1
|
Tan S, Zhao N, Fu Q, Zhu L, Zhang D, Gao L, Cheng Z, Li Z, Zhang D, Bao W, Liu Y, Wang F, Cui B, Zhao Y. Common genetic basis and causality between central nervous system disease and cancer. J Affect Disord 2025; 380:347-356. [PMID: 40122255 DOI: 10.1016/j.jad.2025.03.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The epidemiological associations between central nervous system diseases and cancers have been widely studied, but the shared genetic basis and etiology between these joint phenotypes remain unclear. To explore this issue, we utilized genome-wide association study summary data to investigate the shared genetic architecture and causality between 10 central nervous system diseases and 14 cancers. We employed multiple statistical genetic approaches, including global and local genetic correlation, Mendelian randomization, shared loci and genes, and shared tissues and cell-types to systematically and robustly explore the common genetic basis and causal relationships between central nervous system diseases and cancers. Our results revealed genetic correlations between schizophrenia and both lung cancer and breast cancer, including estrogen receptor-positive breast cancer, as well as between neuroticism and both lung cancer and ovarian cancer, including serous ovarian cancer. We found causal relationships between schizophrenia and lung cancer (OR = 1.14, P = 0.009) and breast cancer (OR = 1.05, P = 3.00 × 10-5). When the whole genome was partitioned, significant local correlations of schizophrenia with breast cancer and lung cancer were further discovered within 14 specific genomic regions. Using cross-trait meta-analysis, we identified 24 pleiotropic loci associated with the two joint phenotypes. Using summary-data-based Mendelian randomization, we further identified eight functional genes shared between schizophrenia and both breast cancer and lung cancer, neuroticism and ovarian cancer. Additionally, we observed consistent patterns of single-nucleotide polymorphism heritability enrichment for schizophrenia and lung cancer in T lymphocytes. Our study provides insights into the genetic underpinnings and causal relationships of comorbidities between central nervous system diseases and cancers.
Collapse
Affiliation(s)
- Shiheng Tan
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Ning Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Qingzhen Fu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Lin Zhu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Ding Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Lijing Gao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zesong Cheng
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zinan Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Depei Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Weiwei Bao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yanlong Liu
- Department of Colorectal Surgery, Tumor Hospital of Harbin Medical University, Harbin, PR China.
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China; NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, PR China.
| | - Binbin Cui
- Department of Colorectal Surgery, Tumor Hospital of Harbin Medical University, Harbin, PR China.
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, PR China; NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, PR China.
| |
Collapse
|
2
|
Wang Q, Duan Y, Xu Y, Li H, Yang Y. Linking Parkinson's disease and melanoma: the impact of copper-driven cuproptosis and related mechanisms. NPJ Parkinsons Dis 2025; 11:74. [PMID: 40221422 PMCID: PMC11993568 DOI: 10.1038/s41531-025-00928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/29/2025] [Indexed: 04/14/2025] Open
Abstract
Patients with Parkinson's disease (PD) exhibit an increased risk of melanoma, implying shared yet incompletely understood molecular mechanisms. This study aimed to delineate these common and distinct pathways by analyzing gene expression profiles from the Gene Expression Omnibus. A total of 90 differentially expressed genes (DEGs) were commonly regulated, while 173 DEGs exhibited divergent regulation between PD and melanoma. Protein-protein interaction analysis identified SNCA as a central node within a 21-protein network. LASSO regression revealed 13 hub genes (e.g., CCNB1, CCNH, CORO1C, and GSN) with high diagnostic accuracy (AUC >0.93) across both conditions. Gene set enrichment analysis implicated copper-induced cell death (cuproptosis) in PD neurons and melanoma cells, linking this process to hub genes. RT-qPCR confirmed increased SNCA expression during cuproptosis. Additional analyses identified macrophage involvement and WNT-β-catenin signaling as relevant. These findings suggest cuproptosis as a potential therapeutic target in PD and melanoma.
Collapse
Affiliation(s)
- Quan Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yinghui Duan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Xu
- The Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hao Li
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Jellinger KA. Concomitant Pathologies and Their Impact on Parkinson Disease: A Narrative Overview of Current Evidence. Int J Mol Sci 2025; 26:2942. [PMID: 40243562 PMCID: PMC11988849 DOI: 10.3390/ijms26072942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Many clinico-pathological studies point to the presence of multiple comorbidities/co-pathologies in the course of Parkinson disease (PD). Lewy body pathology, the morphological hallmark of PD, rarely exists in isolation, but is usually associated with other concomitant pathologies, in particular Alzheimer disease-related changes (ADNC), cerebrovascular pathologies (macro- and microinfarcts, cerebral small vessel disease, cerebral amyloid angiopathy), TDP-43 pathology as well as multiple pathological combinations. These include cardiovascular disorders, metabolic syndrome, diabetes mellitus, autoimmune and rheumatic diseases, myasthenia gravis, Sjögren's syndrome, restless leg syndrome or other rare disorders, like Fabry disease. A combination of PD and multiple sclerosis (MS) may be due to the immune function of LRRK2 and its interrelation with α-synuclein. COVID-19 and HIV posed considerable impacts on patients with PD. Epidemiological evidence points to a decreased risk for the majority of neoplasms, except melanoma and other skin cancers, while some tumors (breast, brain) are increased. On the other hand, a lower frequency of malignancies preceding early PD markers may argue for their protective effect on PD risk. Possible pathogenetic factors for the association between PD and cancer are discussed. The tremendous heterogeneity of concomitant pathologies and comorbidities observed across the PD spectrum is most likely caused by the complex interplay between genetic, pathogenic and other risk factors, and further research should provide increasing insight into their relationship with idiopathic PD (and other parkinsonian disorders) in order to find better diagnostic tools and probable disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
4
|
Leupold D, Buder S, Pfeifer L, Szyc L, Riederer P, Strobel S, Monoranu CM. New Aspects Regarding the Fluorescence Spectra of Melanin and Neuromelanin in Pigmented Human Tissue Concerning Hypoxia. Int J Mol Sci 2024; 25:8457. [PMID: 39126026 PMCID: PMC11313424 DOI: 10.3390/ijms25158457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Melanin is a crucial pigment in melanomagenesis. Its fluorescence in human tissue is exceedingly weak but can be detected through advanced laser spectroscopy techniques. The spectral profile of melanin fluorescence distinctively varies among melanocytes, nevomelanocytes, and melanoma cells, with melanoma cells exhibiting a notably "red" fluorescence spectrum. This characteristic enables the diagnosis of melanoma both in vivo and in histological samples. Neuromelanin, a brain pigment akin to melanin, shares similar fluorescence properties. Its fluorescence can also be quantified with high spectral resolution using the same laser spectroscopic methods. Documented fluorescence spectra of neuromelanin in histological samples from the substantia nigra substantiate these findings. Our research reveals that the spectral behavior of neuromelanin fluorescence mirrors that of melanin in melanomas. This indicates that the typical red fluorescence is likely influenced by the microenvironment around (neuro)melanin, rather than by direct pigment interactions. Our ongoing studies aim to further explore this distinctive "red" fluorescence. We have observed this red fluorescence spectrum in post-mortem measurements of melanin in benign nevus. The characteristic red spectrum is also evident here (unlike the benign nevus in vivo), suggesting that hypoxia may contribute to this phenomenon. Given the central role of hypoxia in both melanoma development and treatment, as well as in fundamental Parkinson's disease mechanisms, this study discusses strategies aimed at reinforcing the hypothesis that red fluorescence from (neuro)melanin serves as an indicator of hypoxia.
Collapse
Affiliation(s)
- Dieter Leupold
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | - Susanne Buder
- Clinic for Dermatology and Venerology, Vivantes Klinikum Neukölln, 12351 Berlin, Germany;
| | - Lutz Pfeifer
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | | | - Peter Riederer
- Department and Research Unit of Psychiatry, University of Southern Denmark, 5230 Odense, Denmark;
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sabrina Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| |
Collapse
|
5
|
Flores-Torres MH, Bjornevik K, Zhang X, Gao X, Hung AY, Schwarzschild MA, Chen X, Ascherio A. Hair color, family history of melanoma, and the risk of Parkinson's disease: An analysis update. Parkinsonism Relat Disord 2024; 119:105965. [PMID: 38142631 PMCID: PMC10843649 DOI: 10.1016/j.parkreldis.2023.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND A shared biological component between melanoma and Parkinson's disease (PD) has been suggested. Yet, epidemiological evidence is scarce. OBJECTIVE To examine the association of hair color and family history of melanoma, two strong predictors of melanoma risk, with the occurrence of PD. METHODS We followed 131,342 women and men for ∼30 years for the development of PD. We calculated the cumulative incidence of PD from ages 40 to 90 according to hair color, and estimated the hazard ratio of PD according to hair color and family history of melanoma. RESULTS Hair color was not strongly associated with the risk of PD, especially at advanced ages. In contrast, individuals with a family history of melanoma had a 1.4-fold higher risk of PD compared to those without a history. CONCLUSIONS Our results support the hypothesis of a shared biological component between PD and melanoma. Both pigmentary and non-pigmentary pathways may play a role.
Collapse
Affiliation(s)
- Mario H Flores-Torres
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Albert Y Hung
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
7
|
Tóth V, Diakoumakou SC, Kuroli E, Tóth B, Kuzmanovszki D, Szakonyi J, Lőrincz KK, Somlai B, Kárpáti S, Holló P. Cutaneous malignancies in patients with Parkinson's disease at a dermato-oncological university centre in Hungary. Front Oncol 2023; 13:1142170. [PMID: 37274278 PMCID: PMC10235680 DOI: 10.3389/fonc.2023.1142170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Background The possible correlation between melanoma and Parkinson's disease (PD) has been intensively studied. In this work, we aimed to assess the coincidence of skin malignancies and PD at a dermato-oncological university centre in Central-Eastern Europe, Hungary. Methods From 2004 to 2017, a retrospective analysis of the centre's database was performed based on International Statistical Classification of Diseases-10 codes. Results Out of the patients who visited the clinic during the study period, 20,658 were treated for malignant skin tumours. Over the 14 years, 205 dermatological patients had PD simultaneously, 111 (54%) of whom had at least one type of skin malignancy: melanoma (n=22), basal cell carcinoma (BCC) (n=82), or squamous cell carcinoma (SCC) (n=36) (in some patients, multiple skin tumours were identified). Compared to the age- and sex-matched control group, patients with PD had a significantly lower risk for basal cell carcinoma (OR, 0.65; 95% CI, 0.47-0.89, p=0.0076) and for all skin tumours (OR, 0.74; 95% CI, 0.56-0.98, p=0.0392) but not for melanoma. Conclusions We found a decreased risk of all skin tumours and basal cell carcinoma and an unchanged risk of melanoma among patients with PD. However, it should be kept in mind that some large-scale meta-analyses suggest a higher incidence of melanoma after a diagnosis of PD, indicating the importance of skin examination in this vulnerable population.
Collapse
Affiliation(s)
- Veronika Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | | | - Enikő Kuroli
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Béla Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Daniella Kuzmanovszki
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - József Szakonyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Kende Kálmán Lőrincz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Beáta Somlai
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Ozono T, Kimura Y, Suenaga T, Beck G, Jinno J, Aguirre C, Ikenaka K, Krainc D, Mochizuki H, Arase H. Extracellular transportation of α-synuclein by HLA class II molecules. Biochem Biophys Res Commun 2023; 644:25-33. [PMID: 36621149 DOI: 10.1016/j.bbrc.2022.12.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive accumulation of α-synuclein aggregates in form of Lewy bodies. Genome-wide association studies have revealed that human leukocyte antigen (HLA) class II is a PD-associated gene, although the mechanisms linking HLA class II and PD remain elusive. Here, we identified a novel function of HLA class II in the transport of intracellular α-synuclein to the outside of cells. HLA class II molecules and α-synuclein formed complexes and moved to the cell surface at various degrees among HLA-DR alleles. HLA-DR with a DRB5∗01:01 allele, a putative PD-risk allele, substantially translocated normal and conformationally abnormal α-synuclein to the cell surface and extracellular vesicles. α-Synuclein/HLA class II complexes were found in A2058 melanoma cells, which express intrinsic α-synuclein and HLA-DR with DRB5∗01:01. Our findings will expand our knowledge of unconventional HLA class II function from autoimmune diseases to neurodegenerative disorders, shedding light on the association between the GWAS-prioritized PD-risk gene HLA-DR and α-synuclein.
Collapse
Affiliation(s)
- Tatsuhiko Ozono
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadahiro Suenaga
- Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Goichi Beck
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jyunki Jinno
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - César Aguirre
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hisashi Arase
- Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Krainc T, Monje MHG, Kinsinger M, Bustos BI, Lubbe SJ. Melanin and Neuromelanin: Linking Skin Pigmentation and Parkinson's Disease. Mov Disord 2023; 38:185-195. [PMID: 36350228 DOI: 10.1002/mds.29260] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the most vulnerable neurons in Parkinson's disease (PD). Recent work suggests that the accumulation of oxidized dopamine and neuromelanin mediate the convergence of mitochondrial and lysosomal dysfunction in patient-derived neurons. In addition, the expression of human tyrosinase in mouse SNpc led to the formation of neuromelanin resulting in the degeneration of nigral dopaminergic neurons, further highlighting the importance of neuromelanin in PD. The potential role of neuromelanin in PD pathogenesis has been supported by epidemiological observations, whereby individuals with lighter pigmentation or cutaneous malignant melanoma exhibit higher incidence of PD. Because neuromelanin and melanin share many functional characteristics and overlapping biosynthetic pathways, it has been postulated that genes involved in skin pigmentation and melanin formation may play a role in the susceptibility of vulnerable midbrain dopaminergic neurons to neurodegeneration. Here, we highlight potential mechanisms that may explain the link between skin pigmentation and PD, focusing on the role of skin pigmentation genes in the pathogenesis of PD. We also discuss the importance of genetic ancestry in assessing the contribution of pigmentation-related genes to risk of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Talia Krainc
- Department of Anthropology, Princeton University, Princeton, New Jersey, USA.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariana H G Monje
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Morgan Kinsinger
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Yue Y, Liu Y, Hao L, Lei H, He S. Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning. Brief Bioinform 2022; 24:6958504. [PMID: 36562724 PMCID: PMC9851313 DOI: 10.1093/bib/bbac564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Drug combinations could trigger pharmacological therapeutic effects (TEs) and adverse effects (AEs). Many computational methods have been developed to predict TEs, e.g. the therapeutic synergy scores of anti-cancer drug combinations, or AEs from drug-drug interactions. However, most of the methods treated the AEs and TEs predictions as two separate tasks, ignoring the potential mechanistic commonalities shared between them. Based on previous clinical observations, we hypothesized that by learning the shared mechanistic commonalities between AEs and TEs, we could learn the underlying MoAs (mechanisms of actions) and ultimately improve the accuracy of TE predictions. To test our hypothesis, we formulated the TE prediction problem as a multi-task heterogeneous network learning problem that performed TE and AE learning tasks simultaneously. To solve this problem, we proposed Muthene (multi-task heterogeneous network embedding) and evaluated it on our collected drug-drug interaction dataset with both TEs and AEs indications. Our experimental results showed that, by including the AE prediction as an auxiliary task, Muthene generated more accurate TE predictions than standard single-task learning methods, which supports our hypothesis. Using a drug pair Vincristine-Dasatinib as a case study, we demonstrated that our method not only provides a novel way of TE predictions but also helps us gain a deeper understanding of the MoAs of drug combinations.
Collapse
Affiliation(s)
- Yang Yue
- School of Computer Science from the University of Birmingham, UK
| | - Yongxuan Liu
- State Key Laboratory of Agricultural Microbiology from Huazhong Agricultural University, China
| | - Luoying Hao
- School of Computer Science from the University of Birmingham, UK
| | | | - Shan He
- Corresponding author. S. He, Centre for Computational Biology, School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Tel.: +44-1214142775; Fax: +44-1214144281; E-mail:
| |
Collapse
|
11
|
Rosenbloom BE, Cappellini MD, Weinreb NJ, Dragosky M, Revel‐Vilk S, Batista JL, Sekulic D, Mistry PK. Cancer risk and gammopathies in 2123 adults with Gaucher disease type 1 in the International Gaucher Group Gaucher Registry. Am J Hematol 2022; 97:1337-1347. [PMID: 36054609 PMCID: PMC9541044 DOI: 10.1002/ajh.26675] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/24/2023]
Abstract
There are numerous reports of cancers in Gaucher disease (GD) from mostly small single-center studies; however, precise risk estimates and cancer types involved have not been delineated. We conducted a study involving 2123 patients with GD type 1 (GD1) to assess the incidence of hematological malignancies, gammopathies, and solid tumors in an international observational study, the International Cooperative Gaucher Group Gaucher Registry (Clinicaltrials.gov: NCT00358943). Risk for cancer overall and for each type of malignancy was compared to the United States (US) population using the Surveillance, Epidemiology, and End Results database. Natural history of gammopathy was determined through assessing the progression from a diagnosis of monoclonal gammopathy of unknown significance (MGUS) to multiple myeloma (MM). Risk for hematological malignancies was more than four times higher than expected compared to the general population: non-Hodgkin lymphoma was approximately three times higher; MM was approximately nine times higher. Age-specific incidence rates of MGUS were unexpectedly high among younger patients. The 10-year cumulative incidence of MM after diagnosis of MGUS was 7.9%, comparable to the general population. Compared to the general US population, GD1 patients were at higher risk for solid malignancies of liver (2.9 times), kidney (2.8 times), melanoma (2.5 times), and breast (1.4 times). Colorectal, prostate, and lung cancer risks were lower than expected. These findings help advance care of patients with GD1 by supporting recommendations for individualized monitoring for malignancies and antecedents such as MGUS for MM and provoke important questions of the role of glucosylceramide and related sphingolipids in cancer biology.
Collapse
Affiliation(s)
| | - Maria Domenica Cappellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico MilanoMilanItaly
- Department of Internal MedicineUniversity of MilanMilanItaly
| | - Neal J. Weinreb
- Division of Hematology, Department of Internal MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Division of Clinical Genetics, Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Marta Dragosky
- Department of HematologyHenry Moore InstituteBuenos AiresArgentina
| | - Shoshana Revel‐Vilk
- Department of Pediatric Hematology, School of MedicineHebrew UniversityJerusalemIsrael
- Gaucher Unit, Shaare Zedek Medical CenterJerusalemIsrael
| | - Julie L. Batista
- Department of Epidemiology and BiostatisticsSanofiCambridgeMassachusettsUSA
| | - Davorka Sekulic
- Global Medical Affairs Hematology, Sanofi, CambridgeMassachusettsUSA
| | - Pramod K. Mistry
- Department of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
12
|
Kulcsarova K, Baloghova J, Necpal J, Skorvanek M. Skin Conditions and Movement Disorders: Hiding in Plain Sight. Mov Disord Clin Pract 2022; 9:566-583. [PMID: 35844274 PMCID: PMC9274368 DOI: 10.1002/mdc3.13436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Skin manifestations are well-recognized non-motor symptoms of Parkinson's disease (PD) and other hypokinetic and hyperkinetic movement disorders. Skin conditions are usually well visible during routine clinical examination and their recognition may play a major role in diagnostic work-up. In this educational review we: (1) briefly outline skin conditions related to Parkinson's disease, including therapy-related skin complications and their management; (2) discuss the role of skin biopsies in early diagnosis of PD and differential diagnosis of parkinsonian syndromes; and focus more on areas which have not been reviewed in the literature before, including (3) skin conditions related to atypical parkinsonism, and (4) skin conditions related to hyperkinetic movement disorders. In case of rare hyperkinetic movement disorders, specific dermatological manifestations, like presence of angiokeratomas, telangiectasias, Mongolian spots, lipomas, ichthyosis, progeroid skin changes and others may point to a very specific group of disorders and help guide further investigations.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, Medical FacultyUniversity of Pavol Jozef SafarikPavolSlovak Republic
- Department of NeurologyUniversity Hospital L. PasteurKosiceSlovak Republic
| | - Janette Baloghova
- Department of DermatovenerologyMedical Faculty, University of Pavol Jozef SafarikKosiceSlovak Republic
- Department of DermatovenerologyUniversity Hospital L. PasteurKosiceSlovak Republic
| | - Jan Necpal
- Department of NeurologyZvolen HospitalZvolenSlovak Republic
| | - Matej Skorvanek
- Department of Neurology, Medical FacultyUniversity of Pavol Jozef SafarikPavolSlovak Republic
- Department of NeurologyUniversity Hospital L. PasteurKosiceSlovak Republic
| |
Collapse
|
13
|
Particulate Matter Exacerbates the Death of Dopaminergic Neurons in Parkinson's Disease through an Inflammatory Response. Int J Mol Sci 2022; 23:ijms23126487. [PMID: 35742931 PMCID: PMC9223534 DOI: 10.3390/ijms23126487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Particulate matter (PM), a component of air pollution, has been epidemiologically associated with a variety of diseases. Recent reports reveal that PM has detrimental effects on the brain. In this study, we aimed to investigate the biological effects of ambient particles on the neurodegenerative disease Parkinson’s disease (PD). We exposed mice to coarse particles (PM10: 2.5–10 μm) for short (5 days) and long (8 weeks) durations via intratracheal instillation. Long-term PM10 exposure exacerbated motor impairment and dopaminergic neuron death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. Short-term PM10 exposure resulted in both pulmonary and systemic inflammatory responses in mice. We further investigated the mechanism underlying PM10-induced neurotoxicity in cocultures of lung LA-4 epithelial cells and RAW264.7 macrophages. PM10 treatment elicited a dramatic increase in proinflammatory mediators in LA-4/RAW264.7 coculture. Treating BV2 microglial cells with PM10-treated conditioned medium induced microglial activation. Furthermore, 1-methyl-4-phenylpyridinium (MPP+) treatment caused notable cell death in N2A neurons cocultured with activated BV2 cells in PM10-conditioned medium. Altogether, our results demonstrated that PM10 plays a role in the neurodegeneration associated with PD. Thus, the impact of PM10 on neurodegeneration could be related to detrimental air pollution-induced systemic effects on the brain.
Collapse
|
14
|
Zhang X, Wu Z, Ma K. SNCA correlates with immune infiltration and serves as a prognostic biomarker in lung adenocarcinoma. BMC Cancer 2022; 22:406. [PMID: 35421944 PMCID: PMC9009002 DOI: 10.1186/s12885-022-09289-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The SNCA gene is a critical gene in Parkinson's disease (PD) pathology. Accumulating evidence indicates that SNCA is involved in tumorigenesis; however, the role of SNCA in lung adenocarcinoma (LUAD) remains unclear. This study aimed to explore the potential value of SNCA as a prognostic and diagnostic molecular marker in LUAD. METHODS In this study, we explored the expression pattern, prognostic value, and promoter methylation status of SNCA in LUAD based on Oncomine, UALCAN, and Kaplan-Meier Plotter. Then, using TIMER, we investigated the correlation between SNCA expression and immune infiltration. And cBioPortal were used to analysis the correlation between SNCA expression and immune checkpoint. The transcriptome data of A549 cells overexpressing SNCA were used to further study the potential immune role of SNCA in LUAD. The effect of SNCA on proliferation of A549 cells were evaluated by CCK-8, EdU and colony formation. Finally, LUAD cell lines treated with 5-aza-dC were used to explore the correlation between increased promoter methylation and downregulated mRNA expression of SNCA. RESULTS In general, the expression level of SNCA in LUAD tissue was lower than that in normal tissue, and high expression of SNCA was related to better prognosis. There were significant positive correlations between SNCA expression and immune infiltrations, including CD8+ T cells, macrophages, neutrophils, dendritic cells, B cells, and CD4+ T cells, and immune checkpoints, suggesting that immune infiltration was one of the reasons for the influence of SNCA on prognosis in LUAD. The transcriptome data of A549 cells overexpressing SNCA were further used to screen the relevant immune-related genes regulated by SNCA. Enrichment analysis confirmed that SNCA participates in the PI3K-AKT signaling pathway and other key tumor signaling pathways and regulates the expression of MAPK3, SRC, PLCG1, and SHC1. Cellular proliferation assay showed that SNCA could inhabit the growth of A549 cells via inhibiting activity of PI3K/AKT/ mTOR pathway. Finally, analysis of the methylation level of SNCA promoter showed that the promoter methylation negatively correlated with mRNA level. The expression of SNCA in LUAD cell lines was significantly upregulated by treatment with 5-aza-dC. CONCLUSION High methylation of SNCA promoter in LUAD is one of the reasons for the downregulation of SNCA mRNA level. Given that SNCA could inhibit the proliferation of A549 cells and correlates with immune infiltrates, it may serve as a prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Xiuao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, 650118 China
| |
Collapse
|
15
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
16
|
Dilliott AA, Abdelhady A, Sunderland KM, Farhan SMK, Abrahao A, Binns MA, Black SE, Borrie M, Casaubon LK, Dowlatshahi D, Finger E, Fischer CE, Frank A, Freedman M, Grimes D, Hassan A, Jog M, Kumar S, Kwan D, Lang AE, Mandzia J, Masellis M, McIntyre AD, Pasternak SH, Pollock BG, Rajji TK, Rogaeva E, Sahlas DJ, Saposnik G, Sato C, Seitz D, Shoesmith C, Steeves TDL, Swartz RH, Tan B, Tang-Wai DF, Tartaglia MC, Turnbull J, Zinman L, Hegele RA. Contribution of rare variant associations to neurodegenerative disease presentation. NPJ Genom Med 2021; 6:80. [PMID: 34584092 PMCID: PMC8478934 DOI: 10.1038/s41525-021-00243-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Genetic factors contribute to neurodegenerative diseases, with high heritability estimates across diagnoses; however, a large portion of the genetic influence remains poorly understood. Many previous studies have attempted to fill the gaps by performing linkage analyses and association studies in individual disease cohorts, but have failed to consider the clinical and pathological overlap observed across neurodegenerative diseases and the potential for genetic overlap between the phenotypes. Here, we leveraged rare variant association analyses (RVAAs) to elucidate the genetic overlap among multiple neurodegenerative diagnoses, including Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), mild cognitive impairment, and Parkinson's disease (PD), as well as cerebrovascular disease, using the data generated with a custom-designed neurodegenerative disease gene panel in the Ontario Neurodegenerative Disease Research Initiative (ONDRI). As expected, only ~3% of ONDRI participants harboured a monogenic variant likely driving their disease presentation. Yet, when genes were binned based on previous disease associations, we observed an enrichment of putative loss of function variants in PD genes across all ONDRI cohorts. Further, individual gene-based RVAA identified significant enrichment of rare, nonsynonymous variants in PARK2 in the FTD cohort, and in NOTCH3 in the PD cohort. The results indicate that there may be greater heterogeneity in the genetic factors contributing to neurodegeneration than previously appreciated. Although the mechanisms by which these genes contribute to disease presentation must be further explored, we hypothesize they may be a result of rare variants of moderate phenotypic effect contributing to overlapping pathology and clinical features observed across neurodegenerative diagnoses.
Collapse
Affiliation(s)
- Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Abdalla Abdelhady
- Department of Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Kelly M Sunderland
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Sali M K Farhan
- Departments of Neurology and Neurosurgery, and Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Malcolm A Binns
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
- LCCampbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Borrie
- St. Joseph's Health Care Centre, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Leanne K Casaubon
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- University Health Network Stroke Program, Toronto Western Hospital, Toronto, ON, Canada
| | - Dar Dowlatshahi
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Frank
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Bruyère Research Institute, Ottawa, ON, Canada
| | - Morris Freedman
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Baycrest Health Sciences, Mt. Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - David Grimes
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Research Institute and Northern Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Anthony E Lang
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Mario Masellis
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Cognitive & Movement Disorders Clinic and L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Science Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Cognitive Neurology and Alzheimer's Disease Research Centre, Parkwood Institute, St. Joseph's Health Care, London, ON, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | | | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Clinical Outcomes and Decision Neuroscience Unit, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Thomas D L Steeves
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Division of Neurology, St. Michael's Hospital, Toronto, ON, Canada
| | - Richard H Swartz
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
- LCCampbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - David F Tang-Wai
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, Canada
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - John Turnbull
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
17
|
Leong YQ, Lee SWH, Ng KY. Cancer risk in Parkinson disease: An updated systematic review and meta-analysis. Eur J Neurol 2021; 28:4219-4237. [PMID: 34403556 DOI: 10.1111/ene.15069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests significant associations between Parkinson disease (PD) and cancer risks. We conducted an updated review of studies that examined the risks of various cancer among PD patients and how this differed when cancer preceded PD diagnosis or PD diagnosis preceded cancer. METHODS Four databases were searched for studies that examined the association between PD and incidence of cancer from database inception to 4 June 2021. Three independent reviewers screened the articles for eligibility and extracted study data. Pooled relative risk with 95% confidence intervals were calculated using a random effects model. RESULTS Forty studies involving 11 case-control studies, two nested case-control studies, 22 cohort studies, and five cross-sectional studies were included. Compared to controls, PD patients had lower risks of lung, genitourinary, gastrointestinal, and haematological cancers. Conversely, higher risks of melanoma and brain cancer were noted among PD patients. No association was found between PD and risk of female cancers. Subgroup analysis found negative associations between PD patients and risks of colon cancer, rectal cancer, and non-Hodgkin lymphoma. CONCLUSIONS Findings from our meta-analysis suggest PD patients had lower risks of lung, genitourinary, gastrointestinal, and haematological cancers and increased risks of melanoma and brain cancer. Future research to investigate the underlying mechanisms between PD and cancers is warranted.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,School of Pharmacy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
18
|
D’Ecclesiis O, Caini S, Martinoli C, Raimondi S, Gaiaschi C, Tosti G, Queirolo P, Veneri C, Saieva C, Gandini S, Chiocca S. Gender-Dependent Specificities in Cutaneous Melanoma Predisposition, Risk Factors, Somatic Mutations, Prognostic and Predictive Factors: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7945. [PMID: 34360236 PMCID: PMC8345480 DOI: 10.3390/ijerph18157945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Over the last decades, the incidence of melanoma has been steadily growing, with 4.2% of the population worldwide affected by cutaneous melanoma (CM) in 2020 and with a higher incidence and mortality in men than in women. We investigated both the risk factors for CM development and the prognostic and predictive factors for survival, stratifying for both sex and gender. METHODS We conducted a systematic review of studies indexed in PUB-MED, EMBASE, and Scopus until 4 February 2021. We included reviews, meta-analyses, and pooled analyses investigating differences between women and men in CM risk factors and in prognostic and predictive factors for CM survival. DATA SYNTHESIS Twenty-four studies were included, and relevant data extracted. Of these, 13 studies concerned potential risk factors, six concerned predictive factors, and five addressed prognostic factors of melanoma. DISCUSSION The systematic review revealed no significant differences in genetic predisposition to CM between males and females, while there appear to be several gender disparities regarding CM risk factors, partly attributable to different lifestyles and behavioral habits between men and women. There is currently no clear evidence of whether the mutational landscapes of CM differ by sex/gender. Prognosis is justified by a complex combination of phenotypes and immune functions, while reported differences between genders in predicting the effectiveness of new treatments are inconsistent. Overall, the results emerging from the literature reveal the importance of considering the sex/gender variable in all studies and pave the way for including it towards precision medicine. CONCLUSIONS Men and women differ genetically, biologically, and by social construct. Our systematic review shows that, although fundamental, the variable sex/gender is not among the ones collected and analyzed.
Collapse
Affiliation(s)
- Oriana D’Ecclesiis
- Department of Experimental Oncology, IEO—European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (C.M.); (S.R.)
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy; (S.C.); (C.S.)
| | - Chiara Martinoli
- Department of Experimental Oncology, IEO—European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (C.M.); (S.R.)
| | - Sara Raimondi
- Department of Experimental Oncology, IEO—European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (C.M.); (S.R.)
| | - Camilla Gaiaschi
- GENDERS Center, Department of Social and Political Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (C.G.); (C.V.)
- Faculty of Social and Political Sciences, Institute of Social Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Giulio Tosti
- Division of Melanoma Surgery, Sarcoma and Rare Tumors, IEO—European Institute of Oncology IRCCS, 20139 Milan, Italy; (G.T.); (P.Q.)
| | - Paola Queirolo
- Division of Melanoma Surgery, Sarcoma and Rare Tumors, IEO—European Institute of Oncology IRCCS, 20139 Milan, Italy; (G.T.); (P.Q.)
| | - Camilla Veneri
- GENDERS Center, Department of Social and Political Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (C.G.); (C.V.)
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy; (S.C.); (C.S.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO—European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (C.M.); (S.R.)
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO—European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (C.M.); (S.R.)
| |
Collapse
|
19
|
Wu Y, Yin J, Yang B, Tang L, Feng W, Liu X, Zhao X, Cheng Z. Association Analysis of Polymorphisms in BIN1, MC1R, STARD6 and PVRL2 with Mild Cognitive Impairment in Elderly Carrying APOE ε4 Allele. Neuropsychiatr Dis Treat 2021; 17:1125-1133. [PMID: 33907405 PMCID: PMC8071212 DOI: 10.2147/ndt.s296144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Apolipoprotein (APOE) ε4 is recognized as an independent risk factor for mild cognitive impairment (MCI). However, not everyone with the ε4 allele develops MCI, suggesting that other susceptibility genes exist. This study aimed to identify MCI susceptibility genes, including BIN1, MC1R, STARD6, and PVRL2, in elderly Han Chinese and to verify their association with APOE ε4 allele in MCI onset. METHODS To determine whether polymorphisms in BIN1 (rs6733839, rs7561528), MC1R (rs2228479), STARD6 (rs10164112), and PVRL2 (rs6859) occurred in elderly MCI patients carrying APOE ε4 allele, we carried out a case-control study including 285 MCI patients and 326 healthy controls. RESULTS Statistically significant differences in the proportion of APOE ε4 carriers, and BESCI, ADAS-cog, and CNT scores existed between the NC and MCI groups (all P < 0.01). Frequencies of the rs10164112 T and rs6859 A alleles were significantly higher in the latter than in the former (P = 0.01; 0.029). However, no significant differences in allele and genotype distribution of BIN1 (rs6733839, rs7561528) and MC1R (rs2228479) existed between samples in our two groups (all P > 0.05). When stratified by APOE ε4 status (carriers/non-carriers), genotype frequencies of BIN1 rs7561528, STARD6 rs10164112, and PVRL2 rs6859 among the four groups (NCε4+, NCε4-, MCIε4+, MCIε4-) were significantly different. Additionally, our results suggest a significant association between MCI and BIN1 rs7561528, STARD6 rs10164112, and PVRL2 rs6859 (all P<0.05) in elderly carriers. CONCLUSION This suggests that among the Han Chinese, MCI in elderly APOE ε4 carriers may be related to the BIN1 (rs7561528), STARD6 (rs10164112) and PVRL2 (rs6859). Genotype AA of rs7561528 and TT of rs10164112 might be protective factors against MCI in elderly APOE ε4 carriers.
Collapse
Affiliation(s)
- Yue Wu
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Bixiu Yang
- Department of Clinical Psychology, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Li Tang
- Department of General Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Wei Feng
- Department of Social Prevention and Control, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiaowei Liu
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xingfu Zhao
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Zaohuo Cheng
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
20
|
Rudakou U, Yu E, Krohn L, Ruskey JA, Asayesh F, Dauvilliers Y, Spiegelman D, Greenbaum L, Fahn S, Waters CH, Dupré N, Rouleau GA, Hassin-Baer S, Fon EA, Alcalay RN, Gan-Or Z. Targeted sequencing of Parkinson's disease loci genes highlights SYT11, FGF20 and other associations. Brain 2021; 144:462-472. [PMID: 33349842 DOI: 10.1093/brain/awaa401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous loci associated with Parkinson's disease. The specific genes and variants that drive the associations within the vast majority of these loci are unknown. We aimed to perform a comprehensive analysis of selected genes to determine the potential role of rare and common genetic variants within these loci. We fully sequenced 32 genes from 25 loci previously associated with Parkinson's disease in 2657 patients and 3647 controls from three cohorts. Capture was done using molecular inversion probes targeting the exons, exon-intron boundaries and untranslated regions (UTRs) of the genes of interest, followed by sequencing. Quality control was performed to include only high-quality variants. We examined the role of rare variants (minor allele frequency < 0.01) using optimized sequence Kernel association tests. The association of common variants was estimated using regression models adjusted for age, sex and ethnicity as required in each cohort, followed by a meta-analysis. After Bonferroni correction, we identified a burden of rare variants in SYT11, FGF20 and GCH1 associated with Parkinson's disease. Nominal associations were identified in 21 additional genes. Previous reports suggested that the SYT11 GWAS association is driven by variants in the nearby GBA gene. However, the association of SYT11 was mainly driven by a rare 3' UTR variant (rs945006601) and was independent of GBA variants (P = 5.23 × 10-5 after exclusion of all GBA variant carriers). The association of FGF20 was driven by a rare 5' UTR variant (rs1034608171) located in the promoter region. The previously reported association of GCH1 with Parkinson's disease is driven by rare non-synonymous variants, some of which are known to cause dopamine-responsive dystonia. We also identified two LRRK2 variants, p.Arg793Met and p.Gln1353Lys, in 10 and eight controls, respectively, but not in patients. We identified common variants associated with Parkinson's disease in MAPT, TMEM175, BST1, SNCA and GPNMB, which are all in strong linkage disequilibrium with known GWAS hits in their respective loci. A common coding PM20D1 variant, p.Ile149Val, was nominally associated with reduced risk of Parkinson's disease (odds ratio 0.73, 95% confidence interval 0.60-0.89, P = 1.161 × 10-3). This variant is not in linkage disequilibrium with the top GWAS hits within this locus and may represent a novel association. These results further demonstrate the importance of fine mapping of GWAS loci, and suggest that SYT11, FGF20, and potentially PM20D1, BST1 and GPNMB should be considered for future studies as possible Parkinson's disease-related genes.
Collapse
Affiliation(s)
- Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Cheryl H Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Québec City, QC, G1V 0A6, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| |
Collapse
|
21
|
Kurvits L, Lättekivi F, Reimann E, Kadastik-Eerme L, Kasterpalu KM, Kõks S, Taba P, Planken A. Transcriptomic profiles in Parkinson's disease. Exp Biol Med (Maywood) 2021; 246:584-595. [PMID: 33148011 PMCID: PMC7934142 DOI: 10.1177/1535370220967325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Transcriptomics in Parkinson's disease offers insights into the pathogenesis of Parkinson's disease but obtaining brain tissue has limitations. In order to bypass this issue, we profile and compare differentially expressed genes and enriched pathways (KEGG) in two peripheral tissues (blood and skin) of 12 Parkinson's disease patients and 12 healthy controls using RNA-sequencing technique and validation with RT-qPCR. Furthermore, we compare our results to previous Parkinson's disease post mortem brain tissue and blood results using the robust rank aggregation method. The results show no overlapping differentially expressed genes or enriched pathways in blood vs. skin in our sample sets (25 vs. 1068 differentially expressed genes with an FDR ≤ 0.05; 1 vs. 9 pathways in blood and skin, respectively). A meta-analysis from previous transcriptomic sample sets using either microarrays or RNA-Seq yields a robust rank aggregation list of cortical gene expression changes with 43 differentially expressed genes; a list of substantia nigra changes with 2 differentially expressed genes and a list of blood changes with 1 differentially expressed gene being statistically significant at FDR ≤ 0.05. In cortex 1, KEGG pathway was enriched, four in substantia nigra and two in blood. None of the differentially expressed genes or pathways overlap between these tissues. When comparing our previously published skin transcription analysis, two differentially expressed genes between the cortex robust rank aggregation and skin overlap. In this study, for the first time a meta-analysis is applied on transcriptomic sample sets in Parkinson's disease. Simultaneously, it explores the notion that Parkinson's disease is not just a neuronal tissue disease by exploring peripheral tissues. The comparison of different Parkinson's disease tissues yields surprisingly few significant differentially expressed genes and pathways, suggesting that divergent gene expression profiles in distinct cell lineages, metabolic and possibly iatrogenic effects create too much transcriptomic noise for detecting significant signal. On the other hand, there are signs that point towards Parkinson's disease-specific changes in non-neuronal peripheral tissues in Parkinson's disease, indicating that Parkinson's disease might be a multisystem disorder.
Collapse
Affiliation(s)
- Lille Kurvits
- Department of Neurology and Neurosurgery, University of Tartu, Tartu 50406, Estonia
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Freddy Lättekivi
- Institute of Pathophysiology, University of Tartu, Tartu 50411, Estonia
| | - Ene Reimann
- Estonian Genome Center Science Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Liis Kadastik-Eerme
- Department of Neurology and Neurosurgery, University of Tartu, Tartu 50406, Estonia
- Neurology Clinic, Tartu University Hospital, Tartu 50406, Estonia
| | | | - Sulev Kõks
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, QE II Medical Centre, Nedlands, WA 6009, Australia
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Tartu 50406, Estonia
- Neurology Clinic, Tartu University Hospital, Tartu 50406, Estonia
| | - Anu Planken
- Department of Neurology and Neurosurgery, University of Tartu, Tartu 50406, Estonia
- Neurology Clinic, Tartu University Hospital, Tartu 50406, Estonia
- Oncology and Haematology Clinic, North-Estonian Medical Centre, Tallinn 13419, Estonia
| |
Collapse
|
22
|
Risk of Nonmelanoma Skin Cancers and Parkinson's Disease-Meta-Analysis and Systematic Review. Cancers (Basel) 2021; 13:cancers13040587. [PMID: 33546132 PMCID: PMC7913207 DOI: 10.3390/cancers13040587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Non-melanoma skin cancers (NMSCs) are the most common cancers among fair-skinned people. It is estimated that 2–3 million new cases of NMSCs are diagnosed globally each year. The risk of development increases with age, just like in the case of Parkinson Disease. Due to the general aging of the population and substantially high medical costs of NMSC therapy, NMSCs and Parkinson’s disease (PD) are becoming an increasing health problem. In this paper, we conduct a meta-analysis and systematic review to evaluate the NMSC risk among patients with PD. This study is the first to focus on the effect of different epidemiologic aspects of NMSCs and PD in detail. Abstract Patients with Parkinson’s disease (PD) have an increased risk of melanoma compared with the general population. Considering that Nonmelanoma Skin Cancers (NMSCs) share similar risk factors with melanoma, there is a need to understand a possible connection between PD and NMSCs. The aim of the study was the evaluation of NMSC risk among PD patients via meta-analysis and systematic review. A comprehensive search of PubMed, Scopus, and Web of Science databases was conducted, including studies from January 2000 to April 2020. We identified 16 eligible studies including 140291 PD patients. Upon statistical analysis, a significantly higher risk of developing NMSCs in PD patients was found compared with the control group (odds ratio (OR) = 1.25, 95% CI: 1.17–1.33; p < 0.0001). Among all NMSCs, the risk of developing basal cell carcinoma in PD patients was significantly higher (OR = 1.30, 95% confidence interval (CI): 1.15–1.47; p < 0.0001), contrary to squamous cell carcinoma. Further analysis revealed a significantly higher risk of developing NMSCs in patients with previously diagnosed PD (OR = 1.26, 95% CI: 1.19–1.33; p < 0.0001). Our data suggest the necessity for regular skin examination of PD patients, though further studies are required to explore the mechanisms forming this relationship.
Collapse
|
23
|
Filippou PS, Outeiro TF. Cancer and Parkinson's Disease: Common Targets, Emerging Hopes. Mov Disord 2020; 36:340-346. [PMID: 33346940 DOI: 10.1002/mds.28425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer and neurodegeneration are two major leading causes of morbidity and death worldwide. At first sight, the two fields do not seem to share much in common and, if anything, might be placed on opposite ends of a spectrum. Although neurodegeneration results in excessive neuronal cell death, cancer emerges from increased proliferation and resistance to cell death. Therefore, one might expect significant differences in the underlying pathophysiological mechanisms. However, the more we deepen our understanding of these two types of diseases, the more we appreciate the unexpected overlap between them. Although most epidemiological studies support an inverse association between the risk for development of neurodegenerative diseases and cancer, increasing evidence points to a positive correlation between specific types of cancer, like melanoma, and neurodegenerative diseases, like Parkinson's disease (PD). We believe that deciphering the molecular processes and pathways underlying one of these diseases may significantly increase our understanding about the other. Therefore, the identification of novel biomarkers and therapeutic approaches in cancer, may lead to improved diagnosis and treatment of neurodegeneration, and vice versa. In this Viewpoint, we summarize recent findings connecting both diseases and speculate that insights from one disease may inform on mechanisms, and help identify novel biomarkers and targets for intervention, possibly leading to improved management of both diseases. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Panagiota S Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Papin S, Paganetti P. Emerging Evidences for an Implication of the Neurodegeneration-Associated Protein TAU in Cancer. Brain Sci 2020; 10:brainsci10110862. [PMID: 33207722 PMCID: PMC7696480 DOI: 10.3390/brainsci10110862] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders and cancer may appear unrelated illnesses. Yet, epidemiologic studies indicate an inverse correlation between their respective incidences for specific cancers. Possibly explaining these findings, increasing evidence indicates that common molecular pathways are involved, often in opposite manner, in the pathogenesis of both disease families. Genetic mutations in the MAPT gene encoding for TAU protein cause an inherited form of frontotemporal dementia, a neurodegenerative disorder, but also increase the risk of developing cancer. Assigning TAU at the interface between cancer and neurodegenerative disorders, two major aging-linked disease families, offers a possible clue for the epidemiological observation inversely correlating these human illnesses. In addition, the expression level of TAU is recognized as a prognostic marker for cancer, as well as a modifier of cancer resistance to chemotherapy. Because of its microtubule-binding properties, TAU may interfere with the mechanism of action of taxanes, a class of chemotherapeutic drugs designed to stabilize the microtubule network and impair cell division. Indeed, a low TAU expression is associated to a better response to taxanes. Although TAU main binding partners are microtubules, TAU is able to relocate to subcellular sites devoid of microtubules and is also able to bind to cancer-linked proteins, suggesting a role of TAU in modulating microtubule-independent cellular pathways associated to oncogenesis. This concept is strengthened by experimental evidence linking TAU to P53 signaling, DNA stability and protection, processes that protect against cancer. This review aims at collecting literature data supporting the association between TAU and cancer. We will first summarize the evidence linking neurodegenerative disorders and cancer, then published data supporting a role of TAU as a modifier of the efficacy of chemotherapies and of the oncogenic process. We will finish by addressing from a mechanistic point of view the role of TAU in de-regulating critical cancer pathways, including the interaction of TAU with cancer-associated proteins.
Collapse
Affiliation(s)
- Stéphanie Papin
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
- Faculty of Biomedical Neurosciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
- Correspondence: ; Tel.: +41-91-811-7250
| |
Collapse
|
25
|
Ejma M, Madetko N, Brzecka A, Guranski K, Alster P, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Aliev G. The Links between Parkinson's Disease and Cancer. Biomedicines 2020; 8:biomedicines8100416. [PMID: 33066407 PMCID: PMC7602272 DOI: 10.3390/biomedicines8100416] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiologic studies indicate a decreased incidence of most cancer types in Parkinson’s disease (PD) patients. However, some neoplasms are associated with a higher risk of occurrence in PD patients. Both pathologies share some common biological pathways. Although the etiologies of PD and cancer are multifactorial, some factors associated with PD, such as α-synuclein aggregation; mutations of PINK1, PARKIN, and DJ-1; mitochondrial dysfunction; and oxidative stress can also be involved in cancer proliferation or cancer suppression. The main protein associated with PD, i.e., α-synuclein, can be involved in some types of neoplastic formations. On the other hand, however, its downregulation has been found in the other cancers. PINK1 can act as oncogenic or a tumor suppressor. PARKIN dysfunction may lead to some cancers’ growth, and its expression may be associated with some tumors’ suppression. DJ-1 mutation is involved in PD pathogenesis, but its increased expression was found in some neoplasms, such as melanoma or breast, lung, colorectal, uterine, hepatocellular, and nasopharyngeal cancers. Both mitochondrial dysfunction and oxidative stress are involved in PD and cancer development. The aim of this review is to summarize the possible associations between PD and carcinogenesis.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Konstanty Guranski
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa, Poland;
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: or ; Tel.: +1-210-442-8625 or +1-440-263-7461
| |
Collapse
|
26
|
Shahid W, Satyjeet F, Kumari R, Raj K, Kumar V, Afroz MN, Memon MK. Dermatological Manifestations of Parkinson's Disease: Clues for Diagnosis. Cureus 2020; 12:e10836. [PMID: 33173642 PMCID: PMC7647835 DOI: 10.7759/cureus.10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and objective Parkinson’s disease (PD) is a common neurodegenerative disorder. There are various manifestations of PD. Among them, motor dysfunction has been studied in many research studies; however, few studies are available related to the dermatological manifestations of PD. This study was conducted with the aim to shed light on various skin conditions that occur in PD. Methods This cross-sectional study was conducted at a tertiary care hospital in Pakistan for a period of nine months; 107 patients with PD were included after obtaining informed consent. A self-administrated questionnaire was used to record demographic data and dermatological findings. Results Among the various dermatological manifestations, patients with PD most commonly presented with seborrheic dermatitis (46.7%) and rosacea (10.2%). Other manifestations included bullous pemphigoid (7.4%) and melanoma (4.6%). Conclusion The study revealed several dermatological manifestations of PD, which usually get overlooked by neurologists. Through this study, we want to emphasize that PD, apart from all the motor signs and symptoms, can also present as skin problems, and hence, a multi-disciplinary approach should be taken while managing PD.
Collapse
Affiliation(s)
- Wajeeha Shahid
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Fnu Satyjeet
- Internal Medicine, Chandka Medical College, Larkana, PAK
| | - Raj Kumari
- Internal Medicine, People's University of Medical and Health Sciences for Women, Karachi, PAK
| | - Kuldeep Raj
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Vikash Kumar
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Maham Noor Afroz
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Muhammad Khizar Memon
- Internal Medicine, Liaquat University of Medical and Health Sciences, Hyderabad, PAK
| |
Collapse
|
27
|
Mencke P, Hanss Z, Boussaad I, Sugier PE, Elbaz A, Krüger R. Bidirectional Relation Between Parkinson's Disease and Glioblastoma Multiforme. Front Neurol 2020; 11:898. [PMID: 32973662 PMCID: PMC7468383 DOI: 10.3389/fneur.2020.00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer and Parkinson's disease (PD) define two disease entities that include opposite concepts. Indeed, the involved mechanisms are at different ends of a spectrum related to cell survival - one due to enhanced cellular proliferation and the other due to premature cell death. There is increasing evidence indicating that patients with neurodegenerative diseases like PD have a reduced incidence for most cancers. In support, epidemiological studies demonstrate an inverse association between PD and cancer. Both conditions apparently can involve the same set of genes, however, in affected tissues the expression was inversely regulated: genes that are down-regulated in PD were found to be up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common genes, that are involved in both diseases and share common key pathways of cell proliferation and metabolism, were shown to be oppositely deregulated in PD and GBM. Here, we provide an overview of the involvement of PD- and GBM-associated genes in common pathways that are dysregulated in both conditions. Moreover, we illustrate why the simultaneous study of PD and GBM regarding the role of common pathways may lead to a deeper understanding of these still incurable conditions. Eventually, considering the inverse regulation of certain genes in PD and GBM will help to understand their mechanistic basis, and thus to define novel target-based strategies for causative treatments.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Zoé Hanss
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Alexis Elbaz
- Institut de Statistique de l'Université de Paris, Paris, France
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
28
|
Ryu HJ, Park JH, Choi M, Jung JH, Han K, Kwon DY, Kim DH, Park YG. Parkinson's disease and skin cancer risk: a nationwide population-based cohort study in Korea. J Eur Acad Dermatol Venereol 2020; 34:2775-2780. [PMID: 32289877 DOI: 10.1111/jdv.16462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Previous studies have reported that patients with Parkinson's disease (PD) have a significantly lower risk of cancer. Studies reporting prevalence of skin cancers in Parkinson's disease mostly involve Caucasians. OBJECTIVE A nationwide population-based study was conducted to determine the risk of skin cancer in patients diagnosed with PD in Korea. METHODS Data obtained from National Health Insurance Claims records were used to retrieve information about 70 780 patients with newly diagnosed PD between January 2010 and December 2015. The control group included 353 900 sex- and age-matched patients without PD. In this nationwide population-based cohort study, we investigated the association between PD and skin cancer. RESULTS The overall hazard ratio (HR) of skin cancers in patients with PD was 1.169 (95% CI, 1.005-1.359) compared with non-PD group. Among patients with PD, males aged above 65 had a 2.8-fold increase in the risk for melanoma development than the non-PD group (HR, 2.825; 95% CI, 1.395-5.721). In addition, female PD patients aged above 65 years showed a 1.3-fold increase in non-melanoma skin cancer risk than the non-PD group (HR, 1.305; 95% 1.073-1.589). CONCLUSION Compared with the general population, Korean patients diagnosed with PD had a greater risk of skin cancer. Especially, male patients aged 65 years and above, and diagnosed with PD had a significant risk of melanoma development compared with control.
Collapse
Affiliation(s)
- H J Ryu
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - J-H Park
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - M Choi
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - J-H Jung
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - K Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - D-Y Kwon
- Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - D-H Kim
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Y-G Park
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Ye Q, Wen Y, Al-Kuwari N, Chen X. Association Between Parkinson's Disease and Melanoma: Putting the Pieces Together. Front Aging Neurosci 2020; 12:60. [PMID: 32210791 PMCID: PMC7076116 DOI: 10.3389/fnagi.2020.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with Parkinson’s disease (PD) generally have reduced risk of developing many types of cancers, except melanoma—a malignant tumor of melanin-producing cells in the skin. For decades, a large number of epidemiological studies have reported that the occurrence of melanoma is higher than expected among subjects with PD, and the occurrence of PD is reciprocally higher than expected among patients with melanoma. More recent epidemiological studies further indicated a bidirectional association, not only in the patients themselves but also in their relatives. This association between PD and melanoma offers a unique opportunity to understand PD. Here, we summarize epidemiological, clinical, and biological evidence in regard to shared risk factors and possible underlying mechanisms for these two seemingly distinct conditions.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ya Wen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Ietheory Institute, Burlington, MA, United States
| | - Nasser Al-Kuwari
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Dube U, Ibanez L, Budde JP, Benitez BA, Davis AA, Harari O, Iles MM, Law MH, Brown KM, Cruchaga C. Overlapping genetic architecture between Parkinson disease and melanoma. Acta Neuropathol 2020; 139:347-364. [PMID: 31845298 PMCID: PMC7379325 DOI: 10.1007/s00401-019-02110-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
Epidemiologic studies have reported inconsistent results regarding an association between Parkinson disease (PD) and cutaneous melanoma (melanoma). Identifying shared genetic architecture between these diseases can support epidemiologic findings and identify common risk genes and biological pathways. Here, we apply polygenic, linkage disequilibrium-informed methods to the largest available case-control, genome-wide association study summary statistic data for melanoma and PD. We identify positive and significant genetic correlation (correlation: 0.17, 95% CI 0.10-0.24; P = 4.09 × 10-06) between melanoma and PD. We further demonstrate melanoma and PD-inferred gene expression to overlap across tissues (correlation: 0.14, 95% CI 0.06 to 0.22; P = 7.87 × 10-04) and highlight seven genes including PIEZO1, TRAPPC2L, and SOX6 as potential mediators of the genetic correlation between melanoma and PD. These findings demonstrate specific, shared genetic architecture between PD and melanoma that manifests at the level of gene expression.
Collapse
Affiliation(s)
- Umber Dube
- Medical Scientist Training Program, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. CB8134, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. CB8134, St. Louis, MO, 63110, USA
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. CB8134, St. Louis, MO, 63110, USA
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. CB8134, St. Louis, MO, 63110, USA
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. CB8134, St. Louis, MO, 63110, USA
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. CB8134, St. Louis, MO, 63110, USA.
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Guttuso T. High lithium levels in tobacco may account for reduced incidences of both Parkinson's disease and melanoma in smokers through enhanced β-catenin-mediated activity. Med Hypotheses 2019; 131:109302. [PMID: 31443765 DOI: 10.1016/j.mehy.2019.109302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) patients have higher rates of melanoma and vice versa, observations suggesting that the two conditions may share common pathogenic pathways. β-Catenin is a transcriptional cofactor that, when concentrated in the nucleus, upregulates the expression of canonical Wnt target genes, such as Nurr1, many of which are important for neuronal survival. β-Catenin-mediated activity is decreased in sporadic PD as well as in leucine-rich repeat kinase 2 (LRRK2) and β-glucosidase (GBA) mutation cellular models of PD, which is the most common genetic cause of and risk for PD, respectively. In addition, β-catenin expression is significantly decreased in more aggressive and metastatic melanoma. Multiple observational studies have shown smokers to have significantly lower rates of PD as well as melanoma implying that tobacco may contain one or more elements that protect against both conditions. In support, smoker's brains have significantly reduced levels of α-synuclein, a pathological intracellular protein found in PD brain and melanoma cells. Tobacco contains very high lithium levels compared to other plants. Lithium has a broad array of neuroprotective actions, including enhancing autophagy and reducing intracellular α-synuclein levels, and is effective in both neurotoxin and transgenic preclinical PD models. One of lithium's neuroprotective actions is enhancement of β-catenin-mediated activity leading to increased Nurr1 expression through its ability to inhibit glycogen synthase kinase-3 β (GSK-3β). Lithium also has anti-proliferative effects on melanoma cells and the clinical use of lithium is associated with a reduced incidence of melanoma as well as reduced melanoma-associated mortality. This is the first known report hypothesizing that inhaled lithium from smoking may account for the associated reduced rates of both PD and melanoma and that this protection may be mediated, in part, through lithium-induced GSK-3β inhibition and consequent enhanced β-catenin-mediated activity. This hypothesis could be directly tested in clinical trials assessing lithium therapy's ability to affect β-catenin-mediated activity and slow disease progression in patients with PD or melanoma.
Collapse
Affiliation(s)
- Thomas Guttuso
- Comprehensive Movement Disorders Center, University at Buffalo, 3435 Main Street, 97 Farber Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
32
|
Vila M. Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease. Mov Disord 2019; 34:1440-1451. [PMID: 31251435 PMCID: PMC7079126 DOI: 10.1002/mds.27776] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Neuromelanin, a dark brown intracellular pigment, has long been associated with Parkinson's disease (PD). In PD, neuromelanin-containing neurons preferentially degenerate, tell-tale neuropathological inclusions form in close association with this pigment, and neuroinflammation is restricted to neuromelanin-containing areas. In humans, neuromelanin accumulates with age, which in turn is the main risk factor for PD. The potential contribution of neuromelanin to PD pathogenesis remains unknown because, in contrast to humans, common laboratory animals lack neuromelanin. The recent introduction of a rodent model exhibiting an age-dependent production of human-like neuromelanin has allowed, for the first time, for the consequences of progressive neuromelanin accumulation-up to levels reached in elderly human brains-to be assessed in vivo. In these animals, intracellular neuromelanin accumulation above a specific threshold compromises neuronal function and triggers a PD-like pathology. As neuromelanin levels reach this threshold in PD patients and presymptomatic PD patients, the modulation of neuromelanin accumulation could provide a therapeutic benefit for PD patients and delay brain aging. © 2019 The Author. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Miquel Vila
- Neurodegenerative Diseases Research GroupVall d'Hebron Research Institute–Center for Networked Biomedical Research on Neurodegenerative DiseasesBarcelonaSpain
- Department of Biochemistry and Molecular BiologyAutonomous University of BarcelonaBarcelonaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
33
|
Bougea A, Spantideas N, Katoulis A, Stefanis L. Levodopa-induced skin disorders in patients with Parkinson disease: a systematic literature review approach. Acta Neurol Belg 2019; 119:325-336. [PMID: 31338806 DOI: 10.1007/s13760-019-01195-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/16/2019] [Indexed: 01/03/2023]
Abstract
The use of levodopa for treatment of Parkinson's disease is a well-established clinical practice. Data about the true incidence and severity of cutaneous complications associated with the use of levodopa are largely lacking. Aim of this review was to evaluate the quality of evidence referring to the skin disorders caused by levodopa treatment for Parkinson's disease. Thirty of 1084 studies were included; 8 randomized controlled trials and 22 case reports in a total of 2749 patients. Malignant melanoma was the most frequent oral levodopa-related skin disorder followed by allergic cutaneous reactions, alopecia, vitiligo, skin hyperpigmentation, Laugier-Hunziker syndrome, Henoch-Schönlein syndrome, pseudobullous morphea and scleroderma-like illness. Naranjo scores ranged from 2 to 8. Regarding levodopa clinical trials, the most frequent skin complication was peripheral edema, followed by malignant melanoma. Although evidence is not robust, melanoma is the most frequent and possible fatal levodopa-associated skin disorder, while other skin allergic or immunological reactions are less common and reversible. Although levodopa treatment may induce melanogenesis and promote melanomagenesis, existing evidence does not support an association between levodopa therapy and induction or progression of malignant melanoma. The suggested association with melanoma may reflect the well-documented association of Parkinson's disease with melanoma rather than the exposure to the drug. Nevertheless, until a solid conclusion can be drawn, the use of levodopa in the context of malignant melanoma should be considered with caution. Well-designed prospective studies are needed to determine the cause and effect relationship between levodopa and skin disorders.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology and Movement Disorders, National and Kapodistrian University of Athens, Medical School, Aeginition Hospital, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece.
| | - Nikolaos Spantideas
- 1st Department of Neurology and Movement Disorders, National and Kapodistrian University of Athens, Medical School, Aeginition Hospital, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece
| | - Alexandros Katoulis
- 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, Medical School, "Attikon" General University Hospital, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology and Movement Disorders, National and Kapodistrian University of Athens, Medical School, Aeginition Hospital, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece
| |
Collapse
|
34
|
Gargini R, Segura-Collar B, Sánchez-Gómez P. Novel Functions of the Neurodegenerative-Related Gene Tau in Cancer. Front Aging Neurosci 2019; 11:231. [PMID: 31551755 PMCID: PMC6736573 DOI: 10.3389/fnagi.2019.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The analysis of global and comparative genomics between different diseases allows us to understand the key biological processes that explain the etiology of these pathologies. We have used this type of approach to evaluate the expression of several neurodegeneration-related genes on the development of tumors, particularly brain tumors of glial origin (gliomas), which are an aggressive and incurable type of cancer. We have observed that genes involved in Amyotrophic lateral sclerosis (ALS), as well as in Alzheimer’s and Parkinson’s diseases, correlate with better prognosis of gliomas. Within these genes, high Tau/MAPT expression shows the strongest correlation with several indicators of prolonged survival on glioma patients. Tau protein regulates microtubule stability and dynamics in neurons, although there have been reports of its expression in glial cells and also in gliomas. However, little is known about the regulation of Tau/MAPT transcription in tumors. Moreover, our in silico analysis indicates that this gene is also expressed in a variety of tumors, showing a general correlation with survival, although its function in cancer has not yet been addressed. Another remarkable aspect of Tau is its involvement in resistance to taxanes in various tumors types such as breast, ovarian and gastric carcinomas. This is due to the fact that taxanes have the same tubulin-binding site as Tau. In the present work we review the main knowledge about Tau function and expression in tumors, with a special focus on brain cancer. We will also speculate with the therapeutic implications of these findings.
Collapse
|
35
|
Agalliu I, Ortega RA, Luciano MS, Mirelman A, Pont-Sunyer C, Brockmann K, Vilas D, Tolosa E, Berg D, Warø B, Glickman A, Raymond D, Inzelberg R, Ruiz-Martinez J, Mondragon E, Friedman E, Hassin-Baer S, Alcalay RN, Mejia-Santana H, Aasly J, Foroud T, Marder K, Giladi N, Bressman S, Saunders-Pullman R. Cancer outcomes among Parkinson's disease patients with leucine rich repeat kinase 2 mutations, idiopathic Parkinson's disease patients, and nonaffected controls. Mov Disord 2019; 34:1392-1398. [PMID: 31348549 DOI: 10.1002/mds.27807] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Increased cancer risk has been reported in Parkinson's disease (PD) patients carrying the leucine rich repeat kinase 2 (LRRK2) G2019S mutation (LRRK2-PD) in comparison with idiopathic PD (IPD). It is unclear whether the elevated risk would be maintained when compared with unaffected controls. METHODS Cancer outcomes were compared among 257 LRRK2-PD patients, 712 IPD patients, and 218 controls recruited from 7 LRRK2 consortium centers using mixed-effects logistic regression. Data were then pooled with a previous study to examine cancer risk between 401 LRRK2-PD and 1946 IPD patients. RESULTS Although cancer prevalence was similar among LRRK2-PD patients (32.3%), IPD patients (27.5%), and controls (27.5%; P = 0.33), LRRK2-PD had increased risks of leukemia (odds ratio [OR] = 4.55; 95% confidence interval [CI], 1.46-10.61) and skin cancer (OR = 1.61; 95% CI, 1.09-2.37). In the pooled analysis, LRRK2-PD patients had also elevated risks of leukemia (OR = 9.84; 95% CI, 2.15-44.94) and colon cancer (OR = 2.34; 95% CI, 1.15-4.74) when compared with IPD patients. CONCLUSIONS The increased risks of leukemia as well as skin and colon cancers among LRRK2-PD patients suggest that LRRK2 mutations heighten risks of certain cancers. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marta San Luciano
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Claustre Pont-Sunyer
- Neurology Service, Hospital Clínic, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de Barcelona, Catalonia, Spain.,Neurology Unit, Hospital General de Granollers, Universitat Internacional de Catalunya, Granollers, Barcelona, Spain
| | | | - Dolores Vilas
- Neurology Service, Hospital Clínic, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de Barcelona, Catalonia, Spain.,Movement Disorders Unit, Neurology Service, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Eduardo Tolosa
- Neurology Service, Hospital Clínic, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de Barcelona, Catalonia, Spain
| | - Daniela Berg
- Hertie-Institut für klinische Hirnforschung, Tubingen, Germany.,Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Bjørg Warø
- Department of Neurology, St. Olavs Hospital, and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Amanda Glickman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rivka Inzelberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Javier Ruiz-Martinez
- Neurology Department, Donostia University Hospital, Biodonostia Institut Research, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, San Sebastian, Gipuzkoa, Spain
| | - Elisabet Mondragon
- Neurology Department, Donostia University Hospital, Biodonostia Institut Research, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, San Sebastian, Gipuzkoa, Spain
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer and the Departments of Internal Medicine and Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Parkinson's Disease and Movement Disorders Clinic and Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Helen Mejia-Santana
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital, and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Karen Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
36
|
Park JH, Kim DH, Park YG, Kwon DY, Choi M, Jung JH, Han K. Cancer risk in patients with Parkinson's disease in South Korea: A nationwide, population-based cohort study. Eur J Cancer 2019; 117:5-13. [PMID: 31229950 DOI: 10.1016/j.ejca.2019.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The association between Parkinson's disease (PD) and cancer development is controversial, especially in Asia. Therefore, we conducted a nationwide population-based cohort study to assess the overall cancer risk and risk for specific cancers in patients with PD in Korea. METHODS Using data from the Korean National Health Insurance Database, we analysed 52,009 patients diagnosed with PD between 2010 and 2015 and 260,045 individuals without PD. Patients previously diagnosed with cancer were excluded. The age- and sex-matched cohorts were followed up until 2016 for cancer development. Cox proportional hazards regression models were used to evaluate the relationship between PD and cancer. RESULTS Patients with PD had a lower overall cancer risk (hazard ratio [HR], 0.78; 95% confidence interval [CI], 0.74-0.82) after adjustment for multiple covariates during 2,022,852.6 person-years of follow-up. Patients with PD showed significantly lower risk of laryngeal cancer (HR, 0.45; 95% CI, 0.21-0.84), gastric cancer (HR, 0.72; 95% CI, 0.63-0.82), colorectal cancer (HR, 0.675; 95% CI, 0.60-0.76), liver cancer (HR, 0.80; 95% CI, 0.67-0.95), pancreatic cancer (HR, 0.75; 95% CI, 0.62-0.91), lung cancer (HR, 0.73; 95% CI, 0.63-0.84), leukaemia (HR, 0.49; 95% CI, 0.24-0.89), uterine cervical cancer (HR, 0.64; 95% CI, 0.40-0.99) and prostate cancer (HR, 0.78; 95% CI, 0.66-0.91). CONCLUSION This nationwide population-based cohort study revealed that patients with PD had lower overall cancer risk and lower risk of specific cancers. Contrary to the results of the recent Asian study, this large cohort study revealed that patients with PD were less likely to develop cancer than those without PD in Korea. Our results were consistent with those of previous Western studies, despite differences in ethnicity and environment.
Collapse
Affiliation(s)
- Joo-Hyun Park
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Do-Hoon Kim
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea.
| | - Yong-Gyu Park
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Do-Young Kwon
- Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Moonyoung Choi
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Jin-Hyung Jung
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
37
|
Kurvits L, Reimann E, Kadastik-Eerme L, Truu L, Kingo K, Erm T, Kõks S, Taba P, Planken A. Serum Amyloid Alpha Is Downregulated in Peripheral Tissues of Parkinson's Disease Patients. Front Neurosci 2019; 13:13. [PMID: 30760975 PMCID: PMC6361740 DOI: 10.3389/fnins.2019.00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
We report the changed levels of serum amyloid alpha, an immunologically active protein, in Parkinson’s disease (PD) patients’ peripheral tissues. We have previously shown that Saa-1 and -2 (serum amyloid alpha-1,-2, genes) were among the top downregulated genes in PD patients’ skin, using whole-genome RNA sequencing. In the current study, we characterized the gene and protein expression profiles of skin and blood samples from patients with confirmed PD diagnosis and age/sex matched controls. qRT-PCR analysis of PD skin demonstrated downregulation of Saa-1 and -2 genes in PD patients. However, the lowered amount of protein could not be visualized using immunohistochemistry, due to low quantity of SAA (Serum Amyloid Alpha, protein) in skin. Saa-1 and -2 expression levels in whole blood were below detection threshold based on RNA sequencing, however significantly lowered protein levels of SAA1/2 in PD patients’ serum were shown with ELISA, implying that SAA is secreted into the blood. These results show that SAA is differentially expressed in the peripheral tissues of PD patients.
Collapse
Affiliation(s)
- Lille Kurvits
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ene Reimann
- Institute of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Liis Kadastik-Eerme
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Triin Erm
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Sulev Kõks
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia
| | - Anu Planken
- Oncology and Haematology Clinic, North-Estonian Medical Centre, Tallinn, Estonia
| |
Collapse
|
38
|
Tarakad A, Jankovic J. Essential Tremor and Parkinson's Disease: Exploring the Relationship. Tremor Other Hyperkinet Mov (N Y) 2019; 8:589. [PMID: 30643667 PMCID: PMC6329774 DOI: 10.7916/d8md0gvr] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background There is longstanding controversy surrounding the possible link between essential tremor (ET) and Parkinson's disease (PD). Inconsistent and unreliable diagnostic criteria may in part account for some of the difficulties in defining the relationship between these two common movement disorders. Methods References for this systematic review were identified using PubMed with the search terms "essential tremor" AND "Parkinson's disease" with articles published in English between 1960 and September 2018 included. Results In this review we provide evidence that some patients diagnosed with ET have an increased risk of developing PD years or decades after onset of action tremor. There are several still unresolved questions about the link between the two disorders including lack of verifiable diagnostic criteria for the two disorders and marked overlap in phenomenology. Here we review clinical, epidemiologic, imaging, pathologic, and genetic studies that address the ET-PD relationship. Several lines of evidence support the association between ET and PD, including overlapping motor and non-motor features, relatively high prevalence of rapid eye movement sleep behavior disorder (26-43%) in ET patients, increased prevalence of PD in patients with longstanding antecedent ET, increased prevalence of ET in family members of patients with PD, and the presence of Lewy bodies in the brains of some ET patients (15-24%). Discussion There is a substantial body of evidence supporting the association between ET and PD within at least a subset of patients, although the nature and possible pathogenic mechanisms of the relationship are not well understood.
Collapse
Affiliation(s)
- Arjun Tarakad
- Parkinson’s Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
39
|
Skin Disease and Neurological Conditions of the Elderly. CURRENT GERIATRICS REPORTS 2018. [DOI: 10.1007/s13670-018-0263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
|
41
|
Lerman S, Amichai B, Weinstein G, Shalev V, Chodick G. Parkinson's Disease, Melanoma, and Keratinocyte Carcinoma: A Population-Based Study. Neuroepidemiology 2018; 50:168-173. [PMID: 29566384 DOI: 10.1159/000487855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/17/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The association between Parkinson's disease (PD) and melanoma is well recognized, but its relationship with non-melanoma skin cancers has not been studied in depth. OBJECTIVE To assess the relationship between PD, and risk of melanoma and keratinocyte carcinoma: squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). METHODS This historical cohort study used the data of 1.2 million adult members of a large health organization between 2000 and 2015. Individuals who were diagnosed with PD anytime between 2000 and 2010 were retrospectively followed until 8/2016 for incidence of SCC, BCC, or melanoma identified from physician diagnoses and pathology reports. RESULTS The PD cohort included 7,727 patients (mean [SD] age = 69.9 [14.8 years]) among the 1,251,695 study population. During follow-up, a total of 4,553, 32,069, and 4,015 cases of BCC, SCC, and melanoma were identified in the study population respectively. Multivariable models revealed that older age, male sex, never smoking, and residence in southern Israel and actinic keratosis were associated with an increased risk of both BCC and SCC. PD patients in the age range 45-64 and 65-84 years at baseline had an OR of 2.11 (95% CI 1.40-3.18) and 1.52 (95% CI 1.21-1.91) for BCC respectively. Weak or no associations were calculated for melanoma or SCC. CONCLUSIONS We report a positive relationship between PD and risk of BCC. These results should stimulate greater awareness on the part of healthcare providers to the increased risk of BCC in PD patients.
Collapse
Affiliation(s)
- Sharon Lerman
- Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Boaz Amichai
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Health Division, Maccabi Healthcare Services, Tel-Aviv, Israel
| | | | - Varda Shalev
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Health Division, Maccabi Healthcare Services, Tel-Aviv, Israel
| | - Gabriel Chodick
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Health Division, Maccabi Healthcare Services, Tel-Aviv, Israel
| |
Collapse
|
42
|
Tell-Marti G, Puig-Butille JA, Potrony M, Plana E, Badenas C, Antonell A, Sanchez-Valle R, Molinuevo JL, Lleó A, Alcolea D, Fortea J, Fernández-Santiago R, Clarimón J, Lladó A, Puig S. A Common Variant in the MC1R Gene (p.V92M) is associated with Alzheimer's Disease Risk. J Alzheimers Dis 2018; 56:1065-1074. [PMID: 28059796 DOI: 10.3233/jad-161113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite the recent identification of some novel risk genes for Alzheimer's disease (AD), the genetic etiology of late-onset Alzheimer's disease (LOAD) remains largely unknown. The inclusion of these novel risk genes to the risk attributable to the APOE gene accounts for roughly half of the total genetic variance in LOAD. The evidence indicates that undiscovered genetic factors may contribute to AD susceptibility. In the present study, we sequenced the MC1R gene in 525 Spanish LOAD patients and in 160 controls. We observed that a common MC1R variant p.V92M (rs2228479), not related to pigmentation traits, was present in 72 (14%) patients and 15 (9%) controls and confers increased risk of developing LOAD (OR: 1.99, 95% CI: 1.08-3.64, p = 0.026), especially in those patients whose genetic risk could not be explained by APOE genotype. This association remains and even increased in the subset of 69 patients with typical AD cerebrospinal fluid profile (OR: 3.40 95% CI: 1.40-8.27, p = 0.007). We did not find an association between p.V92M and age of onset of AD. Further studies are necessary to elucidate the role of MC1R in brain cells through the different MC1R pathways.
Collapse
Affiliation(s)
- Gemma Tell-Marti
- Dermatology Department, Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Centro Investigaciòn Biomèdica en Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Joan Anton Puig-Butille
- Biochemical and Molecular Genetics Service, Hospital Clinic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Centro Investigaciòn Biomèdica en Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Estel Plana
- RTI Healtlh Solutions, Travesera de Gracia 56 Atic 1era, Barcelona, Spain
| | - Celia Badenas
- Biochemical and Molecular Genetics Service, Hospital Clinic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Centro Investigaciòn Biomèdica en Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José L Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERNED, Center of Networker Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Daniel Alcolea
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERNED, Center of Networker Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Juan Fortea
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERNED, Center of Networker Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Neurodegenerative Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic de Barcelona-Centro de Investigaciòn sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERNED, Center of Networker Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Centro Investigaciòn Biomèdica en Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain.,Medicine Department, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
González-Casacuberta I, Morén C, Juárez-Flores DL, Esteve-Codina A, Sierra C, Catalán-García M, Guitart-Mampel M, Tobías E, Milisenda JC, Pont-Sunyer C, Martí MJ, Cardellach F, Tolosa E, Artuch R, Ezquerra M, Fernández-Santiago R, Garrabou G. Transcriptional alterations in skin fibroblasts from Parkinson's disease patients with parkin mutations. Neurobiol Aging 2018; 65:206-216. [PMID: 29501959 DOI: 10.1016/j.neurobiolaging.2018.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Diana-Luz Juárez-Flores
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Esteve-Codina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Sierra
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Tobías
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - José César Milisenda
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Claustre Pont-Sunyer
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Martí
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduard Tolosa
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Rubén Fernández-Santiago
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
44
|
Parkin in Parkinson’s Disease and Cancer: a Double-Edged Sword. Mol Neurobiol 2018; 55:6788-6800. [DOI: 10.1007/s12035-018-0879-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
|
45
|
Parkinson’s Disease: Contemporary Concepts and Clinical Management. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
46
|
Santiago JA, Bottero V, Potashkin JA. Biological and Clinical Implications of Comorbidities in Parkinson's Disease. Front Aging Neurosci 2017; 9:394. [PMID: 29255414 PMCID: PMC5722846 DOI: 10.3389/fnagi.2017.00394] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
A wide spectrum of comorbidities has been associated with Parkinson's disease (PD), a progressive neurodegenerative disease that affects more than seven million people worldwide. Emerging evidence indicates that chronic diseases including diabetes, depression, anemia and cancer may be implicated in the pathogenesis and progression of PD. Recent epidemiological studies suggest that some of these comorbidities may increase the risk of PD and precede the onset of motor symptoms. Further, drugs to treat diabetes and cancer have elicited neuroprotective effects in PD models. Nonetheless, the mechanisms underlying the occurrence of these comorbidities remain elusive. Herein, we discuss the biological and clinical implications of comorbidities in the pathogenesis, progression, and clinical management, with an emphasis on personalized medicine applications for PD.
Collapse
Affiliation(s)
- Jose A Santiago
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Virginie Bottero
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Judith A Potashkin
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
47
|
Chen Z, Cao Z, Zhang W, Gu M, Zhou ZD, Li B, Li J, Tan EK, Zeng L. LRRK2 interacts with ATM and regulates Mdm2–p53 cell proliferation axis in response to genotoxic stress. Hum Mol Genet 2017; 26:4494-4505. [DOI: 10.1093/hmg/ddx337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/06/2017] [Indexed: 01/29/2023] Open
|
48
|
Dalvin LA, Damento GM, Yawn BP, Abbott BA, Hodge DO, Pulido JS. Parkinson Disease and Melanoma: Confirming and Reexamining an Association. Mayo Clin Proc 2017; 92:1070-1079. [PMID: 28688464 PMCID: PMC5682925 DOI: 10.1016/j.mayocp.2017.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine an association between melanoma and Parkinson disease (PD). PATIENTS AND METHODS Phase I: Rochester Epidemiology Project records were used to identify (between January 1, 1976, and December 31, 2013) patients with PD in Olmsted County, Minnesota, with 3 matched controls per case. After review, JMP statistical software with logistic regression analysis was used to assess the risk of preexisting melanoma in patients with PD vs controls. Phase II: All Rochester Epidemiology Project cases of melanoma were identified (between January 1, 1976, and December 31, 2014), with 1 control per case. A Cox proportional hazards model was used to assess the risk of developing PD after the index date in cases vs controls, and Kaplan-Meier analysis was performed to determine the 35-year cumulative risk of PD. A Cox proportional hazards model was used to assess the risk of death from metastatic melanoma in patients with melanoma without PD compared with those with PD. RESULTS Phase I: Patients with PD had a 3.8-fold increased likelihood of having preexisting melanoma as compared with controls (95% CI, 2.1-6.8; P<.001). Phase II: Patients with melanoma had a 4.2-fold increased risk of developing PD (95% CI, 2.0-8.8; P<.001). Kaplan-Meier analysis revealed an increased 35-year cumulative risk of PD in patients with melanoma (11.8%) compared with controls (2.6%) (P<.001). Patients with melanoma without PD had a 10.5-fold increased relative risk of death from metastatic melanoma compared with patients with melanoma with PD (95% CI, 1.5-72.2) (P=.02). CONCLUSION There appears to be an association between melanoma and PD. Further study is warranted; but on the basis of these results, physicians may consider counseling patients with melanoma about PD risk and implementing cutaneous and ocular melanoma surveillance in patients with PD.
Collapse
Affiliation(s)
| | | | - Barbara P Yawn
- Rochester Epidemiology Project, Mayo Clinic, Rochester, MN; Olmsted Medical Center, Rochester, MN
| | | | - David O Hodge
- Health Sciences Research/Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN; Department of Molecular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
49
|
Ma J, Guo W, Li C. Ubiquitination in melanoma pathogenesis and treatment. Cancer Med 2017; 6:1362-1377. [PMID: 28544818 PMCID: PMC5463089 DOI: 10.1002/cam4.1069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive skin cancers with fiercely increasing incidence and mortality. Since the progressive understanding of the mutational landscape and immunologic pathogenic factors in melanoma, the targeted therapy and immunotherapy have been recently established and gained unprecedented improvements for melanoma treatment. However, the prognosis of melanoma patients remains unoptimistic mainly due to the resistance and nonresponse to current available drugs. Ubiquitination is a posttranslational modification which plays crucial roles in diverse cellular biological activities and participates in the pathogenesis of various cancers, including melanoma. Through the regulation of multiple tumor promoters and suppressors, ubiquitination is emerging as the key contributor and therefore a potential therapeutic target for melanoma. Herein, we summarize the current understanding of ubiquitination in melanoma, from mechanistic insights to clinical progress, and discuss the prospect of ubiquitination modification in melanoma treatment.
Collapse
Affiliation(s)
- Jinyuan Ma
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
50
|
Demirsoy S, Martin S, Motamedi S, van Veen S, Holemans T, Van den Haute C, Jordanova A, Baekelandt V, Vangheluwe P, Agostinis P. ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function. Hum Mol Genet 2017; 26:1656-1669. [PMID: 28334751 DOI: 10.1093/hmg/ddx070] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
ATP13A2 (also called PARK9), is a transmembrane endo-/lysosomal-associated P5 type transport ATPase. Loss-of-function mutations in ATP13A2 result in the Kufor-Rakeb Syndrome (KRS), a form of autosomal Parkinson's disease (PD). In spite of a growing interest in ATP13A2, very little is known about its physiological role in stressed cells. Recent studies suggest that the N-terminal domain of ATP13A2 may hold key regulatory functions, but their nature remains incompletely understood. To this end, we generated a set of melanoma and neuroblastoma cell lines stably overexpressing wild-type (WT), catalytically inactive (D508N) and N-terminal mutants, or shRNA against ATP13A2. We found that under proteotoxic stress conditions, evoked by the proteasome inhibitor Bortezomib, endo-/lysosomal associated full-length ATP13A2 WT, catalytically-inactive or N-terminal fragment mutants, reduced the intracellular accumulation of ubiquitin-conjugated (Ub) proteins, independent of autophagic degradation. In contrast, ATP13A2 silencing increased the intracellular accumulation of Ub-proteins, a pattern also observed in patient-derived fibroblasts harbouring ATP13A2 loss-of function mutations. In treated cells, ATP13A2 evoked endocytic vesicle relocation and increased cargo export through nanovesicles. Expression of an ATP13A2 mutant abrogating PI(3,5)P2 binding or chemical inhibition of the PI(3,5)P2-generating enzyme PIKfyve, compromised vesicular trafficking/nanovesicles export and rescued intracellular accumulation of Ub-proteins in response to proteasomal inhibition. Hence, our study unravels a novel activity-independent scaffolding role of ATP13A2 in trafficking/export of intracellular cargo in response to proteotoxic stress.
Collapse
Affiliation(s)
- S Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven)
| | - S Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - S Motamedi
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven)
| | - S van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - T Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - C Van den Haute
- Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven (KU Leuven), B3000 Leuven, Belgium
| | - A Jordanova
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - V Baekelandt
- Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven (KU Leuven), B3000 Leuven, Belgium
| | - P Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - P Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven)
| |
Collapse
|