1
|
Jalal MI, Gupta AK, Singh R, Gupta NK, Dodd H, Musmar B, Singh A, George DD, LoPresti MA, Wensel AM. Trigeminal nerve stimulation in drug-resistant epilepsy: A systematic review. Clin Neurol Neurosurg 2025; 251:108834. [PMID: 40086372 DOI: 10.1016/j.clineuro.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Trigeminal Nerve Stimulation (TNS) is a technique that may be useful to reduce seizure burden in drug-resistant epilepsy (DRE), but its efficacy is not well characterized. This study sought to understand the application of TNS in DRE by providing a comprehensive overview of the current use and efficacy of TNS for neuromodulation in DRE. METHODS A systematic review examining the use of TNS for DRE was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Scopus, and Embase databases were queried; studies were included if they examined TNS for treatment of DRE in human patients and reported seizure outcomes. Demographic, clinical, TNS neurostimulation parameters, and outcome data were collected. Primary outcome measures included efficacy, measured by change in seizure frequency, and adverse events (AEs). Secondary outcomes included patient-reported metrics assessing quality of life (QoL). RESULTS A total of 234 studies were identified; seven met inclusion criteria, comprising a total of 148 patients. Seizure history and epilepsy characteristics varied. Mean age ranged 28.8-44.3 years, with percent male ranging 7-24 %. All studies reporting seizure frequency showed a significant reduction in seizure frequency following TNS, though follow-up time varied. Adverse events included skin irritation and headache most commonly, reported at 12 % and 11 %, respectively. No serious or life-threatening adverse effects were reported. Multiple studies reported positive changes in Beck Depression Inventory (BDI) and Quality of Life in Epilepsy (QOLIE) scores indicating an increase in quality of life and mood throughout treatment periods. CONCLUSION TNS is a neuromodulatory therapy for DRE. Our review suggests it is well-tolerated and can reduce seizure frequency, while improving mental health and well-being, with minimal AEs. Larger comparative studies are needed to better explore the use of TNS for treatment of DRE.
Collapse
Affiliation(s)
- Muhammad I Jalal
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA; University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Anjali K Gupta
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA
| | - Rohin Singh
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA
| | - Nithin K Gupta
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA
| | - Harjiven Dodd
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA
| | - Basel Musmar
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA
| | - Aman Singh
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA; University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Derek D George
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA
| | | | - Andrew M Wensel
- Department of Neurosurgery, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
2
|
Cheng C, Xue X, Jiao Y, You R, Zhang M, Jia M, Du M, Zeng X, Sun JB, Qin W, Yang XJ. External trigeminal nerve stimulation (eTNS) Exhibits relaxation effects in fatigue states following napping deprivation. Neuroscience 2025; 567:123-132. [PMID: 39719246 DOI: 10.1016/j.neuroscience.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND In the face of inevitable declines in alertness and fatigue resulting from sleep deprivation, effective countermeasures are essential for maintaining performance. External trigeminal nerve stimulation (eTNS) presents a potential avenue for regulating alertness by activating the locus coeruleus and reticular activating system. METHODS Here, we conducted a within-subject study with 66 habitual nappers, subjecting them to afternoon nap-deprivation and applying either 20-minute of 120 Hz eTNS or sham stimulation. We compared participants' performance in PVT and N-back tasks, subjective fatigue level and alertness ratings, and changes in heart rate variability, cortisol, and salivary alpha-amylase before and after stimulation. RESULTS The results revealed a significant decline in PVT and N-back tasks performance, along with increased subjective fatigue levels in the sham stimulation group. In contrast, the eTNS stimulation group maintained behavioral performance, with lower post-stimulation fatigue levels than sham group. After stimulation, the eTNS group exhibited decreased mean R-R interval and elevated LF/HF ratios, i.e., a shift in autonomic nervous system activity towards sympathetic dominance, and a significant reduction in cortisol levels, indicating a state of relaxation alleviating drowsiness. CONCLUSION These findings suggested that 120 Hz eTNS stimulation might induce a relaxing effect, and thereby alleviate fatigue while preserving alertness and cognitive performance.
Collapse
Affiliation(s)
- Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xinxin Xue
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Rui You
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Mengnan Jia
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Mengyu Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Lescrauwaet E, Sprengers M, Carrette E, Algoet C, Mertens A, Klooster D, Beumer S, Mestrom R, Raedt R, Boon P, Vonck K. Investigating the Working Mechanism of Transcranial Direct Current Stimulation. Neuromodulation 2025; 28:68-75. [PMID: 38878056 DOI: 10.1016/j.neurom.2024.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is used to modulate neuronal activity, but the exact mechanism of action (MOA) is unclear. This study investigates tDCS-induced modulation of the corticospinal excitability and the underlying MOA. By anesthetizing the scalp before applying tDCS and by stimulating the cheeks, we investigated whether stimulation of peripheral and/or cranial nerves contributes to the effects of tDCS on corticospinal excitability. MATERIALS AND METHODS In a randomized cross-over study, four experimental conditions with anodal direct current stimulation were compared in 19 healthy volunteers: 1) tDCS over the motor cortex (tDCS-MI), 2) tDCS over the motor cortex with a locally applied topical anesthetic (TA) on the scalp (tDCS-MI + TA), 3) DCS over the cheek region (DCS-C), and 4) sham tDCS over the motor cortex(sham). tDCS was applied for 20 minutes at 1 mA. Motor evoked potentials (MEPs) were measured before tDCS and immediately, 15, 30, 45, and 60 minutes after tDCS. A questionnaire was used to assess the tolerability of tDCS. RESULTS A significant MEP amplitude increase compared with baseline was found 30 minutes after tDCS-MI, an effect still observed 60 minutes later; no time∗condition interaction effect was detected. In the other three conditions (tDCS-MI + TA, DCS-C, sham), no significant MEP modulation was found. The questionnaire indicated that side effects are significantly lower when the local anesthetic was applied before stimulation than in the other three conditions. CONCLUSIONS The significant MEP amplitude increase observed from 30 minutes on after tDCS-MI supports the modulatory effect of tDCS on corticospinal neurotransmission. This effect lasted one hour after stimulation. The absence of a significant modulation when a local anesthetic was applied suggests that effects of tDCS are not solely established through direct cortical stimulation but that stimulation of peripheral and/or cranial nerves also might contribute to tDCS-induced modulation.
Collapse
Affiliation(s)
- Emma Lescrauwaet
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium.
| | - Mathieu Sprengers
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Evelien Carrette
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Chloé Algoet
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Ann Mertens
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Ghent Experimental Psychiatry Lab, Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
| | - Steven Beumer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob Mestrom
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kristl Vonck
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Cheng C, Jia M, Peng X, Sun Y, Jiao Y, Zhang M, Song X, Chu Z, Zeng X, Sun JB, Yang XJ, Qin W. Different regulative effects of high- and low-frequency external trigeminal nerve stimulation (eTNS) on sleep activity: Preliminary study. Sleep Med 2025; 125:136-145. [PMID: 39608185 DOI: 10.1016/j.sleep.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
STUDY OBJECTIVE With the growing prominence of peripheral nerve stimulation technology, the clinical applications and potential neurophysiological mechanisms of external trigeminal nerve stimulation (eTNS) have garnered increasing attention. Despite its status as the sole neuromodulation method commonly employed in sleep, no studies have explored the effects of eTNS at varying frequencies on sleep activities. This study aims to investigate the regulatory effects of high-frequency and low-frequency eTNS on sleep activities using polysomnography. METHODS In this within-subjects experiment, 20 participants underwent a night of adaptation sleep, followed by 8-h sessions of sham, 120Hz-, and 2Hz-eTNS interventions in a randomized order in the sleep laboratory, with polysomnographic signals collected throughout. RESULTS The results indicated that 120Hz-eTNS significantly improved sleep efficiency, increased N2 sleep proportion, and reduced sleep latency, without significantly affecting sleep stage transition probabilities, sleep duration, or sleep-specific wave activities. Conversely, while 2Hz-eTNS did not impact sleep efficiency or latency, it increased the proportion of N3 sleep, stabilizes N3 sleep, and enhanced the survival probability of N3 and REM sleep duration. Additionally, it increases the density of slow oscillations (SOs), improved the coupling ratio of SO-spindles, and enhanced coupling timing accuracy. CONCLUSIONS These findings suggest that eTNS during sleep can indeed modulate sleep activities, with different frequencies exerting distinct regulatory effects. This may hold significant value for advancing the clinical application and efficacy of eTNS.
Collapse
Affiliation(s)
- Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Mengnan Jia
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiangmiao Peng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Yuchen Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiaoyu Song
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Zhaoyang Chu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China.
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Shi J, Lu D, Wei P, Yang Y, Dong H, Jin L, Sander JW, Shan Y, Zhao G. Comparative Efficacy of Neuromodulatory Strategies for Drug-Resistant Epilepsy: A Systematic Review and Meta-Analysis. World Neurosurg 2025; 193:373-396. [PMID: 39321920 DOI: 10.1016/j.wneu.2024.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE The study aims to evaluate the efficacy of neuromodulatory strategies for people who have drug-resistant epilepsy (DRE). METHODS We searched electronic repositories, including PubMed, Web of Science, Embase, and the Cochrane Library, for randomized controlled trials, their ensuing open-label extension studies, and prospective studies focusing on surgical or neuromodulation interventions for people with DRE. We used seizure frequency reduction as the primary outcome. A single-arm meta-analysis synthesized data across all studies to assess treatment effectiveness at multiple time points. A network meta-analysis evaluated the efficacy of diverse therapies in randomized controlled trials. Grading of Recommendations, Assessment, Development, and Evaluations was applied to evaluate the overall quality of the evidence. RESULTS Twenty-eight studies representing 2936 individuals underwent 10 treatments were included. Based on the cumulative ranking in the network meta-analysis, the top 3 neuromodulatory options were deep brain stimulation (DBS) with 27% probability, responsive neurostimulation (RNS) with 22.91%, and transcranial direct current stimulation with 24.31%. In the single-arm meta-analysis, in the short-to-medium term, seizure control is more effective with RNS than with invasive vagus nerve stimulation (inVNS), which in turn is slightly more effective than DBS, though the differences are minimal. However, in the long term, inVNS appears to be less effective than both DBS and RNS. Trigeminal nerve stimulation, transcranial magnetic stimulation, and transcranial alternating current stimulation did not demonstrate significant seizure frequency reduction. CONCLUSIONS Regarding long-term efficacy, RNS and DBS outperformed inVNS. While transcranial direct current stimulation and transcutaneous auricular VNS showed promise for treating DRE, further studies are needed to confirm their long-term efficacy.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Dafeng Lu
- Department of Public Health, Nanjing Medical University, Nanjing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Hengxin Dong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Lei Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG & Chalfont Centre for Epilepsy, London, UK; Neurology Department, West China Hospital of Sichuan University, Chengdu, China; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China.
| |
Collapse
|
6
|
Arias DE, Buneo CA. Effects of online and offline trigeminal nerve stimulation on visuomotor learning. Front Hum Neurosci 2024; 18:1436365. [PMID: 39483193 PMCID: PMC11526447 DOI: 10.3389/fnhum.2024.1436365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction A current thrust in neurology involves using exogenous neuromodulation of cranial nerves (e.g, vagus, trigeminal) to treat the signs and symptoms of various neurological disorders. These techniques also have the potential to augment cognitive and/or sensorimotor functions in healthy individuals. Although much is known about the clinical effects of trigeminal nerve stimulation (TNS), effects on sensorimotor and cognitive functions such as learning have received less attention, despite their potential impact on neurorehabilitation. Here we describe the results of experiments aimed at assessing the effects of TNS on motor learning, which was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. Objective Assessing the effects of TNS on motor learning. Methods Motor learning was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. In Experiment 1, effects of offline TNS using clinically tested frequencies (120 and 60 Hz) were characterized. Sixty-three healthy young adults received TNS before performing a task that involved reaching with perturbed hand visual feedback. In Experiment 2, the effects of 120 and 60 Hz online TNS were characterized with the same task. Sixty-three new participants received either TNS or sham stimulation concurrently with perturbed visual feedback. Results Experiment 1 results showed that 60 Hz stimulation was associated with slower rates of learning than both sham and 120 Hz stimulation, indicating frequency-dependent effects of TNS. Experiment 2 however showed no significant differences among stimulation groups. A post-hoc, cross-study comparison of the 60 Hz offline and online TNS results showed a statistically significant improvement in learning rates with online stimulation relative to offline, pointing to timing-dependent effects of TNS on visuomotor learning. Discussion The results indicate that both the frequency and timing of TNS can influence rates of motor learning in healthy adults. This suggests that optimization of one or both parameters could potentially increase learning rates, which would provide new avenues for enhancing performance in healthy individuals and augmenting rehabilitation in patients with sensorimotor dysfunction resulting from stroke or other neurological disorders.
Collapse
Affiliation(s)
| | - Christopher A. Buneo
- Visuomotor Learning Lab, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
van Midden VM, Pirtošek Z, Kojović M. The Effect of taVNS on the Cerebello-Thalamo-Cortical Pathway: a TMS Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1013-1019. [PMID: 37639175 PMCID: PMC11102382 DOI: 10.1007/s12311-023-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
fMRI studies show activation of cerebellum during transcutaneous auricular vagal nerve stimulation (taVNS); however, there is no evidence whether taVNS induced activation of the cerebellum translates to the cerebellar closed loops involved in motor functions. We assessed the propensity of taVNS at 25 Hz (taVNS25) and 100 Hz (taVNS100) to modulate cerebello-thalamo-cortical pathways using transcranial magnetic stimulation. In our double blind within-subjects study thirty-two participants completed one visit during which cerebellar brain inhibition (CBI) was assessed at baseline (no stimulation) and in a randomized order during taVNS100, taVNS25, and sham taVNS (xVNS). Generalized linear mixed models with gamma distribution were built to assess the effect of taVNS on CBI. The estimated marginal means of linear trends during each taVNS condition were computed and compared in a pairwise fashion with Benjamini-Hochberg correction for multiple comparisons. CBI significantly increased during taVNS100 compared to taVNS25 and xVNS (p = 0.0003 and p = 0.0465, respectively). The taVNS current intensity and CBI conditioning stimulus intensity had no significant effect on CBI. taVNS has a frequency dependent propensity to modulate the cerebello-thalamo-cortical pathway. The cerebellum participates in closed-loop circuits involved in motor, cognitive, and affective operations and may serve as an entry for modulating effects of taVNS.
Collapse
Affiliation(s)
- Vesna M van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Wu M, Concolato M, Sorger B, Yu Y, Li X, Luo B, Riecke L. Acoustic-electric trigeminal-nerve stimulation enhances functional connectivity in patients with disorders of consciousness. CNS Neurosci Ther 2024; 30:e14385. [PMID: 37525451 PMCID: PMC10928333 DOI: 10.1111/cns.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
AIM Disruption of functional brain connectivity is thought to underlie disorders of consciousness (DOC) and recovery of impaired connectivity is suggested as an indicator of consciousness restoration. We recently found that rhythmic acoustic-electric trigeminal-nerve stimulation (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) in the gamma band can improve consciousness in patients with DOC. Here, we investigated whether these beneficial stimulation effects are mediated by alterations in functional connectivity. METHODS Sixty-three patients with DOC underwent 5 days of gamma, beta, or sham acoustic-electric trigeminal-nerve stimulation. Resting-state electroencephalography was measured before and after the stimulation and functional connectivity was assessed using phase-lag index (PLI). RESULTS We found that gamma stimulation induces an increase in gamma-band PLI. Further characterization revealed that the enhancing effect is (i) specific to the gamma band (as we observed no comparable change in beta-band PLI and no effect of beta-band acoustic-electric stimulation or sham stimulation), (ii) widely spread across the cortex, and (iii) accompanied by improvements in patients' auditory abilities. CONCLUSION These findings show that gamma acoustic-electric trigeminal-nerve stimulation can improve resting-state functional connectivity in the gamma band, which in turn may be linked to auditory abilities and/or consciousness restoration in DOC patients.
Collapse
Affiliation(s)
- Min Wu
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Marta Concolato
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Developmental Psychology and SocializationUniversity of PadovaPadovaItaly
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Yamei Yu
- Department of Neurology and Brain Medical Centre, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaoxia Li
- Department of Neurology and Brain Medical Centre, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Benyan Luo
- Department of Neurology and Brain Medical Centre, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
9
|
Calderone A, Cardile D, Gangemi A, De Luca R, Quartarone A, Corallo F, Calabrò RS. Traumatic Brain Injury and Neuromodulation Techniques in Rehabilitation: A Scoping Review. Biomedicines 2024; 12:438. [PMID: 38398040 PMCID: PMC10886871 DOI: 10.3390/biomedicines12020438] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic Brain Injury (TBI) is a condition in which an external force, usually a violent blow to the head, causes functional impairment in the brain. Neuromodulation techniques are thought to restore altered function in the brain, resulting in improved function and reduced symptoms. Brain stimulation can alter the firing of neurons, boost synaptic strength, alter neurotransmitters and excitotoxicity, and modify the connections in their neural networks. All these are potential effects on brain activity. Accordingly, this is a promising therapy for TBI. These techniques are flexible because they can target different brain areas and vary in frequency and amplitude. This review aims to investigate the recent literature about neuromodulation techniques used in the rehabilitation of TBI patients. MATERIALS AND METHODS The identification of studies was made possible by conducting online searches on PubMed, Web of Science, Cochrane, Embase, and Scopus databases. Studies published between 2013 and 2023 were selected. This review has been registered on OSF (JEP3S). RESULTS We have found that neuromodulation techniques can improve the rehabilitation process for TBI patients in several ways. Transcranial Magnetic Stimulation (TMS) can improve cognitive functions such as recall ability, neural substrates, and overall improved performance on neuropsychological tests. Repetitive TMS has the potential to increase neural connections in many TBI patients but not in all patients, such as those with chronic diffuse axonal damage. CONCLUSIONS This review has demonstrated that neuromodulation techniques are promising instruments in the rehabilitation field, including those affected by TBI. The efficacy of neuromodulation can have a significant impact on their lives and improve functional outcomes for TBI patients.
Collapse
Affiliation(s)
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza; 98124 Messina, Italy; (A.C.); (A.G.); (R.D.L.); (A.Q.); (F.C.); (R.S.C.)
| | | | | | | | | | | |
Collapse
|
10
|
Wu M, Auksztulewicz R, Riecke L. Multimodal acoustic-electric trigeminal nerve stimulation modulates conscious perception. Neuroimage 2024; 285:120476. [PMID: 38030051 DOI: 10.1016/j.neuroimage.2023.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.
Collapse
Affiliation(s)
- Min Wu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Ryszard Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| |
Collapse
|
11
|
Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H. Remote neurocognitive interventions for attention-deficit/hyperactivity disorder - Opportunities and challenges. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110802. [PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Psychology/Center for Place-Based Education, Yangzhou University, Yangzhou, China; Department of Psychology, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, Australia; Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Bruno Sauce
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, Netherlands; Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands; NeuroCare Group, Nijmegen, Netherlands
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Jiang
- College of Special Education, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
12
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
13
|
Monaco A, Cattaneo R, Di Nicolantonio S, Strada M, Altamura S, Ortu E. Central effects of trigeminal electrical stimulation. Cranio 2023:1-24. [PMID: 38032105 DOI: 10.1080/08869634.2023.2280153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This is a review of the literature on the main neuromodulation techniques, focusing on the possibility of introducing sensory threshold ULFTENS into them. Electro neuromodulation techniques have been in use for many years as promising methods of therapy for cognitive and emotional disorders. One of the most widely used forms of stimulation for orofacial pain is transcutaneous trigeminal stimulation on three levels: supraorbital area, dorsal surface of the tongue, and anterior skin area of the tragus. The purpose of this review is to trigger interest on using dental ULFTENS as an additional trigeminal neurostimulation and neuromodulation technique in the context of TMD. In particular, we point out the possibility of using ULFTENS at a lower activation level than that required to trigger a muscle contraction that is capable of triggering effects at the level of the autonomic nervous system, with extreme ease of execution and few side effects.
Collapse
Affiliation(s)
- Annalisa Monaco
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Ruggero Cattaneo
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | | | - Marco Strada
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Serena Altamura
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Ortu
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Westwood SJ, Conti AA, Tang W, Xue S, Cortese S, Rubia K. Clinical and cognitive effects of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:4025-4043. [PMID: 37674019 PMCID: PMC10827664 DOI: 10.1038/s41380-023-02227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
This pre-registered (CRD42022322038) systematic review and meta-analysis investigated clinical and cognitive outcomes of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders. PubMed, OVID, Web of Science, Chinese National Knowledge Infrastructure, Wanfang, and VIP database for Chinese technical periodicals were searched (until 16/03/2022) to identify trials investigating cognitive and clinical outcomes of eTNS in neurological or psychiatric disorders. The Cochrane Risk of Bias 2.0 tool assessed randomized controlled trials (RCTs), while the Risk of Bias of Non-Randomized Studies (ROBINS-I) assessed single-arm trials. Fifty-five peer-reviewed articles based on 48 (27 RCTs; 21 single-arm) trials were included, of which 12 trials were meta-analyzed (N participants = 1048; of which ~3% ADHD, ~3% Epilepsy, ~94% Migraine; age range: 10-49 years). The meta-analyses showed that migraine pain intensity (K trials = 4, N = 485; SMD = 1.03, 95% CI[0.84-1.23]) and quality of life (K = 2, N = 304; SMD = 1.88, 95% CI[1.22-2.53]) significantly improved with eTNS combined with anti-migraine medication. Dimensional measures of depression improved with eTNS across 3 different disorders (K = 3, N = 111; SMD = 0.45, 95% CI[0.01-0.88]). eTNS was well-tolerated, with a good adverse event profile across disorders. eTNS is potentially clinically relevant in other disorders, but well-blinded, adequately powered RCTs must replicate findings and support optimal dosage guidance.
Collapse
Affiliation(s)
- Samuel J Westwood
- Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK.
- Department of Psychology, School of Social Science, University of Westminster, London, UK.
| | - Aldo Alberto Conti
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wanjie Tang
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Xue
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Child & Adolescent Psychiatry, Technical University Dresden, Dresden, Germany
| |
Collapse
|
15
|
Mula M. Impact of psychiatric comorbidities on the treatment of epilepsies in adults. Expert Rev Neurother 2023; 23:895-904. [PMID: 37671683 DOI: 10.1080/14737175.2023.2250558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
INTRODUCTION Epilepsy is often accompanied by psychiatric comorbidities and the management of epilepsy in these patients presents unique challenges due to the interplay between the underlying neurological condition and the psychiatric symptoms and the combined use of multiple medications. AREAS COVERED This paper aims to explore the complexities associated with managing epilepsy in the presence of psychiatric comorbidities, focusing on the impact of psychiatric disorders on epilepsy treatment strategies and the challenges posed by the simultaneous administration of multiple medications. EXPERT OPINION Patients with epilepsy and psychiatric comorbidities seem to present with a more severe form of epilepsy that is resistant to drug treatments and burdened by an increased morbidity and mortality. Whether prompt treatment of psychiatric disorders can influence the long-term prognosis of the epilepsy is still unclear as well as the role of specific treatment strategies, such as neuromodulation, in this group of patients. Clinical practice recommendations and guidelines will prompt the development of new models of integrated care to be implemented.
Collapse
Affiliation(s)
- Marco Mula
- Atkinson Morley Regional Neuroscience Centre, St George's University Hospital, London, UK of Great Britain and Northern Ireland
- Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
16
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
Ritland BM, Neumeier WH, Jiang SH, Smith CD, Heaton KJ, Hildebrandt AM, Jabbar MA, Liao HJ, Coello E, Zhao W, Bay CP, Lin AP. Short-term neurochemical effects of transcutaneous trigeminal nerve stimulation using 7T magnetic resonance spectroscopy. J Neuroimaging 2023; 33:279-288. [PMID: 36495053 DOI: 10.1111/jon.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The purpose was to explore the effects of transcutaneous trigeminal nerve stimulation (TNS) on neurochemical concentrations (brainstem, anterior cingulate cortex [ACC], dorsolateral prefrontal cortex [DLPFC], ventromedial prefrontal cortex [VMPFC], and the posterior cingulate cortex [PCC]) using ultrahigh-field magnetic resonance spectroscopy. METHODS This double-blinded study tested 32 healthy males (age: 25.4 ± 7.3 years) on two separate occasions where participants received either a 20-minute TNS or sham session. Participants were scanned at baseline and twice post-TNS/sham administration. RESULTS There were no group differences in concentration changes of glutamate, gamma-aminobutyric acid, glutamine, myoinositol (mI), total N-acetylaspartate, total creatine (tCr), and total choline between the baseline scan and the first post-TNS/sham scan and between the first and second post-TNS/sham scan in the brainstem, ACC, DLPFC, VMPFC, and PCC. Between the baseline scan and the second post-TNS/sham scan, changes in tCr (mean difference = 0.280 mM [0.075 to 0.485], p = .026) and mI (mean difference = 0.662 mM [0.203 to 1.122], p = .026) in the DLPFC differed between groups. Post hoc analyses indicated that there was a decrease in tCr (mean change = -0.201 mM [-0.335 to -0.067], p = .003) and no change in mI (mean change = -0.327 mM [-0.737 to 0.083], p = .118) in the TNS group; conversely, there was no change in tCr (mean change = -0.100 mM [-0.074 to 0.274], p = .259) and an increase in mI (mean change = 0.347 mM [0.106 to 0.588], p = .005) in the sham group. CONCLUSION These data demonstrate that a single session of unilateral TNS slightly decreased tCr concentrations in the DLPFC region.
Collapse
Affiliation(s)
- Bradley M Ritland
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - William H Neumeier
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Sam H Jiang
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl D Smith
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Kristin J Heaton
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Audrey M Hildebrandt
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Muhammad A Jabbar
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Hui Jun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eduardo Coello
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wufan Zhao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Camden P Bay
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Kaye HL, San-Juan D, Salvador R, Biagi MC, Dubreuil-Vall L, Damar U, Pascual-Leone A, Ruffini G, Shafi MM, Rotenberg A. Personalized, Multisession, Multichannel Transcranial Direct Current Stimulation in Medication-Refractory Focal Epilepsy: An Open-Label Study. J Clin Neurophysiol 2023; 40:53-62. [PMID: 34010226 DOI: 10.1097/wnp.0000000000000838] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Animal and proof-of-principle human studies suggest that cathodal transcranial direct current stimulation may suppress seizures in drug-resistant focal epilepsy. The present study tests the safety, tolerability, and effect size of repeated daily cathodal transcranial direct current stimulation in epilepsy have not been established, limiting development of clinically meaningful interventions. METHODS We conducted a 2-center, open-label study on 20 participants with medically refractory, focal epilepsy, aged 9 to 56 years (11 women and 9 children younger than18 years). Each participant underwent 10 sessions of 20 minutes of cathodal transcranial direct current stimulation over 2 weeks. Multielectrode montages were designed using a realistic head model-driven approach to conduct an inhibitory electric field to the target cortical seizure foci and surrounding cortex to suppress excitability and reduce seizure rates. Patients recorded daily seizures using a seizure diary 8 weeks prior, 2 weeks during, and 8 to 12 weeks after the stimulation period. RESULTS The median seizure reduction was 44% relative to baseline and did not differ between adult and pediatric patients. Three patients experienced an increase in seizure frequency of >50% during the stimulation period; in one, a 36% increase in seizure frequency persisted through 12 weeks of follow-up. Otherwise, participants experienced only minor adverse events-the most common being scalp discomfort during transcranial direct current stimulation. CONCLUSIONS This pilot study supports the safety and efficacy of multifocal, personalized, multichannel, cathodal transcranial direct current stimulation for adult and pediatric patients with medication-refractory focal epilepsy, although identifies a possibility of seizure exacerbation in some. The data also provide insight into the effect size to inform the design of a randomized, sham-stimulation controlled trial.
Collapse
Affiliation(s)
- Harper Lee Kaye
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Daniel San-Juan
- Clinical Neurophysiology Department, National Institute of Neurology and Neurosurgery of Mexico, Mexico City, Mexico
| | | | | | | | - Ugur Damar
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Department of Neurology, Harvard Medical School, Boston, Massachusetts, U.S.A
- Guttmann Brain Health Institute, Institut Gutmann, Universitat Autonoma, Barcelona, Spain
| | - Giulio Ruffini
- Neuroelectrics Barcelona, Barcelona, Spain
- Neuroelectrics Corporation, Cambridge, U.S.A.; and
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
19
|
Bakhtiarzadeh F, Zare M, Ghasemi Z, Dehghan S, Sadeghin A, Joghataei MT, Ahmadirad N. Neurostimulation as a Putative Method for the Treatment of Drug-resistant Epilepsy in Patient and Animal Models of Epilepsy. Basic Clin Neurosci 2023; 14:1-18. [PMID: 37346878 PMCID: PMC10279981 DOI: 10.32598/bcn.2022.2360.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/23/2023] Open
Abstract
A patient with epilepsy was shown to have neurobiological, psychological, cognitive, and social issues as a result of recurring seizures, which is regarded as a chronic brain disease. However, despite numerous drug treatments, approximately, 30%-40% of all patients are resistant to antiepileptic drugs. Therefore, newer therapeutic modalities are introduced into clinical practice which involve neurostimulation and direct stimulation of the brain. Hence, we review published literature on vagus nerve stimulation, trigeminal nerve stimulation, applying responsive stimulation systems, and deep brain stimulation (DBS) in animals and epileptic patient with an emphasis on drug-resistant epilepsy.
Collapse
Affiliation(s)
- Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ghasemi
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Samaneh Dehghan
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Health Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Sadeghin
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy and Neuroscience, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Simpson HD, Schulze-Bonhage A, Cascino GD, Fisher RS, Jobst BC, Sperling MR, Lundstrom BN. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63:2445-2460. [PMID: 35700144 PMCID: PMC9888395 DOI: 10.1111/epi.17329] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/02/2023]
Abstract
Neuromodulation is a key therapeutic tool for clinicians managing patients with drug-resistant epilepsy. Multiple devices are available with long-term follow-up and real-world experience. The aim of this review is to give a practical summary of available neuromodulation techniques to guide the selection of modalities, focusing on patient selection for devices, common approaches and techniques for initiation of programming, and outpatient management issues. Vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (DBS-ANT), and responsive neurostimulation (RNS) are all supported by randomized controlled trials that show safety and a significant impact on seizure reduction, as well as a suggestion of reduction in the risk of sudden unexplained death in epilepsy (SUDEP). Significant seizure reductions are observed after 3 months for DBS, RNS, and VNS in randomized controlled trials, and efficacy appears to improve with time out to 7 to 10 years of follow-up for all modalities, albeit in uncontrolled follow-up or retrospective studies. A significant number of patients experience seizure-free intervals of 6 months or more with all three modalities. Number and location of epileptogenic foci are important factors affecting efficacy, and together with comorbidities such as severe mood or sleep disorders, may influence the choice of modality. Programming has evolved-DBS is typically initiated at lower current/voltage than used in the pivotal trial, whereas target charge density is lower with RNS, however generalizable optimal parameters are yet to be defined. Noninvasive brain stimulation is an emerging stimulation modality, although it is currently not used widely. In summary, clinical practice has evolved from those established in pivotal trials. Guidance is now available for clinicians who wish to expand their approach, and choice of neuromodulation technique may be tailored to individual patients based on their epilepsy characteristics, risk tolerance, and preferences.
Collapse
Affiliation(s)
- Hugh D. Simpson
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory D. Cascino
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Robert S. Fisher
- Department of Neurology, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| | - Barbara C. Jobst
- Geisel School of Medicine at Dartmouth, Department of Neurology, Dartmouth-Hitchcock Medical Center, NH, USA
| | - Michael R. Sperling
- Division of Epilepsy, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brian N. Lundstrom
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Xue T, Chen S, Bai Y, Han C, Yang A, Zhang J. Neuromodulation in drug-resistant epilepsy: A review of current knowledge. Acta Neurol Scand 2022; 146:786-797. [PMID: 36063433 DOI: 10.1111/ane.13696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Nearly 1% of the global population suffers from epilepsy. Drug-resistant epilepsy (DRE) affects one-third of epileptic patients who are unable to treat their condition with existing drugs. For the treatment of DRE, neuromodulation offers a lot of potential. The background, mechanism, indication, application, efficacy, and safety of each technique are briefly described in this narrative review, with an emphasis on three approved neuromodulation therapies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation (RNS). Neuromodulatory approaches involving direct or induced electrical currents have been developed to lessen seizure frequency and duration in patients with DRE since the notion of electrical stimulation as a therapy for neurologic diseases originated in the early nineteenth century. Although few people have attained total seizure independence for more than 12 months using these treatments, more than half have benefitted from a 50% drop in seizure frequency over time. Although promising outcomes in adults and children with DRE have been achieved, challenges such as heterogeneity among epilepsy types and etiologies, optimization of stimulation parameters, a lack of biomarkers to predict response to neuromodulation therapies, high-level evidence to aid decision-making, and direct comparisons between neuromodulatory approaches remain. To solve these existing gaps, authorize new kinds of neuromodulation, and develop personalized closed-loop treatments, further research is needed. Finally, both invasive and non-invasive neuromodulation seems to be safe. Implantation-related adverse events for invasive stimulation primarily include infection and pain at the implant site. Intracranial hemorrhage is a frequent adverse event for DBS and RNS. Other stimulation-specific side-effects are mild with non-invasive stimulation.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Wu M, Luo B, Yu Y, Li X, Gao J, Li J, Sorger B, Riecke L. Rhythmic musical-electrical trigeminal nerve stimulation improves impaired consciousness. Neuroimage Clin 2022; 36:103170. [PMID: 36063757 PMCID: PMC9460811 DOI: 10.1016/j.nicl.2022.103170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Accumulating evidence shows that consciousness is linked to neural oscillations in the thalamocortical system, suggesting that deficits in these oscillations may underlie disorders of consciousness (DOC). However, patient-friendly non-invasive treatments targeting this functional anomaly are still missing and the therapeutic value of oscillation restoration has remained unclear. We propose a novel approach that aims to restore DOC patients' thalamocortical oscillations by combining rhythmic trigeminal-nerve stimulation with comodulated musical stimulation ("musical-electrical TNS"). In a double-blind, placebo-controlled, parallel-group study, we recruited 63 patients with DOC and randomly assigned them to groups receiving gamma, beta, or sham musical-electrical TNS. The stimulation was applied for 40 min on five consecutive days. We measured patients' consciousness before and after the stimulation using behavioral indicators and neural responses to rhythmic auditory speech. We further assessed their outcomes one year later. We found that musical-electrical TNS reliably lead to improvements in consciousness and oscillatory brain activity at the stimulation frequency: 43.5 % of patients in the gamma group and 25 % of patients in the beta group showed an improvement of their diagnosis after being treated with the stimulation. This group of benefitting patients still showed more positive outcomes one year later. Moreover, patients with stronger behavioral benefits showed stronger improvements in oscillatory brain activity. These findings suggest that brain oscillations contribute to consciousness and that musical-electrical TNS may serve as a promising approach to improve consciousness and predict long-term outcomes in patients with DOC.
Collapse
Affiliation(s)
- Min Wu
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Benyan Luo
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Corresponding author.
| | - Yamei Yu
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxia Li
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Gao
- Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Jingqi Li
- Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
23
|
Safety and efficacy of cathodal transcranial direct current stimulation in patients with Lennox Gastaut Syndrome: An open-label, prospective, single-center, single-blinded, pilot study. Seizure 2022; 100:44-50. [PMID: 35751952 DOI: 10.1016/j.seizure.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Lennox-Gastaut Syndrome (SLG) is a severe form of childhood refractory epilepsy. Only one pilot study has been conducted using cathodal transcranial direct current stimulation (c-tDCs; 2mAx30minx5days) in LGS with promising results (-99% seizure reduction at 5 days). Our aim was to explore and replicate the efficacy and safety of 10 daily sessions of c-tDCs in SLG. METHODS We conducted a one-blinded, single-center pilot clinical study of c-tDCs (2mAx 30 min x 10 days), applied over the highest amplitude or frequent epileptiform interictal discharges areas using scalp EEG recordings without changes in their treatments. The tDCS device used was Enobio EEG® (Neuroelectrics, Barcelona, Spain). The primary outcome was based on the seizure frequency using seizure diaries before, during 10 days of treatment, and then on a 4 and 8 weeks of follow-up. The rate of adverse events was recorded as a secondary outcome. Descriptive statistics and Wilcoxon signed-rank test were used RESULTS: Twenty-four patients were enrolled. The mean age was 10.1 ± 5.8 years old and 75% male. All the patients had severe mental retardation and abnormal neurological examinations. A significant median percentual seizure frequency reduction was found: 68.12% (p = 0.05) at 1 week, 68.12% (p = 0.002) in the second week. We found no significant reduction at 1 and 2 months; mainly tonic and atonic seizures were reduced significantly at all times. Only mild self-limited side effects were recorded mainly itching and erythema in the application zone CONCLUSION: Ten sessions of c-tDCs in combination with pharmacologic treatment in LGS is safe and appears to reduce significatively tonic and atonic seizure frequency at 2 months of follow-up.
Collapse
|
24
|
Abouelleil M, Deshpande N, Ali R. Emerging Trends in Neuromodulation for Treatment of Drug-Resistant Epilepsy. FRONTIERS IN PAIN RESEARCH 2022; 3:839463. [PMID: 35386582 PMCID: PMC8977768 DOI: 10.3389/fpain.2022.839463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a neurological disorder that affects more than 70 million people globally. A considerable proportion of epilepsy is resistant to anti-epileptic drugs (AED). For patients with drug-resistant epilepsy (DRE), who are not eligible for resective or ablative surgery, neuromodulation has been a palliative option. Since the approval of vagus nerve stimulation (VNS) in 1997, expansion to include other modalities, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), has led to improved seizure control in this population. In this article, we discuss the current updates and emerging trends on neuromodulation for epilepsy.
Collapse
Affiliation(s)
- Mohamed Abouelleil
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
| | - Nachiket Deshpande
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Rushna Ali
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
- *Correspondence: Rushna Ali
| |
Collapse
|
25
|
Regenold WT, Deng ZD, Lisanby SH. Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacology 2022; 47:361-372. [PMID: 34272471 PMCID: PMC8617166 DOI: 10.1038/s41386-021-01094-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
More than any other brain region, the prefrontal cortex (PFC) gives rise to the singularity of human experience. It is therefore frequently implicated in the most distinctly human of all disorders, those of mental health. Noninvasive neuromodulation, including electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) among others, can-unlike pharmacotherapy-directly target the PFC and its neural circuits. Direct targeting enables significantly greater on-target therapeutic effects compared with off-target adverse effects. In contrast to invasive neuromodulation approaches, such as deep-brain stimulation (DBS), noninvasive neuromodulation can reversibly modulate neural activity from outside the scalp. This combination of direct targeting and reversibility enables noninvasive neuromodulation to iteratively change activity in the PFC and its neural circuits to reveal causal mechanisms of both disease processes and healthy function. When coupled with neuronavigation and neurophysiological readouts, noninvasive neuromodulation holds promise for personalizing PFC neuromodulation to relieve symptoms of mental health disorders by optimizing the function of the PFC and its neural circuits. ClinicalTrials.gov Identifier: NCT03191058.
Collapse
Affiliation(s)
- William T. Regenold
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Zhi-De Deng
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Sarah H. Lisanby
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| |
Collapse
|
26
|
Yang Q, Zhang S, Xu Z, Liu L, Fan S, Wu S, Ma C. The Effectiveness of Trigeminal Nerve Stimulation on Traumatic Brain Injury. Neuromodulation 2022; 25:1330-1337. [PMID: 35088758 DOI: 10.1016/j.neurom.2021.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Trigeminal nerve stimulation (TNS) is a promising strategy in treating diseases of the nervous system. In this study, the effects of TNS on traumatic brain injury (TBI) were investigated in a mouse model. MATERIALS AND METHODS TBI was induced using a weight-drop device, and TNS treatment was delivered in the first hour after the TBI. Twenty-four hours later, the mice's behavior, brain edema, and expression of inflammatory factors were tested. Functional magnetic resonance imaging also was used to explore the possible effects of TNS on brain activity. RESULTS TNS alleviates TBI-induced neurological dysfunction in animal behavior tests, besides protecting the blood-brain barrier and reducing the level of brain edema. TNS also effectively reduces the level of tumor necrosis factor-α and interleukin 6 and downregulates the cleaved caspase-3 signaling pathway. A series of brain areas was found to be possibly regulated by TNS, thus affecting the neural functions of animals. CONCLUSION This study elucidates the role of TNS as an effective treatment for TBI by inhibiting the occurrence of a secondary brain injury.
Collapse
Affiliation(s)
- Qian Yang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Subo Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengnuo Fan
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Wu Y, Zhu F, Chen W, Zhang M. Effects of transcutaneous electrical nerve stimulation (TENS) in people with knee osteoarthritis: A systematic review and meta-analysis. Clin Rehabil 2021; 36:472-485. [PMID: 34971318 DOI: 10.1177/02692155211065636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the effects of Transcutaneous Electric Nerve Stimulation (TENS) on pain, function, walking ability and stiffness in people with Knee osteoarthritis (KOA). DESIGN Systematic review and meta-analysis of randomized controlled trials. METHODS We searched MEDLINE, EMBASE, PubMed, Cochrane Central Register of Controlled Trials, Physiotherapy Evidence Database (PEDro), clinicaltrials.gov and Web of Science (last search November 2021) for randomized controlled trials. The Cochrane Risk of Bias Tool was used for the included studies, and Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) was used to interpret the certainty of results. Standardized Mean Differences (SMDs) and 95% confidence interval (CI) were calculated for meta-analysis. RESULTS Twenty-nine studies were found (1398 people, age range 54-85, 74% are female) and fourteen were included in this review. Intervention duration was divided as short term (immediately after intervention), medium term (<four weeks) and long term (≥ four weeks). Active TENS showed greater improvement in Visual Analogue Scale (VAS) than sham TENS.Combining TENS with other interventions produced superior outcomes compared with other interventions for VAS in all the terms. In the meanwhile, TENS combined with other interventions was superior to other interventions for the pain subgroup of Western Ontario and McMaster Universities Arthritis Index in the medium term and long term. TENS combined with other interventions was superior to other interventions for function in the medium term and long term. CONCLUSION TENS could significantly relieve pain, decrease dysfunction and improve walking ability in people with KOA, but it is not effective for stiffness.
Collapse
Affiliation(s)
- Yu Wu
- Graduate School, 38044Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.,The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Rehabilitation Hospital, Xuzhou, China
| | - Feilong Zhu
- Graduate School, 38044Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.,The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Rehabilitation Hospital, Xuzhou, China
| | - Wei Chen
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Rehabilitation Hospital, Xuzhou, China
| | - Ming Zhang
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Rehabilitation Hospital, Xuzhou, China
| |
Collapse
|
28
|
Riva A, Golda A, Balagura G, Amadori E, Vari MS, Piccolo G, Iacomino M, Lattanzi S, Salpietro V, Minetti C, Striano P. New Trends and Most Promising Therapeutic Strategies for Epilepsy Treatment. Front Neurol 2021; 12:753753. [PMID: 34950099 PMCID: PMC8690245 DOI: 10.3389/fneur.2021.753753] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the wide availability of novel anti-seizure medications (ASMs), 30% of patients with epilepsy retain persistent seizures with a significant burden in comorbidity and an increased risk of premature death. This review aims to discuss the therapeutic strategies, both pharmacological and non-, which are currently in the pipeline. Methods: PubMed, Scopus, and EMBASE databases were screened for experimental and clinical studies, meta-analysis, and structured reviews published between January 2018 and September 2021. The terms “epilepsy,” “treatment” or “therapy,” and “novel” were used to filter the results. Conclusions: The common feature linking all the novel therapeutic approaches is the spasmodic rush toward precision medicine, aiming at holistically evaluating patients, and treating them accordingly as a whole. Toward this goal, different forms of intervention may be embraced, starting from the choice of the most suitable drug according to the type of epilepsy of an individual or expected adverse effects, to the outstanding field of gene therapy. Moreover, innovative insights come from in-vitro and in-vivo studies on the role of inflammation and stem cells in the brain. Further studies on both efficacy and safety are needed, with the challenge to mature evidence into reliable assets, ameliorating the symptoms of patients, and answering the challenges of this disease.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alice Golda
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Lattanzi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
da Silva Fiorin F, de Araújo E Silva M, Rodrigues AC. Electrical stimulation in animal models of epilepsy: A review on cellular and electrophysiological aspects. Life Sci 2021; 285:119972. [PMID: 34560081 DOI: 10.1016/j.lfs.2021.119972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy is a debilitating condition, primarily refractory individuals, leading to the search for new efficient therapies. Electrical stimulation is an important method used for years to treat several neurological disorders. Currently, electrical stimulation is used to reduce epileptic crisis in patients and shows promising results. Even though the use of electricity to treat neurological disorders has grown worldwide, there are still many caveats that must be clarified, such as action mechanisms and more efficient stimulation treatment parameters. Thus, this review aimed to explore the comprehension of the main stimulation methods in animal models of epilepsy using rodents to develop new experimental protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil.
| | - Mariane de Araújo E Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Abner Cardoso Rodrigues
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| |
Collapse
|
30
|
Harper RM, Hertling D, Curtis A, Sauerland EK, De Giorgio CM. Pilot Safety and Feasibility Study of Non-invasive Limb Proprioceptive Cerebellar Stimulation for Epilepsy. Front Neurol 2021; 12:675947. [PMID: 34484096 PMCID: PMC8415900 DOI: 10.3389/fneur.2021.675947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebellar stimulation reduces seizures in animals and in humans with drug-resistant epilepsy. In a pilot safety and feasibility study, we applied continuous cutaneous vibratory stimulation (limb proprioceptive cerebellar stimulation) to foot limb proprioceptive receptors to activate cerebellar, pontine, and thalamic structures in drug-resistant epilepsy patients for 8-h nocturnally up to 6-months after a 4-week pre-treatment control baseline. Seizure frequency was evaluated during the baseline control period, and at 6, 12, and 24 weeks after the control recordings. Five-subjects completed at least the first 6-week treatment. At 12-weeks, the median reduction in seizure frequency was -27.8% (mean reduction = -22.3%). Two subjects continued for 24 weeks, with a decline of -44.1 and -45.4%. This pilot study provides support for further clinical studies into the safety and efficacy of limb proprioceptive cerebellar stimulation for epilepsy.
Collapse
Affiliation(s)
- Ronald M. Harper
- Department of Neurobiology, David Geffen School of Medicine, Univeersity of California, Los Angeles, Los Angeles, CA, United States
| | - Dieter Hertling
- Department of Neurology, Olive View Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ashley Curtis
- Department of Neurology, Olive View Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Christopher M. De Giorgio
- Department of Neurology, Olive View Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Abstract
Neuromodulation alters neuronal activity with electrical impulses delivered to the targeted neurologic sites. The various neuromodulation options available today for epilepsy management have proven efficacy primarily in adult trials. These include open-loop stimulation with invasive vagus nerve stimulation and deep brain stimulation, as well as closed-loop responsive neurostimulation. The use of neurostimulation therapy to treat intractable epilepsy in children is growing. This article reviews the literature, historical background, and current principles in pediatric patients.
Collapse
|
32
|
Li C, White TG, Shah KA, Chaung W, Powell K, Wang P, Woo HH, Narayan RK. Percutaneous Trigeminal Nerve Stimulation Induces Cerebral Vasodilation in a Dose-Dependent Manner. Neurosurgery 2021; 88:E529-E536. [PMID: 33677599 DOI: 10.1093/neuros/nyab053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The trigeminal nerve directly innervates key vascular structures both centrally and peripherally. Centrally, it is known to innervate the brainstem and cavernous sinus, whereas peripherally the trigemino-cerebrovascular network innervates the majority of the cerebral vasculature. Upon stimulation, it permits direct modulation of cerebral blood flow (CBF), making the trigeminal nerve a promising target for the management of cerebral vasospasm. However, trigeminally mediated cerebral vasodilation has not been applied to the treatment of vasospasm. OBJECTIVE To determine the effect of percutaneous electrical stimulation of the infraorbital branch of the trigeminal nerve (pTNS) on the cerebral vasculature. METHODS In order to determine the stimulus-response function of pTNS on cerebral vasodilation, CBF, arterial blood pressure, cerebrovascular resistance, intracranial pressure, cerebral perfusion pressure, cerebrospinal fluid calcitonin gene-related peptide (CGRP) concentrations, and the diameter of cerebral vessels were measured in healthy and subarachnoid hemorrhage (SAH) rats. RESULTS The present study demonstrates, for the first time, that pTNS increases brain CGRP concentrations in a dose-dependent manner, thereby producing controllable cerebral vasodilation. This vasodilatory response appears to be independent of the pressor response induced by pTNS, as it is maintained even after transection of the spinal cord at the C5-C6 level and shown to be confined to the infraorbital nerve by administration of lidocaine or destroying it. Furthermore, such pTNS-induced vasodilatory response of cerebral vessels is retained after SAH-induced vasospasm. CONCLUSION Our study demonstrates that pTNS is a promising vasodilator and increases CBF, cerebral perfusion, and CGRP concentration both in normal and vasoconstrictive conditions.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Timothy G White
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Kevin A Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Henry H Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
33
|
Parihar J, Agrawal M, Samala R, Chandra PS, Tripathi M. Role of Neuromodulation for Treatment of Drug-Resistant Epilepsy. Neurol India 2021; 68:S249-S258. [PMID: 33318359 DOI: 10.4103/0028-3886.302476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The choice of neuromodulation techniques has greatly increased over the past two decades. While vagal nerve stimulation (VNS) has become established, newer variations of VNS have been introduced. Following the SANTE's trial, deep brain stimulation (DBS) is now approved for clinical use. In addition, responsive neurostimulation (RNS) has provided exciting new opportunities for treatment of drug-resistant epilepsy. While neuromodulation mostly offers only a 'palliative' measure, it still provides a significant reduction of frequency and intensity of epilepsy. We provide an overview of all the techniques of neuromodulation which are available, along with long-term outcomes. Further research is required to delineate the exact mechanism of action, the indications and the stimulation parameters to extract the maximum clinical benefit from these techniques.
Collapse
Affiliation(s)
- Jasmine Parihar
- Department of Neurology, Lady Harding Medical College, New Delhi, India
| | | | - Raghu Samala
- Department of Neurosurgery, AIIMS, New Delhi, India
| | | | | |
Collapse
|
34
|
Mercante B, Nuvoli S, Sotgiu MA, Manca A, Todesco S, Melis F, Spanu A, Deriu F. SPECT imaging of cerebral blood flow changes induced by acute trigeminal nerve stimulation in drug-resistant epilepsy. A pilot study. Clin Neurophysiol 2021; 132:1274-1282. [PMID: 33867259 DOI: 10.1016/j.clinph.2021.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the cortical areas targeted by acute transcutaneous trigeminal nerve stimulation (TNS) in patients with drug-resistant epilepsy (DRE) using single photon emission computed tomography (SPECT). METHODS Ten patients with DRE underwent brain SPECT at baseline and immediately after a 20-minute TNS (0.25 ms; 120 Hz; 30 s ON and 30 s OFF) applied bilaterally to the infraorbital nerve. The French Color Standard International Scale was used for qualitative analyses and z-scores were used to calculate the Odds Ratio (OR). RESULTS At baseline global hypoperfusion (mainly in temporo-mesial, temporo-parietal and fronto-temporal and temporo-occipital areas) was detected in all patients. Following TNS, a global increase in cortical tracer uptake and a significant decrease in median hypoperfusion score were observed. A significant effect favoring a general TNS-induced increase in cortical perfusion (OR = 4.96; p = 0.0005) was detected in 70% of cases, with significant effects in the limbic (p = 0.003) and temporal (p = 0.003) lobes. Quantitative analyses of z-scores confirmed significant TNS-induced increases in perfusion in the temporal (+0.59 SDs; p = 0.001), and limbic (+0.43 SDs; p = 0.03) lobes. CONCLUSION Short-term TNS is followed a global increase in cortical perfusion, namely in the temporal and limbic lobes. SIGNIFICANCE The TNS-induced perfusion increase may reflect neurons' activity changes in cortical areas implicated in the epilepsy network.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Science, University of Sassari, Sassari, Italy
| | - Maria A Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Todesco
- Neurology Unit, «A. Segni» Hospital, ASL n. 1, Sassari, Italy
| | - Francesco Melis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Science, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
35
|
Tramonti Fantozzi MP, Artoni F, Di Galante M, Briscese L, De Cicco V, Bruschini L, d'Ascanio P, Manzoni D, Faraguna U, Carboncini MC. Effect of the Trigeminal Nerve Stimulation on Auditory Event-Related Potentials. Cereb Cortex Commun 2021; 2:tgab012. [PMID: 34296158 PMCID: PMC8153017 DOI: 10.1093/texcom/tgab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Trigeminal sensorimotor activity stimulates arousal and cognitive performance, likely through activation of the locus coeruleus (LC). In this study we investigated, in normal subjects, the effects of bilateral trigeminal nerve stimulation (TNS) on the LC-dependent P300 wave, elicited by an acoustic oddball paradigm. Pupil size, a proxy of LC activity, and electroencephalographic power changes were also investigated. Before TNS/sham-TNS, pupil size did not correlate with P300 amplitude across subjects. After TNS but not sham-TNS, a positive correlation emerged between P300 amplitude and pupil size within frontal and median cortical regions. TNS also reduced P300 amplitude in several cortical areas. In both groups, before and after TNS/sham-TNS, subjects correctly indicated all the target stimuli. We propose that TNS activates LC, increasing the cortical norepinephrine release and the dependence of the P300 upon basal LC activity. Enhancing the signal-to-noise ratio of cortical neurons, norepinephrine may improve the sensory processing, allowing the subject to reach the best discriminative performance with a lower level of neural activation (i.e., a lower P300 amplitude). The study suggests that TNS could be used for improving cognitive performance in patients affected by cognitive disorders or arousal dysfunctions.
Collapse
Affiliation(s)
- Maria Paola Tramonti Fantozzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Genève 1202, Switzerland
| | | | - Lucia Briscese
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56123, Italy
| | - Paola d'Ascanio
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Maria Chiara Carboncini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| |
Collapse
|
36
|
Abstract
Neuromodulation, including first-generation open-loop devices and second-generation closed-loop devices, is a valuable but poorly understood therapeutic option for patients with drug-refractory epilepsy. The precise therapy a patient receives is contingent on the relationship between the patient's own unique neurophysiology and the custom programming of detection and stimulation parameters. Recent evidence demonstrates that therapeutic efficacy can be achieved through neuromodulation of seizure networks, rather than simple disruption of seizure evolution. Nevertheless, the improvement in outcomes achieved combined with its minimally invasive, nondestructive nature make closed-loop stimulation a promising therapy for additional indications, such as generalized and pediatric epilepsy.
Collapse
Affiliation(s)
- Nathaniel D Sisterson
- Department of Neurological Surgery, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 429A Thier, Boston, MA 02114, USA.
| |
Collapse
|
37
|
Zheng Y, Wu S, Yang Q, Xu Z, Zhang S, Fan S, Liu C, Li X, Ma C. Trigeminal nerve electrical stimulation: An effective arousal treatment for loss of consciousness. Brain Res Bull 2021; 169:81-93. [PMID: 33453332 DOI: 10.1016/j.brainresbull.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND To determine if trigeminal nerve electrical stimulation (TNS) would be an effective arousal treatment for loss of consciousness (LOC), we applied neuroscientific methods to investigate the role of potential brain circuit and neuropeptide pathway in regulating level of consciousness. METHODS Consciousness behavioral analysis, Electroencephalogram (EEG) recording, Chemogenetics, Microarray analysis, Milliplex MAP rat peptide assay, Chromatin immune-precipitation (ChIP), Dual-luciferase reporter experiment, Western blot, PCR and Fluorescence in situ hybridization (FISH). RESULTS TNS can markedly activate the neuronal activities of the lateral hypothalamus (LH) and the spinal trigeminal nucleus (Sp5), as well as improve rat consciousness level and EEG activities. Then we proved that LH activation and upregulated neuropeptide hypocretin are beneficial for promotion of consciousness recovery. We then applied gene microarray experiment and found hypocretin might be mediated by a well-known transcription factor Early growth response gene 1 (EGR1), and the results were confirmed by ChIP and Dual-luciferase reporter experiment. CONCLUSION This study illustrates that TNS is an effective arousal strategy Treatment for LOC state via the activation of Sp5 and LH neurons and upregulation of hypocretin expression.
Collapse
Affiliation(s)
- Yaochao Zheng
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Qian Yang
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Zhen Xu
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Subo Zhang
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Shengnuo Fan
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Cuicui Liu
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiao Li
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China.
| |
Collapse
|
38
|
Non-Pharmacological and Non-Surgical Treatment of Refractory Childhood Epilepsy. Indian J Pediatr 2020; 87:1062-1069. [PMID: 32048226 DOI: 10.1007/s12098-019-03164-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
Abstract
Nearly 20-40% of patients with epilepsy are likely to have drug resistant epilepsy (DRE). Add-on antiseizure drugs do not produce optimal seizure control in these patients. Among the non-pharmacological options, only resective surgery is curative. However, a large majority of patients are not candidates for resective epilepsy surgery. For these children with DRE, non-pharmacological non-surgery "palliative" options should be considered early than late. These include dietary therapies and neuromodulation. While there are numerous clinical trials supporting the efficacy of dietary therapies (viz ketogenic diet, modified Atkins diet and low glycemic index therapy), the evidence for neuromodulation is still evolving. Neuromodulation techniques include vagal nerve stimulation, deep brain stimulation, and transcranial magnetic stimulation. Each of the options, whether diet or neuromodulation, has its own advantages, disadvantages and adverse events profile. These have to be considered and discussed with the family before deciding the modality being chosen.
Collapse
|
39
|
Conlon B, Langguth B, Hamilton C, Hughes S, Meade E, Connor CO, Schecklmann M, Hall DA, Vanneste S, Leong SL, Subramaniam T, D’Arcy S, Lim HH. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med 2020; 12:12/564/eabb2830. [DOI: 10.1126/scitranslmed.abb2830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
Tinnitus is a phantom auditory perception coded in the brain that can be bothersome or debilitating, affecting 10 to 15% of the population. Currently, there is no clinically recommended drug or device treatment for this major health condition. Animal research has revealed that sound paired with electrical somatosensory stimulation can drive extensive plasticity within the brain for tinnitus treatment. To investigate this bimodal neuromodulation approach in humans, we evaluated a noninvasive device that delivers sound to the ears and electrical stimulation to the tongue in a randomized, double-blinded, exploratory study that enrolled 326 adults with chronic subjective tinnitus. Participants were randomized into three parallel arms with different stimulation settings. Clinical outcomes were evaluated over a 12-week treatment period and a 12-month posttreatment phase. For the primary endpoints, participants achieved a statistically significant reduction in tinnitus symptom severity at the end of treatment based on two commonly used outcome measures, Tinnitus Handicap Inventory (Cohen’s d effect size: −0.87 to −0.92 across arms; P < 0.001) and Tinnitus Functional Index (−0.77 to −0.87; P < 0.001). Therapeutic improvements continued for 12 months after treatment for specific bimodal stimulation settings, which had not previously been demonstrated in a large cohort for a tinnitus intervention. The treatment also achieved high compliance and satisfaction rates with no treatment-related serious adverse events. These positive therapeutic and long-term results motivate further clinical trials toward establishing bimodal neuromodulation as a clinically recommended device treatment for tinnitus.
Collapse
Affiliation(s)
- Brendan Conlon
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- School of Medicine, Trinity College, Dublin D02 R590, Ireland
- Department of Otolaryngology, St. James’s Hospital, Dublin D08 NHY1, Ireland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg 93053, Germany
- Interdisciplinary Tinnitus Center of University of Regensburg, Regensburg 93053, Germany
| | | | | | - Emma Meade
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
| | | | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg 93053, Germany
- Interdisciplinary Tinnitus Center of University of Regensburg, Regensburg 93053, Germany
| | - Deborah A. Hall
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
- Hearing Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2RD, UK
- University of Nottingham Malaysia, Selangor 43500, Malaysia
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Sook Ling Leong
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 PN40, Ireland
| | | | - Shona D’Arcy
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
| | - Hubert H. Lim
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- Department of Otolaryngology—Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Different modalities of invasive neurostimulation for epilepsy. Neurol Sci 2020; 41:3527-3536. [PMID: 32740896 DOI: 10.1007/s10072-020-04614-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/19/2020] [Indexed: 01/12/2023]
Abstract
Epilepsy affects 1% of the general population, about one-third of which is pharmacologically resistant. Uncontrolled seizures are associated with an increased risk of traumatic injury and sudden unexpected death of epilepsy. There is a considerable psychological and financial burden on caregivers of patients with epilepsy, particularly among pediatric patients. Epilepsy surgery, when indicated, is the most promising cure for epilepsy. However, when surgery is contraindicated or refused by the patient, neurostimulation is an alternative palliative approach, albeit with a lower chance of entirely curing patients of seizures. There are many options for neurostimulation. The three most commonly used invasive neurostimulation procedures that consistently show evidence of being safe and efficacious are vagal nerve stimulation, responsive neuro stimulation, or anterior thalamic nucleus deep brain stimulation. The goal of this review is to summarize the current evidence supporting the use of these three techniques, which are approved by most regulatory bodies, and discuss different factors that may enable epilepsy surgeons to choose the most appropriate modality for each patient.
Collapse
|
41
|
Zhang ZJ, Man SC, Yam LL, Yiu CY, Leung RCY, Qin ZS, Chan KWS, Lee VHF, Kwong A, Yeung WF, So WKW, Ho LM, Dong YY. Electroacupuncture trigeminal nerve stimulation plus body acupuncture for chemotherapy-induced cognitive impairment in breast cancer patients: An assessor-participant blinded, randomized controlled trial. Brain Behav Immun 2020; 88:88-96. [PMID: 32305573 DOI: 10.1016/j.bbi.2020.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy causes various side effects, including cognitive impairment, known as 'chemobrain'. In this study, we determined whether a novel acupuncture mode called electroacupuncture trigeminal nerve stimulation plus body acupuncture (EA/TNS + BA) could produce better outcomes than minimum acupuncture stimulation (MAS) as controls in treating chemobrain and other symptoms in breast cancer patients. In this assessor- and participant-blinded, randomized controlled trial, 93 breast cancer patients under or post chemotherapy were randomly assigned to EA/TNS + BA (n = 46) and MAS (n = 47) for 2 sessions per week over 8 weeks. The Montreal Cognitive Assessment (MoCA) served as the primary outcome. Digit span test was the secondary outcomes for attentional function and working memory. The quality of life and multiple functional assessments were also evaluated. EA/TNS + BA treated group had much better performance than MAS-treated group on reverse digit span test at Week 2 and Week 8, with medium effect sizes of 0.53 and 0.48, respectively, although no significant differences were observed in MoCA score and prevalence of chemobrain between the two groups. EA/TNS + BA also markedly reduced incidences of diarrhoea, poor appetite, headache, anxiety, and irritation, and improved social/family and emotional wellbeing compared to MAS. These results suggest that EA/TNS + BA may have particular benefits in reducing chemotherapy-induced working memory impairment and the incidence of certain digestive, neurological, and distress-related symptoms. It could serve as an effective intervention for breast cancer patients under and post chemotherapy (trial registration: https://www.clinicaltrials.gov: NCT02457039).
Collapse
Affiliation(s)
- Zhang-Jin Zhang
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sui-Cheung Man
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lo-Lo Yam
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chui Ying Yiu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Roland Ching-Yu Leung
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kit-Wa Sherry Chan
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ava Kwong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Winnie K W So
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, New Territory, Hong Kong
| | - Lai Ming Ho
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Ying Dong
- Department of Psychosomatic Disorders, The Seventh People Hospital of Shaoxing, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
42
|
Davis P, Gaitanis J. Neuromodulation for the Treatment of Epilepsy: A Review of Current Approaches and Future Directions. Clin Ther 2020; 42:1140-1154. [PMID: 32620340 DOI: 10.1016/j.clinthera.2020.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
|
43
|
Gil-López F, Boget T, Manzanares I, Donaire A, Conde-Blanco E, Baillés E, Pintor L, Setoaín X, Bargalló N, Navarro J, Casanova J, Valls J, Roldán P, Rumià J, Casanovas G, Domenech G, Torres F, Carreño M. External trigeminal nerve stimulation for drug resistant epilepsy: A randomized controlled trial. Brain Stimul 2020; 13:1245-1253. [PMID: 32534250 DOI: 10.1016/j.brs.2020.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/10/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND External trigeminal nerve stimulation (ETNS) is an emergent, non-invasive neurostimulation therapy delivered bilaterally with adhesive skin electrodes. In previous studies, ETNS was associated to a decrease in seizure frequency in patients with focal drug-resistant epilepsy (DRE). OBJECTIVE To determine the long-term efficacy and tolerability of ETNS in patients with focal DRE. Moreover, to explore whether its efficacy depends on the epileptogenic zone (frontal or temporal), and its impact on mood, cognitive function, quality of life, and trigeminal nerve excitability. METHODS Forty consecutive patients with frontal or temporal DRE, unsuitable for surgery, were randomized to ETNS or usual medical treatment. Participants were evaluated at 3, 6 and 12 months for efficacy, side effects, mood scales, neuropsychological tests and trigeminal nerve excitability. RESULTS Subjects had a median of 15 seizures per month and had tried a median of 12.5 antiepileptic drugs. At 12 months, percentage of responders was 50% in ETNS group and 0% in control group. Seizure frequency in ETNS group decreased by -43.5% from baseline. Temporal epilepsy subgroup responded better than frontal epilepsy subgroup (55.56% vs. 45.45%, respectively). Median stimulation intensity was 6.2 mA. ETNS improved quality of life, but not anxiety or depression. Long-term ETNS affected neither neuropsychological function, nor trigeminal nerve excitability. No relevant adverse events were observed. CONCLUSIONS ETNS is an effective and well-tolerated therapy for focal DRE. Patients with temporal epilepsy showed a better response than those with frontal epilepsy. Future studies with larger populations may define its role compared to other neurostimulation techniques. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that ETNS reduces seizure frequency in patients with focal DRE.
Collapse
Affiliation(s)
- Francisco Gil-López
- Epilepsy Unit, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| | - Teresa Boget
- Epilepsy Unit, Department of Neuropsychology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Isabel Manzanares
- Epilepsy Unit, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Donaire
- Epilepsy Unit, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Estefanía Conde-Blanco
- Epilepsy Unit, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Eva Baillés
- Epilepsy Unit, Department of Psychiatry, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Luis Pintor
- Epilepsy Unit, Department of Psychiatry, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Xavier Setoaín
- Epilepsy Unit, Department of Nuclear Medicine, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Núria Bargalló
- Epilepsy Unit, Department of Neurorradiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Judith Navarro
- Electromyography Unit, Neurophysiology, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jordi Casanova
- Electromyography Unit, Neurophysiology, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep Valls
- Electromyography Unit, Neurophysiology, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pedro Roldán
- Epilepsy Unit, Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jordi Rumià
- Epilepsy Unit, Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Georgina Casanovas
- Medical Statistics Core Facility, IDIBAPS-Hospital Clínic, Barcelona, Spain
| | - Gema Domenech
- Medical Statistics Core Facility, IDIBAPS-Hospital Clínic, Barcelona, Spain
| | - Ferrán Torres
- Medical Statistics Core Facility, IDIBAPS-Hospital Clínic, Barcelona, Spain
| | - Mar Carreño
- Epilepsy Unit, Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
44
|
Abstract
Placebos impact epilepsy in a number of ways. Through randomized clinical trials, explicit clinical use, and also through implicit clinical use, placebos play a role in epilepsy. This chapter will discuss the reasons placebo is used, the determinants of placebo response in epilepsy, observations about placebo specific to epilepsy, and ways in which clinical trial design is impacted by placebo.
Collapse
|
45
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
46
|
Zhang ZJ, Zhao H, Jin GX, Man SC, Wang YS, Wang Y, Wang HR, Li MH, Yam LL, Qin ZS, Yu KKT, Wu J, Ng FLB, Ziea TCE, Rong PJ. Assessor- and participant-blinded, randomized controlled trial of dense cranial electroacupuncture stimulation plus body acupuncture for neuropsychiatric sequelae of stroke. Psychiatry Clin Neurosci 2020; 74:183-190. [PMID: 31747095 DOI: 10.1111/pcn.12959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
AIM Acupuncture has benefits in the rehabilitation of neuropsychiatric sequelae of stroke. This study was aimed to evaluate the effectiveness of dense cranial electroacupuncture stimulation plus body acupuncture (DCEAS+BA) in treating poststroke depression (PSD), functional disability, and cognitive deterioration. METHODS In this assessor- and participant-blinded, randomized controlled trial, 91 stroke patients who initially had PSD were randomly assigned to either DCEAS+BA (n = 45) or minimum acupuncture stimulation as controls (n = 46) for three sessions per week over 8 consecutive weeks. The primary outcome was baseline-to-end-point change in score of the 17-item Hamilton Depression Rating Scale. Secondary outcomes included the Montgomery-Åsberg Depression Rating Scale for depressive symptoms, the Barthel Index for functional disability, and the Montreal Cognitive Assessment for cognitive function. RESULTS DCEAS+BA-treated patients showed strikingly greater end-point reduction than MAS-treated patients in scores of the three symptom domains. The clinical response rate, defined as an at least 50% baseline-to-end-point reduction in 17-item Hamilton Depression Rating Scale score, was markedly higher in the DCEAS+BA-treated group than that of controls (40.0% vs 17.4%, P = 0.031). Incidence of adverse events was not different in the two groups. Subgroup analysis revealed that DCEAS+BA with electrical stimulation on forehead acupoints was more apparent in reducing Barthel-Index-measured disability than that without electrical stimulation. CONCLUSION DCEAS+BA, particularly with electrical stimulation on forehead acupoints, reduces PSD, functional disability, and cognitive deterioration of stroke patients. It can serve as an effective rehabilitation therapy for neuropsychiatric sequelae of stroke.
Collapse
Affiliation(s)
- Zhang-Jin Zhang
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Hong Zhao
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine, Tianjin, China
| | - Gui-Xing Jin
- Department of Psychiatry, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sui-Cheung Man
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Yi-Si Wang
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine, Tianjin, China
| | - Ying Wang
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine, Tianjin, China
| | - Hai-Rong Wang
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine, Tianjin, China
| | - Meng-Han Li
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine, Tianjin, China
| | - Lo-Lo Yam
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Kim-Kam Teresa Yu
- Department of Rehabilitation, Kowloon Hospital, Kowloon, Hong Kong, China
| | - Jing Wu
- Hong Kong Buddhist Association, The University of Hong Kong Clinical Centre for Teaching and Research in Chinese Medicine, Kowloon, Hong Kong
| | | | | | - Pei-Jing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Rohatgi P, Chivukula S, Kashanian A, Bari AA. Peripheral Nerve Stimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Kwon CS, Jetté N, Ghatan S. Perspectives on the current developments with neuromodulation for the treatment of epilepsy. Expert Rev Neurother 2019; 20:189-194. [PMID: 31815564 DOI: 10.1080/14737175.2020.1700795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: As deep brain stimulation revolutionized the treatment of movement disorders in the late 80s, neuromodulation in the treatment of epilepsy will undoubtedly undergo transformative changes in the years to come with the exponential growth of technological development moving into mainstream practice; the appearance of companies such as Facebook, Google, Neuralink within the realm of brain-computer interfaces points to this trend.Areas covered: This perspective piece will talk about the history of brain stimulation in epilepsy, current-approved treatments, technical developments and the future of neurostimulation.Expert opinion: Further understanding of the brain alongside machine learning and innovative technology will be the future of neuromodulation for the treatment of epilepsy. All of these innovations and advances should pave the way toward overcoming the vexing underutilization of surgery in the therapeutic armamentarium against medically refractory seizures, given the implicit advantage of a neuromodulatory rather than neurodestructive approach.
Collapse
Affiliation(s)
- Churl-Su Kwon
- Department of Neurology, Icahn school of Medicine at Mount Sinai, New York, NY, USA.,Division of Health Outcomes & Knowledge Translation Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathalie Jetté
- Department of Neurology, Icahn school of Medicine at Mount Sinai, New York, NY, USA.,Division of Health Outcomes & Knowledge Translation Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
49
|
Tyler M, Skinner K, Prabhakaran V, Kaczmarek K, Danilov Y. Translingual Neurostimulation for the Treatment of Chronic Symptoms Due to Mild-to-Moderate Traumatic Brain Injury. Arch Rehabil Res Clin Transl 2019; 1:100026. [PMID: 33543056 PMCID: PMC7853385 DOI: 10.1016/j.arrct.2019.100026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To compare the efficacy of high- and low-frequency noninvasive translingual neurostimulation (TLNS) plus targeted physical therapy (PT) for treating chronic balance and gait deficits due to mild-to-moderate traumatic brain injury (mmTBI). DESIGN Participants were randomized 1:1 in a 26-week double-blind phase 1/2 study (NCT02158494) with 3 consecutive treatment stages: in-clinic, at-home, and no treatment. Arms were high-frequency pulse (HFP) and low-frequency pulse (LFP) TLNS. SETTING TLNS plus PT training was initiated in-clinic and then continued at home. PARTICIPANTS Participants (N=44; 18-65y) from across the United States were randomized into the HFP and LFP (each plus PT) arms. Forty-three participants (28 women, 15 men) completed at least 1 stage of the study. Enrollment requirements included an mmTBI ≥1 year prior to screening, balance disorder due to mmTBI, a plateau in recovery with current PT, and a Sensory Organization Test (SOT) score ≥16 points below normal. INTERVENTIONS Participants received TLNS (HFP or LFP) plus PT for a total of 14 weeks (2 in-clinic and 12 at home), twice daily, followed by 12 weeks without treatment. MAIN OUTCOME MEASURES The primary endpoint was change in SOT composite score from baseline to week 14. Secondary variables (eg, Dynamic Gait Index [DGI], 6-minute walk test [6MWT]) were also collected. RESULTS Both arms had a significant (P<.0001) improvement in SOT scores from baseline at weeks 2, 5, 14 (primary endpoint), and 26. DGI scores had significant improvement (P<.001-.01) from baseline at the same test points; 6MWT evaluations after 2 weeks were significant. The SOT, DGI, and 6MWT scores did not significantly differ between arms at any test point. There were no treatment-related serious adverse events. CONCLUSIONS Both the HFP+PT and LFP+PT groups had significantly improved balance scores, and outcomes were sustained for 12 weeks after discontinuing TLNS treatment. Results between arms did not significantly differ from each other. Whether the 2 dosages are equally effective or whether improvements are because of provision of PT cannot be conclusively established at this time.
Collapse
Key Words
- 6MWT, 6-minute walk test
- AE, adverse event
- ANOVA, analysis of variance
- Balance
- DGI, Dynamic Gait Index
- Facial nerve
- Gait
- HFP, high-frequency pulse
- ITP, in-clinic training program
- LFP, low-frequency pulse
- Neurostimulation
- PSQI, Pittsburgh Sleep Quality Index
- PT, physical therapy
- PoNS, portable neuromodulation stimulator
- Rehabilitation
- SOT, Sensory Organization Test
- TBI, traumatic brain injury
- TLNS, translingual neurostimulation
- Trigeminal nerve
- mmTBI, mild-to-moderate traumatic brain injury
Collapse
Affiliation(s)
- Mitchell Tyler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kim Skinner
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kurt Kaczmarek
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yuri Danilov
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
50
|
Bigelow MD, Kouzani AZ. Neural stimulation systems for the control of refractory epilepsy: a review. J Neuroeng Rehabil 2019; 16:126. [PMID: 31665058 PMCID: PMC6820988 DOI: 10.1186/s12984-019-0605-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Epilepsy affects nearly 1% of the world's population. A third of epilepsy patients suffer from a kind of epilepsy that cannot be controlled by current medications. For those where surgery is not an option, neurostimulation may be the only alternative to bring relief, improve quality of life, and avoid secondary injury to these patients. Until recently, open loop neurostimulation was the only alternative for these patients. However, for those whose epilepsy is applicable, the medical approval of the responsive neural stimulation and the closed loop vagal nerve stimulation systems have been a step forward in the battle against uncontrolled epilepsy. Nonetheless, improvements can be made to the existing systems and alternative systems can be developed to further improve the quality of life of sufferers of the debilitating condition. In this paper, we first present a brief overview of epilepsy as a disease. Next, we look at the current state of biomarker research in respect to sensing and predicting epileptic seizures. Then, we present the current state of open loop neural stimulation systems. We follow this by investigating the currently approved, and some of the recent experimental, closed loop systems documented in the literature. Finally, we provide discussions on the current state of neural stimulation systems for controlling epilepsy, and directions for future studies.
Collapse
Affiliation(s)
- Matthew D Bigelow
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|