tauopathy. Neuroscience 2022; 498:144-154. [PMID: 35753531 DOI: 10.1016/j.neuroscience.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Diffusion Tensor Imaging (DTI) and Manganese Enhanced MRI (MEMRI) are noninvasive tools to characterize neural fiber microstructure and axonal transport. A combination of both may provide novel insights into the progress of neurodegeneration. To investigate the relationship of DTI and MEMRI in white matter of tauopathy, twelve optic nerves of 11-month-old p301L tau mice were imaged and finished with postmortem immunohistochemistry. MEMRI was used to quantify Mn2+ accumulation rates in the optic nerve (ON, termed ONAR) and the Superior Colliculus (SC, termed SCAR), the primary terminal site of ON in mice. We found that both ONAR and SCAR revealed a significant linear correlation with mean diffusion (mD) and radial diffusion (rD) but not with other DTI quantities. Immunohistochemistry findings showed that ONAR, mD, and rD are significantly correlated with the myelin content (Myelin Basic Protein, p < 0.05) but not with the axonal density (SMI-31), tubulin density, or tau aggregates (AT8 staining). In summary, slower axonal transport appeared to have less myelinated axons and thinner remaining axons, associated with reduced rD and mD of in vivo DTI. A combination of in vivo MEMRI and DTI can provide critical information to delineate the progress of white matter deficits in neurodegenerative diseases.
Collapse
Affiliation(s)
- Christopher Nishioka
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Neuroscience Graduate Program, University of California, Riverside, CA, United States
| | - Hsiao-Fang Liang
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Stephen Ong
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Robert Wood Johnson Barnabas Health (RWJBH) and Rutgers University, United States
| | - Shu-Wei Sun
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Neuroscience Graduate Program, University of California, Riverside, CA, United States.
| |
Collapse
|
25
|
Chabran E, Mondino M, Noblet V, Degiorgis L, Loureiro de Sousa P, Blanc F. Microstructural changes in prodromal dementia with Lewy bodies compared to normal aging: multiparametric quantitative MRI evidences. Eur J Neurosci 2021; 55:611-623. [PMID: 34888964 DOI: 10.1111/ejn.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022]
Abstract
Dementia with Lewy bodies (DLB) patients show few significant macroscopic structural changes, especially at the early stages of the disease, making quantitative MRI especially interesting to explore more subtle changes that are not detectable by conventional volumetric techniques. Microstructural alterations have been reported in DLB at the dementia stage, but no study to date was conducted in prodromal patients. Here, quantitative MRI data were collected from 46 DLB prodromal patients and 20 healthy elderly subjects, who also underwent a detailed clinical examination including the Mayo Clinic Fluctuation Scale. We conducted voxel-wise between-group comparisons in diffusion tensor imaging (DTI) metrics and in R2* mapping, along with a multivariate analysis combining the two modalities. We highlighted multiple grey matter and white matter microstructural changes in DLB patients at the prodromal stage, compared to control subjects. Our multivariate analysis identified three distinct regional patterns of DTI and R2* changes (anterior, anteromedial, posterior) in DLB patients, that could reflect different neuropathological processes across brain regions. We also observed an association between R2* alterations in the thalamus, and the severity of fluctuations, in the DLB group. These preliminary findings are promising and require future investigations to better understand the biological underpinnings of microstructural alterations.
Collapse
Affiliation(s)
- Eléna Chabran
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Vincent Noblet
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Laetitia Degiorgis
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS plateform, University of Strasbourg and CNRS, Strasbourg, France.,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Caso F, Agosta F, Scamarcia PG, Basaia S, Canu E, Magnani G, Volontè MA, Filippi M. A multiparametric MRI study of structural brain damage in dementia with lewy bodies: A comparison with Alzheimer's disease. Parkinsonism Relat Disord 2021; 91:154-161. [PMID: 34628194 DOI: 10.1016/j.parkreldis.2021.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Differential diagnosis between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) is crucial for an adequate patients' management but might be challenging. We investigated with advanced MRI techniques gray (GM) and white matter (WM) damage in DLB patients compared to those with AD. METHODS 24 DLB patients, 26 age- and disease severity-matched AD patients, and 20 age and sex-matched controls performed clinical and neuropsychological assessment, and brain structural and diffusion-tensor MRI. We measured GM atrophy using voxel-based morphometry, WM hyperintensities (WMH) using a local thresholding segmentation technique, and normal-appearing WM (NAWM) damage using tract-based spatial statistic. RESULTS DLB and AD patients exhibited mild-to-moderate-stage dementia. Compared to controls, GM damage was diffuse in AD, while limited to bilateral thalamus and temporal regions in DLB. Compared to DLB, AD patients exhibited GM atrophy in bilateral fronto-temporal and occipital regions. DLB and AD patients showed higher WMH load than controls, with no differences among each other. WMH in DLB were diffuse with relative prevalence in posterior parietal-occipital regions. Compared to controls, both DLB and AD patients showed reduced microstructural integrity of the main supratentorial and infratentorial NAWM tracts. AD patients exhibited greater posterior NAWM damage than DLB. CONCLUSIONS DLB showed prominent WM degeneration compared to the limited GM atrophy, while in AD both tissue compartments were severely involved. In DLB, NAWM microstructural degeneration was independent of WMH, thus revealing two possible underlying processes. Different pathophysiological mechanisms are likely to drive GM and WM damage distribution in DLB and AD.
Collapse
Affiliation(s)
- Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro G Scamarcia
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
27
|
Kantarci K, Boeve BF, Przybelski SA, Lesnick TG, Chen Q, Fields J, Schwarz CG, Senjem ML, Gunte JL, Jack CR, Min P, Jain M, Miyagawa T, Savica R, Graff-Radford J, Botha H, Jones DT, Knopman DS, Graff-Radford N, Ferman TJ, Petersen RC, Lowe VJ. FDG PET metabolic signatures distinguishing prodromal DLB and prodromal AD. Neuroimage Clin 2021; 31:102754. [PMID: 34252877 PMCID: PMC8278422 DOI: 10.1016/j.nicl.2021.102754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Patients with dementia with Lewy bodies (DLB) are characterized by hypometabolism in the parieto-occipital cortex and the cingulate island sign (CIS) on 18F-fluorodeoxyglucose (FDG) PET. Whether this pattern of hypometabolism is present as early as the prodromal stage of DLB is unknown. We investigated the pattern of hypometabolism in patients with mild cognitive impairment (MCI) who progressed to probable DLB compared to MCI patients who progressed to Alzheimer's disease (AD) dementia and clinically unimpaired (CU) controls. METHODS Patients with MCI from the Mayo Clinic Alzheimer's Disease Research Center who underwent FDG PET at baseline and progressed to either probable DLB (MCI-DLB; n = 17) or AD dementia (MCI-AD; n = 41) during follow-up, and a comparison cohort of CU controls (n = 100) were included. RESULTS Patients with MCI-DLB had hypometabolism in the parieto-occipital cortex extending into temporal lobes, substantia nigra and thalamus. When compared to MCI-AD, medial temporal and posterior cingulate metabolism were preserved in patients with MCI-DLB, accompanied by greater hypometabolism in the substantia nigra in MCI-DLB compared to MCI-AD. In distinguishing MCI-DLB from MCI-AD at the maximum value of Youden's index, CIS ratio was highly specific (90%) but not sensitive (59%), but a higher medial temporal to substantia nigra ratio was both sensitive (94%) and specific (83%). CONCLUSION FDG PET is a potential biomarker for the prodromal stage of DLB. A higher medial temporal metabolism and CIS ratio, and lower substantia nigra metabolism have additive value in distinguishing prodromal DLB and AD.
Collapse
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Timothy G Lesnick
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Qin Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Julie Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey L Gunte
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Paul Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Manoj Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Milán-Tomás Á, Fernández-Matarrubia M, Rodríguez-Oroz MC. Lewy Body Dementias: A Coin with Two Sides? Behav Sci (Basel) 2021; 11:94. [PMID: 34206456 PMCID: PMC8301188 DOI: 10.3390/bs11070094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lewy body dementias (LBDs) consist of dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which are clinically similar syndromes that share neuropathological findings with widespread cortical Lewy body deposition, often with a variable degree of concomitant Alzheimer pathology. The objective of this article is to provide an overview of the neuropathological and clinical features, current diagnostic criteria, biomarkers, and management of LBD. Literature research was performed using the PubMed database, and the most pertinent articles were read and are discussed in this paper. The diagnostic criteria for DLB have recently been updated, with the addition of indicative and supportive biomarker information. The time interval of dementia onset relative to parkinsonism remains the major distinction between DLB and PDD, underpinning controversy about whether they are the same illness in a different spectrum of the disease or two separate neurodegenerative disorders. The treatment for LBD is only symptomatic, but the expected progression and prognosis differ between the two entities. Diagnosis in prodromal stages should be of the utmost importance, because implementing early treatment might change the course of the illness if disease-modifying therapies are developed in the future. Thus, the identification of novel biomarkers constitutes an area of active research, with a special focus on α-synuclein markers.
Collapse
Affiliation(s)
- Ángela Milán-Tomás
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Marta Fernández-Matarrubia
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, 31008 Pamplona, Spain
| |
Collapse
|
29
|
Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, Nam Y, Cho SJ, Jeon B, Kim JH. Imaging the Substantia Nigra in Parkinson Disease and Other Parkinsonian Syndromes. Radiology 2021; 300:260-278. [PMID: 34100679 DOI: 10.1148/radiol.2021203341] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson disease is characterized by dopaminergic cell loss in the substantia nigra of the midbrain. There are various imaging markers for Parkinson disease. Recent advances in MRI have enabled elucidation of the underlying pathophysiologic changes in the nigral structure. This has contributed to accurate and early diagnosis and has improved disease progression monitoring. This article aims to review recent developments in nigral imaging for Parkinson disease and other parkinsonian syndromes, including nigrosome imaging, neuromelanin imaging, quantitative iron mapping, and diffusion-tensor imaging. In particular, this article examines nigrosome imaging using 7-T MRI and 3-T susceptibility-weighted imaging. Finally, this article discusses volumetry and its clinical importance related to symptom manifestation. This review will improve understanding of recent advancements in nigral imaging of Parkinson disease. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Yun Jung Bae
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jong-Min Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Chul-Ho Sohn
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Ji-Hyun Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Byung Se Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoo Sung Song
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoonho Nam
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Se Jin Cho
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Beomseok Jeon
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jae Hyoung Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| |
Collapse
|
30
|
Zorzi G, Cecchin D, Bussè C, Perini G, Corbetta M, Cagnin A. Changes of Metabolic Connectivity in Dementia with Lewy Bodies with Visual Hallucinations: A 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Study. Brain Connect 2021; 11:518-528. [PMID: 33757301 DOI: 10.1089/brain.2020.0988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Recurrent complex visual hallucinations (VHs) are common in dementia with Lewy bodies (DLB). Previous investigations suggest that VHs are associated with connectivity changes within and between large scale networks involved in visual processing and attention. Aim: To examine more directly whether VH in DLB reflects direct changes in neuronal activity between cortical regions assessing metabolic connectivity with 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/magnetic resonance and graph theory. Methods: Twenty-six patients with probable DLB (13 VHs and 13 no-VHs; mean age: 72.9 ± 6.87 years vs. 70.2 ± 7.96 years) were enrolled. T1-weighted 3T-MR images and FDG-PET data were coacquired using an integrated PET/MR scanner. MR images defined cortical parcels of the Shaefer-Yeo atlas for multiple functional networks. We computed in each parcel the regional standardized-uptake-values (SUV) corrected for partial volume and normalized to the cerebellar cortex. Strength degree, clustering coefficient, characteristic path length, and hubs were analyzed with graph analysis. Results: The mean 18F-FDG-PET SUVr of parcels belonging to the visual and dorsal attention networks (DANs) were significantly lower in the VH group (p = 0.01). Metabolism in the right temporoparietal cortex correlated with VH severity (R = -0.58; p < 0.01). VH patients showed weaker metabolic connectivity in the parietal, temporal, and occipital cortex of the default mode network, DAN, and visual networks, but more robust connectivity in the right insula and orbitofrontal cortex. A lower global efficiency characterized the VH group, except for ventral attention network and limbic network. Conclusions: VHs in DLB correlate with lower glucose metabolism and weaker metabolic connectivity in the parietal-occipital cortex, but stronger connectivity in the limbic system. Impact statement This study shows that application of the graph theory to 18F-fluorodeoxyglucose-positron emission tomography data, commonly acquired during the diagnostic workflow in neurodegenerative diseases, could be used to obtain information of functional connectivity at a group level, with results that are consistent with other data commonly used in brain functional investigation (e.g., electroencephalography or functional magnetic resonance). New network-based methods of metabolic image analyses, such as graph analysis, are a recent area of research with a potential capacity to extract information on alterations of metabolic connectivity that may become pharmacological and neuromodulation targets of the physiopathology of recurrent complex visual hallucinations.
Collapse
Affiliation(s)
- Giovanni Zorzi
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, Padova, Italy.,Nuclear Medicine Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Cinzia Bussè
- Department of Neuroscience, University of Padova, Padova, Italy
| | | | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Chung SJ, Jeon S, Yoo HS, Lee YH, Yun M, Lee SK, Lee PH, Sohn YH, Evans AC, Ye BS. Neural Correlates of Cognitive Performance in Alzheimer's Disease- and Lewy Bodies-Related Cognitive Impairment. J Alzheimers Dis 2021; 73:873-885. [PMID: 31868668 DOI: 10.3233/jad-190814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clinicopathological studies have demonstrated that the neuropsychological profiles and outcomes are different between two dementia subtypes, namely Alzheimer's disease (AD) and Lewy bodies-related disease. OBJECTIVE We investigated the neural correlates of cognitive dysfunction in patients with AD-related cognitive impairment (ADCI) and those with Lewy bodies-related cognitive impairment (LBCI). METHODS We enrolled 216 ADCI patients, 183 LBCI patients, and 30 controls. Cortical thickness and diffusion tensor imaging analyses were performed to correlate gray matter and white matter (WM) abnormalities to cognitive composite scores for memory, visuospatial, and attention/executive domains in the ADCI spectrum (ADCI patients and controls) and the LBCI spectrum (LBCI patients and controls) separately. RESULTS Memory dysfunction correlated with cortical thinning and increased mean diffusivity in the AD-prone regions, particularly the medial temporal region, in ADCI. Meanwhile, it only correlated with increased mean diffusivity in the WM adjacent to the anteromedial temporal, insula, and basal frontal cortices in LBCI. Visuospatial dysfunction correlated with cortical thinning in posterior brain regions in ADCI, while it correlated with decreased fractional anisotropy in the corpus callosum and widespread WM regions in LBCI. Attention/executive dysfunction correlated with cortical thinning and WM abnormalities in widespread brain regions in both disease spectra; however, ADCI had more prominent correlation with cortical thickness and LBCI did with fractional anisotropy values. CONCLUSIONS Our study demonstrated that ADCI and LBCI have different neural correlates with respect to cognitive dysfunction. Cortical thinning had greater effects on cognitive dysfunction in the ADCI, while WM disruption did in the LBCI.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seun Jeon
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Ho Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Alan C Evans
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Baik K, Yang JJ, Jung JH, Lee YH, Chung SJ, Yoo HS, Sohn YH, Lee PH, Lee JM, Ye BS. Structural connectivity networks in Alzheimer's disease and Lewy body disease. Brain Behav 2021; 11:e02112. [PMID: 33792194 PMCID: PMC8119831 DOI: 10.1002/brb3.2112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE We evaluated disruption of the white matter (WM) network related with Alzheimer's disease (AD) and Lewy body disease (LBD), which includes Parkinson's disease and dementia with Lewy bodies. METHODS We consecutively recruited 37 controls and 77 patients with AD-related cognitive impairment (ADCI) and/or LBD-related cognitive impairment (LBCI). Diagnoses of ADCI and LBCI were supported by amyloid PET and dopamine transporter PET, respectively. There were 22 patients with ADCI, 19 patients with LBCI, and 36 patients with mixed ADCI/LBCI. We investigated the relationship between ADCI, LBCI, graph theory-based network measures on diffusion tensor images, and cognitive dysfunction using general linear models after controlling for age, sex, education, deep WM hyperintensities (WMH), periventricular WMH, and intracranial volume. RESULTS LBCI, especially mixed with ADCI, was associated with increased normalized path length and decreased normalized global efficiency. LBCI was related to the decreased nodal degree of left caudate, which was further associated with broad cognitive dysfunction. Decreased left caudate nodal degree was associated with decreased fractional anisotropy (FA) in the brain regions vulnerable to LBD. Compared with the control group, the LBCI group had an increased betweenness centrality in the occipital nodes, which was associated with decreased FA in the WM adjacent to the striatum and visuospatial dysfunction. CONCLUSION Concomitant ADCI and LBCI are associated with the accentuation of LBCI-related WM network disruption centered in the left caudate nucleus. The increase of occipital betweenness centrality could be a characteristic biologic change associated with visuospatial dysfunction in LBCI.
Collapse
Affiliation(s)
- Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Grazzini I, Venezia D, Cuneo GL. The role of diffusion tensor imaging in idiopathic normal pressure hydrocephalus: A literature review. Neuroradiol J 2021; 34:55-69. [PMID: 33263494 PMCID: PMC8041402 DOI: 10.1177/1971400920975153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a syndrome that comprises a triad of gait disturbance, dementia and urinary incontinence, associated with ventriculomegaly in the absence of elevated intraventricular cerebrospinal fluid (CSF) pressure. It is important to identify patients with iNPH because some of its clinical features may be reversed by the insertion of a CSF shunt. The diagnosis is based on clinical history, physical examination and brain imaging, especially magnetic resonance imaging (MRI). Recently, some papers have investigated the role of diffusion tensor imaging (DTI) in evaluating white matter alterations in patients with iNPH. DTI analysis in specific anatomical regions seems to be a promising MR biomarker of iNPH and could also be used in the differential diagnosis from other dementias. However, there is a substantial lack of structured reviews on this topic. Thus, we performed a literature search and analyzed the most recent and pivotal articles that investigated the role of DTI in iNPH in order to provide an up-to-date overview of the application of DTI in this setting. We reviewed studies published between January 2000 and June 2020. Thirty-eight studies and four reviews were included. Despite heterogeneity in analysis approaches, the majority of studies reported significant correlations between DTI and clinical symptoms in iNPH patients, as well as different DTI patterns in patients with iNPH compared to those with Alzheimer or Parkinson diseases. It remains to be determined whether DTI could predict the success after CSF shunting.
Collapse
Affiliation(s)
- Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Duccio Venezia
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | | |
Collapse
|
34
|
Kim JP, Kim J, Jang H, Kim J, Kang SH, Kim JS, Lee J, Na DL, Kim HJ, Seo SW, Park H. Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach. Sci Rep 2021; 11:6954. [PMID: 33772041 PMCID: PMC7997887 DOI: 10.1038/s41598-021-86114-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71-0.74, AUC for validation = 0.68-0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.
Collapse
Affiliation(s)
- Jun Pyo Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jonghoon Kim
- grid.264381.a0000 0001 2181 989XDepartment of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hyemin Jang
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jaeho Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea ,grid.256753.00000 0004 0470 5964Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sung Hoon Kang
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jongmin Lee
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Duk L. Na
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon-si, Korea
| | - Hyunjin Park
- grid.410720.00000 0004 1784 4496Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea ,grid.264381.a0000 0001 2181 989XSchool of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si, Republic of Korea
| |
Collapse
|
35
|
Zorzi G, Thiebaut de Schotten M, Manara R, Bussè C, Corbetta M, Cagnin A. White matter abnormalities of right hemisphere attention networks contribute to visual hallucinations in dementia with Lewy bodies. Cortex 2021; 139:86-98. [PMID: 33848693 DOI: 10.1016/j.cortex.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Functional alterations of the visual attention networks in a setting of impaired visual information processing have a role in the genesis of visual hallucinations (VH) in dementia with Lewy bodies (DLB). This multimodal MRI study aims at exploring structural and functional basis of VH. METHODS 23 DLB patients (10 with and 13 without VH) and 13 healthy controls were studied. They underwent MRI with T1-w sequences to measure cortical thickness, DTI for whole-brain and single tract microstructural properties and rs-fMRI of the default mode, dorsal and ventral attention, and visual networks. RESULTS In DLB with VH, whole-brain DTI revealed a lower fractional anisotropy and a greater mean diffusivity in the right frontal and temporo-parietal white matter tracts. Tracts dissection showed lower fractional anisotropy in the right inferior and superior (ventral part) longitudinal fasciculi (ILF and SLF) (p < .05, corrected), and greater mean diffusivity (p < .05). The extent of white matter microstructural alterations involving the right ILF and SLF correlated with the severity of VH (r = .55, p < .01; r = .42, p < .05, respectively), and with performance in the visual attention task (r = -.56 and r = -.61; p < .01, respectively). Cortical thickness in the projection areas of the right SLF was significantly reduced (p < .05). Patients with VH also showed an altered functional connectivity in the ventral attention network, connected by the ventral portion of the SLF (p < .05). CONCLUSIONS Our findings suggest that a combination of microstructural and functional alterations involving the attention networks in the right hemisphere may be important in the genesis of VH.
Collapse
Affiliation(s)
- Giovanni Zorzi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| | - Michel Thiebaut de Schotten
- Padova Neuroscience Center, University of Padova, Padova, Italy; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Renzo Manara
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Cinzia Bussè
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Neurology, Radiology, Neuroscience, Washington University School of Medicine, St.Louis, MO, USA
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Orad RI, Shiner T. Differentiating dementia with Lewy bodies from Alzheimer's disease and Parkinson's disease dementia: an update on imaging modalities. J Neurol 2021; 269:639-653. [PMID: 33511432 DOI: 10.1007/s00415-021-10402-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Dementia with Lewy bodies is the second most common cause of neurodegenerative dementia after Alzheimer's disease. Dementia with Lewy bodies can provide a diagnostic challenge due to the frequent overlap of clinical signs with other neurodegenerative conditions, namely Parkinson's disease dementia, and Alzheimer's disease. Part of this clinical overlap is due to the neuropathological overlap. Dementia with Lewy bodies is characterized by the accumulation of aggregated α-synuclein protein in Lewy bodies, similar to Parkinson's disease and Parkinson's disease dementia. However, it is also frequently accompanied by aggregation of amyloid-beta and tau, the pathological hallmarks of Alzheimer's disease. Neuroimaging is central to the diagnostic process. This review is an overview of both established and evolving imaging methods that can improve diagnostic accuracy and improve management of this disorder.
Collapse
Affiliation(s)
- Rotem Iris Orad
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, 6, Weismann St, Tel Aviv, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Tamara Shiner
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, 6, Weismann St, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
37
|
Phillips JR, Matar E, Ehgoetz Martens KA, Moustafa AA, Halliday GM, Lewis SJG. Evaluating a novel behavioral paradigm for visual hallucinations in Dementia with Lewy bodies. AGING BRAIN 2021; 1:100011. [PMID: 36911512 PMCID: PMC9997132 DOI: 10.1016/j.nbas.2021.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the utility of the Bistable Percept Paradigm (BPP), a computerised behavioural task that has previously been utilised for the assessment of visual hallucinations in Parkinson's Disease, in a Dementia with Lewy bodies (DLB) cohort. Dementia with Lewy bodies patients demonstrated poorer performance than healthy controls (HC) on the BPP with significantly more misperceptions and a greater failure to detect bistable percepts correctly compared to HC. Further, the number of misperceptions was also correlated with the severity of hallucinations. The findings from this study demonstrate that the BPP is a viable tool to measure misperceptions in DLB patients.
Collapse
Affiliation(s)
- Joseph R Phillips
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Camperdown, Sydney, Australia.,School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Camperdown, Sydney, Australia.,Dementia and Movement Disorders Laboratory, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Kaylena A Ehgoetz Martens
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Camperdown, Sydney, Australia.,Department of Kinesiology, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Ahmed A Moustafa
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Camperdown, Sydney, Australia.,School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Camperdown, Sydney, Australia.,Dementia and Movement Disorders Laboratory, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Simon J G Lewis
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Camperdown, Sydney, Australia
| |
Collapse
|
38
|
Sacco S, Paoletti M, Staffaroni AM, Kang H, Rojas J, Marx G, Goh SY, Luisa Mandelli M, Allen IE, Kramer JH, Bastianello S, Henry RG, Rosen H, Caverzasi E, Geschwind MD. Multimodal MRI staging for tracking progression and clinical-imaging correlation in sporadic Creutzfeldt-Jakob disease. Neuroimage Clin 2020; 30:102523. [PMID: 33636540 PMCID: PMC7906895 DOI: 10.1016/j.nicl.2020.102523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Diffusion imaging is very useful for the diagnosis of sporadic Creutzfeldt-Jakob disease, but it has limitations in tracking disease progression as mean diffusivity changes non-linearly across the disease course. We previously showed that mean diffusivity changes across the disease course follow a quasi J-shaped curve, characterized by decreased values in earlier phases and increasing values later in the disease course. Understanding how MRI metrics change over-time, as well as their correlations with clinical deficits are crucial steps in developing radiological biomarkers for trials. Specifically, as mean diffusivity does not change linearly and atrophy mainly occurs in later stages, neither alone is likely to be a sufficient biomarker throughout the disease course. We therefore developed a model combining mean diffusivity and Volume loss (MRI Disease-Staging) to take into account mean diffusivity's non-linearity. We then assessed the associations between clinical outcomes and mean diffusivity alone, Volume alone and finally MRI Disease-Staging. In 37 sporadic Creutzfeldt-Jakob disease subjects and 30 age- and sex-matched healthy controls, high angular resolution diffusion and high-resolution T1 imaging was performed cross-sectionally to compute z-scores for mean diffusivity (MD) and Volume. Average MD and Volume were extracted from 41 GM volume of interest (VOI) per hemisphere, within the images registered to the Montreal Neurological Institute (MNI) space. Each subject's volume of interest was classified as either "involved" or "not involved" using a statistical threshold of ± 2 standard deviation (SD) for mean diffusivity changes and/or -2 SD for Volume. Volumes of interest were MRI Disease-Staged as: 0 = no abnormalities; 1 = decreased mean diffusivity only; 2 = decreased mean diffusivity and Volume; 3 = normal ("pseudo-normalized") mean diffusivity, reduced Volume; 4 = increased mean diffusivity, reduced Volume. We correlated Volume, MD and MRI Disease-Staging with several clinical outcomes (scales, score and symptoms) using 4 major regions of interest (Total, Cortical, Subcortical and Cerebellar gray matter) or smaller regions pre-specified based on known neuroanatomical correlates. Volume and MD z-scores correlated inversely with each other in all four major ROIs (cortical, subcortical, cerebellar and total) highlighting that ROIs with lower Volumes had higher MD and vice-versa. Regarding correlations with symptoms and scores, higher MD correlated with worse Mini-Mental State Examination and Barthel scores in cortical and cerebellar gray matter, but subjects with cortical sensory deficits showed lower MD in the primary sensory cortex. Volume loss correlated with lower Mini-Mental State Examination, Barthel scores and pyramidal signs. Interestingly, for both Volume and MD, changes within the cerebellar ROI showed strong correlations with both MMSE and Barthel. Supporting using a combination of MD and Volume to track sCJD progression, MRI Disease-Staging showed correlations with more clinical outcomes than Volume or MD alone, specifically with Mini-Mental State Examination, Barthel score, pyramidal signs, higher cortical sensory deficits, as well as executive and visual-spatial deficits. Additionally, when subjects in the cohort were subdivided into tertiles based on their Barthel scores and their percentile of disease duration/course ("Time-Ratio"), subjects in the lowest (most impaired) Barthel tertile showed a much greater proportion of more advanced MRI Disease-Stages than the those in the highest tertile. Similarly, subjects in the last Time-Ratio tertile (last tertile of disease) showed a much greater proportion of more advanced MRI Disease-Stages than the earliest tertile. Therefore, in later disease stages, as measured by time or Barthel, there is overall more Volume loss and increasing MD. A combined multiparametric quantitative MRI Disease-Staging is a useful tool to track sporadic Creutzfeldt-Jakob- disease progression radiologically.
Collapse
Affiliation(s)
- Simone Sacco
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Adam M. Staffaroni
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Huicong Kang
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Julio Rojas
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Gabe Marx
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sheng-yang Goh
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Maria Luisa Mandelli
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Isabel E. Allen
- Department of Epidemiology and Biostatistics, University of California San Francisco San Francisco (UCSF), San Francisco, CA, USA
| | - Joel H. Kramer
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Stefano Bastianello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Roland G. Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Howie.J. Rosen
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Michael D. Geschwind
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
39
|
Yuki N, Yoshioka A, Mizuhara R, Kimura T. Visual hallucinations and inferior longitudinal fasciculus in Parkinson's disease. Brain Behav 2020; 10:e01883. [PMID: 33078912 PMCID: PMC7749587 DOI: 10.1002/brb3.1883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION We investigated whether disruption of the inferior longitudinal fasciculus and inferior fronto-occipital fasciculus are associated with visual hallucinations in Parkinson's disease (PD). METHODS Sixty consecutive right-handed patients with PD with and without visual hallucinations were enrolled in this cross-sectional study. Diffusion tensor imaging was acquired by 3.0 T magnetic resonance imaging. We measured fractional anisotropy and mean diffusivity of the bilateral inferior longitudinal fasciculus and inferior fronto-occipital fasciculus using diffusion tensor tractography analysis software. RESULTS Seventeen patients with PD had visual hallucinations; these patients tended to have lower fractional anisotropy and higher mean diffusivity values in all fasciculi than did patients without visual hallucinations. A univariate logistic analysis showed that the presence of visual hallucinations was significantly associated with lower fractional anisotropy and higher mean diffusivity of the left inferior longitudinal fasciculus, and lower Mini-Mental State Examination (MMSE) scores. A multivariable logistic analysis adjusted by MMSE scores and disease duration showed a significant association between the presence of visual hallucinations and fractional anisotropy and mean diffusivity values of the left inferior longitudinal fasciculus. CONCLUSIONS Our results suggest that disruption of left inferior longitudinal fasciculus integrity is associated with visual hallucinations in patients with PD, independent of cognitive impairment and disease duration.
Collapse
Affiliation(s)
- Natsuko Yuki
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan.,Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan
| | - Akira Yoshioka
- Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan.,Department of Clinical Research, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Ryo Mizuhara
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Tadashi Kimura
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| |
Collapse
|
40
|
Rosas HD, Hsu E, Mercaldo ND, Lai F, Pulsifer M, Keator D, Brickman AM, Price J, Yassa M, Hom C, Krinsky‐McHale SJ, Silverman W, Lott I, Schupf N. Alzheimer-related altered white matter microstructural integrity in Down syndrome: A model for sporadic AD? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12040. [PMID: 33204811 PMCID: PMC7648416 DOI: 10.1002/dad2.12040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Virtually all adults with Down syndrome (DS) develop Alzheimer's disease (AD)-associated neuropathology by the age of 40, with risk for dementia increasing from the early 50s. White matter (WM) pathology has been reported in sporadic AD, including early demyelination, microglial activation, loss of oligodendrocytes and reactive astrocytes but has not been extensively studied in the at-risk DS population. METHODS Fifty-six adults with DS (35 cognitively stable adults, 11 with mild cognitive impairment, 10 with dementia) underwent diffusion-weighted magnetic resonance imaging (MRI), amyloid imaging, and had assessments of cognition and functional abilities using tasks appropriate for persons with intellectual disability. RESULTS Early changes in late-myelinating and relative sparing of early-myelinating pathways, consistent with the retrogenesis model proposed for sporadic AD, were associated with AD-related cognitive deficits and with regional amyloid deposition. DISCUSSION Our findings suggest that quantification of WM changes in DS could provide a promising and clinically relevant biomarker for AD clinical onset and progression.
Collapse
Affiliation(s)
- H. Diana Rosas
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyAthinoula Martinos CenterMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Eugene Hsu
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyAthinoula Martinos CenterMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Nathaniel D. Mercaldo
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Margaret Pulsifer
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David Keator
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Adam M. Brickman
- G. H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging BrainCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Julie Price
- Department of RadiologyAthinoula Martinos CenterMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Michael Yassa
- Department of Neurobiology and BehaviorUniversity of CaliforniaCalifornia, USAIrvine
| | - Christy Hom
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Wayne Silverman
- Kennedy Krieger InstituteJohns Hopkins University School of Medicine, BaltimoreMarylandUSA
- Department of PediatricsIrvine Medical CenterUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ira Lott
- Department of PediatricsIrvine Medical CenterUniversity of CaliforniaIrvineCaliforniaUSA
| | - Nicole Schupf
- G. H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging BrainCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
41
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
42
|
Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020; 14:583421. [PMID: 33122996 PMCID: PMC7573566 DOI: 10.3389/fnins.2020.583421] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
The locus coeruleus (LC) has long been underappreciated for its role in the pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative disorders. While AD and PD are distinct in clinical presentation, both are characterized by prodromal protein aggregation in the LC, late-stage degeneration of the LC, and comorbid conditions indicative of LC dysfunction. Many of these early studies were limited to post-mortem histological techniques due to the LC’s small size and location deep in the brainstem. Thus, there is a growing interest in utilizing in vivo imaging of the LC as a predictor of preclinical neurodegenerative processes and biomarker of disease progression. Simultaneously, neuroimaging in animal models of neurodegenerative disease holds promise for identifying early alterations to LC circuits, but has thus far been underutilized. While still in its infancy, a handful of studies have reported effects of single gene mutations and pathology on LC function in disease using various neuroimaging techniques. Furthermore, combining imaging and optogenetics or chemogenetics allows for interrogation of network connectivity in response to changes in LC activity. The purpose of this article is twofold: (1) to review what magnetic resonance imaging (MRI) and positron emission tomography (PET) have revealed about LC dysfunction in neurodegenerative disease and its potential as a biomarker in humans, and (2) to explore how animal models can be used to test hypotheses derived from clinical data and establish a mechanistic framework to inform LC-focused therapeutic interventions to alleviate symptoms and impede disease progression.
Collapse
Affiliation(s)
- Michael Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
43
|
Weston PSJ, Poole T, Nicholas JM, Toussaint N, Simpson IJA, Modat M, Ryan NS, Liang Y, Rossor MN, Schott JM, Ourselin S, Zhang H, Fox NC. Measuring cortical mean diffusivity to assess early microstructural cortical change in presymptomatic familial Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:112. [PMID: 32943095 PMCID: PMC7499910 DOI: 10.1186/s13195-020-00679-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Background There is increasing interest in improving understanding of the timing and nature of early neurodegeneration in Alzheimer’s disease (AD) and developing methods to measure this in vivo. Autosomal dominant familial Alzheimer’s disease (FAD) provides the opportunity for investigation of presymptomatic change. We assessed early microstructural breakdown of cortical grey matter in FAD with diffusion-weighted MRI. Methods Diffusion-weighted and T1-weighed MRI were acquired in 38 FAD mutation carriers (17 symptomatic, 21 presymptomatic) and 39 controls. Mean diffusivity (MD) was calculated for six cortical regions previously identified as being particularly vulnerable to FAD-related neurodegeneration. Linear regression compared MD between symptomatic and presymptomatic carriers and controls, adjusting for age and sex. Spearman coefficients assessed associations between cortical MD and cortical thickness. Spearman coefficients also assessed associations between cortical MD and estimated years to/from onset (EYO). Across mutation carriers, linear regression assessed associations between MD and EYO, adjusting for cortical thickness. Results Compared with controls, cortical MD was higher in symptomatic mutation carriers (mean ± SD CDR = 0.88 ± 0.39) for all six regions (p < 0.001). In late presymptomatic carriers (within 8.1 years of predicted symptom onset), MD was higher in the precuneus (p = 0.04) and inferior parietal cortex (p = 0.003) compared with controls. Across all presymptomatic carriers, MD in the precuneus correlated with EYO (p = 0.04). Across all mutation carriers, there was strong evidence (p < 0.001) of association between MD and cortical thickness in all regions except entorhinal cortex. After adjusting for cortical thickness, there remained an association (p < 0.05) in mutation carriers between MD and EYO in all regions except entorhinal cortex. Conclusions Cortical MD measurement detects microstructural breakdown in presymptomatic FAD and correlates with proximity to symptom onset independently of cortical thickness. Cortical MD may thus be a feasible biomarker of early AD-related neurodegeneration, offering additional/complementary information to conventional MRI measures.
Collapse
Affiliation(s)
- Philip S J Weston
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.
| | - Teresa Poole
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Nicolas Toussaint
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Transitional Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Ivor J A Simpson
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Transitional Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Yuying Liang
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Martin N Rossor
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Sebastien Ourselin
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Hui Zhang
- Microstructure Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| |
Collapse
|
44
|
Reorganized Brain White Matter in Early- and Late-Onset Deafness With Diffusion Tensor Imaging. Ear Hear 2020; 42:223-234. [PMID: 32833702 DOI: 10.1097/aud.0000000000000917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Individuals with early- and late-onset deafness showed different functional and morphological brain changes, but white matter alterations in both deaf groups still need to be elucidated. This study aimed to investigate changes in white matter integrity and white matter anatomical connectivity in both early- and late-onset deaf groups compared with hearing group. DESIGN Diffusion tensor imaging data from 7 early-onset deaf (50.7 ± 6.5 years), 11 late-onset deaf (50.9 ± 12.3 years), and 9 hearing adults (48.9 ± 9.5 years) were preprocessed using FSL software. To find changes in white matter integrity, tract-based spatial statistics was used, which implemented on FSL software. Fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) were calculated and compared among the groups with age as a nuisance variable. To find out the effect of onset age or duration of deafness to the white matter integrity, onset-age or duration of deafness was treated as a variable of interest in the general linear model implemented on tract-based spatial statistics. White matter connectivity was constructed by a deterministic tractography and compared among the groups. RESULTS In comparison to the hearing group, the early-onset deaf group did not show any significant changes but the late-onset deaf group showed decreased FA and increased RD in the several white matter areas. AD in the late-onset deaf group was not significantly different compared with the hearing group. The regions included the corpus callosum, posterior and superior corona radiata, internal capsule, posterior thalamic radiation, superior longitudinal fasciculus, and tapetum of the right hemisphere. Increased RD was also additionally observed in the right external capsule, fornix, and cerebral peduncle. The onset age or duration of deafness was not significantly correlated with the white matter integrity in the early-onset deaf group. In contrast, the onset age showed a significantly positive correlation with the RD, and a negative correlation with the FA, in the late-onset deaf group. The correlated white matter areas were also similar to the findings of comparison with the hearing group. In comparison to the hearing group, the early-onset deaf group did not show altered white matter connectivity, while the late-onset deaf group showed decreased white matter connectivity in between the right lingual and hippocampal areas. CONCLUSIONS The present results suggest that late-onset deaf adults showed decreased FA and increased RD, and early-onset deaf adults showed no difference compared with the hearing group. In the late-onset deaf adults, onset-age showed a significantly positive correlation with RD and negative correlation with FA. Duration of deafness was not significantly correlated with the changes. Increased RD indicating demyelination occurred in the brain, and the changes were not limited to the auditory cortex but expanded to almost whole brain areas, suggesting significant effect of auditory deprivation on the brain later in life. The altered white matter connectivity in between the right limbic-occipital areas observed in the late-onset deaf group might be caused by altered language functions after auditory deprivation. Future studies are necessary incorporating functional and anatomical aspects of the brain changes in deaf group.
Collapse
|
45
|
Chu WT, DeSimone JC, Riffe CJ, Liu H, Chakrabarty P, Giasson BI, Vedam-Mai V, Vaillancourt DE. α-Synuclein Induces Progressive Changes in Brain Microstructure and Sensory-Evoked Brain Function That Precedes Locomotor Decline. J Neurosci 2020; 40:6649-6659. [PMID: 32669353 PMCID: PMC7486650 DOI: 10.1523/jneurosci.0189-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/13/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
In vivo functional and structural brain imaging of synucleinopathies in humans have provided a rich new understanding of the affected networks across the cortex and subcortex. Despite this progress, the temporal relationship between α-synuclein (α-syn) pathology and the functional and structural changes occurring in the brain is not well understood. Here, we examine the temporal relationship between locomotor ability, brain microstructure, functional brain activity, and α-syn pathology by longitudinally conducting rotarod, diffusion magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), and sensory-evoked fMRI on 20 mice injected with α-syn fibrils and 20 PBS-injected mice at three timepoints (10 males and 10 females per group). Intramuscular injection of α-syn fibrils in the hindlimb of M83+/- mice leads to progressive α-syn pathology along the spinal cord, brainstem, and midbrain by 16 weeks post-injection. Our results suggest that peripheral injection of α-syn has acute systemic effects on the central nervous system such that structural and resting-state functional activity changes occur in the brain by four weeks post-injection, well before α-syn pathology reaches the brain. At 12 weeks post-injection, a separate and distinct pattern of structural and sensory-evoked functional brain activity changes was observed that are co-localized with previously reported regions of α-syn pathology and immune activation. Microstructural changes in the pons at 12 weeks post-injection were found to predict survival time and preceded measurable locomotor deficits. This study provides preliminary evidence for diffusion and fMRI markers linked to the progression of synuclein pathology and has translational importance for understanding synucleinopathies in humans.SIGNIFICANCE STATEMENT α-Synuclein (α-syn) pathology plays a critical role in neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The longitudinal effects of α-syn pathology on locomotion, brain microstructure, and functional brain activity are not well understood. Using high field imaging, we show preliminary evidence that peripheral injection of α-syn fibrils induces unique patterns of functional and structural changes that occur at different temporal stages of α-syn pathology progression. Our results challenge existing assumptions that α-syn pathology must precede changes in brain structure and function. Additionally, we show preliminary evidence that diffusion and functional magnetic resonance imaging (fMRI) are capable of resolving such changes and thus should be explored further as markers of disease progression.
Collapse
Affiliation(s)
- Winston T Chu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611
| | - Jesse C DeSimone
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611
| | - Cara J Riffe
- Department of Neuroscience, University of Florida, Gainesville, Florida 32611
| | - Han Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611
| | | | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, Florida 32611
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, Gainesville, Florida 32611
| | - David E Vaillancourt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611
- Department of Neurology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
46
|
Donaghy PC, Firbank M, Petrides G, Lloyd J, Barnett N, Olsen K, Thomas AJ, O'Brien JT. Diffusion imaging in dementia with Lewy bodies: Associations with amyloid burden, atrophy, vascular factors and clinical features. Parkinsonism Relat Disord 2020; 78:109-115. [PMID: 32814228 DOI: 10.1016/j.parkreldis.2020.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION White matter disruption in dementia has been linked to a variety of factors including vascular disease and cortical pathology. We aimed to examine the relationship between white matter changes on diffusion tensor imaging (DTI) in DLB and factors including vascular disease, structural atrophy and amyloid burden. METHODS Participants with DLB (n = 29), Alzheimer's disease (AD, n = 17) and healthy controls (n = 20) had clinical and neuropsychological assessments followed by structural and diffusion tensor 3T MRI and 18F-Florbetapir PET-CT imaging. Voxelwise statistical analysis of white matter fractional anisotropy (FA) and mean diffusivity (MD) was carried out using Tract-Based Spatial Statistics with family-wise error correction (p < 0.05). RESULTS DLB and AD groups demonstrated widespread increased MD and decreased FA when compared with controls. There were no differences between the DLB and AD groups. In DLB, increased MD and decreased FA correlated with decreased grey matter and hippocampal volumes as well as vascular disease. There was no correlation with cortical florbetapir SUVR. The relationship between DTI changes and grey matter/hippocampal volumes remained after including Cumulative Illness Rating Scale-Geriatric vascular score as a covariate. CONCLUSIONS Widespread disruption of white matter tracts is present in DLB and is associated with vascular disease, reduced hippocampal volume and reduced grey matter volume, but not with cortical amyloid deposition. The mechanism behind the correlation observed between hippocampal volume and white matter tract disruption should be investigated in future cohorts using tau imaging, as hippocampal atrophy has been shown to correlate with tau deposition in DLB.
Collapse
Affiliation(s)
- Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, UK.
| | - Michael Firbank
- Translational and Clinical Research Institute, Newcastle University, UK
| | - George Petrides
- Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Jim Lloyd
- Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Newcastle University, UK
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, UK
| | | |
Collapse
|
47
|
Rosenblum Y, Maidan I, Fahoum F, Giladi N, Bregman N, Shiner T, Mirelman A. Differential changes in visual and auditory event-related oscillations in dementia with Lewy bodies. Clin Neurophysiol 2020; 131:2357-2366. [PMID: 32828038 DOI: 10.1016/j.clinph.2020.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Aside from the cognitive impairment, patients with dementia with Lewy bodies (DLB) have a high frequency of visual hallucinations and a number of other vision-related symptoms, whereas auditory hallucinations are less frequent. To better understand the differential dysfunction of the visual network in DLB, we compared auditory and visual event-related potentials and oscillations in patients with DLB. METHODS Event-related potentials elicited by visual and auditory oddball tasks were recorded in 23 patients with DLB and 22 healthy controls and analyzed in time and time-frequency domain. RESULTS DLB patients had decreased theta band activity related to both early sensory and later cognitive processing in the visual, but not in the auditory task. Patients had lower delta and higher alpha and beta bands power related to later cognitive processing in both auditory and visual tasks. CONCLUSIONS In DLB visual event-related oscillations are characterized by a decrease in theta and lack of inhibition in alpha bands. SIGNIFICANCE Decreased theta and a lack of inhibition in alpha band power might be an oscillatory underpinning of some classical DLB symptoms such as fluctuations in attention and high-level visual disturbances and a potential marker of dysfunction of the visual system in DLB.
Collapse
Affiliation(s)
- Yevgenia Rosenblum
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Epilepsy Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Epilepsy Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Bregman
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tamara Shiner
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
48
|
Cremers LG, Wolters FJ, de Groot M, Ikram MK, van der Lugt A, Niessen WJ, Vernooij MW, Ikram MA. Structural disconnectivity and the risk of dementia in the general population. Neurology 2020; 95:e1528-e1537. [DOI: 10.1212/wnl.0000000000010231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/18/2020] [Indexed: 11/15/2022] Open
Abstract
ObjectiveThe disconnectivity hypothesis postulates that partial loss of connecting white matter fibers between brain regions contributes to the development of dementia. Using diffusion MRI to quantify global and tract-specific white matter microstructural integrity, we tested this hypothesis in a longitudinal population-based study.MethodsGlobal and tract-specific fractional anisotropy (FA) and mean diffusivity (MD) were obtained in 4,415 people without dementia (mean age 63.9 years, 55.0% women) from the prospective population-based Rotterdam Study with brain MRI between 2005 and 2011. We modeled the association of these diffusion measures with risk of dementia (follow-up until 2016) and with changes on repeated cognitive assessment after on average 5.4 years, adjusting for age, sex, education, macrostructural MRI markers, depressive symptoms, cardiovascular risk factors, and APOE genotype.ResultsDuring a median follow-up of 6.8 years, 101 participants had incident dementia, of whom 83 had clinical Alzheimer disease (AD). Lower global values of FA and higher values of MD were associated with an increased risk of dementia (adjusted hazard ratio [95% confidence interval (CI)] per SD increase for MD 1.79 [1.44–2.23] and FA 0.65 [0.52–0.80]). Similarly, lower global values of FA and higher values of MD related to more cognitive decline in people without dementia (difference in global cognition per SD increase in MD [95% CI] was −0.04 [−0.07 to −0.01]). Associations were most profound in the projection, association, and limbic system tracts.ConclusionsStructural disconnectivity is associated with an increased risk of dementia and more pronounced cognitive decline in the general population.
Collapse
|
49
|
Marzban EN, Eldeib AM, Yassine IA, Kadah YM. Alzheimer's disease diagnosis from diffusion tensor images using convolutional neural networks. PLoS One 2020; 15:e0230409. [PMID: 32208428 PMCID: PMC7092978 DOI: 10.1371/journal.pone.0230409] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/01/2020] [Indexed: 12/21/2022] Open
Abstract
Machine learning algorithms are currently being implemented in an escalating manner to classify and/or predict the onset of some neurodegenerative diseases; including Alzheimer's Disease (AD); this could be attributed to the fact of the abundance of data and powerful computers. The objective of this work was to deliver a robust classification system for AD and Mild Cognitive Impairment (MCI) against healthy controls (HC) in a low-cost network in terms of shallow architecture and processing. In this study, the dataset included was downloaded from the Alzheimer's disease neuroimaging initiative (ADNI). The classification methodology implemented was the convolutional neural network (CNN), where the diffusion maps, and gray-matter (GM) volumes were the input images. The number of scans included was 185, 106, and 115 for HC, MCI and AD respectively. Ten-fold cross-validation scheme was adopted and the stacked mean diffusivity (MD) and GM volume produced an AUC of 0.94 and 0.84, an accuracy of 93.5% and 79.6%, a sensitivity of 92.5% and 62.7%, and a specificity of 93.9% and 89% for AD/HC and MCI/HC classification respectively. This work elucidates the impact of incorporating data from different imaging modalities; i.e. structural Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI), where deep learning was employed for the aim of classification. To the best of our knowledge, this is the first study assessing the impact of having more than one scan per subject and propose the proper maneuver to confirm the robustness of the system. The results were competitive among the existing literature, which paves the way for improving medications that could slow down the progress of the AD or prevent it.
Collapse
Affiliation(s)
- Eman N. Marzban
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Ayman M. Eldeib
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Inas A. Yassine
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Yasser M. Kadah
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
- Biomedical Engineering Program, Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
50
|
Todo M. Towards the interpretation of complex visual hallucinations in terms of self-reorganization of neural networks. Neurosci Res 2020; 156:147-158. [PMID: 32112785 DOI: 10.1016/j.neures.2020.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/25/2019] [Accepted: 12/28/2019] [Indexed: 10/24/2022]
Abstract
Patients suffering from dementia with Lewy body (DLB) often see complex visual hallucinations (CVH). Despite many pathological, clinical, and neuroimaging studies, the mechanism of CVH remains unknown. One possible scenario is that top-down information is being used to compensate for the lack of bottom-up information. To investigate this possibility and understand the underlying mathematical structure of the CVH mechanism, we propose a simple computational model of synaptic plasticity with particular focus on the effect of selective damage to the bottom-up network on self-reorganization. We show neurons that undergo a change in activity from a bottom-up to a top-down network framework during the reorganization process, which can be understood in terms of state transitions. Assuming that the pre-reorganization representation of this neuron remains after reorganization, it is possible to interpret neural response induced by top-down information as the sensation of bottom-up information. This situation might correspond to a hallucinatory situation in DLB patients. Our results agree with existing experimental evidence and provide new insights into data that have hitherto not been experimentally validated on patients with DLB.
Collapse
Affiliation(s)
- Masato Todo
- Department of Mathematics, School of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|