1
|
Celine G, Thomas M. Temporal characterisation and electrophysiological implications of TBI-induced serine/threonine kinase activity in mouse cortex. Cell Mol Life Sci 2025; 82:102. [PMID: 40045019 PMCID: PMC11883073 DOI: 10.1007/s00018-025-05638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/09/2025]
Abstract
Traumatic brain injury (TBI) remains the leading cause of death and disability worldwide with no existing effective treatment. The early phase after TBI induction triggers numerous molecular cascades to regulate adaptive processes and cortical network activity. Kinases play a particularly prominent role in modifying peptide substrates, which include ion channels, receptors, transcription factors and inflammatory mediators. This study aimed to better understand the post-injury serine/threonine kinome; (1) Which kinases conduct phosphorylation-induced alterations of target peptides following unilateral TBI in mouse cortex? (2) How do these kinases effectuate pathological network hyperexcitability, which has detrimental long-term outcomes? We used a serine/threonine kinase assay at 4 h, 24 h and 72 h post-TBI to identify hyper-/hypo-active/phosphorylated kinases and peptides in the ipsilateral and contralateral cortical hemispheres relative to sham-operated controls. We pharmacologically mimicked the changes seen in ERK1/2 and PKC kinase activity, and using microelectrode array recordings we explored their significant electrophysiological implications on spontaneous and evoked cortical activity. We then used these findings to manipulate key kinase activity changes at 24 h post-TBI to rescue the hyperexcitability that is seen in the contralateral cortical network at this timepoint back to sham level. The contribution of specific downstream peptide target channel/receptor subunits was also shown. We conclude that volatile kinase activity has potent implications on cortical network activity after the injury and that these kinases and/or their peptide substrates should be more seriously considered as therapeutic targets for the clinical treatment of TBI.
Collapse
Affiliation(s)
- Gallagher Celine
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mittmann Thomas
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Avetisyan A, Barria R, Sheehan A, Freeman MR. An Ionic Sensor acts in Parallel to dSarm to Promote Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620922. [PMID: 39651259 PMCID: PMC11623519 DOI: 10.1101/2024.10.29.620922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
How neurons to sense when they are terminally dysfunctional and activate neurodegeneration remains poorly defined. The pro-degenerative NAD + hydrolase dSarm/SARM1 can act as a metabolic sensor by detecting pathological changes in NAD + /NMN and subsequently induce catastrophic axon degeneration. Here we show Drosophila with-no-lysine kinase (dWnk), which can directly sense Cl - , K + and osmotic pressure, is required for neurodegeneration induced by depletion of the NAD + biosynthetic enzyme dNmnat. dWnk functions in parallel to dSarm and acts through the downstream kinase Frayed to promote axon degeneration and neuronal cell death. dWnk and dSarm ultimately converge on the BTB-Back domain molecule Axundead (Axed) to execute neurodegeneration. Our work argues that neurons use direct sensors of both metabolism (dSarm/SARM1) and ionic/osmotic status (dWnk) to evaluate cellular health and, when dysfunctional, promote neurodegeneration though a common axon death signaling molecule, Axundead.
Collapse
|
3
|
Chen B, Tan Q, Zhang H, Chu W, Wen H, Tian X, Yang Y, Li W, Li W, Chen Y, Feng H. Contralesional Anodal Transcranial Direct Current Stimulation Promotes Intact Corticospinal Tract Axonal Sprouting and Functional Recovery After Traumatic Brain Injury in Mice. Neurorehabil Neural Repair 2024; 38:214-228. [PMID: 38385458 DOI: 10.1177/15459683241233261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Anodal transcranial direct current stimulation (AtDCS), a neuromodulatory technique, has been applied to treat traumatic brain injury (TBI) in patients and was reported to promote functional improvement. We evaluated the effect of contralesional AtDCS on axonal sprouting of the intact corticospinal tract (CST) and the underlying mechanism in a TBI mouse model to provide more preclinical evidence for the use of AtDCS to treat TBI. METHODS TBI was induced in mice by a contusion device. Then, the mice were subjected to contralesional AtDCS 5 days per week followed by a 2-day interval for 7 weeks. After AtDCS, motor function was evaluated by the irregular ladder walking, narrow beam walking, and open field tests. CST sprouting was assessed by anterograde and retrograde labeling of corticospinal neurons (CSNs), and the effect of AtDCS was further validated by pharmacogenetic inhibition of axonal sprouting using clozapine-N-oxide (CNO). RESULTS TBI resulted in damage to the ipsilesional cortex, while the contralesional CST remained intact. AtDCS improved the skilled motor functions of the impaired hindlimb in TBI mice by promoting CST axon sprouting, specifically from the intact hemicord to the denervated hemicord. Furthermore, electrical stimulation of CSNs significantly increased the excitability of neurons and thus activated the mechanistic target of rapamycin (mTOR) pathway. CONCLUSIONS Contralesional AtDCS improved skilled motor following TBI, partly by promoting axonal sprouting through increased neuronal activity and thus activation of the mTOR pathway.
Collapse
Affiliation(s)
- Beike Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Tan
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Blood Transfusion, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Hongyan Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihua Chu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuelong Tian
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Yang Yang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Weina Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
Kazis D, Chatzikonstantinou S, Ciobica A, Kamal FZ, Burlui V, Calin G, Mavroudis I. Epidemiology, Risk Factors, and Biomarkers of Post-Traumatic Epilepsy: A Comprehensive Overview. Biomedicines 2024; 12:410. [PMID: 38398011 PMCID: PMC10886732 DOI: 10.3390/biomedicines12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This paper presents an in-depth exploration of Post-Traumatic Epilepsy (PTE), a complex neurological disorder following traumatic brain injury (TBI), characterized by recurrent, unprovoked seizures. With TBI being a global health concern, understanding PTE is crucial for effective diagnosis, management, and prognosis. This study aims to provide a comprehensive overview of the epidemiology, risk factors, and emerging biomarkers of PTE, thereby informing clinical practice and guiding future research. The epidemiological aspect of the study reveals PTE as a significant contributor to acquired epilepsies, with varying incidence influenced by injury severity, age, and intracranial pathologies. The paper delves into the multifactorial nature of PTE risk factors, encompassing clinical, demographic, and genetic elements. Key insights include the association of injury severity, intracranial hemorrhages, and early seizures with increased PTE risk, and the roles of age, gender, and genetic predispositions. Advancements in neuroimaging, electroencephalography, and molecular biology are presented, highlighting their roles in identifying potential PTE biomarkers. These biomarkers, ranging from radiological signs to electroencephalography EEG patterns and molecular indicators, hold promise for enhancing PTE pathogenesis understanding, early diagnosis, and therapeutic guidance. The paper also discusses the critical roles of astrocytes and microglia in PTE, emphasizing the significance of neuroinflammation in PTE development. The insights from this review suggest potential therapeutic targets in neuroinflammation pathways. In conclusion, this paper synthesizes current knowledge in the field, emphasizing the need for continued research and a multidisciplinary approach to effectively manage PTE. Future research directions include longitudinal studies for a better understanding of TBI and PTE outcomes, and the development of targeted interventions based on individualized risk profiles. This research contributes significantly to the broader understanding of epilepsy and TBI.
Collapse
Affiliation(s)
- Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat 26000, Morocco
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Gabriela Calin
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Badaut J, Hippauf L, Malinconi M, Noarbe BP, Obenaus A, Dubois CJ. Endocannabinoid-mediated rescue of somatosensory cortex activity, plasticity and related behaviors following an early in life concussion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577914. [PMID: 38352553 PMCID: PMC10862852 DOI: 10.1101/2024.01.30.577914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Due to the assumed plasticity of immature brain, early in life brain alterations are thought to lead to better recoveries in comparison to the mature brain. Despite clinical needs, how neuronal networks and associated behaviors are affected by early in life brain stresses, such as pediatric concussions, have been overlooked. Here we provide first evidence in mice that a single early in life concussion durably increases neuronal activity in the somatosensory cortex into adulthood, disrupting neuronal integration while the animal is performing sensory-related tasks. This represents a previously unappreciated clinically relevant mechanism for the impairment of sensory-related behavior performance. Furthermore, we demonstrate that pharmacological modulation of the endocannabinoid system a year post-concussion is well-suited to rescue neuronal activity and plasticity, and to normalize sensory-related behavioral performance, addressing the fundamental question of whether a treatment is still possible once post-concussive symptoms have developed, a time-window compatible with clinical treatment.
Collapse
Affiliation(s)
- J Badaut
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - L Hippauf
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - M Malinconi
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - B P Noarbe
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - A Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - C J Dubois
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Vedaei F, Newberg AB, Alizadeh M, Zabrecky G, Navarreto E, Hriso C, Wintering N, Mohamed FB, Monti D. Treatment effects of N-acetyl cysteine on resting-state functional MRI and cognitive performance in patients with chronic mild traumatic brain injury: a longitudinal study. Front Neurol 2024; 15:1282198. [PMID: 38299014 PMCID: PMC10829764 DOI: 10.3389/fneur.2024.1282198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant public health concern, specially characterized by a complex pattern of abnormal neural activity and functional connectivity. It is often associated with a broad spectrum of short-term and long-term cognitive and behavioral symptoms including memory dysfunction, headache, and balance difficulties. Furthermore, there is evidence that oxidative stress significantly contributes to these symptoms and neurophysiological changes. The purpose of this study was to assess the effect of N-acetylcysteine (NAC) on brain function and chronic symptoms in mTBI patients. Fifty patients diagnosed with chronic mTBI participated in this study. They were categorized into two groups including controls (CN, n = 25), and patients receiving treatment with N-acetyl cysteine (NAC, n = 25). NAC group received 50 mg/kg intravenous (IV) medication once a day per week. In the rest of the week, they took one 500 mg NAC tablet twice per day. Each patient underwent rs-fMRI scanning at two timepoints including the baseline and 3 months later at follow-up, while the NAC group received a combination of oral and IV NAC over that time. Three rs-fMRI metrics were measured including fractional amplitude of low frequency fluctuations (fALFF), degree centrality (DC), and functional connectivity strength (FCS). Neuropsychological tests were also assessed at the same day of scanning for each patient. The alteration of rs-fMRI metrics and cognitive scores were measured over 3 months treatment with NAC. Then, the correlation analysis was executed to estimate the association of rs-fMRI measurements and cognitive performance over 3 months (p < 0.05). Two significant group-by-time effects demonstrated the changes of rs-fMRI metrics particularly in the regions located in the default mode network (DMN), sensorimotor network, and emotional circuits that were significantly correlated with cognitive function recovery over 3 months treatment with NAC (p < 0.05). NAC appears to modulate neural activity and functional connectivity in specific brain networks, and these changes could account for clinical improvement. This study confirmed the short-term therapeutic efficacy of NAC in chronic mTBI patients that may contribute to understanding of neurophysiological effects of NAC in mTBI. These findings encourage further research on long-term neurobehavioral assessment of NAC assisting development of therapeutic plans in mTBI.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B. Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Raizman R, Itzhaki N, Sirkin J, Meningher I, Tsarfaty G, Keren O, Zibli Z, Silberg T, Pick CG, Livny A. Decreased homotopic functional connectivity in traumatic brain injury. Cereb Cortex 2023; 33:1207-1216. [PMID: 35353131 DOI: 10.1093/cercor/bhac130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Homotopic functional connectivity (HoFC), the synchrony in activity patterns between homologous brain regions, is a fundamental characteristic of resting-state functional connectivity (RsFC). METHODS We examined the difference in HoFC, computed as the correlation between atlas-based regions and their counterpart on the opposite hemisphere, in 16 moderate-severe traumatic brain injury patients (msTBI) and 36 healthy controls. Regions of decreased HoFC in msTBI patients were further used as seeds for examining differences between groups in correlations with other brain regions. Finally, we computed logistic regression models of regional HoFC and fractional anisotropy (FA) of the corpus callosum (CC). RESULTS TBI patients exhibited decreased HoFC in the middle and posterior cingulate cortex, thalamus, superior temporal pole, and cerebellum III. Furthermore, decreased RsFC was found between left cerebellum III and right parahippocampal cortex and vermis, between superior temporal pole and left caudate and medial left and right frontal orbital gyri. Thalamic HoFC and FA of the CC discriminate patients as msTBI with a high accuracy of 96%. CONCLUSION TBI is associated with regionally decreased HoFC. Moreover, a multimodality model of interhemispheric connectivity allowed for a high degree of accuracy in disease discrimination and enabled a deeper understanding of TBI effects on brain interhemispheric reorganization post-TBI.
Collapse
Affiliation(s)
- Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel
| | - Nofar Itzhaki
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Johanna Sirkin
- Department of Psychology, Reichman University, Herzelia, Israel
| | - Inbar Meningher
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of imaging, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel
| | - Ofer Keren
- Department of Brain Injury Rehabilitation, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Zion Zibli
- Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, 69979 Ramat Gan, Israel
| | - Tamar Silberg
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Department of Psychology, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69979 Tel Aviv, Israel.,The Dr. Miriam and Sheldon G. Adelson, Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, 69979 Tel Aviv, Israel
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of imaging, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69979 Tel Aviv, Israel
| |
Collapse
|
8
|
The pericontused cortex can support function early after TBI but it remains functionally isolated from normal afferent input. Exp Neurol 2023; 359:114260. [PMID: 36404463 DOI: 10.1016/j.expneurol.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 12/30/2022]
Abstract
Traumatically injured brain functional connectivity (FC) is altered in a region-dependent manner with some regions functionally disconnected while others are hyperconnected after experimental TBI. Remote, homotopic cortical regions become hyperexcitable after injury, and we hypothesize that this results in increased trans-hemispheric cortical inhibition, preventing reorganization of the primary injured hemisphere. Previously we have shown that temporary silencing the contralesional cortex at 1wk normalizes affected forelimb behavioral use, but not at 4wks. To investigate the potential mechanism for this and to determine whether this occurs due to restoration of afferent pathway FC, and/or reorganization of brain circuits, we probed forelimb circuit function with sensorimotor task-evoked-fMRI, resting state fMRI seed-based analysis, and exploratory structural equation modelling (SEM) of directed causal connections due to forelimb task at 1 and 4wks post-injury after temporary, contralateral silencing with intraparenchymal injection of muscimol versus vehicle, as well as from sham rats. As predicted, silencing at 1wk and 4wks post-injury decimated the contralesional cortical forelimb map evoked by stimulation of the opposite, unaffected forelimb compared to vehicle-injected injured rats indicating the success of the intervention. Surprisingly however, this also resulted in activation of the pericontused cortex ipsilateral to the stimulated forelimb at 1wk, yet this same region could not be activated by directly stimulating the opposite, injury-affected forelimb. Underpinning this were significant increases in interhemispheric FC at the level of the cortex but decreases within subcortical regions. Causal SEM analysis confirmed increased corticothalamic connectivity and suggested changes from and to bilateral thalamus are important for the effect. At 4wks post-injury only cortical increases in FC were found in response to silencing indicating a less flexible brain, and ipsilesional cortex evoked activity was mostly absent. The absence of a reinstatement of ipsilesional evoked activity through normal pathways by temporary neuromodulation despite prior data showing behavioral improvements under the same conditions, indicates that while the pericontused cortex does retain function initially after injury, it is too functionally disconnected to be controlled by normal afferent input. More significant alterations in cross-brain FC during neuromodulation at 1wk compared to 4wk post-injury, suggest that more distributed brain activity accounts for prior behavior improvements in sensorimotor function, and that hemispheric imbalance in function is causally involved in early loss of sensorimotor function in this TBI model.
Collapse
|
9
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities. SIGNIFICANCE STATEMENT: Post-traumatic epilepsy is a chronic seizure condition after brain injury. With few models and limited understanding of the underlying progression of epileptogenesis, progress is extremely slow to find a preventative treatment for PTE. This study reviews the current state of modeling, pathology, biomarkers, and potential interventions for PTE and comorbidities. There's new optimism in finding a drug therapy for preventing PTE in people at risk, such as after traumatic brain injury, concussion, and serious brain injuries, especially in military persons.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
10
|
Fan L, Xu H, Su J, Qin J, Gao K, Ou M, Peng S, Shen H, Li N. Discriminating mild traumatic brain injury using sparse dictionary learning of functional network dynamics. Brain Behav 2021; 11:e2414. [PMID: 34775693 PMCID: PMC8671791 DOI: 10.1002/brb3.2414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is usually caused by a bump, blow, or jolt to the head or penetrating head injury, and carries the risk of inducing cognitive disorders. However, identifying the biomarkers for the diagnosis of mTBI is challenging as evident abnormalities in brain anatomy are rarely found in patients with mTBI. In this study, we tested whether the alteration of functional network dynamics could be used as potential biomarkers to better diagnose mTBI. We propose a sparse dictionary learning framework to delineate spontaneous fluctuation of functional connectivity into the subject-specific time-varying evolution of a set of overlapping group-level sparse connectivity components (SCCs) based on the resting-state functional magnetic resonance imaging (fMRI) data from 31 mTBI patients in the early acute phase (<3 days postinjury) and 31 healthy controls (HCs). The identified SCCs were consistently distributed in the cohort of subjects without significant inter-group differences in connectivity patterns. Nevertheless, subject-specific temporal expression of these SCCs could be used to discriminate patients with mTBI from HCs with a classification accuracy of 74.2% (specificity 64.5% and sensitivity 83.9%) using leave-one-out cross-validation. Taken together, our findings indicate neuroimaging biomarkers for mTBI individual diagnosis based on the temporal expression of SCCs underlying time-resolved functional connectivity.
Collapse
Affiliation(s)
- Liangwei Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Huaze Xu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Jian Qin
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Kai Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Min Ou
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Song Peng
- Radiology Department, Xiangya 3rd Hospital, Central South University, Changsha, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Na Li
- Radiology Department, Xiangya 3rd Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Song J, Li J, Chen L, Lu X, Zheng S, Yang Y, Cao B, Weng Y, Chen Q, Ding J, Huang R. Altered gray matter structural covariance networks at both acute and chronic stages of mild traumatic brain injury. Brain Imaging Behav 2021; 15:1840-1854. [PMID: 32880075 DOI: 10.1007/s11682-020-00378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive and emotional impairments observed in mild traumatic brain injury (mTBI) patients may reflect variances of brain connectivity within specific networks. Although previous studies found altered functional connectivity (FC) in mTBI patients, the alterations of brain structural properties remain unclear. In the present study, we analyzed structural covariance (SC) for the acute stages of mTBI (amTBI) patients, the chronic stages of mTBI (cmTBI) patients, and healthy controls. We first extracted the mean gray matter volume (GMV) of seed regions that are located in the default-mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), and the visual network (VN). Then we determined and compared the SC for each seed region among the amTBI, the cmTBI and the healthy controls. Compared with healthy controls, the amTBI patients showed lower SC for the ECN, and the cmTBI patients showed higher SC for the both DMN and SN but lower SC for the SMN. The results revealed disrupted ECN in the amTBI patients and disrupted DMN, SN and SMN in the cmTBI patients. These alterations suggest that early disruptions in SC between bilateral insula and the bilateral prefrontal cortices may appear in amTBI and persist into cmTBI, which might be potentially related to the cognitive and emotional impairments.
Collapse
Affiliation(s)
- Jie Song
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jie Li
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Lixiang Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xingqi Lu
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Senning Zheng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Yang
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Bolin Cao
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yihe Weng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Qinyuan Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Jianping Ding
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China. .,School of Medicine, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Ruiwang Huang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China. .,School of Psychology, South China Normal University, Guangzhou, 510631, China. .,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Ndode-Ekane XE, Puigferrat Pérez MDM, Di Sapia R, Lapinlampi N, Pitkänen A. Reorganization of Thalamic Inputs to Lesioned Cortex Following Experimental Traumatic Brain Injury. Int J Mol Sci 2021; 22:6329. [PMID: 34199241 PMCID: PMC8231773 DOI: 10.3390/ijms22126329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) disrupts thalamic and cortical integrity. The effect of post-injury reorganization and plasticity in thalamocortical pathways on the functional outcome remains unclear. We evaluated whether TBI causes structural changes in the thalamocortical axonal projection terminals in the primary somatosensory cortex (S1) that lead to hyperexcitability. TBI was induced in adult male Sprague Dawley rats with lateral fluid-percussion injury. A virus carrying the fluorescent-tagged opsin channel rhodopsin 2 transgene was injected into the ventroposterior thalamus. We then traced the thalamocortical pathways and analyzed the reorganization of their axonal terminals in S1. Next, we optogenetically stimulated the thalamocortical relays from the ventral posterior lateral and medial nuclei to assess the post-TBI functionality of the pathway. Immunohistochemical analysis revealed that TBI did not alter the spatial distribution or lamina-specific targeting of projection terminals in S1. TBI reduced the axon terminal density in the motor cortex by 44% and in S1 by 30%. A nematic tensor-based analysis revealed that in control rats, the axon terminals in layer V were orientated perpendicular to the pial surface (60.3°). In TBI rats their orientation was more parallel to the pial surface (5.43°, difference between the groups p < 0.05). Moreover, the level of anisotropy of the axon terminals was high in controls (0.063) compared with TBI rats (0.045, p < 0.05). Optical stimulation of the sensory thalamus increased alpha activity in electroencephalography by 312% in controls (p > 0.05) and 237% (p > 0.05) in TBI rats compared with the baseline. However, only TBI rats showed increased beta activity (33%) with harmonics at 5 Hz. Our findings indicate that TBI induces reorganization of thalamocortical axonal terminals in the perilesional cortex, which alters responses to thalamic stimulation.
Collapse
Affiliation(s)
- Xavier Ekolle Ndode-Ekane
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (M.d.M.P.P.); (R.D.S.); (N.L.); (A.P.)
| | | | | | | | | |
Collapse
|
13
|
Simchick G, Scheulin KM, Sun W, Sneed SE, Fagan MM, Cheek SR, West FD, Zhao Q. Detecting functional connectivity disruptions in a translational pediatric traumatic brain injury porcine model using resting-state and task-based fMRI. Sci Rep 2021; 11:12406. [PMID: 34117318 PMCID: PMC8196021 DOI: 10.1038/s41598-021-91853-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.
Collapse
Affiliation(s)
- Gregory Simchick
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, 500 D.W. Brooks Drive Rm 119, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Wenwu Sun
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, 500 D.W. Brooks Drive Rm 119, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Madison M Fagan
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Savannah R Cheek
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA.
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA.
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA.
| | - Qun Zhao
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, 500 D.W. Brooks Drive Rm 119, Athens, GA, 30602, USA.
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Hsu JM, Kang Y, Corty MM, Mathieson D, Peters OM, Freeman MR. Injury-Induced Inhibition of Bystander Neurons Requires dSarm and Signaling from Glia. Neuron 2021; 109:473-487.e5. [PMID: 33296670 PMCID: PMC7864878 DOI: 10.1016/j.neuron.2020.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Nervous system injury and disease have broad effects on the functional connectivity of the nervous system, but how injury signals are spread across neural circuits remains unclear. We explored how axotomy changes the physiology of severed axons and adjacent uninjured "bystander" neurons in a simple in vivo nerve preparation. Within hours after injury, we observed suppression of axon transport in all axons, whether injured or not, and decreased mechano- and chemosensory signal transduction in uninjured bystander neurons. Unexpectedly, we found the axon death molecule dSarm, but not its NAD+ hydrolase activity, was required cell autonomously for these early changes in neuronal cell biology in bystander neurons, as were the voltage-gated calcium channel Cacophony (Cac) and the mitogen-activated protein kinase (MAPK) signaling cascade. Bystander neurons functionally recovered at later time points, while severed axons degenerated via α/Armadillo/Toll-interleukin receptor homology domain (dSarm)/Axundead signaling, and independently of Cac/MAPK. Interestingly, suppression of bystander neuron function required Draper/MEGF10 signaling in glia, indicating glial cells spread injury signals and actively suppress bystander neuron function. Our work identifies a new role for dSarm and glia in suppression of bystander neuron function after injury and defines two genetically and temporally separable phases of dSarm signaling in the injured nervous system.
Collapse
Affiliation(s)
- Jiun-Min Hsu
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Megan M Corty
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danielle Mathieson
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen M Peters
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
15
|
Srinivas S, Retson T, Simon A, Hattangadi-Gluth J, Hsiao A, Farid N. Quantification of hemodynamics of cerebral arteriovenous malformations after stereotactic radiosurgery using 4D flow magnetic resonance imaging. J Magn Reson Imaging 2020; 53:1841-1850. [PMID: 33354852 DOI: 10.1002/jmri.27490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
Stereotactic radiosurgery (SRS) is used to treat cerebral arteriovenous malformations (AVMs). However, early evaluation of efficacy is difficult as structural magnetic resonance imaging (MRI)/magnetic resonance angiography (MRA) often does not demonstrate appreciable changes within the first 6 months. The aim of this study was to evaluate the use of four-dimensional (4D) flow MRI to quantify hemodynamic changes after SRS as early as 2 months. This was a retrospective observational study, which included 14 patients with both pre-SRS and post-SRS imaging obtained at multiple time points from 1 to 27 months after SRS. A 3T MRI Scanner was used to obtain T2 single-shot fast spin echo, time-of-flight MRA, and postcontrast 4D flow with three-dimensional velocity encoding between 150 and 200 cm/s. Post-hoc two-dimensional cross-sectional flow was measured for the dominant feeding artery, the draining vein, and the corresponding contralateral artery as a control. Measurements were performed by two independent observers, and reproducibility was assessed. Wilcoxon signed-rank tests were used to compare differences in flow, circumference, and pulsatility between the feeding artery and the contralateral artery both before and after SRS; and differences in nidus size and flow and circumference of the feeding artery and draining vein before and after SRS. Arterial flow (L/min) decreased in the primary feeding artery (mean: 0.1 ± 0.07 vs. 0.3 ± 0.2; p < 0.05) and normalized in comparison to the contralateral artery (mean: 0.1 ± 0.07 vs. 0.1 ± 0.07; p = 0.068). Flow decreased in the draining vein (mean: 0.1 ± 0.2 vs. 0.2 ± 0.2; p < 0.05), and the circumference of the draining vein also decreased (mean: 16.1 ± 8.3 vs. 15.7 ± 6.7; p < 0.05). AVM volume decreased after SRS (mean: 45.3 ± 84.8 vs. 38.1 ± 78.7; p < 0.05). However, circumference (mm) of the primary feeding artery remained similar after SRS (mean: 15.7 ± 2.7 vs. 16.1 ± 3.1; p = 0.600). 4D flow may be able to demonstrate early hemodynamic changes in AVMs treated with radiosurgery, and these changes appear to be more pronounced and occur earlier than the structural changes on standard MRI/MRA. Level of Evidence: 4 Technical Efficacy Stage: 1.
Collapse
Affiliation(s)
- Shanmukha Srinivas
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Tara Retson
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Aaron Simon
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, San Diego, California, USA
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, San Diego, California, USA
| | - Albert Hsiao
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Nikdokht Farid
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
16
|
Albayram O, Albayram S, Mannix R. Chronic traumatic encephalopathy-a blueprint for the bridge between neurological and psychiatric disorders. Transl Psychiatry 2020; 10:424. [PMID: 33293571 PMCID: PMC7723988 DOI: 10.1038/s41398-020-01111-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a perplexing condition characterized by a broad and diverse range of neuropathology and psychopathology. While there are no agreed upon or validated clinical criteria for CTE, case series of CTE have described a wide range of neuropsychiatric symptoms that have been attributed to repetitive traumatic brain injuries (rTBI). However, the direct links between the psychopathology of psychiatric and neurological conditions from rTBI to CTE remains poorly understood. Prior studies suggest that repetitive cerebral injuries are associated with damage to neural circuitry involved in emotional and memory processes, but these studies do not offer longitudinal assessments that prove causation. More recent studies on novel targets, such as transmission of misfolded proteins, as well as newly advanced non-invasive imaging techniques may offer more direct evidence of the pathogenesis of CTE by tracing the progression of pathology and display of related behavioral impairments. Understanding this interface in the context of rTBI can play an important role in future approaches to the definition, assessment, prevention, and treatment of CTE and mental illnesses.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Sait Albayram
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Rebekkah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Gabrieli D, Schumm SN, Vigilante NF, Parvesse B, Meaney DF. Neurodegeneration exposes firing rate dependent effects on oscillation dynamics in computational neural networks. PLoS One 2020; 15:e0234749. [PMID: 32966291 PMCID: PMC7510994 DOI: 10.1371/journal.pone.0234749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to neurodegeneration in the injured circuitry, either through primary structural damage to the neuron or secondary effects that disrupt key cellular processes. Moreover, traumatic injuries can preferentially impact subpopulations of neurons, but the functional network effects of these targeted degeneration profiles remain unclear. Although isolating the consequences of complex injury dynamics and long-term recovery of the circuit can be difficult to control experimentally, computational networks can be a powerful tool to analyze the consequences of injury. Here, we use the Izhikevich spiking neuron model to create networks representative of cortical tissue. After an initial settling period with spike-timing-dependent plasticity (STDP), networks developed rhythmic oscillations similar to those seen in vivo. As neurons were sequentially removed from the network, population activity rate and oscillation dynamics were significantly reduced. In a successive period of network restructuring with STDP, network activity levels returned to baseline for some injury levels and oscillation dynamics significantly improved. We next explored the role that specific neurons have in the creation and termination of oscillation dynamics. We determined that oscillations initiate from activation of low firing rate neurons with limited structural inputs. To terminate oscillations, high activity excitatory neurons with strong input connectivity activate downstream inhibitory circuitry. Finally, we confirm the excitatory neuron population role through targeted neurodegeneration. These results suggest targeted neurodegeneration can play a key role in the oscillation dynamics after injury.
Collapse
Affiliation(s)
- David Gabrieli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Samantha N. Schumm
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Vigilante
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brandon Parvesse
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Oyesanya TO, Turkstra LS, Brown RL. Development, Reliability, and Validity of the Perceptions of Brain Injury Survey. J Nurs Meas 2020; 28:229-258. [PMID: 32571977 DOI: 10.1891/jnm-d-19-00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to assess psychometric properties of the Perceptions of Brain Injury Survey (PBIS), an instrument designed to assess nurses' perceptions and preparation to care for patients with traumatic brain injury (TBI). METHODS We adapted two instruments to create the PBIS, and 724 nurses completed the PBIS at three hospitals. RESULTS Final instrument has 66 items and is composed of four subscales, which can be used independently. Results showed Cronbach's alpha for the overall scale was excellent (.93) and alphas for each composite subscale were acceptable to excellent (.73-.93). Findings also suggest good discriminant validity and evidence of external validity. CONCLUSIONS The PBIS is a reliable and valid measure for assessing nurses' perceptions of caring for patients with TBI in practice or research.
Collapse
|
19
|
Latchoumane CFV, Barany DA, Karumbaiah L, Singh T. Neurostimulation and Reach-to-Grasp Function Recovery Following Acquired Brain Injury: Insight From Pre-clinical Rodent Models and Human Applications. Front Neurol 2020; 11:835. [PMID: 32849253 PMCID: PMC7396659 DOI: 10.3389/fneur.2020.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.
Collapse
Affiliation(s)
- Charles-Francois V. Latchoumane
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Lohitash Karumbaiah
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Tarkeshwar Singh
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Neurometabolites and sport-related concussion: From acute injury to one year after medical clearance. Neuroimage Clin 2020; 27:102258. [PMID: 32388345 PMCID: PMC7215245 DOI: 10.1016/j.nicl.2020.102258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023]
Abstract
Sport-related concussion is associated with acute disturbances in neurometabolic function, with effects that may last weeks to months after injury. However, is presently unknown whether these disturbances resolve at medical clearance to return to play (RTP) or continue to evolve over longer time intervals. Moreover, little is known about how these neurometabolic changes correlate with other measures of brain physiology. In this study, these gaps were addressed by evaluating ninety-nine (99) university-level athletes, including 33 with sport-related concussion and 66 without recent injury, using multi-parameter magnetic resonance imaging (MRI), which included single-voxel spectroscopy (SVS), diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). The concussed athletes were scanned at the acute phase of injury (27/33 imaged), medical clearance to RTP (25/33 imaged), one month post-RTP (25/33 imaged) and one year post-RTP (13/33 imaged). We measured longitudinal changes in N-acetyl aspartate (NAA) and myo-inositol (Ins), over the course of concussion recovery. Concussed athletes showed no significant abnormalities or longitudinal change in NAA values, whereas Ins was significantly elevated at RTP and one month later. Interestingly, Ins response was attenuated by a prior history of concussion. Subsequent analyses identified significant associations between Ins values, DTI measures of white matter microstructure and fMRI measures of functional connectivity. These associations varied over the course of concussion recovery, suggesting that elevated Ins values at RTP and beyond reflect distinct changes in brain physiology, compared to acute injury. These findings provide novel information about neurometabolic recovery after a sport-related concussion, with evidence of disturbances that persist beyond medical clearance to RTP.
Collapse
Affiliation(s)
- Nathan W Churchill
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada; Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.
| | - Michael G Hutchison
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada; Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada; Faculty of Medicine (Neurosurgery) University of Toronto, Toronto, ON, Canada; The Institute of Biomaterials & Biomedical Engineering (IBBME) at the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Schumm SN, Gabrieli D, Meaney DF. Neuronal Degeneration Impairs Rhythms Between Connected Microcircuits. Front Comput Neurosci 2020; 14:18. [PMID: 32194390 PMCID: PMC7063469 DOI: 10.3389/fncom.2020.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/11/2020] [Indexed: 11/23/2022] Open
Abstract
Synchronization of neural activity across brain regions is critical to processes that include perception, learning, and memory. After traumatic brain injury (TBI), neuronal degeneration is one possible effect and can alter communication between neural circuits. Consequently, synchronization between neurons may change and can contribute to both lasting changes in functional brain networks and cognitive impairment in patients. However, fundamental principles relating exactly how TBI at the cellular scale affects synchronization of mesoscale circuits are not well understood. In this work, we use computational networks of Izhikevich integrate-and-fire neurons to study synchronized, oscillatory activity between clusters of neurons, which also adapt according to spike-timing-dependent plasticity (STDP). We study how the connections within and between these neuronal clusters change as unidirectional connections form between the two neuronal populations. In turn, we examine how neuronal deletion, intended to mimic the temporary or permanent loss of neurons in the mesoscale circuit, affects these dynamics. We determine synchronization of two neuronal circuits requires very modest connectivity between these populations; approximately 10% of neurons projecting from one circuit to another circuit will result in high synchronization. In addition, we find that synchronization level inversely affects the strength of connection between neuronal microcircuits - moderately synchronized microcircuits develop stronger intercluster connections than do highly synchronized circuits. Finally, we find that highly synchronized circuits are largely protected against the effects of neuronal deletion but may display changes in frequency properties across circuits with targeted neuronal loss. Together, our results suggest that strongly and weakly connected regions differ in their inherent resilience to damage and may serve different roles in a larger network.
Collapse
Affiliation(s)
- Samantha N. Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David F. Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
D'Souza MM, Kumar M, Choudhary A, Kaur P, Kumar P, Rana P, Trivedi R, Sekhri T, Singh AK. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study. Neuroradiol J 2020; 33:186-197. [PMID: 31992126 DOI: 10.1177/1971400920901706] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM In the present study, we aimed to characterise changes in functional brain networks in individuals who had sustained uncomplicated mild traumatic brain injury (mTBI). We assessed the progression of these changes into the chronic phase. We also attempted to explore how these changes influenced the severity of post-concussion symptoms as well as the cognitive profile of the patients. METHODS A total of 65 patients were prospectively recruited for an advanced magnetic resonance imaging (MRI) scan within 7 days of sustaining mTBI. Of these, 25 were reassessed at 6 months post injury. Differences in functional brain networks were analysed between cases and age- and sex-matched healthy controls using independent component analysis of resting-state functional MRI. RESULTS Our study revealed reduced functional connectivity in multiple networks, including the anterior default mode network, central executive network, somato-motor and auditory network in patients who had sustained mTBI. A negative correlation between network connectivity and severity of post-concussive symptoms was observed. Follow-up studies performed 6 months after injury revealed an increase in network connectivity, along with an improvement in the severity of post-concussion symptoms. Neurocognitive tests performed at this time point revealed a positive correlation between the functional connectivity and the test scores, along with a persistence of negative correlation between network connectivity and post-concussive symptom severity. CONCLUSION Our results suggest that uncomplicated mTBI is associated with specific abnormalities in functional brain networks that evolve over time and may contribute to the severity of post-concussive symptoms and cognitive deficits.
Collapse
Affiliation(s)
| | - Mukesh Kumar
- Institute of Nuclear Medicine and Allied Sciences, India
| | | | - Prabhjot Kaur
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Pawan Kumar
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Poonam Rana
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Richa Trivedi
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Tarun Sekhri
- Institute of Nuclear Medicine and Allied Sciences, India
| | | |
Collapse
|
23
|
Xia G, Hu Z, Zhou F, Duan W, Wang M, Gong H, He Y, Guan Y. Functional Connectivity Density with Frequency-Dependent Changes in Patients with Diffuse Axonal Injury: A Resting-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2020; 16:2733-2742. [PMID: 33209028 PMCID: PMC7669505 DOI: 10.2147/ndt.s267023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We explored changes in spontaneous brain connectivity in patients with diffuse axonal injury (DAI), assessed via functional connectivity density (FCD) tests using different frequency bands. PATIENTS AND METHODS In all, 23 patients with DAI (17 males and 6 females) and 23 healthy controls (HCs; 17 males and 6 females) were included. Functional magnetic resonance imaging scans were performed when the participants were in a resting state and the FCD levels in three frequency bands (slow-4: 0.027-0.073 Hz, slow-5: 0.01-0.027 Hz, and typical: 0.01-0.08 Hz) were measured. In addition, Pearson's correlation coefficient was used to explore the relationship between clinical indices and brain regions with abnormal FCD values. RESULTS Compared to HCs, DAI patients had significantly greater FCD values in the right extranuclear/limbic lobe/cingulate gyrus and left limbic lobe/hippocampus/parahippocampal gyrus, and significantly lower FCD values in the left precuneus/posterior cingulate gyrus, in the slow-4 band. In the slow-5 band, the DAI patients had higher FCD values in the left inferior temporal gyrus/superior temporal gyrus, left parahippocampal gyrus/limbic lobe, left extranuclear/cingulate gyrus, and right medial frontal gyrus, and lower values in the right inferior frontal gyrus, right inferior parietal lobule, and left cingulate gyrus/limbic lobe. Moreover, compared to HCs, the values in the typical band were higher in the right extranuclear/limbic lobe/hippocampus/parahippocampal gyrus, but were significantly lower in the right precuneus/posterior cingulate gyrus and right inferior parietal lobule/supramarginal gyrus. The abnormal FCD values of these brain regions were linearly correlated with different clinical scale scores. CONCLUSION DAI patients had abnormal FCD values in various brain regions, indicating disruption to the brain functional network. Moreover, the values were frequency dependent. Our results provide new evidence for the pathogenesis of functional impairment and may explain the neuropathological or compensatory mechanism of the disease.
Collapse
Affiliation(s)
- Guojin Xia
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Jiangxi, People's Republic of China
| | - Zhenzhen Hu
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Jiangxi, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Jiangxi, People's Republic of China
| | - Wenfeng Duan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Jiangxi, People's Republic of China
| | - Min Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Jiangxi, People's Republic of China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Jiangxi, People's Republic of China
| | - Yulin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Jiangxi, People's Republic of China
| | - Yanxing Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China
| |
Collapse
|
24
|
Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI. Neuroimage 2019; 206:116316. [PMID: 31672663 DOI: 10.1016/j.neuroimage.2019.116316] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/09/2019] [Accepted: 10/26/2019] [Indexed: 01/22/2023] Open
Abstract
Determining the level of consciousness in patients with disorders of consciousness (DOC) remains challenging. To address this challenge, resting-state fMRI (rs-fMRI) has been widely used for detecting the local, regional, and network activity differences between DOC patients and healthy controls. Although substantial progress has been made towards this endeavor, the identification of robust rs-fMRI-based biomarkers for level of consciousness is still lacking. Recent developments in machine learning show promise as a tool to augment the discrimination between different states of consciousness in clinical practice. Here, we investigated whether machine learning models trained to make a binary distinction between conscious wakefulness and anesthetic-induced unconsciousness would then be capable of reliably identifying pathologically induced unconsciousness. We did so by extracting rs-fMRI-based features associated with local activity, regional homogeneity, and interregional functional activity in 44 subjects during wakefulness, light sedation, and unresponsiveness (deep sedation and general anesthesia), and subsequently using those features to train three distinct candidate machine learning classifiers: support vector machine, Extra Trees, artificial neural network. First, we show that all three classifiers achieve reliable performance within-dataset (via nested cross-validation), with a mean area under the receiver operating characteristic curve (AUC) of 0.95, 0.92, and 0.94, respectively. Additionally, we observed comparable cross-dataset performance (making predictions on the DOC data) as the anesthesia-trained classifiers demonstrated a consistent ability to discriminate between unresponsive wakefulness syndrome (UWS/VS) patients and healthy controls with mean AUC's of 0.99, 0.94, 0.98, respectively. Lastly, we explored the potential of applying the aforementioned classifiers towards discriminating intermediate states of consciousness, specifically, subjects under light anesthetic sedation and patients diagnosed as having a minimally conscious state (MCS). Our findings demonstrate that machine learning classifiers trained on rs-fMRI features derived from participants under anesthesia have potential to aid the discrimination between degrees of pathological unconsciousness in clinical patients.
Collapse
|
25
|
Kullberg-Turtiainen M, Vuorela K, Huttula L, Turtiainen P, Koskinen S. Individualized goal directed dance rehabilitation in chronic state of severe traumatic brain injury: A case study. Heliyon 2019; 5:e01184. [PMID: 30805564 PMCID: PMC6374582 DOI: 10.1016/j.heliyon.2019.e01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/13/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Few long-term studies report late outcomes after severe traumatic brain injury. New rehabilitation techniques are needed for this heterogenous patient group. We present a dance intervention six and half years after an extreme severe TBI including excessive diffuse axonal injury, which disconnects the brain networks. Given the fact, that efficient brain function depends on the integrated operation of large-scale brain networks like default mode network (DMN), we created an intervention with multisensory and multimodal approach and goal-directed behavior. The intervention lasted four months including weekly one-hour dance lessons with the help of a physiotherapist and dance teacher. The measures included functional independence measure (FIM), repeated electroencephalogram (EEG) analysis of three subnets of DMN and clinical evaluations and observations. The results showed clear improvement after the intervention, and FIM stayed in elevated level during several years after the intervention. We present suggestion for further studies using larger patient groups.
Collapse
Affiliation(s)
| | | | | | | | - Sanna Koskinen
- University of Helsinki, Department of Psychology and Logopedics, Faculty of Medicine, Finland
| |
Collapse
|
26
|
Guo Z, Wu X, Liu J, Yao L, Hu B. Altered electroencephalography functional connectivity in depression during the emotional face-word Stroop task. J Neural Eng 2018; 15:056014. [PMID: 29923500 DOI: 10.1088/1741-2552/aacdbb] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Depression is a severe mental disorder. However, the neural mechanisms underlying affective interference (difficulties in directing attention away from negative distractors) in depression patients are still not well-understood. In particular, the connections between brain regions remain unclear. Using the emotional face-word Stroop task, we aimed to reveal the altered electroencephalography (EEG) functional connectivity in patients with depression, using concepts from event-related potentials (ERPs) and time series clustering. APPROACH In this study, the EEG signals of ten healthy participants and ten depression patients were collected from a 64-sensor cap. Subsequently, EEG signals were segmented into temporal windows corresponding to the ERPs. For each duration, the dynamic time warping algorithm was used to calculate the similarities between EEG signals from different electrodes, and differences of these similarities were compared between the groups. Finally, hierarchical clustering was used to identify functionally connected regions and examine changes in depression. MAIN RESULTS It was observed that during the time interval of 400-600 ms (N450 components), depression patients had more long-range connections than did healthy control patients and exhibited abnormal functional connectivity via the superior and middle frontal gyrus, specifically, the dorsolateral prefrontal cortex (DL-PFC, Brodmann's area 8 and 9), which is related to the control and resolution of affective interference. Moreover, the functionally connected region of depression patients was much larger than that of healthy participants, which is caused by brain resource reorganization. SIGNIFICANCE These findings thus provide new insights into the neural mechanisms of depression and further identify the DL-PFC and connections between certain electrodes as quantitative indicators of depression.
Collapse
Affiliation(s)
- Zhenghao Guo
- College of Information Science and Technology, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Coyle HL, Ponsford J, Hoy KE. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci Biobehav Rev 2018; 92:140-149. [PMID: 29885426 DOI: 10.1016/j.neubiorev.2018.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
The pathophysiology associated with mild traumatic brain injury (mTBI) includes neurometabolic and cytoskeletal changes that have been shown to impair structural and functional connectivity. Evidence that persistent neuropsychological impairments post injury are linked to structural and functional connectivity changes is increasing. However, to date the relationship between connectivity changes, heterogeneity of persistent symptoms and recovery post mTBI has been poorly characterised. Recent innovations in neuroimaging provide new ways of exploring connectivity changes post mTBI. Namely, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers several advantages over traditional approaches for studying connectivity changes post TBI. Its ability to perturb neural function in a controlled manner allows for measurement of causal interactions or effective connectivity between brain regions. We review the current literature assessing structural and functional connectivity following mTBI and outline the rationale for the use of TMS-EEG as an ideal tool for investigating the neural substrates of connectivity dysfunction and reorganisation post mTBI. The diagnostic, prognostic and potential therapeutic implications will also be explored.
Collapse
Affiliation(s)
- Hannah L Coyle
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia.
| | - Jennie Ponsford
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia
| |
Collapse
|
28
|
Gorse KM, Lantzy MK, Lee ED, Lafrenaye AD. Transient Receptor Potential Melastatin 4 Induces Astrocyte Swelling But Not Death after Diffuse Traumatic Brain Injury. J Neurotrauma 2018; 35:1694-1704. [PMID: 29390943 DOI: 10.1089/neu.2017.5275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disease with significant costs. Although progress has been made in understanding the complex pathobiology of focal lesions associated with TBI, questions remain regarding the diffuse responses to injury. Expression of the transient receptor potential melastatin 4 (Trpm4) channel is linked to cytotoxic edema during hemorrhagic contusion expansion. However, little is known about Trpm4 following diffuse TBI. To explore Trpm4 expression in diffuse TBI, rats were subjected to a diffuse central fluid percussion injury (CFPI) and survived for 1.5 h to 8 weeks. The total number of Trpm4+ cells, as well as individual cellular intensity/expression of Trpm4, were assessed. Hemotoxylin and eosin (H&E) labeling was performed to evaluate cell damage/death potentially associated with Trpm4 expression following diffuse TBI. Finally, ultrastructural assessments were performed to evaluate the integrity of Trpm4+ cells and the potential for swelling associated with Trpm4 expression. Trpm4 was primarily restricted to astrocytes within the hippocampus and peaked at 6 h post-injury. While the number of Trpm4+ astrocytes returned to sham levels by 8 weeks post-CFPI, cellular intensity occurred in region-specific waves following injury. Correlative H&E assessments demonstrated little evidence of hippocampal damage, suggesting that Trpm4 expression by astrocytes does not precipitate cell death following diffuse TBI. Additionally, ultrastructural assessments showed Trpm4+ astrocytes exhibited twice the soma size compared with Trpm4- astrocytes, indicating that astrocyte swelling is associated with Trpm4 expression. This study provides a foundation for future investigations into the role of Trpm4 in astrocyte swelling and edema following diffuse TBI.
Collapse
Affiliation(s)
- Karen M Gorse
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | | | - Eun D Lee
- 3 Department of Obstetrics and Gynecology, Virginia Commonwealth University , Richmond, Virginia
| | - Audrey D Lafrenaye
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
29
|
Dorer CL, Manktelow AE, Allanson J, Sahakian BJ, Pickard JD, Bateman A, Menon DK, Stamatakis EA. Methylphenidate-mediated motor control network enhancement in patients with traumatic brain injury. Brain Inj 2018; 32:1040-1049. [PMID: 29738277 DOI: 10.1080/02699052.2018.1469166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PRIMARY OBJECTIVE To investigate functional improvement late (>6 months) after traumatic brain injury (TBI). To this end, we conducted a double-blind, placebo-controlled experimental medicine study to test the hypothesis that a widely used cognitive enhancer would benefit patients with TBI. RESEARCH DESIGN We focused on motor control function using a sequential finger opposition fMRI paradigm in both patients and age-matched controls. METHODS AND PROCEDURES Patients' fMRI and DTI scans were obtained after randomised administration of methylphenidate or placebo. Controls were scanned without intervention. To assess differences in motor speed, we compared reaction times from the baseline condition of a sustained attention task. MAIN OUTCOMES AND RESULTS Patients' reaction times correlated with wide-spread motor-related white matter abnormalities. Administration of methylphenidate resulted in faster reaction times in patients, which were not significantly different from those achieved by controls. This was also reflected in the fMRI findings in that patients on methylphenidate activated the left inferior frontal gyrus significantly more than when on placebo. Furthermore, stronger functional connections between pre-/post-central cortices and cerebellum were noted for patients on methylphenidate. CONCLUSIONS Our findings suggest that residual functionality in patients with TBI may be enhanced by a single dose of methylphenidate.
Collapse
Affiliation(s)
- Charlie L Dorer
- a School of Clinical Medicine, Addenbrooke's Hospital, Division of Anaesthesia , University of Cambridge , Cambridge , UK
| | - Anne E Manktelow
- a School of Clinical Medicine, Addenbrooke's Hospital, Division of Anaesthesia , University of Cambridge , Cambridge , UK
| | - Judith Allanson
- b Department of Neurosciences , Cambridge University Hospitals NHS Foundation , Cambridge , UK
| | | | - John D Pickard
- d Academic Neurosurgery Unit , University of Cambridge , Cambridge , UK
| | | | - David K Menon
- a School of Clinical Medicine, Addenbrooke's Hospital, Division of Anaesthesia , University of Cambridge , Cambridge , UK
| | - Emmanuel A Stamatakis
- a School of Clinical Medicine, Addenbrooke's Hospital, Division of Anaesthesia , University of Cambridge , Cambridge , UK
| |
Collapse
|
30
|
Vergara VM, Mayer AR, Kiehl KA, Calhoun VD. Dynamic functional network connectivity discriminates mild traumatic brain injury through machine learning. NEUROIMAGE-CLINICAL 2018; 19:30-37. [PMID: 30034999 PMCID: PMC6051314 DOI: 10.1016/j.nicl.2018.03.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 02/22/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Mild traumatic brain injury (mTBI) can result in symptoms that affect a person's cognitive and social abilities. Improvements in diagnostic methodologies are necessary given that current clinical techniques have limited accuracy and are solely based on self-reports. Recently, resting state functional network connectivity (FNC) has shown potential as an important imaging modality for the development of mTBI biomarkers. The present work explores the use of dynamic functional network connectivity (dFNC) for mTBI detection. Forty eight mTBI patients (24 males) and age-gender matched healthy controls were recruited. We identified a set of dFNC states and looked at the possibility of using each state to classify subjects in mTBI patients and healthy controls. A linear support vector machine was used for classification and validated using leave-one-out cross validation. One of the dFNC states achieved a high classification performance of 92% using the area under the curve method. A series of t-test analysis revealed significant dFNC increases between cerebellum and sensorimotor networks. This significant increase was detected in the same dFNC state useful for classification. Results suggest that dFNC can be used to identify optimal dFNC states for classification excluding those that does not contain useful features. Dynamic functional connectivity and support vector machine classified traumatic brain injury patients and healthy controls. Out of 4 dynamic brain states, we identified 1 state useful for classification. Classification performance of the dynamic state of interest achieved a performance of 92% area under the curve method.
Collapse
Affiliation(s)
- Victor M Vergara
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States.
| | - Andrew R Mayer
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, United States; Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States.
| | - Kent A Kiehl
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Dept of ECE, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
31
|
Bernier RA, Roy A, Venkatesan UM, Grossner EC, Brenner EK, Hillary FG. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury. Front Neurol 2017; 8:297. [PMID: 28769858 PMCID: PMC5512341 DOI: 10.3389/fneur.2017.00297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
Objective Changes in functional network connectivity following traumatic brain injury (TBI) have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks) is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferentiation of networks (as noted in other clinical populations) and these effects would be associated with cognitive dysfunction. Methods Graph theory was implemented to examine functional connectivity during periods of task and rest in 19 individuals with moderate/severe TBI and 14 healthy controls (HCs). Using a functional brain atlas derived from 83 functional imaging studies, graph theory was used to examine network dynamics and determine whether dedifferentiation accounts for changes in connectivity. Regions of interest were assigned to one of three groups: task-positive, default mode, or other networks. Relationships between these metrics were then compared with performance on neuropsychological tests. Results Hyperconnectivity in TBI was most commonly observed as increased within-network connectivity. Network strengths within networks that showed differences between TBI and HCs were correlated with performance on five neuropsychological tests typically sensitive to deficits commonly reported in TBI. Hyperconnectivity within the default mode network (DMN) during task was associated with better performance on Digit Span Backward, a measure of working memory [R2(18) = 0.28, p = 0.02]. In other words, increased differentiation of networks during task was associated with better working memory. Hyperconnectivity within the task-positive network during rest was not associated with behavior. Negative correlation weights were not associated with behavior. Conclusion The primary hypothesis that hyperconnectivity occurs through dedifferentiation was not supported. Instead, enhanced connectivity post injury was observed within network. Results suggest that the relationship between increased connectivity and cognitive functioning may be both state (rest or task) and network dependent. High-cost network hubs were identical for both rest and task, and cost was negatively associated with performance on measures of psychomotor speed and set-shifting.
Collapse
Affiliation(s)
- Rachel Anne Bernier
- Department of Psychology, Pennsylvania State University, University Park, PA, United States.,Social Life and Engineering Sciences Imaging Center, University Park, PA, United States
| | - Arnab Roy
- Department of Psychology, Pennsylvania State University, University Park, PA, United States.,Social Life and Engineering Sciences Imaging Center, University Park, PA, United States
| | - Umesh Meyyappan Venkatesan
- Department of Psychology, Pennsylvania State University, University Park, PA, United States.,Social Life and Engineering Sciences Imaging Center, University Park, PA, United States
| | - Emily C Grossner
- Department of Psychology, Pennsylvania State University, University Park, PA, United States.,Social Life and Engineering Sciences Imaging Center, University Park, PA, United States
| | - Einat K Brenner
- Department of Psychology, Pennsylvania State University, University Park, PA, United States.,Social Life and Engineering Sciences Imaging Center, University Park, PA, United States
| | - Frank Gerard Hillary
- Department of Psychology, Pennsylvania State University, University Park, PA, United States.,Social Life and Engineering Sciences Imaging Center, University Park, PA, United States.,Department of Neurology, Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
32
|
Shin SS, Pelled G. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases. Front Neural Circuits 2017; 11:15. [PMID: 28337129 PMCID: PMC5343068 DOI: 10.3389/fncir.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population.
Collapse
Affiliation(s)
- Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
33
|
Le Prieult F, Thal SC, Engelhard K, Imbrosci B, Mittmann T. Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury. J Neurotrauma 2017; 34:1097-1110. [DOI: 10.1089/neu.2016.4575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Barbara Imbrosci
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current affiliation for B.I.: Neurowissenschaftliches Forschungszentrum, University Medical Center of Charité Berlin, Campus Charité Mitte, Berlin, Germany
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Meier TB, Lancaster MA, Mayer AR, Teague TK, Savitz J. Abnormalities in Functional Connectivity in Collegiate Football Athletes with and without a Concussion History: Implications and Role of Neuroactive Kynurenine Pathway Metabolites. J Neurotrauma 2017; 34:824-837. [DOI: 10.1089/neu.2016.4599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Melissa A. Lancaster
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - T. Kent Teague
- Departments of Surgery and Psychiatry, University of Oklahoma College of Medicine, Tulsa, Oklahoma
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, Oklahoma
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma
- Faculty of Community Medicine, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
35
|
Vergara VM, Mayer AR, Damaraju E, Kiehl KA, Calhoun V. Detection of Mild Traumatic Brain Injury by Machine Learning Classification Using Resting State Functional Network Connectivity and Fractional Anisotropy. J Neurotrauma 2016; 34:1045-1053. [PMID: 27676221 DOI: 10.1089/neu.2016.4526] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) may adversely affect a person's thinking, memory, personality, and behavior. While mild TBI (mTBI) diagnosis is challenging, there is a risk for long-term psychiatric, neurologic, and psychosocial problems in some patients that motivates the search for new and better biomarkers. Recently, diffusion magnetic resonance imaging (dMRI) has shown promise in detecting mTBI, but its validity is still being investigated. Resting state functional network connectivity (rsFNC) is another approach that is emerging as a promising option for the diagnosis of mTBI. The present work investigated the use of rsFNC for mTBI detection compared with dMRI results on the same cohort. Fifty patients with mTBI (25 males) and age-sex matched healthy controls were recruited. Features from dMRI were obtained using all voxels, the enhanced Z-score microstructural assessment for pathology, and the distribution corrected Z-score. Features based on rsFNC were obtained through group independent component analysis and correlation between pairs of resting state networks. A linear support vector machine was used for classification and validated using leave-one-out cross validation. Classification achieved a maximum accuracy of 84.1% for rsFNC and 75.5% for dMRI and 74.5% for both combined. A t test analysis revealed significant increase in rsFNC between cerebellum versus sensorimotor networks and between left angular gyrus versus precuneus in subjects with mTBI. These outcomes suggest that inclusion of both common and unique information is important for classification of mTBI. Results also suggest that rsFNC can yield viable biomarkers that might outperform dMRI and points to connectivity to the cerebellum as an important region for the detection of mTBI.
Collapse
Affiliation(s)
- Victor M Vergara
- 1 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Andrew R Mayer
- 1 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico .,2 Department of Neurology, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Eswar Damaraju
- 1 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico .,3 Department of ECE, University of New Mexico , Albuquerque, New Mexico
| | - Kent A Kiehl
- 1 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico .,4 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Vince Calhoun
- 1 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico .,3 Department of ECE, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
36
|
|
37
|
Agarwal S, Stamatakis EA, Geva S, Warburton EA. Dominant hemisphere functional networks compensate for structural connectivity loss to preserve phonological retrieval with aging. Brain Behav 2016; 6:e00495. [PMID: 27688934 PMCID: PMC5036427 DOI: 10.1002/brb3.495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Loss of hemispheric asymmetry during cognitive tasks has been previously demonstrated in the literature. In the context of language, increased right hemisphere activation is observed with aging. Whether this relates to compensation to preserve cognitive function or dedifferentiation implying loss of hemispheric specificity without functional consequence, remains unclear. METHODS With a multifaceted approach, integrating structural and functional imaging data during a word retrieval task, in a group of younger and older adults with equivalent cognitive performance, we aimed to establish whether interactions between hemispheres or reorganization of dominant hemisphere networks preserve function. We examined functional and structural connectivity on data from our previously published functional activation study. Functional connectivity was measured using psychophysiological interactions analysis from the left inferior frontal gyrus (LIFG) and the left insula (LINS), based on published literature, and the right inferior frontal gyrus (RIFG) based on our previous study. RESULTS Although RIFG showed increased activation, its connectivity decreased with age. Meanwhile, LIFG and LINS connected more bilaterally in the older adults. White matter integrity, measured by fractional anisotropy (FA) from diffusion tensor imaging, decreased significantly in the older group. Importantly, LINS functional connectivity to LIFG correlated inversely with FA. CONCLUSIONS We demonstrate that left hemispheric language areas show higher functional connectivity in older adults with intact behavioral performance, and thus, may have a role in preserving function. The inverse correlation of functional and structural connectivity with age is in keeping with emerging literature and merits further investigation with tractography studies and in other cognitive domains.
Collapse
Affiliation(s)
- Smriti Agarwal
- Stroke Research Group Addenbrooke's Hospital University of Cambridge R3, Box 83, Hills Road Cambridge CB2 2QQ UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia Addenbrooke's Hospital University of Cambridge Box 93, Hills Road Cambridge CB2 2QQ UK
| | - Sharon Geva
- Developmental Cognitive Neuroscience Unit UCL Institute of Child Health 30 Guilford Street London WC1N 1EH UK
| | - Elizabeth A Warburton
- Stroke Research Group Addenbrooke's Hospital University of Cambridge R3, Box 83, Hills Road Cambridge CB2 2QQ UK
| |
Collapse
|
38
|
Dulla CG, Coulter DA, Ziburkus J. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease. Neuroscientist 2016; 22:295-312. [PMID: 25948650 PMCID: PMC4641826 DOI: 10.1177/1073858415585108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Douglas A Coulter
- Department of Pediatrics and Neuroscience, University of Pennsylvania Perleman School of Medicine, Philadelphia, PA, USA Division of Neurology and the Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
39
|
Eixarch E, Muñoz-Moreno E, Bargallo N, Batalle D, Gratacos E. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction. Am J Obstet Gynecol 2016; 214:725.e1-9. [PMID: 26719213 DOI: 10.1016/j.ajog.2015.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. OBJECTIVES In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. METHODS We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. RESULTS Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; P = .016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877). CONCLUSIONS These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases.
Collapse
Affiliation(s)
- Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases, Barcelona, Spain.
| | - Emma Muñoz-Moreno
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Nuria Bargallo
- Department of Radiology, Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic, and the Magnetic Resonance core facility, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Dafnis Batalle
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Eduard Gratacos
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| |
Collapse
|
40
|
Thompson WH, Thelin EP, Lilja A, Bellander BM, Fransson P. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury. Neuroimage Clin 2016; 12:1004-1012. [PMID: 27995066 PMCID: PMC5153599 DOI: 10.1016/j.nicl.2016.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022]
Abstract
The S100B protein is an intra-cellular calcium-binding protein that mainly resides in astrocytes in the central nervous system. The serum level of S100B is used as biomarker for the severity of brain damage in traumatic brain injury (TBI) patients. In this study we investigated the relationship between intrinsic resting-state brain connectivity, measured 1-22 days (mean 8 days) after trauma, and serum levels of S100B in a patient cohort with mild-to-severe TBI in need of neuro-intensive care in the acute phase. In line with previous investigations, our results show that the peak level of S100B acquired during the acute phase of TBI was negatively correlated with behavioral measures (Glasgow Outcome Score, GOS) of functional outcome assessed 6 to 12 months post injury. Using a multi-variate pattern analysis-informed seed-based correlation analysis, we show that the strength of resting-state brain connectivity in multiple resting-state networks was negatively correlated with the peak of serum levels of S100B. A negative correspondence between S100B peak levels recorded 12-36 h after trauma and intrinsic connectivity was found for brain regions located in the default mode, fronto-parietal, visual and motor resting-state networks. Our results suggest that resting-state brain connectivity measures acquired during the acute phase of TBI is concordant with results obtained from molecular biomarkers and that it may hold a capacity to predict long-term cognitive outcome in TBI patients.
Collapse
Affiliation(s)
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anders Lilja
- Section of Neuroradiology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Rigon A, Duff MC, McAuley E, Kramer AF, Voss MW. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury. J Neurotrauma 2016; 33:977-89. [PMID: 25719433 DOI: 10.1089/neu.2014.3847] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p < 0.01), and ECN (p < 0.05), but not for the DMN (p > 0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment.
Collapse
Affiliation(s)
- Arianna Rigon
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa
| | - Melissa C Duff
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,2 Department of Communication Sciences and Disorders, University of Iowa , Iowa City, Iowa.,3 Department of Neurology, University of Iowa , Iowa City, Iowa
| | - Edward McAuley
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois.,6 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Illinois
| | - Arthur F Kramer
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois
| | - Michelle W Voss
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,4 Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| |
Collapse
|
42
|
Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis. Exp Neurol 2016; 277:124-138. [PMID: 26730520 PMCID: PMC4761291 DOI: 10.1016/j.expneurol.2015.12.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI.
Collapse
Affiliation(s)
- N G Harris
- UCLA Brain Research Center, Department of Neurosurgery, University of California, Los Angeles, USA.
| | - D R Verley
- UCLA Brain Research Center, Department of Neurosurgery, University of California, Los Angeles, USA
| | - B A Gutman
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P M Thompson
- Departments of Psychiatry, Engineering, Radiology, & Ophthalmology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H J Yeh
- Department of Neurology, University of California, Los Angeles, USA
| | - J A Brown
- Department of Neurology, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| |
Collapse
|
43
|
Abstract
Traumatic brain injury survivors often experience cognitive deficits and neuropsychiatric symptoms. However, the neurobiological mechanisms underlying specific impairments are not fully understood. Advances in neuroimaging techniques (such as diffusion tensor imaging and functional MRI) have given us new insights on structural and functional connectivity patterns of the human brain in both health and disease. The connectome derived from connectivity maps reflects the entire constellation of distributed brain networks. Using these powerful neuroimaging approaches, changes at the microstructural level can be detected through regional and global properties of neuronal networks. Here we will review recent developments in the study of brain network abnormalities in traumatic brain injury, mainly focusing on structural and functional connectivity. Some connectomic studies have provided interesting insights into the neurological dysfunction that occurs following traumatic brain injury. These techniques could eventually be helpful in developing imaging biomarkers of cognitive and neurobehavioral sequelae, as well as predicting outcome and prognosis.
Collapse
Affiliation(s)
- Hui Xiao
- Center of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian Province, China; Department of Medical Imaging, Dongfang Hospital, Xiamen University, Fuzhou, Fujian Province, China
| | - Yang Yang
- Department of Emergency, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian Province, China
| | - Ji-Hui Xi
- Department of Medical Imaging, Dongfang Hospital, Xiamen University, Fuzhou, Fujian Province, China
| | - Zi-Qian Chen
- Center of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian Province, China
| |
Collapse
|
44
|
Meier TB, Bellgowan PSF, Mayer AR. Longitudinal assessment of local and global functional connectivity following sports-related concussion. Brain Imaging Behav 2016; 11:129-140. [DOI: 10.1007/s11682-016-9520-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Currie S, Saleem N, Straiton JA, Macmullen-Price J, Warren DJ, Craven IJ. Imaging assessment of traumatic brain injury. Postgrad Med J 2015; 92:41-50. [PMID: 26621823 DOI: 10.1136/postgradmedj-2014-133211] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 10/20/2015] [Indexed: 11/04/2022]
Abstract
Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and epidemiological information to provide much needed evidence for improvement in the characterisation and classification of TBI and in the identity of the most effective clinical care for this patient cohort. However, analysis of collaborative imaging data is challenging: the diverse spectrum of image acquisition and postprocessing limits reproducibility, and there is a requirement for a robust quality assurance initiative. Future clinical use of advanced neuroimaging should ensure standardised approaches to image acquisition and analysis, which can be used at the individual level, with the expectation that future neuroimaging advances, personalised to the patient, may improve prognostic accuracy and facilitate the development of new therapies.
Collapse
Affiliation(s)
- Stuart Currie
- Department of Neuroradiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nayyar Saleem
- Department of Neuroradiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John A Straiton
- Department of Neuroradiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Daniel J Warren
- Department of Neuroradiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ian J Craven
- Department of Neuroradiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
46
|
|
47
|
Bharath RD, Munivenkatappa A, Gohel S, Panda R, Saini J, Rajeswaran J, Shukla D, Bhagavatula ID, Biswal BB. Recovery of resting brain connectivity ensuing mild traumatic brain injury. Front Hum Neurosci 2015; 9:513. [PMID: 26441610 PMCID: PMC4585122 DOI: 10.3389/fnhum.2015.00513] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI). Twenty-five subjects with mild head injury were longitudinally evaluated within 36 h, 3 and 6 months using resting state functional connectivity (RSFC). Region of interest (ROI) based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p < 0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within 3 months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Within this diffuse decreased connectivity in the first 3 months, there were also few regions with increased connections. This hyper connectivity involved the salience network and default mode network within 36 h, and lingual, inferior frontal and fronto-parietal networks at 3 months. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3 and 6 months after injury. Hyper connectivity of several networks supported normal recovery in the first 6 months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.
Collapse
Affiliation(s)
- Rose D. Bharath
- Advanced Brain Imaging Facility, Cognitive Neuroscience Centre, National Institute of Mental Health and NeurosciencesBangalore, India
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Ashok Munivenkatappa
- Department of Clinical Neurosciences, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Suril Gohel
- Department of Biomedical Engineering, New Jersey Institute of Technology, University HeightsNewark, NJ, USA
| | - Rajanikant Panda
- Advanced Brain Imaging Facility, Cognitive Neuroscience Centre, National Institute of Mental Health and NeurosciencesBangalore, India
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Jamuna Rajeswaran
- Neuropsychology Unit, Department of Clinical Psychology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Indira D. Bhagavatula
- Department of Neurosurgery, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University HeightsNewark, NJ, USA
| |
Collapse
|
48
|
Bodanapally UK, Sours C, Zhuo J, Shanmuganathan K. Imaging of Traumatic Brain Injury. Radiol Clin North Am 2015; 53:695-715, viii. [PMID: 26046506 DOI: 10.1016/j.rcl.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome.
Collapse
Affiliation(s)
- Uttam K Bodanapally
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Chandler Sours
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Kathirkamanathan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
49
|
Sours C, Zhuo J, Roys S, Shanmuganathan K, Gullapalli RP. Disruptions in Resting State Functional Connectivity and Cerebral Blood Flow in Mild Traumatic Brain Injury Patients. PLoS One 2015; 10:e0134019. [PMID: 26241476 PMCID: PMC4524606 DOI: 10.1371/journal.pone.0134019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/03/2015] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is often occult to conventional imaging techniques. However, there is growing evidence that mTBI patients who lack evidence of structural intracranial injury may develop post-concussive syndrome (PCS). We investigated longitudinal alterations in resting state functional connectivity (rs-FC) in brain networks in a population of 28 patients compared to 28 matched control participants. Rs-FC and cerebral blood flow (CBF) within the nodes of the Default Mode Network (DMN) and Task Positive Network (TPN) were assessed at three time points including acute, sub-acute, and chronic stages following mTBI. Participants received the Automated Neuropsychological Assessment Metrics (ANAM) to assess cognitive performance. Main findings indicate that despite normalized cognitive performance, chronic mTBI patients demonstrate increased rs-FC between the DMN and regions associated with the salience network (SN) and TPN compared to the control populations, as well as reduced strength of rs-FC within the DMN at the acute stage of injury. In addition, chronic mTBI patients demonstrate an imbalance in the ratio of CBF between nodes of the DMN and TPN. Furthermore, preliminary exploratory analysis suggests that compared to those without chronic PCS, patients with chronic PCS reveal an imbalance in the ratio of CBF between the DMN nodes and TPN nodes across multiple stages of recovery. Findings suggest that the altered network perfusion with the associated changes in rs-FC may be a possible predictor of which mTBI patients will develop chronic PCS.
Collapse
Affiliation(s)
- Chandler Sours
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Roys
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kathirkamanthan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rao P. Gullapalli
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
50
|
Edlow BL, Rosenthal ES. Diagnostic, Prognostic, and Advanced Imaging in Severe Traumatic Brain Injury. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-015-0018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|