1
|
Kandemirli SG, Al-Dasuqi K, Aslan B, Goldstein A, Alves CAPF. Overview of neuroimaging in primary mitochondrial disorders. Pediatr Radiol 2025; 55:765-791. [PMID: 39937244 DOI: 10.1007/s00247-025-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Advancements in understanding the clinical, biochemical, and genetic aspects of primary mitochondrial disorders, along with the identification of a broad range of phenotypes frequently involving the central nervous system, have opened a new and crucial area in neuroimaging. This expanding knowledge presents significant challenges for radiologists in clinical settings, as the neuroimaging features and their associated metabolic abnormalities become more complex. This review offers a comprehensive overview of the key neuroimaging features associated with the common primary mitochondrial disorders. It highlights both the classical imaging findings and the emerging diagnostic insights related to several previously identified causative genes for these diseases. The review also provides an in-depth description of the clinicoradiologic presentations and potential underlying mitochondrial defects, aiming to enhance diagnostic abilities of radiologists in identifying primary mitochondrial diseases in their clinical practice.
Collapse
Affiliation(s)
- Sedat Giray Kandemirli
- Duke University Hospital, 2301 Erwin Rd, Durham, NC, 27710, USA.
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Khalid Al-Dasuqi
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Sidra Medical and Research Center, Doha, Qatar
| | - Bulent Aslan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amy Goldstein
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
2
|
Armirola-Ricaurte C, Morant L, Adant I, Hamed SA, Pipis M, Efthymiou S, Amor-Barris S, Atkinson D, Van de Vondel L, Tomic A, de Vriendt E, Zuchner S, Ghesquiere B, Hanna M, Houlden H, Lunn MP, Reilly MM, Rasic VM, Jordanova A. Biallelic variants in COX18 cause a mitochondrial disorder primarily manifesting as peripheral neuropathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309787. [PMID: 39006432 PMCID: PMC11245062 DOI: 10.1101/2024.07.03.24309787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Defects in mitochondrial dynamics are a common cause of Charcot-Marie-Tooth disease (CMT), while primary deficiencies in the mitochondrial respiratory chain (MRC) are rare and atypical for this etiology. This study aims to report COX18 as a novel CMT-causing gene. This gene encodes an assembly factor of mitochondrial Complex IV (CIV) that translocates the C-terminal tail of MTCO2 across the mitochondrial inner membrane. Exome sequencing was performed in four affected individuals. The patients and available family members underwent thorough neurological and electrophysiological assessment. The impact of one of the identified variants on splicing, protein levels, and mitochondrial bioenergetics was investigated in patient-derived lymphoblasts. The functionality of the mutant protein was assessed using a Proteinase K protection assay and immunoblotting. Neuronal relevance of COX18 was assessed in a Drosophila melanogaster knockdown model. Exome sequencing coupled with homozygosity mapping revealed a homozygous splice variant c.435-6A>G in COX18 in two siblings with early-onset progressive axonal sensory-motor peripheral neuropathy. By querying external databases, we identified two additional families with rare deleterious biallelic variants in COX18 . All affected individuals presented with axonal CMT and some patients also exhibited central nervous system symptoms, such as dystonia and spasticity. Functional characterization of the c.435-6A>G variant demonstrated that it leads to the expression of an alternative transcript that lacks exon 2, resulting in a stable but defective COX18 isoform. The mutant protein impairs CIV assembly and activity, leading to a reduction in mitochondrial membrane potential. Downregulation of the COX18 homolog in Drosophila melanogaster displayed signs of neurodegeneration, including locomotor deficit and progressive axonal degeneration of sensory neurons. Our study presents genetic and functional evidence that supports COX18 as a newly identified gene candidate for autosomal recessive axonal CMT with or without central nervous system involvement. These findings emphasize the significance of peripheral neuropathy within the spectrum of primary mitochondrial disorders and the role of mitochondrial CIV in the development of CMT. Our research has important implications for the diagnostic workup of CMT patients.
Collapse
|
3
|
Armirola-Ricaurte C, Zonnekein N, Koutsis G, Amor-Barris S, Pelayo-Negro AL, Atkinson D, Efthymiou S, Turchetti V, Dinopoulos A, Garcia A, Karakaya M, Moris G, Polat AI, Yiş U, Espinos C, Van de Vondel L, De Vriendt E, Karadima G, Wirth B, Hanna M, Houlden H, Berciano J, Jordanova A. Alternative splicing expands the clinical spectrum of NDUFS6-related mitochondrial disorders. Genet Med 2024; 26:101117. [PMID: 38459834 PMCID: PMC11180951 DOI: 10.1016/j.gim.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.
Collapse
Affiliation(s)
- Camila Armirola-Ricaurte
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Noortje Zonnekein
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Silvia Amor-Barris
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ana Lara Pelayo-Negro
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Derek Atkinson
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Argyris Dinopoulos
- 3rd Department of Pediatrics, Attiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonio Garcia
- Service of Clinical Neurophysiology, University Hospital Marqués de Valdecilla, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - German Moris
- Service of Neurology, University Hospital Central de Asturias, University of Oviedo, Oviedo, Spain
| | - Ayşe Ipek Polat
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Carmen Espinos
- Rare Neurodegenerative Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), CIBER on Rare Diseases (CIBERER), Valencia, Spain
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Els De Vriendt
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael Hanna
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jose Berciano
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Albena Jordanova
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
4
|
Du N, Wang X, Wang Z, Liu H, Liu H, Duan H, Zhao S, Banerjee S, Zhang X. Identification of a Novel Homozygous Mutation in MTMR2 Gene Causes Very Rare Charcot-Marie-Tooth Disease Type 4B1. Appl Clin Genet 2024; 17:71-84. [PMID: 38835974 PMCID: PMC11149649 DOI: 10.2147/tacg.s448084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Background Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders involving peripheral nervous system. Charcot-Marie-Tooth disease 4B1 (CMT4B1) is a rare subtype of CMT. CMT4B1 is an axonal demyelinating polyneuropathy with an autosomal recessive mode of inheritance. Patients with CMT4B1 usually manifested with dysfunction of the motor and sensory systems which leads to gradual and progressive muscular weakness and atrophy, starting from the peroneal muscles and finally affecting the distal muscles. Germline mutations in MTMR2 gene causes CMT4B1. Material and Methods In this study, we investigated a 4-year-old Chinese boy with gradual and progressive weakness and atrophy of both proximal and distal muscles. The proband's parents did not show any abnormalities. Whole-exome sequencing and Sanger sequencing were performed. Results Whole-exome sequencing identified a novel homozygous nonsense mutation (c.118A>T; p.Lys40*) in exon 2 of MTMR2 gene in the proband. This novel mutation leads to the formation of a truncated MTMR2 protein of 39 amino acids instead of the wild- type MTMR2 protein of 643 amino acids. This mutation is predicted to cause the complete loss of the PH-GRAM domain, phosphatase domain, coiled-coil domain, and PDZ-binding motif of the MTMR2 protein. Sanger sequencing revealed that the proband's parents carried the mutation in a heterozygous state. This mutation was absent in 100 healthy control individuals. Conclusion This study reports the first mutation in MTMR2 associated with CMT4B1 in a Chinese population. Our study also showed the importance of whole-exome sequencing in identifying candidate genes and disease-causing variants in patients with CMT4B1.
Collapse
Affiliation(s)
- Nan Du
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Xiaolei Wang
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Zhaohui Wang
- Center for Children Health Care, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hongwei Liu
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hui Liu
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hongfang Duan
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Shaozhi Zhao
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinwen Zhang
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| |
Collapse
|
5
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
7
|
Khan TR, Leprince I, Messahel S, Minassian BA, Kayani S. Natural History of SURF1 Deficiency: A Retrospective Chart Review. Pediatr Neurol 2023; 140:40-46. [PMID: 36599233 DOI: 10.1016/j.pediatrneurol.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND This retrospective chart review evaluated the clinical characteristics of SURF1-related neurological disease spectrum to better characterize the phenotypes. METHODS Patient demographics, magnetic resonance imaging abnormalities, neurological events, motor abnormalities, and gastrointestinal and respiratory assistance were evaluated in 27 patients with genetically diagnosed SURF1 deficiency. RESULTS The mean (S.D.) age of symptom onset collected from 13 patients was 19.7 (11.8) months. Mean (S.D.) age of diagnosis collected from 24 patients was 44.0 (45.1) months. The most common symptoms were gross motor delay (14 of 14), fine motor delay (10 of 11), verbal delay (9 of 10), and intellectual and learning disability (14 of 19). Neurological symptoms included ataxia (14 of 15), other abnormal movements (8 of 9), hypotonia (9 of 11), and dystonia (6 of 9). Three of nine reporting patients (33.3%) had a history of seizure, and 84.6% (11 of 13) had a history of regression/loss of acquired skills. Extraneurological clinical features included pulmonary complications (10 of 11) and feeding difficulties (13 of 13); cardiac complications were noted in three patients. Brainstem is frequently involved with the medulla and midbrain being the most common sites. As of July 2021, three patients were deceased. CONCLUSIONS The most common clinical symptoms were motor delay, verbal delay, intellectual and learning disability, dysphagia, feeding difficulties, and reflux. Neurological presentations include ataxia, hypotonia, visual/ocular abnormalities, dystonia, and imaging abnormalities include basal ganglia and brainstem lesions. Although heterogeneous, SURF1 deficiency should be considered with these clinical and imaging presentations and may support earlier identification.
Collapse
Affiliation(s)
- Tuba Rashid Khan
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Souad Messahel
- Perot Foundation Neuroscience Translational Research Center, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saima Kayani
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
8
|
Horvath R, Medina J, Reilly MM, Shy ME, Zuchner S. Peripheral neuropathy in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:99-116. [PMID: 36813324 DOI: 10.1016/b978-0-12-821751-1.00014-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondria are essential for the health and viability of both motor and sensory neurons and their axons. Processes that disrupt their normal distribution and transport along axons will likely cause peripheral neuropathies. Similarly, mutations in mtDNA or nuclear encoded genes result in neuropathies that either stand alone or are part of multisystem disorders. This chapter focuses on the more common genetic forms and characteristic clinical phenotypes of "mitochondrial" peripheral neuropathies. We also explain how these various mitochondrial abnormalities cause peripheral neuropathy. In a patient with a neuropathy either due to a mutation in a nuclear or an mtDNA gene, clinical investigations aim to characterize the neuropathy and make an accurate diagnosis. In some patients, this may be relatively straightforward, where a clinical assessment and nerve conduction studies followed by genetic testing is all that is needed. In others, multiple investigations including a muscle biopsy, CNS imaging, CSF analysis, and a wide range of metabolic and genetic tests in blood and muscle may be needed to establish diagnosis.
Collapse
Affiliation(s)
- Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge, United Kingdom.
| | - Jessica Medina
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Abstract
Leigh syndrome, or subacute necrotizing encephalomyelopathy, was initially recognized as a neuropathological entity in 1951. Bilateral symmetrical lesions, typically extending from the basal ganglia and thalamus through brainstem structures to the posterior columns of the spinal cord, are characterized microscopically by capillary proliferation, gliosis, severe neuronal loss, and relative preservation of astrocytes. Leigh syndrome is a pan-ethnic disorder usually with onset in infancy or early childhood, but late-onset forms occur, including in adult life. Over the last six decades it has emerged that this complex neurodegenerative disorder encompasses more than 100 separate monogenic disorders associated with enormous clinical and biochemical heterogeneity. This chapter discusses clinical, biochemical and neuropathological aspects of the disorder, and postulated pathomechanisms. Known genetic causes, including defects of 16 mitochondrial DNA (mtDNA) genes and approaching 100 nuclear genes, are categorized into disorders of subunits and assembly factors of the five oxidative phosphorylation enzymes, disorders of pyruvate metabolism and vitamin and cofactor transport and metabolism, disorders of mtDNA maintenance, and defects of mitochondrial gene expression, protein quality control, lipid remodeling, dynamics, and toxicity. An approach to diagnosis is presented, together with known treatable causes and an overview of current supportive management options and emerging therapies on the horizon.
Collapse
Affiliation(s)
- Shamima Rahman
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Medicine Department, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
10
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Rubino A, Bruno G, Mazio F, de Leva MF, Ruggiero L, Santorelli FM, Varone A. Spinal Nerve Roots Abnormalities on MRI in a Child with SURF1 Mitochondrial Disease. Neuropediatrics 2022; 53:208-212. [PMID: 34852375 DOI: 10.1055/s-0041-1739135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Variants in SURF1, encoding an assembly factor of mitochondrial respiratory chain complex IV, cause Leigh syndrome (LS) and Charcot-Marie-Tooth type 4K in children and young adolescents. Magnetic resonance imaging (MRI) appearance of enlarged nerve roots with postcontrastographic enhancement is a distinctive feature of hypertrophic neuropathy caused by onion-bulb formation and it has rarely been described in mitochondrial diseases (MDs). Spinal nerve roots abnormalities on MRI are novel findings in LS associated with variants in SURF1. Here we report detailed neuroradiological and neurophysiologic findings in a child with LS and demyelinating neuropathy SURF1-related. Our case underlines the potential contributive role of spinal neuroimaging together with neurophysiological examination to identify the full spectrum of patterns in MDs. It remains to elucidate if these observations remain peculiar of SURF1 variants or potentially detectable in other MDs with peripheral nervous system involvement.
Collapse
Affiliation(s)
- Alfonso Rubino
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy
| | - Giorgia Bruno
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, Second Division of Neurology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Federica Mazio
- Division of Pediatric Neuroradiology, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Fulvia de Leva
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | | | - Antonio Varone
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy
| |
Collapse
|
12
|
Argente-Escrig H, Vílchez JJ, Frasquet M, Muelas N, Azorín I, Vílchez R, Millet-Sancho E, Pitarch I, Tomás-Vila M, Vázquez-Costa JF, Mas-Estellés F, Marco-Marín C, Espinós C, Serrano-Lorenzo P, Martin MA, Lupo V, Sevilla T. A novel TRMT5 mutation causes a complex inherited neuropathy syndrome: the role of nerve pathology in defining a demyelinating neuropathy. Neuropathol Appl Neurobiol 2022; 48:e12817. [PMID: 35342985 DOI: 10.1111/nan.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
AIMS To present data obtained from three patients belonging to three unrelated families with an infantile onset demyelinating neuropathy associated to somatic and neurodevelopmental delay, and to describe the underlying genetic changes. METHODS We performed whole-exome sequencing on genomic DNA from the patients and their parents, and reviewed the clinical, muscle and nerve data, the serial neurophysiological studies, brain, and muscle MRIs, as well as the respiratory chain complex activity in the muscle of the three index patients. Computer modelling was used to characterize the new missense variant detected. RESULTS All three patients had a short stature, delayed motor milestone acquisition, intellectual disability and cerebellar abnormalities associated with a severe demyelinating neuropathy, with distinct morphological features. Despite the proliferation of giant mitochondria, the mitochondrial respiratory chain complex activity in skeletal muscle was normal, except in one patient in whom there was a mild decrease in complex I enzyme activity. All three patients carried the same two compound heterozygous variants of the TRMT5 (tRNA Methyltransferase 5) gene, one known pathogenic frameshift mutation [c.312_315del (p.Ile105Serfs*4)] and a second rare missense change [c.665T>C (p.Ile222Thr)]. TRMT5 is a nuclear-encoded protein involved in the post-transcriptional maturation of mitochondrial tRNA. Computer modelling of the human TRMT5 protein structure suggests that the rare p.Ile222Thr mutation could affect the stability of tRNA binding. CONCLUSIONS Our study expands the phenotype of mitochondrial disorders caused by TRTM5 mutations and defines a new form of recessive demyelinating peripheral neuropathy.
Collapse
Affiliation(s)
- Herminia Argente-Escrig
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Juan Jesus Vílchez
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Marina Frasquet
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Nuria Muelas
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Inmaculada Azorín
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Roger Vílchez
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Elvira Millet-Sancho
- Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Inmaculada Pitarch
- Neuropediatrics Unit, Department of Pediatrics, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel Tomás-Vila
- Neuropediatrics Unit, Department of Pediatrics, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Juan F Vázquez-Costa
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Department of Medicine, University of Valencia School of Medicine, Valencia, Spain
| | - Fernando Mas-Estellés
- Neurorradiology Section-ASCIRES, Radiology Department. Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Clara Marco-Marín
- Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Carmen Espinós
- Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Pablo Serrano-Lorenzo
- Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Mitochondrial and Neuromuscular Disorders Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Miguel A Martin
- Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Mitochondrial and Neuromuscular Disorders Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Vincenzo Lupo
- Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Department of Medicine, University of Valencia School of Medicine, Valencia, Spain
| |
Collapse
|
13
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
14
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|
15
|
Yamazaki R, Osanai Y, Kouki T, Shinohara Y, Huang JK, Ohno N. Macroscopic detection of demyelinated lesions in mouse PNS with neutral red dye. Sci Rep 2021; 11:16906. [PMID: 34413421 PMCID: PMC8377033 DOI: 10.1038/s41598-021-96395-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Lysophosphatidylcholine (LPC)-induced demyelination is a versatile animal model that is frequently used to identify and examine molecular pathways of demyelination and remyelination in the central (CNS) and peripheral nervous system (PNS). However, identification of focally demyelinated lesion had been difficult and usually required tissue fixation, sectioning and histological analysis. Recently, a method for labeling and identification of demyelinated lesions in the CNS by intraperitoneal injection of neutral red (NR) dye was developed. However, it remained unknown whether NR can be used to label demyelinated lesions in PNS. In this study, we generated LPC-induced demyelination in sciatic nerve of mice, and demonstrated that the demyelinated lesions at the site of LPC injection were readily detectable at 7 days postlesion (dpl) by macroscopic observation of NR labeling. Moreover, NR staining gradually decreased from 7 to 21 dpl over the course of remyelination. Electron microscopy analysis of NR-labeled sciatic nerves at 7 dpl confirmed demyelination and myelin debris in lesions. Furthermore, fluorescence microscopy showed NR co-labeling with activated macrophages and Schwann cells in the PNS lesions. Together, NR labeling is a straightforward method that allows the macroscopic detection of demyelinated lesions in sciatic nerves after LPC injection.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiaki Shinohara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
16
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
17
|
Dong HL, Ma Y, Yu H, Wei Q, Li JQ, Liu GL, Li HF, Chen L, Chen DF, Bai G, Wu ZY. Bi-allelic loss of function variants in COX20 gene cause autosomal recessive sensory neuronopathy. Brain 2021; 144:2457-2470. [PMID: 33751098 DOI: 10.1093/brain/awab135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 12/24/2022] Open
Abstract
Sensory neuronopathies are a rare and distinct subgroup of peripheral neuropathies, characterized by degeneration of the dorsal root ganglia neurons. About 50% of sensory neuronopathies are idiopathic and genetic causes remain to be clarified. Through a combination of homozygosity mapping and whole exome sequencing, we linked an autosomal recessive sensory neuronopathy to pathogenic variants in COX20 gene. We identified 8 unrelated families from the eastern China population carrying a founder variant c.41A>G (p. Lys14Arg) within COX20 in either a homozygous or compound heterozygous state. All patients displayed sensory ataxia with non-length-dependent sensory potentials decrease. COX20 encodes a key transmembrane protein implicated in the assembly of mitochondrial complex IV. We showed that COX20 variants lead to reduction of COX20 protein in patient's fibroblasts and transfected cell lines, consistent with a loss-of-function mechanism. Knockdown of COX20 expression in ND7/23 sensory neuron cells resulted in complex IV deficiency and perturbed assembly of complex IV, which subsequently compromised cell spare respiratory capacity and reduced cell proliferation under metabolic stress. Consistent with mitochondrial dysfunction in knockdown cells, reduced complex IV assembly, enzyme activity and oxygen consumption rate were also found in patients' fibroblasts. We speculated that the mechanism of COX20 was similar to other causative genes (e.g. SURF1, COX6A1, COA3 and SCO2) for peripheral neuropathies, all of which were functionally important in the structure and assembly of complex IV. Our study identifies a novel causative gene for the autosomal recessive sensory neuronopathy, whose vital function in complex IV and high expression in the proprioceptive sensory neuron further underlines loss of COX20 contributing to mitochondrial bioenergetic dysfunction as a mechanism in peripheral sensory neuron disease.
Collapse
Affiliation(s)
- Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China
| | - Hao Yu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China
| | - Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China
| | - Jia-Qi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China
| | - Lei Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China.,Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian-Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China.,Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ge Bai
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China.,Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Hangzhou, China.,Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
18
|
Akter H, Hossain MS, Dity NJ, Rahaman MA, Furkan Uddin KM, Nassir N, Begum G, Hameid RA, Islam MS, Tusty TA, Basiruzzaman M, Sarkar S, Islam M, Jahan S, Lim ET, Woodbury-Smith M, Stavropoulos DJ, O'Rielly DD, Berdeiv BK, Nurun Nabi AHM, Ahsan MN, Scherer SW, Uddin M. Whole exome sequencing uncovered highly penetrant recessive mutations for a spectrum of rare genetic pediatric diseases in Bangladesh. NPJ Genom Med 2021; 6:14. [PMID: 33594065 PMCID: PMC7887195 DOI: 10.1038/s41525-021-00173-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023] Open
Abstract
Collectively, rare genetic diseases affect a significant number of individuals worldwide. In this study, we have conducted whole-exome sequencing (WES) and identified underlying pathogenic or likely pathogenic variants in five children with rare genetic diseases. We present evidence for disease-causing autosomal recessive variants in a range of disease-associated genes such as DHH-associated 46,XY gonadal dysgenesis (GD) or 46,XY sex reversal 7, GNPTAB-associated mucolipidosis II alpha/beta (ML II), BBS1-associated Bardet-Biedl Syndrome (BBS), SURF1-associated Leigh Syndrome (LS) and AP4B1-associated spastic paraplegia-47 (SPG47) in unrelated affected members from Bangladesh. Our analysis pipeline detected three homozygous mutations, including a novel c. 863 G > C (p.Pro288Arg) variant in DHH, and two compound heterozygous variants, including two novel variants: c.2972dupT (p.Met991Ilefs*) in GNPTAB and c.229 G > C (p.Gly77Arg) in SURF1. All mutations were validated by Sanger sequencing. Collectively, this study adds to the genetic heterogeneity of rare genetic diseases and is the first report elucidating the genetic profile of (consanguineous and nonconsanguineous) rare genetic diseases in the Bangladesh population.
Collapse
Affiliation(s)
- Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Nushrat Jahan Dity
- Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Md Atikur Rahaman
- Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - K M Furkan Uddin
- Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Science, Dubai, UAE
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Science, Dubai, UAE
| | - Reem Abdel Hameid
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Science, Dubai, UAE
| | | | - Tahrima Arman Tusty
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Basiruzzaman
- Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
- Department of Child Neurology, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Shaoli Sarkar
- Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
- Department of Child Neurology, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Mazharul Islam
- Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
- Department of Child Neurology, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Sharmin Jahan
- Department of Endocrinology & Metabolism, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Elaine T Lim
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dimitri James Stavropoulos
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | | | - Bakhrom K Berdeiv
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Science, Dubai, UAE
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammed Nazmul Ahsan
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Science, Dubai, UAE.
| |
Collapse
|
19
|
Allouche S, Schaeffer S, Chapon F. [Mitochondrial diseases in adults: An update]. Rev Med Interne 2021; 42:541-557. [PMID: 33455836 DOI: 10.1016/j.revmed.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial diseases, characterized by a respiratory chain deficiency, are considered as rare genetic diseases but are the most frequent among inherited metabolic disorders. The complexity of their diagnosis is due to the dual control by the mitochondrial (mtDNA) and the nuclear DNA (nDNA), and to the heterogeneous clinical presentations; illegitimate association of symptoms should prompt the clinician to evoke a mitochondrial disorder. The goals of this review are to provide clinicians a better understanding of mitochondrial diseases in adults. After a brief overview on the mitochondrial origin and functions, especially their role in the energy metabolism, we will describe the genetic bases for mitochondrial diseases, then we will describe the various clinical presentations with the different affected tissues as well as the main symptoms encountered. Even if the new sequencing approaches have profoundly changed the diagnostic process, the brain imaging, the biological, the biochemical, and the histological explorations are still important highlighting the need for a multidisciplinary approach. While for most of the patients with a mitochondrial disease, only supportive and symptomatic therapies are available, recent advances in the understanding of the pathophysiological mechanisms have been made and new therapies are being developed and are evaluated in human clinical trials.
Collapse
Affiliation(s)
- S Allouche
- Laboratoire de biochimie, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France.
| | - S Schaeffer
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| | - F Chapon
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| |
Collapse
|
20
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
21
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
22
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
23
|
Lu JQ, Tarnopolsky MA. Mitochondrial neuropathy and neurogenic features in mitochondrial myopathy. Mitochondrion 2020; 56:52-61. [PMID: 33220502 DOI: 10.1016/j.mito.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Mitochondrial diseases (MIDs) involve multiple organs including peripheral nerves and skeletal muscle. Mitochondrial neuropathy (MN) and mitochondrial myopathy (MM) are commonly associated and linked at the neuromuscular junction (NMJ). Herein we review MN in connection with neurogenic features of MM, and pathological evidence for the involvement of the peripheral nerve and NMJ in MID patients traditionally assumed to have predominantly MM. MN is not uncommon, but still likely under-reported, and muscle biopsies of MM commonly exhibit neurogenic features. Pathological examination remains the gold standard to assess the nerve and muscle changes in patients with MIDs. Ultrastructural studies by electron microscopy are often necessary to fully characterize the pathology of mitochondrial cytopathy in MN and MM.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Department of Pathology and Molecular Medicine/Neuropathology, McMaster University, Hamilton, Ontario, Canada.
| | - Mark A Tarnopolsky
- Department of Medicine/Neurology, McMaster University, Hamilton, Ontario, Canada; Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
25
|
Fay A, Garcia Y, Margeta M, Maharjan S, Jürgensen C, Briceño J, Garcia M, Yin S, Bassaganyas L, McMahon T, Hou YM, Fu YH, Ptáček LJ. A Mitochondrial tRNA Mutation Causes Axonal CMT in a Large Venezuelan Family. Ann Neurol 2020; 88:830-842. [PMID: 32715519 DOI: 10.1002/ana.25854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study was to identify the genetic cause for progressive peripheral nerve disease in a Venezuelan family. Despite the growing list of genes associated with Charcot-Marie-Tooth disease, many patients with axonal forms lack a genetic diagnosis. METHODS A pedigree was constructed, based on family clinical data. Next-generation sequencing of mitochondrial DNA (mtDNA) was performed for 6 affected family members. Muscle biopsies from 4 family members were used for analysis of muscle histology and ultrastructure, mtDNA sequencing, and RNA quantification. Ultrastructural studies were performed on sensory nerve biopsies from 2 affected family members. RESULTS Electrodiagnostic testing showed a motor and sensory axonal polyneuropathy. Pedigree analysis revealed inheritance only through the maternal line, consistent with mitochondrial transmission. Sequencing of mtDNA identified a mutation in the mitochondrial tRNAVal (mt-tRNAVal ) gene, m.1661A>G, present at nearly 100% heteroplasmy, which disrupts a Watson-Crick base pair in the T-stem-loop. Muscle biopsies showed chronic denervation/reinnervation changes, whereas biochemical analysis of electron transport chain (ETC) enzyme activities showed reduction in multiple ETC complexes. Northern blots from skeletal muscle total RNA showed severe reduction in abundance of mt-tRNAVal , and mildly increased mt-tRNAPhe , in subjects compared with unrelated age- and sex-matched controls. Nerve biopsies from 2 affected family members demonstrated ultrastructural mitochondrial abnormalities (hyperplasia, hypertrophy, and crystalline arrays) consistent with a mitochondrial neuropathy. CONCLUSION We identify a previously unreported cause of Charcot-Marie-Tooth (CMT) disease, a mutation in the mt-tRNAVal , in a Venezuelan family. This work expands the list of CMT-associated genes from protein-coding genes to a mitochondrial tRNA gene. ANN NEUROL 2020;88:830-842.
Collapse
Affiliation(s)
- Alexander Fay
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yngo Garcia
- Department of Biochemistry, Faculty of Medicine, University of The Andes, Mérida, Venezuela.,Unit of Surgery, Neurosurgery Service, Medical Surgery Clinical Institute, Mérida, Venezuela
| | - Marta Margeta
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudia Jürgensen
- Department of Biology, Faculty of Science, University of The Andes, Mérida, Venezuela
| | - Jose Briceño
- Physiotherapy and Rehabilitation Service, University Hospital of The Andes, Mérida, Venezuela
| | - Mariaelena Garcia
- Department of Biology, Faculty of Science, University of The Andes, Mérida, Venezuela
| | - Sitao Yin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laia Bassaganyas
- Department of Medical Genetics, University of Cambridge and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Thomas McMahon
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
27
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
Rebelo AP, Saade D, Pereira CV, Farooq A, Huff TC, Abreu L, Moraes CT, Mnatsakanova D, Mathews K, Yang H, Schon EA, Zuchner S, Shy ME. SCO2 mutations cause early-onset axonal Charcot-Marie-Tooth disease associated with cellular copper deficiency. Brain 2019; 141:662-672. [PMID: 29351582 DOI: 10.1093/brain/awx369] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
Recessive mutations in the mitochondrial copper-binding protein SCO2, cytochrome c oxidase (COX) assembly protein, have been reported in several cases with fatal infantile cardioencephalomyopathy with COX deficiency. Significantly expanding the known phenotypic spectrum, we identified compound heterozygous variants in SCO2 in two unrelated patients with axonal polyneuropathy, also known as Charcot-Marie-Tooth disease type 4. Different from previously described cases, our patients developed predominantly motor neuropathy, they survived infancy, and they have not yet developed the cardiomyopathy that causes death in early infancy in reported patients. Both of our patients harbour missense mutations near the conserved copper-binding motif (CXXXC), including the common pathogenic variant E140K and a novel change D135G. In addition, each patient carries a second mutation located at the same loop region, resulting in compound heterozygote changes E140K/P169T and D135G/R171Q. Patient fibroblasts showed reduced levels of SCO2, decreased copper levels and COX deficiency. Given that another Charcot-Marie-Tooth disease gene, ATP7A, is a known copper transporter, our findings further underline the relevance of copper metabolism in Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Dimah Saade
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | | | - Amjad Farooq
- Biochemistry Department, University of Miami Miller School of Medicine, Miami, USA
| | - Tyler C Huff
- Department of Neurology, University of Miami, Miami, USA
| | - Lisa Abreu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | | | - Diana Mnatsakanova
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kathy Mathews
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Hua Yang
- Department of Neurology, Columbia University Medical Center, New York, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| |
Collapse
|
29
|
Murakami T, Sunada Y. Schwann Cell and the Pathogenesis of Charcot–Marie–Tooth Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:301-321. [DOI: 10.1007/978-981-32-9636-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem 2018; 62:271-286. [PMID: 30030362 PMCID: PMC6056716 DOI: 10.1042/ebc20170099] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
The structural biogenesis and functional proficiency of the multiheteromeric complexes forming the mitochondrial oxidative phosphorylation system (OXPHOS) require the concerted action of a number of chaperones and other assembly factors, most of which are specific for each complex. Mutations in a large number of these assembly factors are responsible for mitochondrial disorders, in most cases of infantile onset, typically characterized by biochemical defects of single specific complexes. In fact, pathogenic mutations in complex-specific assembly factors outnumber, in many cases, the repertoire of mutations found in structural subunits of specific complexes. The identification of patients with specific defects in assembly factors has provided an important contribution to the nosological characterization of mitochondrial disorders, and has also been a crucial means to identify a huge number of these proteins in humans, which play an essential role in mitochondrial bioenergetics. The wide use of next generation sequencing (NGS) has led to and will allow the identifcation of additional components of the assembly machinery of individual complexes, mutations of which are responsible for human disorders. The functional studies on patients' specimens, together with the creation and characterization of in vivo models, are fundamental to better understand the mechanisms of each of them. A new chapter in this field will be, in the near future, the discovery of mechanisms and actions underlying the formation of supercomplexes, molecular structures formed by the physical, and possibly functional, interaction of some of the individual respiratory complexes, particularly complex I (CI), III (CIII), and IV (CIV).
Collapse
|
31
|
Higuchi Y, Okunushi R, Hara T, Hashiguchi A, Yuan J, Yoshimura A, Murayama K, Ohtake A, Ando M, Hiramatsu Y, Ishihara S, Tanabe H, Okamoto Y, Matsuura E, Ueda T, Toda T, Yamashita S, Yamada K, Koide T, Yaguchi H, Mitsui J, Ishiura H, Yoshimura J, Doi K, Morishita S, Sato K, Nakagawa M, Yamaguchi M, Tsuji S, Takashima H. Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy. Brain 2018; 141:1622-1636. [PMID: 29718187 PMCID: PMC5972596 DOI: 10.1093/brain/awy104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Several genes related to mitochondrial functions have been identified as causative genes of neuropathy or ataxia. Cytochrome c oxidase assembly factor 7 (COA7) may have a role in assembling mitochondrial respiratory chain complexes that function in oxidative phosphorylation. Here we identified four unrelated patients with recessive mutations in COA7 among a Japanese case series of 1396 patients with Charcot-Marie-Tooth disease (CMT) or other inherited peripheral neuropathies, including complex forms of CMT. We also found that all four patients had characteristic neurological features of peripheral neuropathy and ataxia with cerebellar atrophy, and some patients showed leukoencephalopathy or spinal cord atrophy on MRI scans. Validated mutations were located at highly conserved residues among different species and segregated with the disease in each family. Nerve conduction studies showed axonal sensorimotor neuropathy. Sural nerve biopsies showed chronic axonal degeneration with a marked loss of large and medium myelinated fibres. An immunohistochemical assay with an anti-COA7 antibody in the sural nerve from the control patient showed the positive expression of COA7 in the cytoplasm of Schwann cells. We also observed mildly elevated serum creatine kinase levels in all patients and the presence of a few ragged-red fibres and some cytochrome c oxidase-negative fibres in a muscle biopsy obtained from one patient, which was suggestive of subclinical mitochondrial myopathy. Mitochondrial respiratory chain enzyme assay in skin fibroblasts from the three patients showed a definitive decrease in complex I or complex IV. Immunocytochemical analysis of subcellular localization in HeLa cells indicated that mutant COA7 proteins as well as wild-type COA7 were localized in mitochondria, which suggests that mutant COA7 does not affect the mitochondrial recruitment and may affect the stability or localization of COA7 interaction partners in the mitochondria. In addition, Drosophila COA7 (dCOA7) knockdown models showed rough eye phenotype, reduced lifespan, impaired locomotive ability and shortened synaptic branches of motor neurons. Our results suggest that loss-of-function COA7 mutation is responsible for the phenotype of the presented patients, and this new entity of disease would be referred to as spinocerebellar ataxia with axonal neuropathy type 3.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuta Okunushi
- Department of Applied Biology and The Center for Advanced Insect Research, Kyoto Institute of Technology, Japan
| | - Taichi Hara
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama 359-1192, Japan
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Ishihara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Cardiovascular medicine, Nephrology and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Tanabe
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takehiro Ueda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kenichiro Yamada
- Department of Pediatrics, Hiratsuka City Hospital, Hiratsuka City, Kanagawa, Japan
| | - Takashi Koide
- Department of Neurology, Hiratsuka City Hospital, Hiratsuka City, Kanagawa, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Brain Center, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Masanori Nakagawa
- Director of North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and The Center for Advanced Insect Research, Kyoto Institute of Technology, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
32
|
Quadalti C, Brunetti D, Lagutina I, Duchi R, Perota A, Lazzari G, Cerutti R, Di Meo I, Johnson M, Bottani E, Crociara P, Corona C, Grifoni S, Tiranti V, Fernandez-Vizarra E, Robinson AJ, Viscomi C, Casalone C, Zeviani M, Galli C. SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2131-2142. [PMID: 29601977 PMCID: PMC6018622 DOI: 10.1016/j.bbadis.2018.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022]
Abstract
Leigh syndrome (LS) associated with cytochrome c oxidase (COX) deficiency is an early onset, fatal mitochondrial encephalopathy, leading to multiple neurological failure and eventually death, usually in the first decade of life. Mutations in SURF1, a nuclear gene encoding a mitochondrial protein involved in COX assembly, are among the most common causes of LS. LSSURF1 patients display severe, isolated COX deficiency in all tissues, including cultured fibroblasts and skeletal muscle. Recombinant, constitutive SURF1-/- mice show diffuse COX deficiency, but fail to recapitulate the severity of the human clinical phenotype. Pigs are an attractive alternative model for human diseases, because of their size, as well as metabolic, physiological and genetic similarity to humans. Here, we determined the complete sequence of the swine SURF1 gene, disrupted it in pig primary fibroblast cell lines using both TALENs and CRISPR/Cas9 genome editing systems, before finally generating SURF1-/- and SURF1-/+ pigs by Somatic Cell Nuclear Transfer (SCNT). SURF1-/- pigs were characterized by failure to thrive, muscle weakness and highly reduced life span with elevated perinatal mortality, compared to heterozygous SURF1-/+ and wild type littermates. Surprisingly, no obvious COX deficiency was detected in SURF1-/- tissues, although histochemical analysis revealed the presence of COX deficiency in jejunum villi and total mRNA sequencing (RNAseq) showed that several COX subunit-encoding genes were significantly down-regulated in SURF1-/- skeletal muscles. In addition, neuropathological findings, indicated a delay in central nervous system development of newborn SURF1-/- piglets. Our results suggest a broader role of sSURF1 in mitochondrial bioenergetics.
Collapse
Affiliation(s)
- C Quadalti
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - D Brunetti
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - I Lagutina
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - R Duchi
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - A Perota
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - G Lazzari
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Fondazione Avantea, Cremona, Italy
| | - R Cerutti
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - I Di Meo
- Neurologic Institute Carlo Besta, Via G. Celoria 11, 20133 Milan, Italy
| | - M Johnson
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - E Bottani
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - P Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - C Corona
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - S Grifoni
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - V Tiranti
- Neurologic Institute Carlo Besta, Via G. Celoria 11, 20133 Milan, Italy
| | - E Fernandez-Vizarra
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - A J Robinson
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - C Viscomi
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - C Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - M Zeviani
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK.
| | - C Galli
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
33
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Cutrupi AN, Brewer MH, Nicholson GA, Kennerson M. Structural variations causing inherited peripheral neuropathies: A paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genomic Med 2018; 6:422-433. [PMID: 29573232 PMCID: PMC6014456 DOI: 10.1002/mgg3.390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5 Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.
Collapse
Affiliation(s)
- Anthony N. Cutrupi
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Megan H. Brewer
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Garth A. Nicholson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| | - Marina L. Kennerson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| |
Collapse
|
35
|
|
36
|
Rossor AM, Carr AS, Devine H, Chandrashekar H, Pelayo-Negro AL, Pareyson D, Shy ME, Scherer SS, Reilly MM. Peripheral neuropathy in complex inherited diseases: an approach to diagnosis. J Neurol Neurosurg Psychiatry 2017; 88:846-863. [PMID: 28794150 DOI: 10.1136/jnnp-2016-313960] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022]
Abstract
Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy, for example, spasticity, the type of neuropathy and the other neurological and non-neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories: (1) ataxia, (2) spasticity and (3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy, for example, cardiomyopathy and neuropathy. We also include a separate category of complex inherited relapsing neuropathy syndromes, some of which may mimic Guillain-Barré syndrome, as many will have a metabolic aetiology and be potentially treatable.
Collapse
Affiliation(s)
- Alexander M Rossor
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Aisling S Carr
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Helen Devine
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Hoskote Chandrashekar
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ana Lara Pelayo-Negro
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Davide Pareyson
- Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, USA
| | - Steven S Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
37
|
Al-Ghamdi F, Anselm I, Yang E, Ghosh PS. Brain involvement in Charcot-Marie-Tooth disease due to ganglioside-induced differentiation associated-protein 1 mutation. Neuromuscul Disord 2017; 27:848-851. [PMID: 28673555 DOI: 10.1016/j.nmd.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/19/2022]
Abstract
Charcot-Marie-Tooth (CMT) due to ganglioside-induced differentiation associated-protein 1 (GDAP1) gene mutation can be inherited as an autosomal recessive (severe phenotype) or dominant (milder phenotype) disorder. GDAP1 protein, located in the outer mitochondrial membrane, is involved in the mitochondrial fission. Brain imaging abnormalities have not been reported in this condition. We described an 8-year-old boy who had an early onset autosomal recessive neuropathy. Whole exome sequencing revealed compound heterozygous mutations in the GDAP1 gene: c.313_313delA, p.Arg105Glufs*3 - a novel mutation (maternally inherited) and c.358C>T, pR120W - a known pathogenic mutation (paternally inherited). He had abnormal brain MRI findings since infancy localized to the middle cerebellar peduncles and cerebellar white matter with sparing of the supratentorial brain. We speculate that GDAP1 protein due to its widespread distribution and mitochondrial location is responsible for these imaging abnormalities. This report expands the spectrum of brain imaging abnormalities seen in different types of CMT.
Collapse
Affiliation(s)
- Fouad Al-Ghamdi
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Partha S Ghosh
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Whole-Exome Sequencing Identifies a Novel Homozygous Frameshift Mutation in the MTMR2 Gene as a Causative Mutation in a Patient with Charcot-Marie-Tooth Disease Type 4B1. Mol Neurobiol 2017; 55:3546-3550. [DOI: 10.1007/s12035-017-0588-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/28/2017] [Indexed: 01/08/2023]
|
39
|
Nascimento A, Ortez C, Jou C, O'Callaghan M, Ramos F, Garcia-Cazorla À. Neuromuscular Manifestations in Mitochondrial Diseases in Children. Semin Pediatr Neurol 2016; 23:290-305. [PMID: 28284391 DOI: 10.1016/j.spen.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mitochondrial diseases exhibit significant clinical and genetic heterogeneity. Mitochondria are highly dynamic organelles that are the major contributor of adenosine triphosphate, through oxidative phosphorylation. These disorders may be developed at any age, with isolated or multiple system involvement, and in any pattern of inheritance. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle and peripheral nerves, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis), progressive external ophthalmoplegia, peripheral ataxia, and peripheral polyneuropathy. This review describes the main neuromuscular symptomatology through different syndromes reported in the literature and from our experience. We want to highlight the importance of searching for the "clue clinical signs" associated with inheritance pattern as key elements to guide the complex diagnosis process and genetic studies in mitochondrial diseases.
Collapse
Affiliation(s)
- Andrés Nascimento
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain.
| | - Carlos Ortez
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Jou
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain
| | - Mar O'Callaghan
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Federico Ramos
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Àngels Garcia-Cazorla
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
40
|
Drew AP, Cutrupi AN, Brewer MH, Nicholson GA, Kennerson ML. A 1.35 Mb DNA fragment is inserted into the DHMN1 locus on chromosome 7q34–q36.2. Hum Genet 2016; 135:1269-1278. [DOI: 10.1007/s00439-016-1720-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
41
|
Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease. Mitochondrion 2016; 30:162-7. [PMID: 27475922 DOI: 10.1016/j.mito.2016.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions. METHODS Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Nerve conductions studies were also performed prospectively on children attending a tertiary metabolic disease service. Results were classified and analysed according to the underlying genetic cause. RESULTS Nerve conduction studies from 27 children with mitochondrial disease were included in the study (mitochondrial DNA (mtDNA) - 7, POLG - 7, SURF1 - 10, PDHc deficiency - 3). Four children with mtDNA mutations had a normal study while three had mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute stroke-like episode that resolved over 12months. Five children with POLG mutations and disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the neuropathy associated with mitochondrial disease was not length-dependent. CONCLUSIONS This is the largest study to date of peripheral neuropathy in genetically- classified childhood mitochondrial disease. Characterising the underlying neuropathy may assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the assessment of children with suspected mitochondrial disease.
Collapse
|
42
|
Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India. Mitochondrion 2016; 27:1-5. [DOI: 10.1016/j.mito.2015.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 11/23/2022]
|
43
|
Visigalli D, Castagnola P, Capodivento G, Geroldi A, Bellone E, Mancardi G, Pareyson D, Schenone A, Nobbio L. Alternative Splicing in the HumanPMP22Gene: Implications in CMT1A Neuropathy. Hum Mutat 2015; 37:98-109. [DOI: 10.1002/humu.22921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Davide Visigalli
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | | | - Giovanna Capodivento
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Alessandro Geroldi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Emilia Bellone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Gianluigi Mancardi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit; IRCCS Foundation; C. Besta Neurological Institute; Milan Italy
| | - Angelo Schenone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Lucilla Nobbio
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| |
Collapse
|
44
|
Hyun YS, Lee J, Kim HJ, Hong YB, Koo H, Smith AST, Kim DH, Choi BO, Chung KW. Charcot-Marie-Tooth Disease Type 4H Resulting from Compound Heterozygous Mutations in FGD4 from Nonconsanguineous Korean Families. Ann Hum Genet 2015; 79:460-9. [PMID: 26400421 DOI: 10.1111/ahg.12134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
Abstract
Charcot-Marie-Tooth disease type 4H (CMT4H) is an autosomal recessive demyelinating subtype of peripheral enuropathies caused by mutations in the FGD4 gene. Most CMT4H patients are in consanguineous Mediterranean families characterized by early onset and slow progression. We identified two CMT4H patients from a Korean CMT cohort, and performed a detailed genetic and clinical analysis in both cases. Both patients from nonconsanguineous families showed characteristic clinical manifestations of CMT4H including early onset, scoliosis, areflexia, and slow disease progression. Exome sequencing revealed novel compound heterozygous mutations in FGD4 as the underlying cause in both families (p.Arg468Gln and c.1512-2A>C in FC73, p.Met345Thr and c.2043+1G>A (p.Trp663Trpfs*30) in FC646). The missense mutations were located in highly conserved RhoGEF and PH domains which were predicted to be pathogenic in nature by in silico modeling. The CMT4H occurrence frequency was calculated to 0.7% in the Korean demyelinating CMT patients. This study is the first report of CMT4H in Korea. FGD4 assay could be considered as a means of molecular diagnosis for sporadic cases of demyelinating CMT with slow progression.
Collapse
Affiliation(s)
- Young Se Hyun
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Jinho Lee
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Jin Kim
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Young Bin Hong
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heasoo Koo
- Department of Pathology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Alec S T Smith
- Department of Bioengineering, University of Washington, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, WA, USA
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
45
|
Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep 2015; 12:1169-83. [PMID: 26257172 DOI: 10.1016/j.celrep.2015.07.023] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 05/27/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.
Collapse
|
46
|
Echaniz-Laguna A. The shifting paradigm of Charcot-Marie-Tooth disease. Rev Neurol (Paris) 2015; 171:498-504. [DOI: 10.1016/j.neurol.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/11/2014] [Accepted: 12/05/2014] [Indexed: 11/16/2022]
|
47
|
[Review of the recent literature on hereditary neuropathies]. Rev Neurol (Paris) 2014; 170:846-9. [PMID: 25459128 DOI: 10.1016/j.neurol.2014.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 11/21/2022]
Abstract
The recent literature included interesting reports on the pathogenic mechanisms of hereditary neuropathies. The axonal traffic and its abnormalities in some forms of Charcot-Marie-Tooth (CMT) disease were particularly reviewed by Bucci et al. Many genes related to CMT disease code for proteins that are involved directly or not in intracellular traffic. KIF1B controls vesicle motility on microtubules. MTMR2, MTMR13 and FIG4 regulate the metabolism of phosphoinositide at the level of endosomes. The HSPs are involved in the proteasomal degradation. GDAP1 and MFN2 regulate the mitochondrial fission and fusion respectively and the mitochondial transport within the axon. Pareyson et al. reported a review on peripheral neuropathies in mitochondrial disorders. They used the term of "mitochondrial CMT" for the forms of CMT with abnormal mitochondrial dynamic or structure. Among the new entities, we can draw the attention to a proximal form of hereditary motor and sensory neuropathy with autosomal dominant inheritance, which is characterized by motor deficit with cramps and fasciculations predominating in proximal muscles. Distal sensory deficit can be present. The gene TFG on chromosome 3 has been recently identified to be responsible for this form. Another rare form of axonal autosomal recessive neuropathy due to HNT1 gene mutation is characterized by the presence of hands myotonia that appears later than neuropathy but constitute an interesting clinical hallmark to orientate the diagnosis of this form. In terms of differential diagnosis, CMT4J due to FIG4 mutation can present with a rapidly progressive and asymmetric weakness that resembles CIDP. Bouhy et al. made an interesting review on the therapeutic trials, animal models and the future therapeutic strategies to be developed in CMT disease.
Collapse
|
48
|
Tamiya G, Makino S, Hayashi M, Abe A, Numakura C, Ueki M, Tanaka A, Ito C, Toshimori K, Ogawa N, Terashima T, Maegawa H, Yanagisawa D, Tooyama I, Tada M, Onodera O, Hayasaka K. A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot-Marie-Tooth disease. Am J Hum Genet 2014; 95:294-300. [PMID: 25152455 DOI: 10.1016/j.ajhg.2014.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy characterized by clinical and genetic heterogeneity. Although more than 30 loci harboring CMT-causing mutations have been identified, many other genes still remain to be discovered for many affected individuals. For two consanguineous families with CMT (axonal and mixed phenotypes), a parametric linkage analysis using genome-wide SNP chip identified a 4.3 Mb region on 12q24 showing a maximum multipoint LOD score of 4.23. Subsequent whole-genome sequencing study in one of the probands, followed by mutation screening in the two families, revealed a disease-specific 5 bp deletion (c.247-10_247-6delCACTC) in a splicing element (pyrimidine tract) of intron 2 adjacent to the third exon of cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1), which is a component of mitochondrial respiratory complex IV (cytochrome c oxidase [COX]), within the autozygous linkage region. Functional analysis showed that expression of COX6A1 in peripheral white blood cells from the affected individuals and COX activity in their EB-virus-transformed lymphoblastoid cell lines were significantly reduced. In addition, Cox6a1-null mice showed significantly reduced COX activity and neurogenic muscular atrophy leading to a difficulty in walking. Those data indicated that COX6A1 mutation causes the autosomal-recessive axonal or mixed CMT.
Collapse
|
49
|
Cassereau J, Codron P, Funalot B. Inherited peripheral neuropathies due to mitochondrial disorders. Rev Neurol (Paris) 2014; 170:366-74. [DOI: 10.1016/j.neurol.2013.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 01/04/2023]
|