1
|
Ebrahimi M, Thompson PM, Kafashan Z, Ceriello A, Kolko M, Grauslund J. Association between cerebral lesions and the severity of diabetic cardiovascular disease, retinopathy, and nephropathy-new lessons to learn from neuroimaging. J Endocrinol Invest 2025:10.1007/s40618-025-02600-w. [PMID: 40423899 DOI: 10.1007/s40618-025-02600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/26/2025] [Indexed: 05/28/2025]
Abstract
Diabetes is associated with cerebrovascular lesions detectable through neuroimaging. Neuroimaging is traditionally valued for its insights into the structure of the central nervous system. However, the brain is connected with other organs. The vascular system, hormones, and peripheral nerve system connect the brain to other sections of the body bidirectionaly. This interaction between the brain and other parts encourages us to look at the total body, not just its different parts separately. Growing evidence has shown the link between brain injuries and cardiac, retinal, and kidney disorders, suggesting that neuroimaging has the potential to provide valuable information about peripheral organs This is particularly crucial for a systemic disease like diabetes, which affects the entire body. In this review, we aim to first discuss the data that neuroimaging can reveal about the severity of diabetic retinopathy, nephropathy, and cardiovascular disease in diabetic patients. This interdisciplinary approach could guide the design of new randomized controlled trials, screening programs, and an integrated clinical practice. This study explores the mechanisms underlying the association between the brain and other organs in the context of diabetes. Then we will consider their implications for future research and clinical practice.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zeinab Kafashan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Antonio Ceriello
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, Milan, 20138, Italy
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Jakob Grauslund
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
- Department of Ophthalmology, Odense University Hospital, Sdr. Boulevard 29, Odense, 5000, Denmark.
| |
Collapse
|
2
|
Hannan J, Newman-Norlund S, Busby N, Wilson SC, Newman-Norlund R, Rorden C, Fridriksson J, Bonilha L, Riccardi N. Pulse Pressure, White Matter Hyperintensities, and Cognition: Mediating Effects Across the Adult Lifespan. Ann Clin Transl Neurol 2025. [PMID: 40413732 DOI: 10.1002/acn3.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/09/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025] Open
Abstract
OBJECTIVES To investigate whether pulse pressure or mean arterial pressure mediates the relationship between age and white matter hyperintensity load and to examine the mediating effect of white matter hyperintensities on cognition. METHODS Demographic information, blood pressure, current medication lists, and Montreal Cognitive Assessment scores for 231 stroke- and dementia-free adults were retrospectively obtained from the Aging Brain Cohort study. Total WMH load was determined from T2-FLAIR magnetic resonance scans using the TrUE-Net deep learning tool for white matter segmentation. In separate models, we used mediation analysis to assess whether pulse pressure or MAP mediates the relationship between age and total white matter hyperintensity load, controlling for cardiovascular confounds. We also assessed whether white matter hyperintensity load mediated the relationship between age and cognitive scores. RESULTS Pulse pressure, but not mean arterial pressure, significantly mediated the relationship between age and white matter hyperintensity load. White matter hyperintensity load partially mediated the relationship between age and Montreal Cognitive Assessment score. INTERPRETATION Our results indicate that pulse pressure, but not mean arterial pressure, is mechanistically associated with age-related accumulation of white matter hyperintensities, independent of other cardiovascular risk factors. White matter hyperintensity load was a mediator of cognitive scores across the adult lifespan. Effective management of pulse pressure may be especially important for maintenance of brain health and cognition.
Collapse
Affiliation(s)
- Jade Hannan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Sarah Newman-Norlund
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Sarah C Wilson
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- Linguistics Program, College of Arts and Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Roger Newman-Norlund
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Chris Rorden
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Nicholas Riccardi
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Maybrier HR, Jackson JJ, Toedebusch CD, Lucey BP, Head D. Influence of sleep and cardiovascular health on cognitive trajectories in older adults. Neurobiol Aging 2025; 152:34-42. [PMID: 40318496 DOI: 10.1016/j.neurobiolaging.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Age-related changes in sleep have been associated with cognitive decline, yet causal pathways have not been identified. Evidence suggests reduced cardiovascular health may be a consequence of poor sleep and a precursor to cognitive decline. This observational cohort study used path analyses to determine whether cardiovascular disease risk mediated or moderated effects of sleep on yearly longitudinal change in cognition, estimated with linear growth models. Total sleep time (TST), sleep efficiency (SE), and relative spectral power of slow wave activity (SWA; 1-4 Hz) and slow oscillations (SO; 0.5-1 Hz), were measured with single-channel home EEG. Cardiovascular disease risk (CVR) was estimated as 10-year Framingham Risk Score 1-year post-sleep. Outcomes were yearly change in executive function (EF), episodic memory (EM), and processing speed (PS) over 2-5 years post-sleep. 342 participants (mean age 73.5 +/- 5.6 years, 51 % female) were included. Shorter TST was linearly associated with increased CVR across all models (βs = -0.18(0.058) - -0.19(0.059), ps< 0.002). TST was indirectly associated with EF and PS decline through CVR, such that associations between short TST and cognitive decline were partially due to higher CVR. All other mediating and moderating effects were nonsignificant after multiple comparisons. Indirect associations between short sleep duration and greater decline in executive function and processing speed were found through higher CVR, suggesting a potential mechanism by which sleep leads to cognitive decline. Findings support the prioritization of adequate sleep duration to preserve both cardiovascular and cognitive health in later life.
Collapse
Affiliation(s)
- Hannah R Maybrier
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, United States
| | - Joshua J Jackson
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, United States
| | - Cristina D Toedebusch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, United States; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
4
|
Yang H, Wang Q, Li M, Yu J, Li H, Zhang S, Qian H. Correlation Between Blood Pressure Variability and Serum Vascular Endothelial Growth Factor Concentration in Patients with Type I Cerebral Small Vessel Disease. Int J Gen Med 2025; 18:1969-1981. [PMID: 40206444 PMCID: PMC11980803 DOI: 10.2147/ijgm.s502460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Objective To investigate the relationship between blood pressure variability (BPV) and serum vascular endothelial growth factor (VEGF) levels in patients with type I cerebral small vessel disease (CSVD). Methods 144 Patients admitted to the Neurology Department of our Hospital between December 2021 and December 2022 were included and categorized into 5 groups according to CSVD burden, which was evaluated based on MRI findings. Group 0-2 were categorized as mild patients, group 3 as moderate patients, group 4 as severe patients. All patients underwent 24-hour ambulatory blood pressure monitoring. Serum samples were collected to measure the concentration of VEGF. The differences of general information, BPV and serum VEGF levels in five groups were compared. Spearman correlation analysis was used to analyze the correlation between total CSVD burden and BPV, as well as total CSVD burden and serum VEGF concentration. Additionally, Pearson correlation analysis was used to explore the correlation between serum VEGF level and BPV. Results 83 males and 61 females with mean age of (67.5±9.9) years were enrolled. Significant differences were observed in age and hypertension history among the five groups (p<0.001). In both mild and severe groups, 24hSBP, 24hSBP-SD, 24hSBP-CV, 24hSBP-ARV, DSBP, DSBP-SD, DSBP-ARV, 24hDBP, 24hDBP-SD, DDBP, NDBP showed a significant positive correlation with the total CSVD burden scores. The differences in serum VEGF concentration among the five groups were statistically significant (P<0.05), with the lowest in group 4 and the highest in group 3. Serum VEGF concentration showed a significant positive correlation with the total CSVD burden scores in patients with mild to moderate CSVD. Pearson's correlation analysis revealed that serum VEGF concentration was significantly and positively correlated with 24hSBP-SD, 24hSBP- ARV, DSBP-SD, DSBP-ARV, and SBP-wSD. Conclusion VEGF may be associated with the impact of BPV on CSVD patients, and potentially correlated to delaying disease progression.
Collapse
Affiliation(s)
- Hua Yang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qianyao Wang
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Min Li
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Jin Yu
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Hua Li
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Shufeng Zhang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Hairong Qian
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| |
Collapse
|
5
|
Kasprowicz M, Mataczyński C, Uryga A, Pelah AI, Schmidt E, Czosnyka M, Kazimierska A. Impact of age and mean intracranial pressure on the morphology of intracranial pressure waveform and its association with mortality in traumatic brain injury. Crit Care 2025; 29:78. [PMID: 39962578 PMCID: PMC11834513 DOI: 10.1186/s13054-025-05295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Morphological analysis of intracranial pressure (ICP) pulse waveforms provides indirect information on cerebrospinal compliance, which might be reduced by space-occupying lesions but also by intracranial hypertension and aging. This study investigates the impact of age and mean ICP on the shape and amplitude of ICP pulse waveform in traumatic brain injury (TBI). Additionally, it explores the association between morphological parameters and mortality after TBI. METHODS ICP recordings from 183 TBI patients (median age: 50 (30, 61) years) from the CENTER-TBI database were retrospectively analyzed. ICP morphology was assessed using the artificial intelligence-based pulse shape index (PSI) and peak-to-peak amplitude of ICP pulse waveform (AmpICP). The impact of mean ICP, age, and their interaction on PSI and AmpICP were estimated using factorial ANOVA. To account for influence of disturbance in the intracranial volume on AmpICP and PSI, a multiple regression analysis was performed using age, mean ICP, and the Rotterdam CT score as explanatory variables. The associations of AmpICP and PSI with six-month mortality were assessed using the area under the ROC curve (AUC). RESULTS Age had a predominant influence on PSI (p < 0.01), accounting for 33.1% of its variance, while mean ICP explained 6.6% (p < 0.01). Conversely, mean ICP primarily affected AmpICP (p < 0.01), explaining 22.8% of its variance, with age contributing 8.0% (p < 0.01). A combined effect of age and mean ICP on AmpICP (p = 0.01) explained 11.7% of its variance but did not influence PSI. After accounting for Rotterdam CT score, the results remained consistent, indicating that advanced age has the strongest impact on PSI (β = 0.342, p < 0.01) while elevated mean ICP has dominant influence on AmpICP (β = 0.522, p < 0.01). Both AmpICP and PSI were moderately associated with mortality (AUC: 0.76 and 0.71, respectively). CONCLUSIONS AmpICP and PSI capture distinct aspects of cerebrospinal compliance. PSI appears to reflect age-related stiffening of the cerebrovascular system, while AmpICP, influenced by mean ICP, indicates acute volume compensatory changes. Combined, they provide a more comprehensive assessment of cerebrospinal volume-pressure compensation. Both morphological metrics are associated with mortality after TBI. As cerebrospinal compliance declines with age, older TBI patients become more susceptible to uncontrolled rises in ICP, which can worsen their outcome.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Neuroengineering Lab, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Cyprian Mataczyński
- Department of Computer Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Uryga
- Neuroengineering Lab, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Adam I Pelah
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Eric Schmidt
- Department of Neurosurgery, University Hospital of Toulouse, Toulouse, France
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Agnieszka Kazimierska
- Neuroengineering Lab, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
6
|
Hayes LD, Berry ECJ, Sanal-Hayes NEM, Sculthorpe NF, Buchan DS, Mclaughlin M, Munishankar S, Tolson D. Body Composition, Vascular Health, Cardiorespiratory Fitness, Lung Function, Muscle Architecture, and Physical Activity in People with Young Onset Dementia: A Case-Control Study. Am J Med 2025; 138:277-286.e1. [PMID: 39218054 DOI: 10.1016/j.amjmed.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Body composition, blood pressure, estimated maximal oxygen uptake (VO2max), lung function, physical activity, muscle architecture, and endothelial function had not previously been examined in people with young onset dementia. Therefore, the study measured these variables in a young onset dementia group, compared them to age-matched controls. METHODS Estimated VO2max (via the Astrand-Rhyming test), body composition, blood pressure, lung function (via spirometry), muscle architecture (via ultrasonography), and endothelial function (via flow-mediated dilation) were assessed. Physical activity was measured using ActiGraph accelerometers for 7 days. RESULTS We recruited 33 participants (16 young onset dementia, 17 controls). The young onset dementia group had shorter fascicle lengths of the vastus lateralis, were sedentary for longer over a 7-day period, and completed less moderate-vigorous physical activity than controls (P = .028, d = 0.81; large effect, P = .029, d = 0.54; moderate effect, and P = .014, d = 0.97; large effect, respectively for pairwise comparisons). Pairwise comparisons suggest no differences at the P < .05 level between young onset dementia and controls for estimated VO2max (despite a moderate effect size [d = 0.66]), height, body mass, BMI, blood pressure, light physical activity, lung function, muscle thickness, pennation angle, or endothelial function. CONCLUSIONS This study highlights differences between people with young onset dementia and controls, underscoring the need for multicomponent exercise interventions. Future interventions should target muscle architecture, increase moderate-vigorous physical activity, and reduce sedentariness, with the goal of improving quality of life and promoting functional independence.
Collapse
Affiliation(s)
- Lawrence D Hayes
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK; Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Ethan C J Berry
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK.
| | - Nilihan E M Sanal-Hayes
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK; School of Health and Society, University of Salford, Salford, UK
| | - Nicholas F Sculthorpe
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Duncan S Buchan
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Marie Mclaughlin
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK; Physical Activity for Health Research Centre, Institute for Sport, P.E. and Health Sciences, University of Edinburgh, Moray House School of Education and Sport, Edinburgh, UK
| | - Sowmya Munishankar
- Clydesdale CMHT and Young Onset Dementia Service, Clinical Director for Old Age Psychiatry, NHS, Lanarkshire, Glasgow, UK
| | - Debbie Tolson
- Alzheimer Scotland Centre for Policy and Practice, University of the West of Scotland, Paisley, Scotland
| |
Collapse
|
7
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Hansen CE, Vacondio D, van der Molen L, Jüttner AA, Fung WK, Karsten M, van Het Hof B, Fontijn RD, Kooij G, Witte ME, Roks AJM, de Vries HE, Mulder I, de Wit NM. Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction. Cell Death Dis 2025; 16:1. [PMID: 39753531 PMCID: PMC11698980 DOI: 10.1038/s41419-024-07306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025]
Abstract
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model. In vitro, ERCC1-deficient brain ECs displayed increased senescence-associated secretory phenotype expression, reduced BBB integrity, and higher sprouting capacities due to an underlying dysregulation of the Dll4-Notch pathway. In line, EC-KO mice showed more P21+ cells, augmented expression of angiogenic markers, and a concomitant increase in the number of brain ECs and pericytes. Moreover, EC-KO mice displayed BBB leakage and enhanced cell adhesion molecule expression accompanied by peripheral immune cell infiltration into the brain. These findings were confined to the white matter, suggesting a regional susceptibility. Collectively, our results underline the role of endothelial aging as a driver of impaired BBB function, endothelial sprouting, and increased immune cell migration into the brain, thereby contributing to impaired brain homeostasis as observed during the aging process.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Davide Vacondio
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lennart van der Molen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Radboud University Medical Center, IQ Health science department, Nijmegen, The Netherlands
| | - Annika A Jüttner
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Wing Ka Fung
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Manon Karsten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gijs Kooij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten E Witte
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Inge Mulder
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Aizawa K, Jordan AN, Gooding KM, Llewellyn DJ, Mawson DM, Casanova F, Gates PE, Adingupu DD, Elyas S, Hope SV, Gilchrist M, Strain WD, Clark CE, Bellenger NG, Sharp ASP, Parker KH, Hughes AD, Shore AC. Aortic reservoir-excess pressure parameters are associated with worse cognitive function in people with untreated stage II/III hypertension. J Hypertens 2024; 42:2139-2147. [PMID: 39248140 DOI: 10.1097/hjh.0000000000003853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Hypertension is a recognized risk factor for the development of cognitive impairment and dementia in older adults. Aortic stiffness and altered haemodynamics could promote the transmission of detrimental high pressure pulsatility into the cerebral circulation, potentially damaging brain microvasculature and leading to cognitive impairment. We determined whether reservoir-excess pressure parameters were associated with cognitive function in people with hypertension (HT) and normotension (NT). METHODS We studied 35 middle-aged and older treatment-naïve stage II/III HT (office systolic BP 176 ± 17 mmHg) and 35 age-, sex- and body mass index-matched NT (office systolic BP 127 ± 8 mmHg). Parameters derived from reservoir-excess pressure analysis including reservoir pressure integral (INTPR), excess pressure integral (INTXSP), systolic rate constant (SRC), diastolic rate constant (DRC) and pulse wave velocity (PWV) were calculated from an ensemble-averaged aortic pressure waveform derived from radial artery tonometry. Cognitive function was assessed using the Addenbrooke's Cognitive Examination Revised (ACE-R), Trail Making Test Part A (TMT-A) and Part B (TMT-B). RESULTS All reservoir-excess pressure parameters were greater in HT than NT (all P < 0.05). Greater INTXSP was associated with lower ACE-R score ( rs = -0.31), longer TMT-A ( r = 0.31) and TMT-B ( r = 0.38). Likewise, greater DRC and PWV were also associated with lower ACE-R score ( rs = -0.27 and rs = -0.33), longer TMT-A ( r = 0.51 and r = 0.40) and TMT-B ( r = 0.38 and r = 0.32). Greater INTXSP, DRC and PWV are consistently associated with worse cognitive function in this study. CONCLUSIONS These observations support a potential mechanistic link between adverse haemodynamics and a heightened risk of cognitive impairment in older adults with hypertension.
Collapse
Affiliation(s)
- Kunihiko Aizawa
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| | - Andrew N Jordan
- Department of Clinical and Biomedical Sciences
- University Hospitals Dorset, Poole
- NIHR Exeter Clinical Research Facility, Exeter
| | - Kim M Gooding
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| | - David J Llewellyn
- Department of Health and Community Sciences, University of Exeter Medical School, Exeter
- Alan Turing Institute, London
| | - David M Mawson
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| | - Francesco Casanova
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| | - Phillip E Gates
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| | - Damilola D Adingupu
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| | - Salim Elyas
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
- Department of Healthcare for Older People, Royal Devon University Healthcare NHS Foundation Trust
| | - Suzy V Hope
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
- Department of Healthcare for Older People, Royal Devon University Healthcare NHS Foundation Trust
| | - Mark Gilchrist
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| | - W David Strain
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
- Department of Healthcare for Older People, Royal Devon University Healthcare NHS Foundation Trust
| | - Christopher E Clark
- Department of Health and Community Sciences, University of Exeter Medical School, Exeter
| | - Nicholas G Bellenger
- Department of Cardiology, Royal Devon University Healthcare NHS Foundation Trust, Exeter
| | | | | | - Alun D Hughes
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, UK
| | - Angela C Shore
- Department of Clinical and Biomedical Sciences
- NIHR Exeter Clinical Research Facility, Exeter
| |
Collapse
|
10
|
Heredia CP, Furman D, Moreno DG, Tuday E. The Role of Vascular Aging in the Development of Hypertension. Clin Geriatr Med 2024; 40:539-550. [PMID: 39349030 DOI: 10.1016/j.cger.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Vascular stiffness is an age-related pathophysiological process that represents a significant risk of cardiovascular morbidity and mortality in the older adult.
Collapse
Affiliation(s)
| | - Deborah Furman
- Department of Internal Medicine, University of Utah. https://twitter.com/debfurman_MD
| | - Denisse G Moreno
- Division of Geriatrics, Department of Internal Medicine, University of Utah. https://twitter.com/DenisseG_Moreno
| | - Eric Tuday
- Division of Cardiology, Department of Internal Medicine, University of Utah, 30 Mario Capecchi Drive, Salt Lake City, UT 84112, USA; Salt Lake City Veterans Affairs Hospital; Geriatrics Research Education and Clinical Center (GRECC).
| |
Collapse
|
11
|
Álvarez-Bueno C, Medrano M, Lucerón-Lucas-Torres M, Otero-Luis I, López-López S, Lever-Megina CG, Cavero-Redondo I. Association between pulse wave velocity and white matter hyperintensities among older adults: A meta-analysis of cross-sectional and longitudinal studies. Ageing Res Rev 2024; 101:102501. [PMID: 39303876 DOI: 10.1016/j.arr.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Higher levels of pulse wave velocity (PWV) have been related with the presence of small vessel disease that could damage the brain, in which white matter hyperintensities (WMH) could be presented as consequence. This meta-analysis aims to examine the cross-sectional and longitudinal associations between PWV and the presence of WMH among older adults. METHODS We searched PubMed, Scopus, and WOS until June 2024. Pooled Odds Ratio (p-OR) were estimated for the cross-sectional and longitudinal associations between PWV and WMH. In addition, we explored whether this associations could be modified by type of PWV measurement and study and sample characteristics. RESULTS The p-OR between PWV and WMH was 1.16 (95 % CI, 1.10-1.22) for the cross-sectional and 1.07 (95 %, 1.00-1.15) for the longitudinal association. Similar figures were found by type of PWV measurement and no one of the explored characteristics modified this associations. CONCLUSIONS This meta-analysis revealed that the presence in and the long-term development of WMHs among older adults are more likely among those with elevated PWV.
Collapse
Affiliation(s)
- Celia Álvarez-Bueno
- Universidad de Castilla - La Mancha, Health and Social Research Center, Cuenca, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 7500912, Chile
| | - María Medrano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid 28029, Spain; ELIKOS Group, Institute for Sustainability and Food Chain Innovation (IS-FOOD), Department of Health Sciences, Public University of Navarre, Pamplona 31006, Spain
| | | | - Iris Otero-Luis
- Universidad de Castilla - La Mancha, Health and Social Research Center, Cuenca, Spain
| | - Samuel López-López
- Castilla-La Mancha Health Services, SESCAM, Cuenca Hospital. C, Hermandad de Donantes de Sangre, 1, Cuenca 16.002, Spain
| | | | - Iván Cavero-Redondo
- Universidad de Castilla - La Mancha, Health and Social Research Center, Cuenca, Spain
| |
Collapse
|
12
|
Aimagambetova B, Ariko T, Merritt S, Rundek T. Arterial stiffness measured by pulse wave velocity correlated with cognitive decline in hypertensive individuals: a systematic review. BMC Neurol 2024; 24:393. [PMID: 39415095 PMCID: PMC11481605 DOI: 10.1186/s12883-024-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Arterial stiffness is a degenerative modification in the arterial wall that significantly affects normal aging. Arterial hypertension is a major risk factor for cerebrovascular impairment. Pulse wave velocity (PWV) is an established gold standard for measuring arterial stiffness. Studies demonstrated that individuals with elevated blood pressure (BP) and PWV are more likely to experience worse cognitive decline compared to those with either condition alone. The aim of this review is to explore the clinical importance of arterial stiffness for cognitive function in older adults with hypertension. METHODS The systematic review was reported following the PRISMA 2020 guidelines and Cochrane protocol and was registered in NIHR PROSPERO. PubMed, Embase, Web of Science, CINAHL, and Cochrane databases were searched for relevant publications up to December 2022. Articles were filtered by age and type of study and only those including a sample size of at least 500 individuals were selected. Screening of abstracts and full-text review of selected articles were carried out through Covidence. RESULTS The full-text review included a total of 434 articles. Twenty-eight prospective studies have met the inclusion criteria. Selected studies used PWV as the main measurement of stiffness: 24 used carotid-femoral, 2 used brachial-ankle, 1 used aortic PWV, and 11 compared different measures. Studies demonstrated a strong association between increased BP and PWV with brain damage and cognitive deterioration among older adults. One study did not find an interaction with hypertension, while another study found that PWV but not BP was associated with cognitive decline. Few studies showed that the association between stiffness and cognitive outcomes was not significant after adjustment for BP. Several authors suggested that cognitive decline induced by stiff vasculature and hypertension benefited from antihypertensive therapy. CONCLUSION The results of this review demonstrated that arterial hypertension is an important factor linking arterial stiffness to cognitive health in older individuals. BP plays a crucial role in brain integrity, whereas PWV was shown to be a strong measure associated with cognitive decline. Together, they can lead to disabling cognitive outcomes. Early screening of stiffness, BP control, and compliance with treatment are essential for cerebrovascular disease prevention. TRIAL REGISTRATION NIHR PROSPERO registry ID: CRD42022379887 .
Collapse
Affiliation(s)
- Botagoz Aimagambetova
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA.
| | - Taylor Ariko
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| | - Stacy Merritt
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| | - Tatjana Rundek
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| |
Collapse
|
13
|
Pradeep A, Raghavan S, Przybelski SA, Preboske GM, Schwarz CG, Lowe VJ, Knopman DS, Petersen RC, Jack CR, Graff-Radford J, Cogswell PM, Vemuri P. Can white matter hyperintensities based Fazekas visual assessment scales inform about Alzheimer's disease pathology in the population? Alzheimers Res Ther 2024; 16:157. [PMID: 38987827 PMCID: PMC11234605 DOI: 10.1186/s13195-024-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease (AD) pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, AD imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. METHODS We identified 1144 participants from the Mayo Clinic Study of Aging consisting of a population-based sample from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET, and tau-PET standardized uptake value ratio, automated WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). RESULTS Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.82 and 0.74). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97) and showed poor correlation with amyloid and tau PET markers similar to the visual grading. CONCLUSION Our study investigated risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.
Collapse
Affiliation(s)
| | - Sheelakumari Raghavan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory M Preboske
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher G Schwarz
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Martirosian RA, Wiedner CD, Sanchez J, Mun KT, Marla K, Teran C, Thirion M, Liebeskind DS, McGrath ER, Zucker JM, Bernal R, Beiser AS, DeCarli C, Himali JJ, Seshadri S, Hinman JD. Association of Incident Stroke Risk With an IL-18-Centered Inflammatory Network Biomarker Composite. Stroke 2024; 55:1601-1608. [PMID: 38690658 DOI: 10.1161/strokeaha.123.044719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND A coordinated network of circulating inflammatory molecules centered on the pleotropic pro-atherogenic cytokine interleukin-18 (IL-18) is linked to cerebral small vessel disease. We sought to validate the association of this inflammatory biomarker network with incident stroke risk, cognitive impairment, and imaging metrics in a sample of the Framingham Offspring Cohort. METHODS Using available baseline measurements of serum levels of IL-18, GDF (growth and differentiation factor)-15, soluble form of receptor for advanced glycation end products, myeloperoxidase, and MCP-1 (monocyte chemoattractant protein-1) from Exam 7 of the Framingham Offspring Cohort (1998-2001), we constructed a population-normalized, equally weighted log-transformed mean Z-score value representing the average level of each serum analyte to create an inflammatory composite score (ICS5). Multivariable regression models were used to determine the association of ICS5 with incident stroke, brain magnetic resonance imaging features, and cognitive testing performance. RESULTS We found a significant association between ICS5 score and increased risk for incident all-cause stroke (hazard ratio, 1.48 [95% CI, 1.05-2.08]; P=0.024) and ischemic stroke (hazard ratio, 1.51 [95% CI, 1.03-2.21]; P=0.033) in the Exam 7 cohort of 2201 subjects (mean age 62±9 years; 54% female) aged 45+ years with an all-cause incident stroke rate of 6.1% (135/2201) and ischemic stroke rate of 4.9% (108/2201). ICS5 and its component serum markers are all associated with the Framingham Stroke Risk Profile score (β±SE, 0.19±0.02; P<0.0001). In addition, we found a significant inverse association of ICS5 with a global cognitive score, derived from a principal components analysis of the neuropsychological battery used in the Framingham cohort (-0.08±0.03; P=0.019). No association of ICS5 with magnetic resonance imaging metrics of cerebral small vessel disease was observed. CONCLUSIONS Circulating serum levels of inflammatory biomarkers centered on IL-18 are associated with an increased risk of stroke and cognitive impairment in the Framingham Offspring Cohort. Linking specific inflammatory pathways to cerebral small vessel disease may enhance individualized quantitative risk assessment for future stroke and vascular cognitive impairment.
Collapse
Affiliation(s)
- Richard A Martirosian
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| | - Crystal D Wiedner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.D.W., R.B., J.J.H., S.S.), University of Texas Health Science Center at San Antonio
| | - Jasmin Sanchez
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| | - Katherine T Mun
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| | - Kiran Marla
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| | - Cristina Teran
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| | - Marissa Thirion
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| | - David S Liebeskind
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| | - Emer R McGrath
- Framingham Heart Study, MA (E.R.M.G., J.M.Z., A.S.B., C.D.C., J.J.H., S.S.)
- HRB Clinical Research Facility, School of Medicine, University of Galway, Ireland (E.R.M.G.)
| | - Jared M Zucker
- Framingham Heart Study, MA (E.R.M.G., J.M.Z., A.S.B., C.D.C., J.J.H., S.S.)
| | - Rebecca Bernal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.D.W., R.B., J.J.H., S.S.), University of Texas Health Science Center at San Antonio
| | - Alexa S Beiser
- Framingham Heart Study, MA (E.R.M.G., J.M.Z., A.S.B., C.D.C., J.J.H., S.S.)
- Department of Neurology, Boston University School of Medicine, MA (A.S.B., J.J.H., S.S.)
- Department of Biostatistics, Boston University School of Public Health, MA (A.S.B., J.J.H.)
| | - Charles DeCarli
- Framingham Heart Study, MA (E.R.M.G., J.M.Z., A.S.B., C.D.C., J.J.H., S.S.)
- Department of Neurology, University of California Davis, Sacramento (C.D.C.)
| | - Jayandra J Himali
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.D.W., R.B., J.J.H., S.S.), University of Texas Health Science Center at San Antonio
- Department of Population Health Sciences (J.J.H.), University of Texas Health Science Center at San Antonio
- Framingham Heart Study, MA (E.R.M.G., J.M.Z., A.S.B., C.D.C., J.J.H., S.S.)
- Department of Neurology, Boston University School of Medicine, MA (A.S.B., J.J.H., S.S.)
- Department of Biostatistics, Boston University School of Public Health, MA (A.S.B., J.J.H.)
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.D.W., R.B., J.J.H., S.S.), University of Texas Health Science Center at San Antonio
- Framingham Heart Study, MA (E.R.M.G., J.M.Z., A.S.B., C.D.C., J.J.H., S.S.)
- Department of Neurology, Boston University School of Medicine, MA (A.S.B., J.J.H., S.S.)
| | - Jason D Hinman
- David Geffen School of Medicine, University of California Los Angeles (R.A.M., J.S., K.T.M., K.M., C.T., M.T., D.S.L., J.D.H.)
| |
Collapse
|
15
|
Yu HH, Tan CC, Huang SJ, Zhang XH, Tan L, Xu W. Predicting the reversion from mild cognitive impairment to normal cognition based on magnetic resonance imaging, clinical, and neuropsychological examinations. J Affect Disord 2024; 353:90-98. [PMID: 38452935 DOI: 10.1016/j.jad.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Reversion from mild cognitive impairment (MCI) to normal cognition (NC) is not uncommon and indicates a better cognitive trajectory. This study aims to identify predictors of MCI reversion and develop a predicting model. METHOD A total of 391 MCI subjects (mean age = 74.3 years, female = 61 %) who had baseline data of magnetic resonance imaging, clinical, and neuropsychological measurements were followed for two years. Multivariate logistic analyses were used to identify the predictors of MCI reversion after adjusting for age and sex. A stepwise backward logistic regression model was used to construct a predictive nomogram for MCI reversion. The nomogram was validated by internal bootstrapping and in an independent cohort. RESULT In the training cohort, the 2-year reversion rate was 19.95 %. Predictors associated with reversion to NC were higher education level (p = 0.004), absence of APOE4 allele (p = 0.001), larger brain volume (p < 0.005), better neuropsychological measurements performance (p < 0.001), higher glomerular filtration rate (p = 0.035), and lower mean arterial pressure (p = 0.060). The nomogram incorporating five predictors (education, hippocampus volume, the Alzheimer's Disease Assessment Scale-Cognitive score, the Rey Auditory Verbal Learning Test-immediate score, and mean arterial pressure) achieved good C-indexes of 0.892 (95 % confidence interval [CI], 0.859-0.926) and 0.806 (95 % CI, 0.709-0.902) for the training and validation cohort. LIMITATION Observational duration is relatively short; The predicting model warrant further validation in larger samples. CONCLUSION This prediction model could facilitate risk stratification and early management for the MCI population.
Collapse
Affiliation(s)
- Hai-Hong Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Medical College, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shu-Juan Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xin-Hao Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Huang WQ, Lin Q, Tzeng CM. Leukoaraiosis: Epidemiology, Imaging, Risk Factors, and Management of Age-Related Cerebral White Matter Hyperintensities. J Stroke 2024; 26:131-163. [PMID: 38836265 PMCID: PMC11164597 DOI: 10.5853/jos.2023.02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/15/2024] [Indexed: 06/06/2024] Open
Abstract
Leukoaraiosis (LA) manifests as cerebral white matter hyperintensities on T2-weighted magnetic resonance imaging scans and corresponds to white matter lesions or abnormalities in brain tissue. Clinically, it is generally detected in the early 40s and is highly prevalent globally in individuals aged >60 years. From the imaging perspective, LA can present as several heterogeneous forms, including punctate and patchy lesions in deep or subcortical white matter; lesions with periventricular caps, a pencil-thin lining, and smooth halo; as well as irregular lesions, which are not always benign. Given its potential of having deleterious effects on normal brain function and the resulting increase in public health burden, considerable effort has been focused on investigating the associations between various risk factors and LA risk, and developing its associated clinical interventions. However, study results have been inconsistent, most likely due to potential differences in study designs, neuroimaging methods, and sample sizes as well as the inherent neuroimaging heterogeneity and multi-factorial nature of LA. In this article, we provided an overview of LA and summarized the current knowledge regarding its epidemiology, neuroimaging classification, pathological characteristics, risk factors, and potential intervention strategies.
Collapse
Affiliation(s)
- Wen-Qing Huang
- Department of Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Clinical Research Center for Brain Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The Third Clinical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
17
|
Pradeep A, Raghavan S, Przybelski SA, Preboske G, Schwarz CG, Lowe VJ, Knopman DS, Petersen RC, Jack CR, Graff-Radford J, Cogswell PM, Vemuri P. Can white matter hyperintensities based Fazekas visual assessment scales inform about Alzheimer's disease pathology in the population? RESEARCH SQUARE 2024:rs.3.rs-4017874. [PMID: 38558965 PMCID: PMC10980106 DOI: 10.21203/rs.3.rs-4017874/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, Alzheimer's imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. Methods We identified 1144 participants from the Mayo Clinic Study of Aging consisting of older adults from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET and tau-PET standardized uptake value ratio, WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). Results Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.78). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97). Conclusion Our study investigates risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.
Collapse
|
18
|
Allison EY, Al-Khazraji BK. Cerebrovascular adaptations to habitual resistance exercise with aging. Am J Physiol Heart Circ Physiol 2024; 326:H772-H785. [PMID: 38214906 PMCID: PMC11221804 DOI: 10.1152/ajpheart.00625.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
Resistance training (RT) is associated with improved metabolism, bone density, muscular strength, and lower risk of osteoporosis, sarcopenia, and cardiovascular disease. Although RT imparts many physiological benefits, cerebrovascular adaptations to chronic RT are not well defined. Participation in RT is associated with greater resting peripheral arterial diameters, improved endothelial function, and general cardiovascular health, whereas simultaneously linked to reductions in central arterial compliance. Rapid blood pressure fluctuations during resistance exercise, combined with reduced arterial compliance, could lead to cerebral microvasculature damage and subsequent cerebral hypoperfusion. Reductions in cerebral blood flow (CBF) accompany normal aging, where chronic reductions in CBF are associated with changes in brain structure and function, and increased risk of neurodegeneration. It remains unclear whether reductions in arterial compliance with RT relate to subclinical cerebrovascular pathology, or if such adaptations require interpretation in the context of RT specifically. The purpose of this narrative review is to synthesize literature pertaining to cerebrovascular adaptations to RT at different stages of the life span. This review also aims to identify gaps in the current understanding of the long-term impacts of RT on cerebral hemodynamics and provide a mechanistic rationale for these adaptations as they relate to aging, cerebral vasculature, and overall brain health.
Collapse
Affiliation(s)
- Elric Y Allison
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Baraa K Al-Khazraji
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Reeve EH, Barnes JN, Moir ME, Walker AE. Impact of arterial stiffness on cerebrovascular function: a review of evidence from humans and preclincal models. Am J Physiol Heart Circ Physiol 2024; 326:H689-H704. [PMID: 38214904 PMCID: PMC11221809 DOI: 10.1152/ajpheart.00592.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
With advancing age, the cerebral vasculature becomes dysfunctional, and this dysfunction is associated with cognitive decline. However, the initiating cause of these age-related cerebrovascular impairments remains incompletely understood. A characteristic feature of the aging vasculature is the increase in stiffness of the large elastic arteries. This increase in arterial stiffness is associated with elevated pulse pressure and blood flow pulsatility in the cerebral vasculature. Evidence from both humans and rodents supports that increases in large elastic artery stiffness are associated with cerebrovascular impairments. These impacts on cerebrovascular function are wide-ranging and include reductions in global and regional cerebral blood flow, cerebral small vessel disease, endothelial cell dysfunction, and impaired perivascular clearance. Furthermore, recent findings suggest that the relationship between arterial stiffness and cerebrovascular function may be influenced by genetics, specifically APOE and NOTCH genotypes. Given the strength of the evidence that age-related increases in arterial stiffness have deleterious impacts on the brain, interventions that target arterial stiffness are needed. The purpose of this review is to summarize the evidence from human and rodent studies, supporting the role of increased arterial stiffness in age-related cerebrovascular impairments.
Collapse
Affiliation(s)
- Emily H Reeve
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jill N Barnes
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - M Erin Moir
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
20
|
Scheuermann BC, Parr SK, Schulze KM, Kunkel ON, Turpin VG, Liang J, Ade CJ. Associations of Cerebrovascular Regulation and Arterial Stiffness With Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2023; 12:e032616. [PMID: 37930079 PMCID: PMC10727345 DOI: 10.1161/jaha.123.032616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a major contributing factor to ischemic stroke and dementia. However, the vascular pathologies of cSVD remain inconclusive. The aim of this systematic review and meta-analysis was to characterize the associations between cSVD and cerebrovascular reactivity (CVR), cerebral autoregulation, and arterial stiffness (AS). METHODS AND RESULTS MEDLINE, Web of Science, and Embase were searched from inception to September 2023 for studies reporting CVR, cerebral autoregulation, or AS in relation to radiological markers of cSVD. Data were extracted in predefined tables, reviewed, and meta-analyses performed using inverse-variance random effects models to determine pooled odds ratios (ORs). A total of 1611 studies were identified; 142 were included in the systematic review, of which 60 had data available for meta-analyses. Systematic review revealed that CVR, cerebral autoregulation, and AS were consistently associated with cSVD (80.4%, 78.6%, and 85.4% of studies, respectively). Meta-analysis in 7 studies (536 participants, 32.9% women) revealed a borderline association between impaired CVR and cSVD (OR, 2.26 [95% CI, 0.99-5.14]; P=0.05). In 37 studies (27 952 participants, 53.0% women) increased AS, per SD, was associated with cSVD (OR, 1.24 [95% CI, 1.15-1.33]; P<0.01). Meta-regression adjusted for comorbidities accounted for one-third of the AS model variance (R2=29.4%, Pmoderators=0.02). Subgroup analysis of AS studies demonstrated an association with white matter hyperintensities (OR, 1.42 [95% CI, 1.18-1.70]; P<0.01). CONCLUSIONS The collective findings of the present systematic review and meta-analyses suggest an association between cSVD and impaired CVR and elevated AS. However, longitudinal investigations into vascular stiffness and regulatory function as possible risk factors for cSVD remain warranted.
Collapse
Affiliation(s)
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKSUSA
| | | | | | | | - Jia Liang
- Department of Biostatistics, St. Jude Children’s Research HospitalMemphisTNUSA
| | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKSUSA
- Department of Physician’s Assistant Studies, Kansas State UniversityManhattanKSUSA
- Johnson Cancer Research CenterKansas State UniversityManhattanKSUSA
| |
Collapse
|
21
|
Coombs GB, Al-Khazraji BK, Suskin N, Shoemaker JK. Impact of ischemic heart disease and cardiac rehabilitation on cerebrovascular compliance. J Appl Physiol (1985) 2023; 135:753-762. [PMID: 37616337 DOI: 10.1152/japplphysiol.00654.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
We aimed to determine the influence of ischemic heart disease (IHD) and cardiac rehabilitation (CR) on cerebrovascular compliance index (Ci). Eleven (one female) patients with IHD (mean[SD]: 61[11] yr, 29[4] kg/m2) underwent 6 mo of CR, which consisted of ≥3 sessions/wk of aerobic and resistance training (20-60 min each). Ten (three female) similarly aged controls (CON) were tested at baseline as a comparator group. Middle cerebral artery velocity (MCAv) and mean arterial pressure were monitored continuously using transcranial Doppler ultrasound and finger photoplethysmography, respectively, during a rapid sit-to-stand maneuver. A Windkessel model was used to estimate cerebrovascular Ci every five cardiac cycles for a duration of 30 s. Cerebrovascular resistance was calculated as the quotient of MAP and MCAv. Two-way ANOVAs were used to determine whether cerebrovascular variables differ during postural transitions between groups and after CR. Baseline MCAv was higher in CON versus IHD (P = 0.014) and a time × group interaction was observed (P = 0.045) where MCAv decreased more in CON after standing. Compared with the precondition, CR had no effect on MCAv (condition P = 0.950) but a main effect of time indicated that MCAv decreased from the seated position in both conditions (time P = 0.013). Baseline cerebrovascular Ci was greater in IHD versus CON (P = 0.049) and the peak cerebrovascular Ci during the transition to standing was significantly higher in IHD compared with CON (interaction P = 0.047). CR did not affect cerebrovascular compliance (P = 0.452) and no time-by-condition interaction upon standing was present (P = 0.174). Baseline cerebrovascular Ci is higher in IHD at baseline compared with CON, but 6 mo of CR did not modify the transient increase in cerebrovascular Ci during sit-to-stand maneuvers.NEW & NOTEWORTHY Post-cardiac event cognitive impairment is common and exercise-based rehabilitation may be an effective intervention to mitigate cognitive decline. Microvascular damage due to high blood pressure pulsatility entering the brain is the putative mechanism of vascular dementia. Whether patients with ischemic heart disease exhibit lower cerebrovascular compliance, and if cardiac rehabilitation can improve cerebrovascular compliance is unknown. We observed that patients with ischemic heart disease have paradoxically higher cerebrovascular compliance, which is not affected by cardiac rehabilitation.
Collapse
Affiliation(s)
- Geoff B Coombs
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Baraa K Al-Khazraji
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Neville Suskin
- Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Badji A, Youwakim J, Cooper A, Westman E, Marseglia A. Vascular cognitive impairment - Past, present, and future challenges. Ageing Res Rev 2023; 90:102042. [PMID: 37634888 DOI: 10.1016/j.arr.2023.102042] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Vascular cognitive impairment (VCI) is a lifelong process encompassing a broad spectrum of cognitive disorders, ranging from subtle or mild deficits to prodromal and fully developed dementia, originating from cerebrovascular lesions such as large and small vessel disease. Genetic predisposition and environmental exposure to risk factors such as unhealthy lifestyles, hypertension, cardiovascular disease, and metabolic disorders will synergistically interact, yielding biochemical and structural brain changes, ultimately culminating in VCI. However, little is known about the pathological processes underlying VCI and the temporal dynamics between risk factors and disease mechanisms (biochemical and structural brain changes). This narrative review aims to provide an evidence-based summary of the link between individual vascular risk/disorders and cognitive dysfunction and the potential structural and biochemical pathophysiological processes. We also discuss some key challenges for future research on VCI. There is a need to shift from individual risk factors/disorders to comorbid vascular burden, identifying and integrating imaging and fluid biomarkers, implementing a life-course approach, considering possible neuroprotective influences of positive life exposures, and addressing biological sex at birth and gender differences. Finally, this review highlights the need for future researchers to leverage and integrate multidimensional data to advance our understanding of the mechanisms and pathophysiology of VCI.
Collapse
Affiliation(s)
- Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Youwakim
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada; Groupe de Recherche sur la Signalisation Neuronal et la Circuiterie (SNC), Montreal, QC, Canada
| | - Alexandra Cooper
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Haskell-Ramsay CF, Docherty S. Role of fruit and vegetables in sustaining healthy cognitive function: evidence and issues. Proc Nutr Soc 2023; 82:305-314. [PMID: 37092750 DOI: 10.1017/s0029665123002999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Modifiable lifestyle factors, such as improved nutrition, are crucial in maintaining cognitive health in older age. Fruit and vegetables represent healthy and sustainable sources of nutrients with the potential to prevent age-related cognitive decline. The aim of this review is to synthesise the available evidence, from epidemiological and randomised controlled trials (RCT), regarding the role of fruit and vegetables in sustaining healthy cognitive function. Epidemiological studies of combined fruit and vegetable intake suggest that increased consumption may sustain cognition in later life. The evidence appears to be stronger for an association between vegetables and cognition, particularly for green leafy and cruciferous vegetables. Specific benefits shown for berries, citrus fruits, avocado and nuts suggest fruit is worthy of further investigation in relation to cognition. Data from RCT indicate benefits to differing aspects of cognition following citrus and berry fruits, cocoa and peanuts, but the data are limited and there are a lack of studies exploring effects of vegetables. There is growing evidence for an association between fruit and vegetable intake and cognitive function, but this is not always consistent and the data from RCT are limited. Issues in previous research are highlighted, such as strict exclusion criteria, absence of baseline nutritional status data and lack of consideration of individual differences, which may explain the weaker findings from RCT. Inclusion of those most at risk for cognitive decline is recommended in future nutrition and cognition research.
Collapse
Affiliation(s)
| | - Sarah Docherty
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Khaing ZZ, Chandrasekaran A, Katta A, Reed MJ. The Brain and Spinal Microvasculature in Normal Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1309-1319. [PMID: 37093786 PMCID: PMC10395569 DOI: 10.1093/gerona/glad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/25/2023] Open
Abstract
Changes in the brain and spinal cord microvasculature during normal aging contribute to the "sensitive" nature of aged central nervous system tissue to ischemic insults. In this review, we will examine alterations in the central nervous system microvasculature during normal aging, which we define as aging without a dominant pathology such as neurodegenerative processes, vascular injury or disease, or trauma. We will also discuss newer technologies to improve the study of central nervous system microvascular structure and function. Microvasculature within the brain and spinal cord will be discussed separately as anatomy and physiology differ between these compartments. Lastly, we will identify critical areas for future studies as well as key unanswered questions.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Anjali Katta
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Bruno RM, Varbiro S, Pucci G, Nemcsik J, Lønnebakken MT, Kublickiene K, Schluchter H, Park C, Mozos I, Guala A, Hametner B, Seeland U, Boutouyrie P. Vascular function in hypertension: does gender dimension matter? J Hum Hypertens 2023; 37:634-643. [PMID: 37061653 DOI: 10.1038/s41371-023-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/17/2023]
Abstract
Blood pressure and vascular ageing trajectories differ between men and women. These differences develop due to sex-related factors, attributable to sex chromosomes or sex hormones, and due to gender-related factors, mainly related to different sociocultural behaviors. The present review summarizes the relevant facts regarding gender-related differences in vascular function in hypertension. Among sex-related factors, endogenous 17ß-estradiol plays a key role in protecting pre-menopausal women from vascular ageing. However, as vascular ageing (preceding and inducing hypertension) has a steeper increase in women than in men starting already from the third decade, it is likely that gender-related factors play a prominent role, especially in the young. Among gender-related factors, psychological stress (including that one related to gender-based violence and discrimination), depression, some psychological traits, but also low socioeconomic status, are more common in women than men, and their impact on vascular ageing is likely to be greater in women. Men, on the contrary, are more exposed to the vascular adverse consequences of alcohol consumption, as well as of social deprivation, while "toxic masculinity" traits may result in lower adherence to lifestyle and preventive strategies. Unhealthy diet habits are more prevalent in men and smoking is equally prevalent in the two sexes, but have a disproportional negative effect on women's vascular health. In conclusion, given the major and complex role of gender-related factors in driving vascular alterations and blood pressure patterns, gender dimension should be systematically integrated into future research on vascular function and hypertension and to tailor cardiovascular prevention strategies.
Collapse
Affiliation(s)
- Rosa-Maria Bruno
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Pharmacology Unit, Hôpital Européen Georges Pompidou, Paris, France.
| | - Szabolcs Varbiro
- Workgroup for Science Management, Doctoral School, Semmelweis University, Budapest, Hungary
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Giacomo Pucci
- Internal Medicine Unit, "Santa Maria" Terni Hospital and Department of Medicine and Surgery-University of Perugia, Perugia, Italy
| | - János Nemcsik
- Department of Family Medicine and Health Service of Zuglo (ZESZ), Semmelweis University, Budapest, Hungary
| | - Mai Tone Lønnebakken
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Karolina Kublickiene
- Institution for Clinical Science, Intervention and Technology, Department of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Schluchter
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernhard Hametner
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Vienna, Austria
| | - Ute Seeland
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pierre Boutouyrie
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Pharmacology Unit, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
26
|
Hunt RD, Sedighi O, Clark WM, Doiron AL, Cipolla M. Differential effect of gold nanoparticles on cerebrovascular function and biomechanical properties. Physiol Rep 2023; 11:e15789. [PMID: 37604668 PMCID: PMC10442527 DOI: 10.14814/phy2.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Human stroke serum (HSS) has been shown to impair cerebrovascular function, likely by factors released into the circulation after ischemia. 20 nm gold nanoparticles (GNPs) have demonstrated anti-inflammatory properties, with evidence that they decrease pathologic markers of ischemic severity. Whether GNPs affect cerebrovascular function, and potentially protect against the damaging effects of HSS on the cerebral circulation remains unclear. HSS obtained 24 h poststroke was perfused through the lumen of isolated and pressurized third-order posterior cerebral arteries (PCAs) from male Wistar rats with and without GNPs (~2 × 109 GNP/ml), or GNPs in vehicle, in an arteriograph chamber (n = 8/group). All vessels were myogenically reactive ≥60 mmHg intravascular pressure; however, vessels containing GNPs had significantly less myogenic tone. GNPs increased vasoreactivity to small and intermediate conductance calcium activated potassium channel activation via NS309; however, reduced vasoconstriction to nitric oxide synthase inhibition. Hydraulic conductivity and transvascular filtration, were decreased by GNPs, suggesting a protective effect on the blood-brain barrier. The stress-strain curves of PCAs exposed to GNPs were shifted leftward, indicating increased vessel stiffness. This study provides the first evidence that GNPs affect the structure and function of the cerebrovasculature, which may be important for their development and use in biomedical applications.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Omid Sedighi
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
| | - Wayne M. Clark
- Oregon Stroke Center, Department of NeurologyOregon Health, and Science UniversityPortlandUSA
| | - Amber L. Doiron
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
| | - Marilyn J. Cipolla
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Department of PharmacologyUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
27
|
Haidegger M, Lindenbeck S, Hofer E, Rodler C, Zweiker R, Perl S, Pirpamer L, Kneihsl M, Fandler-Höfler S, Gattringer T, Enzinger C, Schmidt R. Arterial stiffness and its influence on cerebral morphology and cognitive function. Ther Adv Neurol Disord 2023; 16:17562864231180715. [PMID: 37363185 PMCID: PMC10285591 DOI: 10.1177/17562864231180715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Background Recently, arterial stiffness has been associated with cerebral small vessel disease (SVD), brain atrophy and vascular dementia. Arterial stiffness is assessed via pulse wave velocity (PWV) measurement and is strongly dependent on arterial blood pressure. While circadian blood pressure fluctuations are important determinants of end-organ damage, the role of 24-h PWV variability is yet unclear. Objectives We here investigated the association between PWV and its circadian changes on brain morphology and cognitive function in community-dwelling individuals. Design Single-centre, prospective, community-based follow-up study. Methods The study cohort comprised elderly community-based participants of the Austrian Stroke Prevention Family Study which was started in 2006. Patients with any history of cerebrovascular disease or dementia were excluded. The study consists of 84 participants who underwent ambulatory 24-h PWV measurement. White matter hyperintensity volume and brain volume were evaluated by 3-Tesla magnetic resonance imaging (MRI). A subgroup of patients was evaluated for cognitive function using an extensive neuropsychological test battery. Results PWV was significantly related to reduced total brain volume (p = 0.013), which was independent of blood pressure and blood pressure variability. We found no association between PWV with markers of cerebral SVD or impaired cognitive functioning. Only night-time PWV values were associated with global brain atrophy (p = 0.005). Conclusions This study shows a relationship of arterial stiffness and reduced total brain volume. Elevations in PWV during night-time are of greater importance than day-time measures.
Collapse
Affiliation(s)
| | - Simon Lindenbeck
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Edith Hofer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Christina Rodler
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Robert Zweiker
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sabine Perl
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
28
|
Zhu Y, Li M, Bai J, Wang H, Huang X. Hypertension, antihypertensive drugs, and age at onset of Huntington's disease. Orphanet J Rare Dis 2023; 18:125. [PMID: 37226269 DOI: 10.1186/s13023-023-02734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Associations between blood pressure (BP) with age at onset of Huntington's disease (HD) have reported inconsistent findings. We used Mendelian randomization (MR) to assess effects of BP and lowering systolic BP (SBP) via the genes encoding targets of antihypertensive drugs on age at onset of HD. METHODS Genetic variants from genome-wide association studies(GWAS) of BP traits and BP-lowering variants in genes encoding antihypertensive drugs targets were extracted. Summary statistics for age at onset of HD were retrieved from the GWAS meta-analysis of HD residual age at onset from the GEM-HD Consortium included 9064 HD patients of European ancestry (4417 males and 4,647 females). MR estimates were calculated using the inverse variance weighted method, supplemented by MR-Egger, weighted median, and MR-PRESSO methods. RESULTS Genetically predicted SBP or diastolic BP increase was associated with a later age at onset of HD. However, after SBP/DBP was present as a covariate using multivariable MR method, no significant causal association was suggested. A 10-mm Hg reduction in SBP through variants in genes encoding targets of calcium channel blockers (CCB) was associated with an earlier age at onset of HD (β=-0.220 years, 95% CI =-0.337 to -0.102, P = 2.42 × 10- 4). We did not find a causal association between angiotensin converting enzyme inhibitors and β-blockers with the earlier HD onset. No heterogeneity and horizontal pleiotropy were identified. CONCLUSIONS This MR analysis provided evidence that genetically determined SBP lowering through antihypertensive drugs might be associated with an earlier age at onset of HD. The results may have a potential impact on management of hypertension in the pre-motor-manifest HD population.
Collapse
Affiliation(s)
- Yahui Zhu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mao Li
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jiongming Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Haoran Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China.
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
29
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
30
|
Tomoto T, Tarumi T, Zhang R. Central arterial stiffness, brain white matter hyperintensity and total brain volume across the adult lifespan. J Hypertens 2023; 41:819-829. [PMID: 36883450 PMCID: PMC10079586 DOI: 10.1097/hjh.0000000000003404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Mounting evidence suggests that central arterial stiffening is associated with brain ageing in older adults. The purpose of this study was to determine the associations of age with carotid arterial stiffness and carotid-femoral pulse wave velocity (cfPWV), both measurements of central arterial stiffness, the relationship between age-related arterial stiffness, brain white matter hyperintensity (WMH) and total brain volume (TBV), and whether effects of central arterial stiffness on WMH volume and TBV are mediated by pulsatile cerebral blood flow (CBF). METHODS One hundred and seventy-eight healthy adults (21-80 years) underwent measurements of central arterial stiffness using tonometry and ultrasonography, WMH and TBV via MRI, and pulsatile CBF at the middle cerebral artery via transcranial Doppler. RESULTS Advanced age was associated with increases in both carotid arterial stiffness and cfPWV, increases in WMH volume and decreases in TBV (all P < 0.01). Multiple linear regression analysis showed that carotid β-stiffness was positively associated with WMH volume (B = 0.015, P = 0.017) and cfPWV negatively with TBV (B = -0.558, P < 0.001) after adjustment for age, sex and arterial pressure. Pulsatile CBF mediates the associations between carotid β-stiffness and WMH (95% confidence interval: 0.0001-0.0079). CONCLUSION These findings suggest that age-related central arterial stiffness is associated with increased WMH volume and decreased TBV, which is likely mediated by increased arterial pulsation.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Laporte JP, Faulkner ME, Gong Z, Palchamy E, Akhonda MA, Bouhrara M. Investigation of the association between central arterial stiffness and aggregate g-ratio in cognitively unimpaired adults. Front Neurol 2023; 14:1170457. [PMID: 37181577 PMCID: PMC10167487 DOI: 10.3389/fneur.2023.1170457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Stiffness of the large arteries has been shown to impact cerebral white matter (WM) microstructure in both younger and older adults. However, no study has yet demonstrated an association between arterial stiffness and aggregate g-ratio, a specific magnetic resonance imaging (MRI) measure of axonal myelination that is highly correlated with neuronal signal conduction speed. In a cohort of 38 well-documented cognitively unimpaired adults spanning a wide age range, we investigated the association between central arterial stiffness, measured using pulse wave velocity (PWV), and aggregate g-ratio, measured using our recent advanced quantitative MRI methodology, in several cerebral WM structures. After adjusting for age, sex, smoking status, and systolic blood pressure, our results indicate that higher PWV values, that is, elevated arterial stiffness, were associated with lower aggregate g-ratio values, that is, lower microstructural integrity of WM. Compared to other brain regions, these associations were stronger and highly significant in the splenium of the corpus callosum and the internal capsules, which have been consistently documented as very sensitive to elevated arterial stiffness. Moreover, our detailed analysis indicates that these associations were mainly driven by differences in myelination, measured using myelin volume fraction, rather than axonal density, measured using axonal volume fraction. Our findings suggest that arterial stiffness is associated with myelin degeneration, and encourages further longitudinal studies in larger study cohorts. Controlling arterial stiffness may represent a therapeutic target in maintaining the health of WM tissue in cerebral normative aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
32
|
Kennedy KG, Islam AH, Karthikeyan S, Metcalfe AWS, McCrindle BW, MacIntosh BJ, Black S, Goldstein BI. Differential association of endothelial function with brain structure in youth with versus without bipolar disorder. J Psychosom Res 2023; 167:111180. [PMID: 36764023 DOI: 10.1016/j.jpsychores.2023.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mood symptoms and disorders are associated with impaired endothelial function, a marker of early atherosclerosis. Given the increased vascular burden and neurostructural differences among individuals with mood disorders, we investigated the endothelial function and brain structure interface in relation to youth bipolar disorder (BD). METHODS This cross-sectional case-controlled study included 115 youth, ages 13-20 years (n = 66 BD; n = 49 controls [CG]). Cortical thickness and volume for regions of interest (ROI; insular cortex, ventrolateral prefrontal cortex [vlPFC], temporal lobe) were acquired from FreeSurfer processed T1-weighted MRI images. Endothelial function was assessed using pulse amplitude tonometry, yielding a reactive hyperemia index (RHI). ROI and vertex-wise analyses controlling for age, sex, obesity, and intracranial volume investigated for RHI-neurostructural associations, and RHI-by-diagnosis interactions. RESULTS In ROI analyses, higher RHI (i.e., better endothelial function) was associated with lower thickness in the insular cortex (β = -0.19, pFDR = 0.03), vlPFC (β = -0.30, pFDR = 0.003), and temporal lobe (β = -0.22, pFDR = 0.01); and lower temporal lobe volume (β = -0.16, pFDR = 0.01) in the overall sample. In vertex-wise analyses, higher RHI was associated with lower cortical thickness and volume in the insular cortex, prefrontal cortex (e.g., vlPFC), and temporal lobe. Additionally, higher RHI was associated with lower vlPFC and temporal lobe volume to a greater extent in youth with BD vs. CG. CONCLUSIONS Better endothelial function was associated with lower regional brain thickness and volume, contrasting the hypothesized associations. Additionally, we found evidence that this pattern was exaggerated in youth with BD. Future studies examining the direction of the observed associations and underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sudhir Karthikeyan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Arron W S Metcalfe
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - Brian W McCrindle
- Faculty of Medicine, University of Toronto, Toronto, Canada; Hospital for Sick Children, Toronto, Canada; Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Computational Radiology & Artificial Intelligence (CRAI) Unit, Dept of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Sandra Black
- Faculty of Medicine, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada.
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
33
|
Winder NR, Reeve EH, Kronquist EK, Khurana A, Lee B, Nguyen T, Henson GD, Walker AE. High pulse pressure impairs cerebral artery endothelial function in young, but not old, mice. Exp Gerontol 2023; 173:112101. [PMID: 36690049 PMCID: PMC9974894 DOI: 10.1016/j.exger.2023.112101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
One of the hallmarks of vascular aging is increased pulse pressure. This elevated pulse pressure is associated with deleterious effects on cerebral vascular function; however, it is unknown if age modulates the susceptibility to high pulse pressure. To examine the effects of age on the cerebral artery response to pulse pressure, we studied isolated cerebral arteries collected from young (6.1 ± 0.2 mo) and old (26.7 ± 0.5 mo) male C57BL/6 mice. Isolated cerebral arteries were exposed ex vivo to static pressure, low pulse pressure (25 mmHg), and high pulse pressure (50 mmHg). In cerebral arteries from young mice, endothelium-dependent dilation was similar between the static and low pulse pressure conditions. Exposure to high pulse pressure impaired endothelium-dependent dilation in cerebral arteries from young mice, mediated by less nitric oxide bioavailability and greater oxidative stress. Cerebral arteries from old mice had impaired cerebral artery endothelium-dependent dilation at static pressure compared with young cerebral arteries. However, exposure to low or high pulse pressure did not cause any further impairments to endothelium-dependent dilation in old cerebral arteries compared with static pressure. The old cerebral arteries had less distension during exposure to high pulse pressure and greater stiffness compared with young cerebral arteries. These results indicate that acute exposure to high pulse pressure impairs endothelium-dependent dilation in young, but not old, cerebral arteries. The greater stiffness of cerebral arteries from old mice potentially protects against the negative consequences of high pulse pressure.
Collapse
Affiliation(s)
- Nick R Winder
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Emily H Reeve
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Elise K Kronquist
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Aleena Khurana
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Byron Lee
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Thuan Nguyen
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
34
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2289] [Impact Index Per Article: 1144.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
35
|
Zheng Q, Wang H, Wang X, Lan Y, Wu W, Yu X, Huang Z, Chen Z, Cai Z, Lin Q, Zhou H, Zhu Y, Liu M, Wu K, Zheng H, Wu S, Chen Y. Individual and combined contributions of non-high-density lipoprotein cholesterol and brachial-ankle pulse wave velocity to cardiovascular disease risk: Results of a prospective study using the Kailuan cohort. Front Cardiovasc Med 2023; 10:1105464. [PMID: 36844718 PMCID: PMC9947564 DOI: 10.3389/fcvm.2023.1105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE We aimed to characterize the relationship of a combination of circulating non-high-density lipoprotein-cholesterol (non-HDL-C) concentration and brachial-ankle pulse wave velocity (baPWV) with cardiovascular disease (CVD). METHODS We performed a prospective cohort study of the residents of the Kailuan community, with data from a total of 45,051 participants being included in the final analysis. The participants were allocated to four groups according to their non-HDL-C and baPWV status, each of which was categorized as high or normal. Cox proportional hazards models were used to explore the relationships of non-HDL-C and baPWV, individually and in combination, with the incidence of CVD. RESULTS During the 5.04-year follow-up period, 830 participants developed CVD. Compared with the Normal non-HDL-C group independently, the multivariable adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for CVD in the High non-HDL-C was 1.25 (1.08-1.46). Compared with the Normal baPWV group independently, the HRs and 95% CIs for CVD in the High baPWV was 1.51 (1.29-1.76). In addition, compared with the Normal both non-HDL-C and baPWV group, the HRs and 95% CIs for CVD in the High non-HDL-C and normal baPWV, Normal non-HDL-C and high baPWV, and High both non-HDL-C and baPWV groups were 1.40 (1.07-1.82), 1.56 (1.30-1.88), and 1.89 (1.53-2.35), respectively. CONCLUSION High non-HDL-C concentration and high baPWV are independently associated with a higher risk of CVD, and individuals with high both non-HDL-C and baPWV are at a still higher risk of CVD.
Collapse
Affiliation(s)
- Qiongbing Zheng
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Hui Wang
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianxuan Wang
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
| | - Youmian Lan
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiang Wu
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xinran Yu
- Graduate School, North China University of Science and Technology, Tangshan, China
| | - Zegui Huang
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
| | - Zekai Chen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Zefeng Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qi Lin
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Houshi Zhou
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Yongdong Zhu
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Muyuan Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Kuangyi Wu
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
| | - Huancong Zheng
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
- *Correspondence: Shouling Wu ✉
| | - Youren Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Youren Chen ✉
| |
Collapse
|
36
|
Saltanova VA, Kicherova OA, Reikhert LI, Doyan YI, Gartung KA. [Cognitive impairments in various types of cardiac remodeling]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:53-57. [PMID: 37315242 DOI: 10.17116/jnevro202312305153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The review of the literature highlights current studies proving the relationship between cognitive impairment and various types of myocardial remodeling. The main pathophysiological mechanisms of development of concentric and eccentric myocardial hypertrophy and their influence on the formation of cognitive impairments are described. Direct causal relationships have not yet been found, but several linking factors in the development of cognitive impairment and myocardial remodeling are being investigated: arterial hypertension, increased arterial stiffness, endothelial dysfunction, microglial activation, hyperreactivity of the sympathetic nervous system, and obesity.
Collapse
Affiliation(s)
| | | | | | - Yu I Doyan
- Tyumen State Medical University, Tyumen, Russia
- Regional Clinical Hospital No. 2, Tyumen, Russia
| | - K A Gartung
- Regional Clinical Hospital No. 2, Tyumen, Russia
| |
Collapse
|
37
|
Wang X, Chen G, Huang Z, Zang Y, Cai Z, Ding X, Chen Z, Lan Y, Li W, Fang W, Wu W, Chen Z, Wu S, Chen Y. Effect of Aerobic Exercise on Arterial Stiffness in Individuals with Different Smoking Statuses. Int J Sports Med 2023; 44:48-55. [PMID: 36332620 PMCID: PMC9815950 DOI: 10.1055/a-1925-7588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to investigate the immediate effects of acute bout of aerobic exercise on arterial stiffness in individuals with different smoking statuses. A total of 940 male individuals (mean age of 36.82±7.76 years) in the Kailuan study cohort were selected to participate in the fifth National Physical Fitness Monitoring. All participants completed measurements of brachial - ankle pulse wave velocity (baPWV) before and after twice-quantitative cycle ergometer exercise. Four groups were defined: (1) non-smokers (n=231), (2) former smokers (n=165), (3) light smokers (1-10 cigarettes/day, n=254), (4) heavy smokers (>10 cigarettes/day, n=290). Generalized linear models were established to analyze between-group differences in the change in baPWV before and after acute aerobic exercise in individuals with different smoking statuses. Overall, after acute aerobic exercise, baPWV was immediately decreased significantly (-33.55 cm/s [95% CI, - 39.69 to -27.42]). Compared with non-smokers, former smokers, light smokers, and heavy smokers showed a greater decrease in baPWV (-12.17 cm/s [95%CI, - 30.08 to 5.75], - 18.43 cm/s [95%CI, -34.69 to - 2.16], and -22.46 cm/s [95%CI, - 38.39 to - 6.54]) respectively. There is a transient decrease in baPWV in individuals with different smoking statuses. Compared with non-smokers, baPWV decreased more significantly in light and heavy smokers.
Collapse
Affiliation(s)
- Xianxuan Wang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guanzhi Chen
- Second Clinical College, China Medical University, Shenyang,
China
| | - Zegui Huang
- Department of Cardiology, Second Affiliated Hospital of Shantou
University Medical College, Shantou, China
| | - Yiran Zang
- Graduate School, North China University of Science and Technology,
Tangshan, China
| | - Zefeng Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou
University Medical College, Shantou, China
| | - Xiong Ding
- School of Public Health, North China University of Science and
Technology, Tangshan, China
| | - Zekai Chen
- Department of Epidemiology, University Medical Centre Groningen,
Groningen, Netherlands
| | - Yulong Lan
- Department of Cardiology, Second Affiliated Hospital of Shantou
University Medical College, Shantou, China
| | - Weijian Li
- Department of Cardiology, Second Affiliated Hospital of Shantou
University Medical College, Shantou, China
| | - Wei Fang
- Department of Cardiology, Second Affiliated Hospital of Shantou
University Medical College, Shantou, China
| | - Weiqiang Wu
- Department of Cardiology, Second Affiliated Hospital of Shantou
University Medical College, Shantou, China
| | - Zhichao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou
University Medical College, Shantou, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan,
China
| | - Youren Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Correspondence Mr. Youren Chen Department of CardiologySecond Affiliated Hospital of Shantou University Medical
CollegeNo.69, Dongxia North Road515000
ShantouChina
| |
Collapse
|
38
|
Yoo IH, Kim JM, Han SH, Ryu J, Jung KH, Park KY. Increased pulsatility index of the basilar artery is a risk factor for neurological deterioration after stroke: a case control study. Clin Hypertens 2022; 28:27. [PMID: 35965347 PMCID: PMC9377089 DOI: 10.1186/s40885-022-00210-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Higher pulsatility of the middle cerebral artery (MCA) is known to be associated with stroke progression. We investigated whether pulsatility index (PI) of the basilar artery (BA) can predict neurological deterioration (ND) after acute cerebral infarction. Methods A total of 708 consecutive patients with acute ischemic stroke who had undergone transcranial Doppler (TCD) ultrasonography were included. ND was defined as an increase in the National Institutes of Health Stroke Scale scores by two or more points after admission. The patients were categorized into quartiles according to BA PI. Multivariable logistic regression analysis was performed to examine whether BA PI is independently associated with ND. Results BA PI was well correlated with the right (n = 474, r2 = 0.573, P < 0.001) by Pearson correlation analysis although MCA PI could not be measured from right MCA (n = 234, 33.05%) and left MCA (n = 252, 35.59%) by TCD owing to insufficient temporal bone window. Multivariable logistic regression analysis including age, sex, cerebral atherosclerosis burden, National Institutes of Health Stroke Scale at admission, and the proportion of patients with current smoking status, hypertension, diabetes mellitus, atrial fibrillation revealed that the higher BA PI (odds ratio, 3.28; confidence interval, 1.07–10.17; P = 0.038) was independently associated with ND. Conclusions BA PI, which would be identified regardless of temporal window, could predict ND among acute stroke patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40885-022-00210-9.
Collapse
|
39
|
Miwa K, Toyoda K. Covert vascular brain injury in chronic kidney disease. Front Neurol 2022; 13:824503. [PMID: 35959397 PMCID: PMC9358355 DOI: 10.3389/fneur.2022.824503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) contributes to the increased risk of stroke and dementia. Accumulating evidence indicates that structural brain abnormalities, such as cerebral small vessel disease, including white matter hyperintensities, lacunes, perivascular spaces, and cerebral microbleeds, as well as brain atrophy, are common in patients with CKD. All of these imaging findings have been implicated in the development of stroke and dementia. The brain and kidney exhibit similar impairments and promote structural brain abnormalities due to shared vascular risk factors and similar anatomical and physiological susceptibility to vascular injury in patients with CKD. This indicates that kidney function has a significant effect on brain aging. However, as most results are derived from cross-sectional observational studies, the exact pathophysiology of structural brain abnormalities in CKD remains unclear. The early detection of structural brain abnormalities in CKD in the asymptomatic or subclinical phase (covert) should enable stroke risk prediction and guide clinicians on more targeted interventions to prevent stroke in patients with CKD. This article summarizes the currently available clinical evidence linking covert vascular brain injuries with CKD.
Collapse
|
40
|
Cooper LL, O'Donnell A, Beiser AS, Thibault EG, Sanchez JS, Benjamin EJ, Hamburg NM, Vasan RS, Larson MG, Johnson KA, Mitchell GF, Seshadri S. Association of Aortic Stiffness and Pressure Pulsatility With Global Amyloid-β and Regional Tau Burden Among Framingham Heart Study Participants Without Dementia. JAMA Neurol 2022; 79:710-719. [PMID: 35666520 DOI: 10.1001/jamaneurol.2022.1261] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Aortic stiffness is associated with clinical hallmarks of Alzheimer disease and related dementias and could be a modifiable target for disease prevention. Objective To assess associations of aortic stiffness and pressure pulsatility with global amyloid-β plaques and regional tau burden in the brain of middle-aged and older adults without dementia. Design, Setting, and Participants The sample for this cross-sectional study was drawn from the Framingham Heart Study Third Generation Cohort at examination 3 (N = 3171; 2016-2019), of whom 3092 successfully underwent comprehensive hemodynamic evaluations. In a supplemental visit (2015-2021), a subset of 270 participants without dementia who represented the spectrum of vascular risk also underwent positron emission tomography. Thirteen participants were excluded for missing covariate data. The final sample size was 257 participants. Exposures Three measures of aortic stiffness and pressure pulsatility (carotid-femoral pulse wave velocity, central pulse pressure [CPP], and forward wave amplitude [FWA]) were evaluated using arterial tonometry. Main Outcomes and Measures Global amyloid-β plaques and regional tau were assessed using 11C-Pittsburgh compound B and 18F-flortaucipir positron emission tomography tracers, respectively. Results The mean (SD) age of the 257 participants was 54 (8) years, and 126 were women (49%). All participants were White Western European race. In multivariable models, higher CPP (β per SD = 0.17; 95% CI, 0.00-0.35; P = .045) and FWA (β per SD = 0.16; 95% CI, 0.00-0.31; P = .04) were associated with greater entorhinal tau burden. In similar models, higher CPP (β per SD = 0.19; 95% CI, 0.02-0.36; P = .03) and FWA (β per SD = 0.17; 95% CI, 0.01-0.32; P = .03) were associated with greater rhinal tau burden. Aortic stiffness and pressure pulsatility measures were not associated with amygdala, inferior temporal, precuneus tau burden, or global amyloid-β plaques. Associations for entorhinal and rhinal tau outcomes were more prominent in older participants (≥60 years). For example, higher levels of all aortic stiffness and pressure pulsatility measures (β per SD = 0.40-0.92; P = .001-.02) were associated with higher entorhinal tau burden among older but not younger participants in stratified analyses. Conclusions and Relevance In this cross-sectional study, abnormal central vascular hemodynamics were associated with higher tau burden in specific brain regions. Findings suggest that aortic stiffness, which is potentially modifiable, may be a probable independent target for prevention of tau-related pathologies.
Collapse
Affiliation(s)
- Leroy L Cooper
- Biology Department, Vassar College, Poughkeepsie, New York
| | - Adrienne O'Donnell
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,Boston University and the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,Boston University and the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Emma G Thibault
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Justin S Sanchez
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Emelia J Benjamin
- Boston University and the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts.,Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Evans Department of Medicine, Boston Medical Center, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Naomi M Hamburg
- Evans Department of Medicine, Boston Medical Center, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Ramachandran S Vasan
- Boston University and the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts.,Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Evans Department of Medicine, Boston Medical Center, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Martin G Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,Boston University and the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston.,Departments of Radiology and Neurology, Harvard Medical School, Boston, Massachusetts
| | | | - Sudha Seshadri
- Boston University and the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, Texas
| |
Collapse
|
41
|
Jakimovski D, Zivadinov R, Pelizzari L, Dunne-Jaffe C, Browne RW, Bergsland N, Dwyer MG, Weinstock-Guttman B, Ramanathan M. Plasma 24-hydroxycholesterol is associated with narrower common carotid artery and greater flow velocities in relapsing multiple sclerosis. Mult Scler Relat Disord 2022; 63:103906. [DOI: 10.1016/j.msard.2022.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
|
42
|
Pierce GL, Coutinho TA, DuBose LE, Donato AJ. Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology (Bethesda) 2022; 37:154-173. [PMID: 34779281 PMCID: PMC8977146 DOI: 10.1152/physiol.00035.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Thais A Coutinho
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Cardiology and Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Lyndsey E DuBose
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
- Geriatric Research Education and Clinical Center, VA Salt Lake City, Salt Lake City, Utah
| |
Collapse
|
43
|
Angoff R, Himali JJ, Maillard P, Aparicio HJ, Vasan RS, Seshadri S, Beiser AS, Tsao CW. Relations of Metabolic Health and Obesity to Brain Aging in Young to Middle-Aged Adults. J Am Heart Assoc 2022; 11:e022107. [PMID: 35229662 PMCID: PMC9075324 DOI: 10.1161/jaha.121.022107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
Background We aimed to evaluate the association between metabolic health and obesity and brain health measured via magnetic resonance imaging and neurocognitive testing in community dwelling adults. Methods and Results Framingham Heart Study Third Generation Cohort members (n=2170, 46±9 years of age, 54% women) without prevalent diabetes, stroke, dementia, or other neurologic conditions were grouped by metabolic unhealthiness (≥2 criteria for metabolic syndrome) and obesity (body mass index ≥30 kg/m2): metabolically healthy (MH) nonobese, MH obese, metabolically unhealthy (MU) nonobese, and MU obese. We evaluated the relationships of these groups with brain structure (magnetic resonance imaging) and function (neurocognitive tests). In multivariable-adjusted analyses, metabolically unhealthy individuals (MU nonobese and MU obese) had lower total cerebral brain volume compared with the MH nonobese referent group (both P<0.05). Additionally, the MU obese group had greater white matter hyperintensity volume (P=0.004), whereas no association was noted between white matter hyperintensity volume and either groups of metabolic health or obesity alone. Obese individuals had less favorable cognitive scores: MH obese had lower scores on global cognition, Logical Memory-Delayed Recall and Similarities tests, and MU obese had lower scores on Similarities and Visual Reproductions-Delayed tests (all P≤0.04). MU and obese groups had higher free water content and lower fractional anisotropy in several brain regions, consistent with loss of white matter integrity. Conclusions In this cross-sectional cohort study of younger to middle-aged adults, poor metabolic health and obesity were associated with structural and functional evidence of brain aging. Improvement in metabolic health and obesity may present opportunities to improve long-term brain health.
Collapse
Affiliation(s)
- Rebecca Angoff
- Cardiovascular DivisionBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMA
| | - Jayandra J. Himali
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Department of BiostatisticsBoston UniversityBostonMA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTX
- The Framingham Heart StudyFraminghamMA
| | - Pauline Maillard
- Department of Neurology and Center for NeuroscienceUniversity of California at DavisDavisCA
| | - Hugo J. Aparicio
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Ramachandran S. Vasan
- Department of MedicineSchool of MedicineBoston UniversityBostonMA
- Department of EpidemiologyBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Sudha Seshadri
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTX
- Department of Population Health SciencesUniversity of Texas Health Science CenterSan AntonioTX
- The Framingham Heart StudyFraminghamMA
| | - Alexa S. Beiser
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Department of BiostatisticsBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Connie W. Tsao
- Cardiovascular DivisionBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMA
- The Framingham Heart StudyFraminghamMA
| |
Collapse
|
44
|
Zhao Y, Dang L, Tian X, Yang M, Lv M, Sun Q, Du Y. Association Between Intracranial Pulsatility and White Matter Hyperintensities in Asymptomatic Intracranial Arterial Stenosis: A Population-Based Study in Shandong, China. J Stroke Cerebrovasc Dis 2022; 31:106406. [PMID: 35248835 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The effects of increased intracranial pulsatility on the severity of white matter hyperintensities (WMH) in participants with asymptomatic intracranial arterial stenosis (aICAS) remain uncertain. We aimed to investigate whether an increased pulsatility index (PI) is associated with WMH volume (WMHV) in individuals with aICAS. MATERIALS AND METHODS All participants were recruited from the Kongcun Town aICAS Study, including a total of 103 participants with aICAS and 98 healthy controls (age- and sex-matched). PI was assessed using transcranial Doppler ultrasound. The WMHV was calculated through the lesion segmentation tool system for the Statistical Parametric Mapping package based on magnetic resonance imaging. The association between PI and lnWMHV was analyzed by linear regression models adjusting for demographics, lifestyle, and vascular risk factors. RESULTS The lnWMHV and PI between the aICAS and control groups showed no significant differences (P = 0.171 and 0.287, respectively). In a multivariable model, age ≥ 60 years and male sex (P = 0.000 and 0.006, respectively) were significant predictors of lnWMHV in the aICAS group. In sex-stratified analyses, there was a significant association between PI and lnWMHV in males with aICAS (P = 0.038). CONCLUSIONS This study suggest there might be a likely association between increased intracranial pulsatility and WMH burden in males with aICAS.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liang Dang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xue Tian
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Meilan Yang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Lv
- Department of Clinical Epidemiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
45
|
Lee DA, Park BS, Ko J, Park SH, Park JH, Kim IH, Lee YJ, Park KM. Glymphatic system function in patients with newly diagnosed focal epilepsy. Brain Behav 2022; 12:e2504. [PMID: 35107879 PMCID: PMC8933756 DOI: 10.1002/brb3.2504] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The aim of this study was to analyze the glymphatic system function and its relationship with clinical characteristics, global diffusion tensor imaging (DTI) parameters, and global structural connectivity in treatment-naïve patients with newly diagnosed focal epilepsy. METHODS This retrospective single-center study investigated patients with focal epilepsy and healthy controls. All participants underwent routine brain magnetic resonance imaging and DTI. DTI analysis along the perivascular space (DTI-ALPS) was used to evaluate glymphatic system function. We also calculated the measures of global DTI parameters, including whole-brain fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), and performed a graph theoretical network analysis to measure global structural connectivity. RESULTS A total of 109 patients with focal epilepsy and 88 healthy controls were analyzed. There were no significant differences in the DTI-ALPS index (1.67 vs. 1.68, p = 0.861) between the groups. However, statistically significant associations were found between the DTI-ALPS index and age (r = -0.242, p = 0.01), FA (r = 0.257, p = 0.007), MD (r = -0.469, p < 0.001), AD (r = -0.303, p = 0.001), RD (r = -0.434, p < 0.001), and the assortative coefficient (r = 0.230, p = 0.016) in patients with focal epilepsy. CONCLUSION The main finding of this study is that DTI-ALPS index is significantly correlated with global DTI parameters and structural connectivity measures of the brain in patients with focal epilepsy. In addition, DTI-ALPS index decreases with age in these patients. We conclude that the DTI-ALPS index can be used to investigate glymphatic system function in patients with focal epilepsy.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Si Hyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin-Han Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Il Hwan Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
46
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3167] [Impact Index Per Article: 1055.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
47
|
Badji A, Cohen-Adad J, Girouard H. Relationship Between Arterial Stiffness Index, Pulse Pressure, and Magnetic Resonance Imaging Markers of White Matter Integrity: A UK Biobank Study. Front Aging Neurosci 2022; 14:856782. [PMID: 35800980 PMCID: PMC9252854 DOI: 10.3389/fnagi.2022.856782] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background Alzheimer's disease and dementia in general constitute one of the major public health problems of the 21st century. Research in arterial stiffness and pulse pressure (PP) play an important role in the quest to reduce the risk of developing dementia through controlling modifiable risk factors. Objective The aim of the study is to investigate the association between peripheral PP, arterial stiffness index (ASI) and brain integrity, and to discover if ASI is a better predictor of white matter integrity than peripheral PP. Materials and Methods 17,984 participants 63.09 ± 7.31 from the UK Biobank were used for this study. ASI was estimated using infrared light (photoplethysmography) and peripheral PP was calculated by subtracting the diastolic from the systolic brachial blood pressure value. Measure of fractional anisotropy (FA) was obtained from diffusion imaging to estimate white matter microstructural integrity. White matter hyperintensities were segmented from the combined T1 and T2-weighted FLAIR images as a measure of irreversible white matter damage. Results An important finding is that peripheral PP better predicts white matter integrity when compared to ASI. This finding is consistent until 75 years old. Interestingly, no significant relationship is found between either peripheral PP or ASI and white matter integrity after 75 years old. Conclusion These results suggest that ASI from plethysmography should not be used to estimate cerebrovascular integrity in older adults and further question the relationship between arterial stiffness, blood pressure, and white matter damage after the age of 75 years old.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada.,Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada.,Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada.,Mila - Quebec AI Institute, Montréal, QC, Canada
| | - Hélène Girouard
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central, Montréal, QC, Canada.,Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Montréal, QC, Canada.,Groupe de Recherche Universitaire Sur le Médicament (GRUM), Montréal, QC, Canada
| |
Collapse
|
48
|
Seshadri S, Caunca MR, Rundek T. Vascular Dementia and Cognitive Impairment. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Werhane ML, Thomas KR, Bangen KJ, Weigand AJ, Edmonds EC, Nation DA, Sundermann EE, Bondi MW, Delano-Wood L. Arterial Stiffening Moderates the Relationship Between Type-2 Diabetes Mellitus and White Matter Hyperintensity Burden in Older Adults With Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:716638. [PMID: 34759811 PMCID: PMC8574966 DOI: 10.3389/fnagi.2021.716638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cerebrovascular dysfunction has been proposed as a possible mechanism underlying cognitive impairment in the context of type 2 diabetes mellitus (DM). Although magnetic resonance imaging (MRI) evidence of cerebrovascular disease, such as white matter hyperintensities (WMH), is often observed in DM, the vascular dynamics underlying this pathology remain unclear. Thus, we assessed the independent and combined effects of DM status and different vascular hemodynamic measures (i.e., systolic, diastolic, and mean arterial blood pressure and pulse pressure index [PPi]) on WMH burden in cognitively unimpaired (CU) older adults and those with mild cognitive impairment (MCI). Methods: 559 older adults (mean age: 72.4 years) from the Alzheimer's Disease Neuroimaging Initiative were categorized into those with diabetes (DM+; CU = 43, MCI = 34) or without diabetes (DM-; CU = 279; MCI = 203). Participants underwent BP assessment, from which all vascular hemodynamic measures were derived. T2-FLAIR MRI was used to quantify WMH burden. Hierarchical linear regression, adjusting for age, sex, BMI, intracranial volume, CSF amyloid, and APOE ε4 status, examined the independent and interactive effects of DM status and each vascular hemodynamic measure on total WMH burden. Results: The presence of DM (p = 0.046), but not PPi values (p = 0.299), was independently associated with greater WMH burden overall after adjusting for covariates. Analyses stratified by cognitive status revealed a significant DM status x PPi interaction within the MCI group (p = 0.001) such that higher PPi values predicted greater WMH burden in the DM + but not DM- group. No significant interactions were observed in the CU group (all ps > 0.05). Discussion: Results indicate that higher PPi values are positively associated with WMH burden in diabetic older adults with MCI, but not their non-diabetic or CU counterparts. Our findings suggest that arterial stiffening and reduced vascular compliance may have a role in development of cerebrovascular pathology within the context of DM in individuals at risk for future cognitive decline. Given the specificity of these findings to MCI, future exploration of the sensitivity of earlier brain markers of vascular insufficiency (i.e., prior to macrostructural white matter changes) to the effects of DM and arterial stiffness/reduced vascular compliance in CU individuals is warranted.
Collapse
Affiliation(s)
- Madeleine L. Werhane
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Kelsey R. Thomas
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Alexandra J. Weigand
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, San Diego, CA, United States
| | - Emily C. Edmonds
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Daniel A. Nation
- Department of Psychological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Mark W. Bondi
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Ungvari Z, Toth P, Tarantini S, Prodan CI, Sorond F, Merkely B, Csiszar A. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 2021; 17:639-654. [PMID: 34127835 PMCID: PMC8202227 DOI: 10.1038/s41581-021-00430-6] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Hypertension affects two-thirds of people aged >60 years and significantly increases the risk of both vascular cognitive impairment and Alzheimer's disease. Hypertension compromises the structural and functional integrity of the cerebral microcirculation, promoting microvascular rarefaction, cerebromicrovascular endothelial dysfunction and neurovascular uncoupling, which impair cerebral blood supply. In addition, hypertension disrupts the blood-brain barrier, promoting neuroinflammation and exacerbation of amyloid pathologies. Ageing is characterized by multifaceted homeostatic dysfunction and impaired cellular stress resilience, which exacerbate the deleterious cerebromicrovascular effects of hypertension. Neuroradiological markers of hypertension-induced cerebral small vessel disease include white matter hyperintensities, lacunar infarcts and microhaemorrhages, all of which are associated with cognitive decline. Use of pharmaceutical and lifestyle interventions that reduce blood pressure, in combination with treatments that promote microvascular health, have the potential to prevent or delay the pathogenesis of vascular cognitive impairment and Alzheimer's disease in patients with hypertension.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Farzaneh Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|