1
|
Koinas D, Zhou X, Wu B, Miller KW, Bruzik KS. Novel Spiro-Barbiturates Can Reverse the Action of General Anesthetics on the GABA AR. J Med Chem 2025; 68:8025-8045. [PMID: 40193703 DOI: 10.1021/acs.jmedchem.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
GABAARs are pentameric ligand-gated ion channels that play a major role in mediating inhibition in the CNS. They are the target of many widely used positive allosteric modulators (PAMs) of GABAARs such as general anesthetics, sedatives, antiepileptics, and anxiolytics. However, close structural analogs of these PAMs are negative allosteric modulators that cause excitation. Comparison of the SAR of inhibitory and excitatory barbiturates suggested that conformationally constrained spiro-analogs of phenobarbital might have intermediate allosteric activity. More than 50 spiro-analogs were synthesized and characterized for their ability to enhance desensitization and reverse the action of anesthetics. A number of these reversed the action of anesthetics without having any action on GABA-induced desensitization. These constitute a new class of GABA-ergic drugs that are null allosteric ligands. They offer the potential to reverse the sedative action of current PAMs and modulate the behavior of diseases resulting from mutations in GABAAR subunits.
Collapse
Affiliation(s)
- Dimosthenis Koinas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 South Wood Street, M/C 781, Chicago, Illinois 60612-7231, United States
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, United States
| | - Bo Wu
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 South Wood Street, M/C 781, Chicago, Illinois 60612-7231, United States
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, United States
| | - Karol S Bruzik
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 South Wood Street, M/C 781, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
2
|
Stein Neto B, Goodnough CL, Gross ER. Precisely Providing Analgesia through Selectively Targeting the GABA A α2/α3 Subtypes. J Pharmacol Exp Ther 2024; 391:387-388. [PMID: 39562013 DOI: 10.1124/jpet.124.002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 11/21/2024] Open
Affiliation(s)
- Beatriz Stein Neto
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil (B.S.N.); and Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California (C.L.G., E.R.G.)
| | - Candida L Goodnough
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil (B.S.N.); and Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California (C.L.G., E.R.G.)
| | - Eric R Gross
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil (B.S.N.); and Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California (C.L.G., E.R.G.)
| |
Collapse
|
3
|
Bacq A, Depaulis A, Castagné V, Le Guern ME, Wirrell EC, Verleye M. An Update on Stiripentol Mechanisms of Action: A Narrative Review. Adv Ther 2024; 41:1351-1371. [PMID: 38443647 PMCID: PMC10960919 DOI: 10.1007/s12325-024-02813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Stiripentol (Diacomit®) (STP) is an orally active antiseizure medication (ASM) indicated as adjunctive therapy, for the treatment of seizures associated with Dravet syndrome (DS), a severe form of childhood epilepsy, in conjunction with clobazam and, in some regions valproic acid. Since the discovery of STP, several mechanisms of action (MoA) have been described that may explain its specific effect on seizures associated with DS. STP is mainly considered as a potentiator of gamma-aminobutyric acid (GABA) neurotransmission: (i) via uptake blockade, (ii) inhibition of degradation, but also (iii) as a positive allosteric modulator of GABAA receptors, especially those containing α3 and δ subunits. Blockade of voltage-gated sodium and T-type calcium channels, which is classically associated with anticonvulsant and neuroprotective properties, has also been demonstrated for STP. Finally, several studies indicate that STP could regulate glucose energy metabolism and inhibit lactate dehydrogenase. STP is also an inhibitor of several cytochrome P450 enzymes involved in the metabolism of other ASMs, contributing to boost their anticonvulsant efficacy as add-on therapy. These different MoAs involved in treatment of DS and recent data suggest a potential for STP to treat other neurological or non-neurological diseases.
Collapse
Affiliation(s)
- Alexandre Bacq
- Biocodex Research and Development Center, Compiègne, France.
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marc Verleye
- Biocodex Research and Development Center, Compiègne, France
| |
Collapse
|
4
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
5
|
Mao LM, Thallapureddy K, Wang JQ. Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo. Brain Res 2024; 1823:148671. [PMID: 37952872 PMCID: PMC10806815 DOI: 10.1016/j.brainres.2023.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Khyathi Thallapureddy
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
6
|
Bhave K, Forman SA. Substituted Cysteine Modification and Protection with n-Alkyl-MTS Reagents Quantifies Steric Changes Induced by a Mutation in Anesthetic Binding Sites on GABA Type A Receptors. Mol Pharmacol 2023; 104:266-274. [PMID: 37586749 PMCID: PMC10658906 DOI: 10.1124/molpharm.123.000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Multiple approaches, including cryogenic electron microscopy (cryo-EM), indicate that the anesthetics etomidate and propofol modulate α1β2/3γ2 GABAA receptors by binding in overlapping transmembrane inter-subunit sites near βM286 and αL232 sidechains. High-precision approaches in functional receptors are needed for comparisons with cryo-EM. We previously used substituted cysteine modification and protection (SCAMP) with n-alkyl-methanethiosulfonate (MTS) reagents and electrophysiology in α1β3M286Cγ2L receptors to estimate the distance from etomidate to β3M286 with precision near 1.3 Å. Here, we address three more aims using this approach: (i) SCAMP with etomidate was tested in α1L232Cβ3γ2L receptors; (ii) studies in α1L232Wβ3M286Cγ2L receptors assessed whether α1L232W displaces etomidate relative to β3M286C; and (iii) results with propofol were compared with those with etomidate. Voltage-clamp electrophysiology in Xenopus oocytes was used to assess persistent functional changes after exposing cysteine-substituted receptors to methyl-MTS through n-decyl-MTS. Overlap of modified cysteine sidechains with bound anesthetic was inferred when anesthetic co-application with alkyl-MTS reagent blocked the development of persistent effects. In α1L232Cβ3γ2L receptors, only pentyl-MTS and hexyl-MTS induced persistent effects that were unaltered by etomidate co-application, precluding a direct estimate of intermolecular distance. In α1L232Wβ3M286Cγ2L receptors, sidechain overlap with bound etomidate was inferred for modifications with ethyl-MTS through n-pentyl-MTS, with unambiguous cut-on and cut-off. Comparison with results in α1β3M286Cγ2L reveals that α1L232W, which increases maximal sidechain length by 2.1 Å, displaces etomidate closer to β3M286C by about 1.3 Å. Propofol results largely mirrored those with etomidate. These findings indicate that both etomidate and propofol bind within 1 Å of α1L232, consistent with cryo-EM structures. SIGNIFICANCE STATEMENT: We combined electrophysiology, cysteine substitutions, and n-alkyl-methanethiosulfonate modifiers in functional GABAA receptors to enable precise estimates of the distance between β3M286C sidechains and anesthetics (etomidate and propofol) bound in transmembrane β+/α- inter-subunit pockets. Comparing results in α1β3M286Cγ2L and α1L232Wβ3M286Cγ2L receptors reveals that α1L232W mutations displace both anesthetics toward β3M286C, indicating that these anesthetics bind within 1 Å of the α1L232 sidechain in functional receptors, consistent with cryogenic electron microscopy structures derived under nonphysiologic conditions.
Collapse
Affiliation(s)
- Kieran Bhave
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Chen J, Xiao F, Chen L, Zhou Z, Wei Y, Zhong Y, Li L, Xie Y. Role of ferroptosis in hypoxic preconditioning to reduce propofol neurotoxicity. Front Pharmacol 2023; 14:1121280. [PMID: 36817119 PMCID: PMC9932196 DOI: 10.3389/fphar.2023.1121280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background: An increasing number of studies have reported that neurotoxicity of propofol may cause long-term learning and cognitive dysfunction. Hypoxic preconditioning has been shown to have neuroprotective effects, reducing the neurotoxicity of propofol. Ferroptosis is a new form of death that is different from apoptosis, necrosis, autophagy and pyroptosis. However, it is unclear whether hypoxic preconditioning reduces propofol neurotoxicity associated with ferroptosis. Thus, we aimed to evaluate the effect of propofol on primary hippocampal neurons in vitro to investigate the neuroprotective mechanism of hypoxic preconditioning and the role of ferroptosis in the reduction of propofol neurotoxicity by hypoxic preconditioning. Methods: Primary hippocampal neurons were cultured for 8 days in vitro and pretreated with or without propofol, hypoxic preconditioning, agonists or inhibitors of ferroptosis. Cell counting kit-8, Calcein AM, Reactive oxygen species (ROS), Superoxide dismutase (SOD), Ferrous iron (Fe2+), Malondialdehyde (MDA) and Mitochondrial membrane potential assay kit with JC-1 (JC-1) assays were used to measure cell viability, Reactive oxygen species level, Superoxide dismutase content, Fe2+ level, MDA content, and mitochondrial membrane potential. Cell apoptosis was evaluated using flow cytometry analyses, and ferroptosis-related proteins were determined by Western blot analysis. Results: Propofol had neurotoxic effects that led to decreased hippocampal neuronal viability, reduced mitochondrial membrane potential, decreased SOD content, increased ROS level, increased Fe2+ level, increased MDA content, increased neuronal apoptosis, altered expression of ferroptosis-related proteins and activation of ferroptosis. However, hypoxic preconditioning reversed these effects, inhibited ferroptosis caused by propofol and reduced the neurotoxicity of propofol. Conclusion: The neurotoxicity of propofol in developing rats may be related to ferroptosis. Propofol may induce neurotoxicity by activating ferroptosis, while hypoxic preconditioning may reduce the neurotoxicity of propofol by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Yubo Xie, ; Li Li,
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Yubo Xie, ; Li Li,
| |
Collapse
|
8
|
Hoyt H, Fantasia RJ, Bhave K, Yang X, Forman SA. Photomotor Responses in Zebrafish and Electrophysiology Reveal Varying Interactions of Anesthetics Targeting Distinct Sites on γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2022; 137:568-585. [PMID: 36018576 PMCID: PMC9588801 DOI: 10.1097/aln.0000000000004361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Etomidate, barbiturates, alfaxalone, and propofol are anesthetics that allosterically modulate γ-aminobutyric acid type A (GABAA) receptors via distinct sets of molecular binding sites. Two-state concerted coagonist models account for anesthetic effects and predict supra-additive interactions between drug pairs acting at distinct sites. Some behavioral and molecular studies support these predictions, while other findings suggest potentially complex anesthetic interactions. We therefore evaluated interactions among four anesthetics in both animals and GABAA receptors. METHODS The authors used video assessment of photomotor responses in zebrafish larvae and isobolography to evaluate hypnotic drug pair interactions. Voltage clamp electrophysiology and allosteric shift analysis evaluated coagonist interactions in α1β3γ2L receptors activated by γ-aminobutyric acid (GABA) versus anesthetics [log(d, AN):log(d, GABA) ratio]. Anesthetic interactions at concentrations relevant to zebrafish were assessed in receptors activated with low GABA. RESULTS In zebrafish larvae, etomidate interacted additively with both propofol and the barbiturate R-5-allyl-1-methyl m-trifluoromethyl mephobarbital (R-mTFD-MPAB; mean ± SD α = 1.0 ± 0.07 and 0.96 ± 0.11 respectively, where 1.0 indicates additivity), while the four other drug pairs displayed synergy (mean α range 0.76 to 0.89). Electrophysiologic allosteric shifts revealed that both propofol and R-mTFD-MPAB modulated etomidate-activated receptors much less than GABA-activated receptors [log(d, AN):log(d, GABA) ratios = 0.09 ± 0.021 and 0.38 ± 0.024, respectively], while alfaxalone comparably modulated receptors activated by GABA or etomidate [log(d) ratio = 0.87 ± 0.056]. With low GABA activation, etomidate combined with alfaxalone was supra-additive (n = 6; P = 0.023 by paired t test), but etomidate plus R-mTFD-MPAB or propofol was not. CONCLUSIONS In both zebrafish and GABAA receptors, anesthetic drug pairs interacted variably, ranging from additivity to synergy. Pairs including etomidate displayed corresponding interactions in animals and receptors. Some of these results challenge simple two-state coagonist models and support alternatives where different anesthetics may stabilize distinct receptor conformations, altering the effects of other drugs. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Helen Hoyt
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ryan J Fantasia
- School of Biologic Sciences, University of California-San Diego, San Diego, California
| | - Kieran Bhave
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Xiaoxuan Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Stuart A Forman
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Li YJ, Yang K, Long XM, Xiao G, Huang SJ, Zeng ZY, Liu ZY, Sun ZL. Toxicity assessment of gelsenicine and the search for effective antidotes. Hum Exp Toxicol 2022; 41:9603271211062857. [PMID: 35018838 DOI: 10.1177/09603271211062857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gelsenicine, one of the most toxic alkaloids of Gelsemium elegans Benth (G. elegans), causes severe respiratory depression. However, its toxicity mechanisms are yet to be elucidated and no effective antidotes are available. OBJECTIVE This study aimed to analyse the toxicity characteristics of gelsenicine. METHODS Both acute and sub-acute toxicities were evaluated. Gelsenicine distribution and elimination in the central nervous system (CNS) and blood were observed. Effective antidotes for gelsenicine poisoning were screened. RESULTS In the acute toxicity study, gelsenicine was highly toxic, and female rats exhibited greater sensitivity to gelsenicine than male rats (LD50 0.520 mg/kg vs 0.996 mg/kg, respectively). Death was primarily caused by respiratory failure. However, in the sub-acute toxicity study, no significant organ damage was observed. Gelsenicine was easily absorbed from the gastrointestinal tract and penetrated the blood-brain barrier, reaching peak concentrations in the CNS within 15 min and rapidly decreasing thereafter. Flumazenil or diazepam combined with epinephrine reversed gelsenicine toxicity and significantly improved survival rate in mice. CONCLUSIONS Gelsenicine is a highly toxic substance that affects nerve conduction without causing damage; the potential toxic mechanism is possibly associated with GABAA receptors. Our findings provide insights into the clinical treatment of gelsenicine-related poisoning and its toxicity mechanisms.
Collapse
Affiliation(s)
- Yu-Juan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,Department of Basic Medicine, Xiangnan University, Chenzhou, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Kun Yang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, China
| | - Gang Xiao
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Si-Juan Huang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zi-Yue Zeng
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhi-Liang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| |
Collapse
|
10
|
Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABA A receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol 2021; 19:123. [PMID: 34417930 PMCID: PMC8380214 DOI: 10.1186/s43141-021-00224-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/08/2021] [Indexed: 02/03/2023]
Abstract
Background γ-Aminobutyric acid sub-type A receptors (GABAARs) are the most prominent inhibitory neurotransmitter receptors in the CNS. They are a family of ligand-gated ion channel with significant physiological and therapeutic implications. Main body GABAARs are heteropentamers formed from a selection of 19 subunits: six α (alpha1-6), three β (beta1-3), three γ (gamma1-3), three ρ (rho1-3), and one each of the δ (delta), ε (epsilon), π (pi), and θ (theta) which result in the production of a considerable number of receptor isoforms. Each isoform exhibits distinct pharmacological and physiological properties. However, the majority of GABAARs are composed of two α subunits, two β subunits, and one γ subunit arranged as γ2β2α1β2α1 counterclockwise around the center. The mature receptor has a central chloride ion channel gated by GABA neurotransmitter and modulated by a variety of different drugs. Changes in GABA synthesis or release may have a significant effect on normal brain function. Furthermore, The molecular interactions and pharmacological effects caused by drugs are extremely complex. This is due to the structural heterogeneity of the receptors, and the existence of multiple allosteric binding sites as well as a wide range of ligands that can bind to them. Notably, dysfunction of the GABAergic system contributes to the development of several diseases. Therefore, understanding the relationship between GABAA receptor deficits and CNS disorders thus has a significant impact on the discovery of disease pathogenesis and drug development. Conclusion To date, few reviews have discussed GABAA receptors in detail. Accordingly, this review aims to summarize the current understanding of the structural, physiological, and pharmacological properties of GABAARs, as well as shedding light on the most common associated disorders.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy. .,Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Dina Assal
- Department of Biotechnology, American University in Cairo (AUC), Cairo, Egypt
| | - Ahmed S Al-Shami
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Diaa Eldin E Hussein
- Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Port of Alexandria, Alexandria, Egypt
| |
Collapse
|
11
|
Falk-Petersen CB, Rostrup F, Löffler R, Buchleithner S, Harpsøe K, Gloriam DE, Frølund B, Wellendorph P. Molecular Determinants Underlying Delta Selective Compound 2 Activity at δ-Containing GABA A Receptors. Mol Pharmacol 2021; 100:46-56. [PMID: 33990405 DOI: 10.1124/molpharm.121.000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Delta selective compound 2 (DS2; 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide) is one of the most widely used tools to study selective actions mediated by δ-subunit-containing GABAA receptors. DS2 was discovered over 10 years ago, but despite great efforts, the precise molecular site of action has remained elusive. Using a combination of computational modeling, site-directed mutagenesis, and cell-based pharmacological assays, we probed three potential binding sites for DS2 and analogs at α 4 β 1 δ receptors: an α 4 (+) δ (-) interface site in the extracellular domain (ECD), equivalent to the diazepam binding site in αβγ 2 receptors, and two sites in the transmembrane domain (TMD) - one in the α 4 (+) β 1 (-) and one in the α 4 (-) β 1 (+) interface, with the α 4 (-) β 1 (+) site corresponding to the binding site for etomidate and a recently disclosed low-affinity binding site for diazepam. We show that mutations in the ECD site did not abrogate DS2 modulation. However, mutations in the TMD α 4 (+) β 1 (-) interface, either α 4(S303L) of the α 4 (+) side or β 1(I289Q) of the β 1 (-) side, convincingly disrupted the positive allosteric modulation by DS2. This was consistently demonstrated both in an assay measuring membrane potential changes and by whole-cell patch-clamp electrophysiology and rationalized by docking studies. Importantly, general sensitivity to modulators was not compromised in the mutated receptors. This study sheds important light on the long-sought molecular recognition site for DS2, refutes the misconception that the selectivity of DS2 for δ-containing receptors is caused by a direct interaction with the δ-subunit, and instead points toward a functional selectivity of DS2 and its analogs via a surprisingly well conserved binding pocket in the TMD. SIGNIFICANCE STATEMENT: δ-Containing GABAA receptors represent potential drug targets for the treatment of several neurological conditions with aberrant tonic inhibition, yet no drugs are currently in clinical use. With the identification of the molecular determinants responsible for positive modulation by the known compound delta selective compound 2, the ground is laid for design of ligands that selectively target δ-containing GABAA receptor subtypes, for better understanding of tonic inhibition, and ultimately, for rational development of novel drugs.
Collapse
Affiliation(s)
- Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Buchleithner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Fantasia RJ, Nourmahnad A, Halpin E, Forman SA. Substituted Cysteine Modification and Protection with n-Alkyl- Methanethiosulfonate Reagents Yields a Precise Estimate of the Distance between Etomidate and a Residue in Activated GABA Type A Receptors. Mol Pharmacol 2021; 99:426-434. [PMID: 33766924 PMCID: PMC9354027 DOI: 10.1124/molpharm.120.000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
The anesthetic etomidate modulates synaptic α1β2/3γ2 GABAA receptors via binding sites located in transmembrane β+/α- interfaces. Various approaches indicate that etomidate binds near β2/3M286 side chains, including recent cryogenic electron microscopy images in α1β2γ2L receptors under nonphysiologic conditions with ∼3.5-Å resolution. We hypothesized that substituted cysteine modification and protection experiments using variably sized n-alkyl-methanethiosulfonate (MTS) reagents could precisely estimate the distance between bound etomidate and β3M286 side chains in activated functional receptors. Using voltage-clamp electrophysiology in Xenopus oocytes expressing α1β3M286Cγ2L GABAA receptors, we measured functional changes after exposing GABA-activated receptors to n-alkyl-MTS reagents, from methyl-MTS to n-decyl-MTS. Based on previous studies using a large sulfhydryl reagent, we anticipated that cysteine modifications large enough to overlap etomidate sites would cause persistently increased GABA sensitivity and decreased etomidate modulation and that etomidate would hinder these modifications, reducing effects. Based on altered GABA or etomidate sensitivity, ethyl-MTS and larger n-alkyl-MTS reagents modified GABA-activated α1β3M286Cγ2L GABAA receptors. Receptor modification by n-propyl-MTS or larger reagents caused persistently increased GABA sensitivity and decreased etomidate modulation. Receptor-bound etomidate blocked β3M286C modification by n-propyl-MTS, n-butyl-MTS, and n-hexyl-MTS. In contrast, GABA sensitivity was unaltered by receptor exposure to methyl-MTS or ethyl-MTS, and ethyl-MTS modification uniquely increased etomidate modulation. These results reveal a "cut-on" between ethyl-MTS and n-propyl-MTS, from which we infer that -S-(n-propyl) is the smallest β3M286C appendage that overlaps with etomidate sites. Molecular models of the native methionine and -S-ethyl and -S-(n-propyl) modified cysteines suggest that etomidate is located between 1.7 and 3.0 Å from the β3M286 side chain. SIGNIFICANCE STATEMENT: Precise spatial relationships between drugs and their receptor sites are essential for mechanistic understanding and drug development. This study combined electrophysiology, a cysteine substitution, and n-alkyl-methanethiosulfonate modifiers, creating a precise molecular ruler to estimate the distance between a α1β3γ2L GABA type A receptor residue and etomidate bound in the transmembrane β+/α- interface.
Collapse
Affiliation(s)
- Ryan J Fantasia
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anahita Nourmahnad
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Halpin
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Kushikata T, Hirota K, Saito J, Takekawa D. Roles of Neuropeptide S in Anesthesia, Analgesia, and Sleep. Pharmaceuticals (Basel) 2021; 14:ph14050483. [PMID: 34069327 PMCID: PMC8158725 DOI: 10.3390/ph14050483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide S (NPS) is an endogenous peptide that regulates various physiological functions, such as immune functions, anxiety-like behaviors, learning and memory, the sleep–wake rhythm, ingestion, energy balance, and drug addiction. These processes include the NPS receptor (NPSR1). The NPS–NPSR1 system is also significantly associated with the onset of disease, as well as these physiologic functions. For example, NPS is involved in bronchial asthma, anxiety and awakening disorders, and rheumatoid arthritis. In this review, among the various functions, we focus on the role of NPS in anesthesia-induced loss of consciousness; analgesia, mainly by anesthesia; and sleep–wakefulness. Progress in the field regarding the functions of endogenous peptides in the brain, including NPS, suggests that these three domains share common mechanisms. Further NPS research will help to elucidate in detail how these three domains interact with each other in their functions, and may contribute to improving the quality of medical care.
Collapse
Affiliation(s)
- Tetsuya Kushikata
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
- Correspondence:
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
| | - Junichi Saito
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
| | - Daiki Takekawa
- Department of Anesthesia, Hirosaki University Hospital, Honcho 53, Hirosaki 0368563, Japan;
| |
Collapse
|
14
|
Liu PF, Wang Y, Zhang R, Xu L, Li JB, Mu D. Propofol modulates inhibitory inputs in paraventricular thalamic nucleus of mice. Neurosci Lett 2021; 756:135950. [PMID: 33979698 DOI: 10.1016/j.neulet.2021.135950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022]
Abstract
The mechanisms of general anaesthetics such as propofol have drawn substantial attention. The effects of propofol on inhibitory postsynaptic currents are not exactly the same in different brain nuclei. Recent studies revealed that the paraventricular thalamic nucleus (PVT) is a critical nucleus modulating wakefulness. However, the effects of propofol on PVT neurons and the mechanisms underlying such effects remain unknown. Here, we performed the whole-cell recording of the PVT neurons in acute brain slices and bath application of propofol. We found that propofol hyperpolarized the membrane potentials of the PVT neurons and suppressed the action potentials induced by step-current injection. Propofol did not affect the spontaneous inhibitory postsynaptic currents (sIPSCs) amplitude or frequency, but prolonged the sIPSCs half-width. Besides, propofol increased miniature inhibitory synaptic currents (mIPSCs) frequency and half-width. Furthermore, propofol could induce GABAA receptors-mediated tonic inhibitory currents dose-dependently. Thus, our results demonstrate that propofol hyperpolarizes PVT neurons by modulating inhibitory currents via GABAA receptors in mice.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Bao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Kim JJ, Hibbs RE. Direct Structural Insights into GABA A Receptor Pharmacology. Trends Biochem Sci 2021; 46:502-517. [PMID: 33674151 DOI: 10.1016/j.tibs.2021.01.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
GABAA receptors are pentameric ligand-gated ion channels that mediate most fast neuronal inhibition in the brain. In addition to their important physiological roles, they are noteworthy in their rich pharmacology; prominent drugs used for anxiety, insomnia, and general anesthesia act through positive modulation of GABAA receptors. Direct structural information for how these drugs work was absent until recently. Efforts in structural biology over the past few years have revealed how important drug classes and natural products interact with the GABAA receptor, providing a foundation for studies in dynamics and structure-guided drug design. Here, we review recent developments in GABAA receptor structural pharmacology, focusing on subunit assemblies of the receptor found at synapses.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Borghese CM, Wang HYL, McHardy SF, Messing RO, Trudell JR, Harris RA, Bertaccini EJ. Modulation of α1β3γ2 GABA A receptors expressed in X. laevis oocytes using a propofol photoswitch tethered to the transmembrane helix. Proc Natl Acad Sci U S A 2021; 118:e2008178118. [PMID: 33593898 PMCID: PMC7923644 DOI: 10.1073/pnas.2008178118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tethered photoswitches are molecules with two photo-dependent isomeric forms, each with different actions on their biological targets. They include reactive chemical groups capable of covalently binding to their target. Our aim was to develop a β-subunit-tethered propofol photoswitch (MAP20), as a tool to better study the mechanism of anesthesia through the GABAA α1β3γ2 receptor. We used short spacers between the tether (methanethiosulfonate), the photosensitive moiety (azobenzene), and the ligand (propofol), to allow a precise tethering adjacent to the putative propofol binding site at the β+α- interface of the receptor transmembrane helices (TMs). First, we used molecular modeling to identify possible tethering sites in β3TM3 and α1TM1, and then introduced cysteines in the candidate positions. Two mutant subunits [β3(M283C) and α1(V227C)] showed photomodulation of GABA responses after incubation with MAP20 and illumination with lights at specific wavelengths. The α1β3(M283C)γ2 receptor showed the greatest photomodulation, which decreased as GABA concentration increased. The location of the mutations that produced photomodulation confirmed that the propofol binding site is located in the β+α- interface close to the extracellular side of the transmembrane helices. Tethering the photoswitch to cysteines introduced in the positions homologous to β3M283 in two other subunits (α1W288 and γ2L298) also produced photomodulation, which was not entirely reversible, probably reflecting the different nature of each interface. The results are in agreement with a binding site in the β+α- interface for the anesthetic propofol.
Collapse
Affiliation(s)
- Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712;
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Hua-Yu L Wang
- Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249
| | - Stanton F McHardy
- Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - James R Trudell
- Department of Anesthesia, Stanford University, Palo Alto, CA 94305
- Beckman Program for Molecular and Genetic Medicine, Stanford University, Palo Alto, CA 94305
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Edward J Bertaccini
- Department of Anesthesia, Stanford University, Palo Alto, CA 94305
- Department of Anesthesia, Palo Alto VA Health Care System, Palo Alto Division, Palo Alto, CA 94304
| |
Collapse
|
17
|
Sorrenti V, Cecchetto C, Maschietto M, Fortinguerra S, Buriani A, Vassanelli S. Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. Int J Mol Sci 2021; 22:1286. [PMID: 33525470 PMCID: PMC7865872 DOI: 10.3390/ijms22031286] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
General anesthesia in animal experiments is an ethical must and is required for all the procedures that are likely to cause more than slight or momentary pain. As anesthetics are known to deeply affect experimental findings, including electrophysiological recordings of brain activity, understanding their mechanism of action is of paramount importance. It is widely recognized that the depth and type of anesthesia introduce significant bias in electrophysiological measurements by affecting the shape of both spontaneous and evoked signals, e.g., modifying their latency and relative amplitude. Therefore, for a given experimental protocol, it is relevant to identify the appropriate anesthetic, to minimize the impact on neuronal circuits and related signals under investigation. This review focuses on the effect of different anesthetics on cortical electrical recordings, examining their molecular mechanisms of action, their influence on neuronal microcircuits and, consequently, their impact on cortical measurements.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Claudia Cecchetto
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan;
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
| | | | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Stefano Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
18
|
Castellano D, Shepard RD, Lu W. Looking for Novelty in an "Old" Receptor: Recent Advances Toward Our Understanding of GABA ARs and Their Implications in Receptor Pharmacology. Front Neurosci 2021; 14:616298. [PMID: 33519367 PMCID: PMC7841293 DOI: 10.3389/fnins.2020.616298] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diverse populations of GABAA receptors (GABAARs) throughout the brain mediate fast inhibitory transmission and are modulated by various endogenous ligands and therapeutic drugs. Deficits in GABAAR signaling underlie the pathophysiology behind neurological and neuropsychiatric disorders such as epilepsy, anxiety, and depression. Pharmacological intervention for these disorders relies on several drug classes that target GABAARs, such as benzodiazepines and more recently neurosteroids. It has been widely demonstrated that subunit composition and receptor stoichiometry impact the biophysical and pharmacological properties of GABAARs. However, current GABAAR-targeting drugs have limited subunit selectivity and produce their therapeutic effects concomitantly with undesired side effects. Therefore, there is still a need to develop more selective GABAAR pharmaceuticals, as well as evaluate the potential for developing next-generation drugs that can target accessory proteins associated with native GABAARs. In this review, we briefly discuss the effects of benzodiazepines and neurosteroids on GABAARs, their use as therapeutics, and some of the pitfalls associated with their adverse side effects. We also discuss recent advances toward understanding the structure, function, and pharmacology of GABAARs with a focus on benzodiazepines and neurosteroids, as well as newly identified transmembrane proteins that modulate GABAARs.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
New Evidence of Receptor-based Pharmacology Underlying a Volatile Anesthetic Effect. Anesthesiology 2020; 133:973-975. [PMID: 32936873 DOI: 10.1097/aln.0000000000003559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Drexler B, Grenz J, Grasshoff C, Antkowiak B. Allopregnanolone Enhances GABAergic Inhibition in Spinal Motor Networks. Int J Mol Sci 2020; 21:ijms21197399. [PMID: 33036451 PMCID: PMC7582554 DOI: 10.3390/ijms21197399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
The neurosteroid allopregnanolone (ALLO) causes unconsciousness by allosteric modulation of γ-aminobutyric acid type A (GABAA) receptors, but its actions on the spinal motor networks are unknown. We are therefore testing the hypothesis that ALLO attenuates the action potential firing of spinal interneurons and motoneurons predominantly via enhancing tonic, but not synaptic GABAergic inhibition. We used video microscopy to assess motoneuron-evoked muscle activity in organotypic slice cultures prepared from the spinal cord and muscle tissue. Furthermore, we monitored GABAA receptor-mediated currents by performing whole-cell voltage-clamp recordings. We found that ALLO (100 nM) reduced the action potential firing of spinal interneurons by 27% and that of α-motoneurons by 33%. The inhibitory effects of the combination of propofol (1 µM) and ALLO on motoneuron-induced muscle contractions were additive. Moreover, ALLO evoked a tonic, GABAA receptor-mediated current (amplitude: 41 pA), without increasing phasic GABAergic transmission. Since we previously showed that at a clinically relevant concentration of 1 µM propofol enhanced phasic, but not tonic GABAergic inhibition, we conclude that ALLO and propofol target distinct subpopulations of GABAA receptors. These findings provide first evidence that the combined application of ALLO and propofol may help to reduce intraoperative movements and undesired side effects that are frequently observed under total intravenous anesthesia.
Collapse
|
21
|
Rossokhin A. The general anesthetic etomidate and fenamate mefenamic acid oppositely affect GABA AR and GlyR: a structural explanation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:591-607. [PMID: 32940715 DOI: 10.1007/s00249-020-01464-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
GABA and glycine act as inhibitory neurotransmitters in the CNS. Inhibitory neurotransmission is mediated via activation of ionotropic GABAA and glycine receptors. We used a modeling approach to explain the opposite effects of the general anesthetic etomidate (ETM) and fenamate mefenamic acid (MFA) on GABA- and glycine-activated currents recorded in isolated cerebellar Purkinje cells and hippocampal pyramidal neurons, respectively. These drugs potentiated GABAARs but blocked GlyRs. We built a homology model of α1β GlyR based on the cryo-EM structure of open α1 GlyR, used the α1β3γ2 GABAAR structure from the PDB, and applied Monte-Carlo energy minimization to optimize models of receptors and ligand-receptor complexes. In silico docking suggests that ETM/MFA bind at the transmembrane β( +)/α( -) intersubunit interface in GABAAR. Our models predict that the bulky side chain of the highly conserved Arg19' residue at the plus interface side wedges the interface and maintains the conducting receptor state. We hypothesized that MFA/ETM binding at the β( +)/α( -) interface leads to prolongation of receptor life-time in the open state. Having analyzed different GABAAR and GlyR structures available in the PDB, we found that mutual arrangement of the Arg19' and Gln-26' side chains at the plus and minus interface sides, respectively, plays an important role when the receptor switches from the open to closed state. We show that this process is accompanied by narrowing of the intersubunit interfaces, leading to extrusion of the Arg19' side chain from the interface. Our models allow us to explain the lack of GlyR potentiation in our electrophysiological experiments.
Collapse
|
22
|
Kim JJ, Gharpure A, Teng J, Zhuang Y, Howard RJ, Zhu S, Noviello CM, Walsh RM, Lindahl E, Hibbs RE. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020; 585:303-308. [PMID: 32879488 PMCID: PMC7486282 DOI: 10.1038/s41586-020-2654-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1-5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Shaotong Zhu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard M Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Competitive Interactions between Halothane and Isoflurane at the Carotid Body and TASK Channels. Anesthesiology 2020; 133:1046-1059. [DOI: 10.1097/aln.0000000000003520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background
The degree to which different volatile anesthetics depress carotid body hypoxic response relates to their ability to activate TASK potassium channels. Most commonly, volatile anesthetic pairs act additively at their molecular targets. We examined whether this applied to carotid body TASK channels.
Methods
We studied halothane and isoflurane effects on hypoxia-evoked rise in intracellular calcium (Ca2+i, using the indicator Indo-1) in isolated neonatal rat glomus cells, and TASK single-channel activity (patch clamping) in native glomus cells and HEK293 cell line cells transiently expressing TASK-1.
Results
Halothane (5%) depressed glomus cell Ca2+i hypoxic response (mean ± SD, 94 ± 4% depression; P < 0.001 vs. control). Isoflurane (5%) had a less pronounced effect (53 ± 10% depression; P < 0.001 vs. halothane). A mix of 3% isoflurane/1.5% halothane depressed cell Ca2+i response (51 ± 17% depression) to a lesser degree than 1.5% halothane alone (79 ± 15%; P = 0.001), but similar to 3% isoflurane alone (44 ± 22%; P = 0.224), indicating subadditivity. Halothane and isoflurane increased glomus cell TASK-1/TASK-3 activity, but mixes had a lesser effect than that seen with halothane alone: 4% halothane/4% isoflurane yielded channel open probabilities 127 ± 55% above control, versus 226 ± 12% for 4% halothane alone (P = 0.009). Finally, in HEK293 cell line cells, progressively adding isoflurane (1.5 to 5%) to halothane (2.5%) reduced TASK-1 channel activity from 120 ± 38% above control, to 88 ± 48% (P = 0.034).
Conclusions
In all three experimental models, the effects of isoflurane and halothane combinations were quantitatively consistent with the modeling of weak and strong agonists competing at a common receptor on the TASK channel.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
24
|
Barker JS, Hines RM. Regulation of GABA A Receptor Subunit Expression in Substance Use Disorders. Int J Mol Sci 2020; 21:ijms21124445. [PMID: 32580510 PMCID: PMC7352578 DOI: 10.3390/ijms21124445] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABAARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABAARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABAAR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABAAR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABAAR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.
Collapse
|
25
|
Jayakar SS, Chiara DC, Zhou X, Wu B, Bruzik KS, Miller KW, Cohen JB. Photoaffinity labeling identifies an intersubunit steroid-binding site in heteromeric GABA type A (GABA A) receptors. J Biol Chem 2020; 295:11495-11512. [PMID: 32540960 DOI: 10.1074/jbc.ra120.013452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Allopregnanolone (3α5α-P), pregnanolone, and their synthetic derivatives are potent positive allosteric modulators (PAMs) of GABAA receptors (GABAARs) with in vivo anesthetic, anxiolytic, and anti-convulsant effects. Mutational analysis, photoaffinity labeling, and structural studies have provided evidence for intersubunit and intrasubunit steroid-binding sites in the GABAAR transmembrane domain, but revealed only little definition of their binding properties. Here, we identified steroid-binding sites in purified human α1β3 and α1β3γ2 GABAARs by photoaffinity labeling with [3H]21-[4-(3-(trifluoromethyl)-3H-diazirine-3-yl)benzoxy]allopregnanolone ([3H]21-pTFDBzox-AP), a potent GABAAR PAM. Protein microsequencing established 3α5α-P inhibitable photolabeling of amino acids near the cytoplasmic end of the β subunit M4 (β3Pro-415, β3Leu-417, and β3Thr-418) and M3 (β3Arg-309) helices located at the base of a pocket in the β+-α- subunit interface that extends to the level of αGln-242, a steroid sensitivity determinant in the αM1 helix. Competition photolabeling established that this site binds with high affinity a structurally diverse group of 3α-OH steroids that act as anesthetics, anti-epileptics, and anti-depressants. The presence of a 3α-OH was crucial: 3-acetylated, 3-deoxy, and 3-oxo analogs of 3α5α-P, as well as 3β-OH analogs that are GABAAR antagonists, bound with at least 1000-fold lower affinity than 3α5α-P. Similarly, for GABAAR PAMs with the C-20 carbonyl of 3α5α-P or pregnanolone reduced to a hydroxyl, binding affinity is reduced by 1,000-fold, whereas binding is retained after deoxygenation at the C-20 position. These results provide a first insight into the structure-activity relationship at the GABAAR β+-α- subunit interface steroid-binding site and identify several steroid PAMs that act via other sites.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Bo Wu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jonathan B Cohen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Shalabi AR, Yu Z, Zhou X, Jounaidi Y, Chen H, Dai J, Kent DE, Feng HJ, Forman SA, Cohen JB, Bruzik KS, Miller KW. A potent photoreactive general anesthetic with novel binding site selectivity for GABA A receptors. Eur J Med Chem 2020; 194:112261. [PMID: 32247113 DOI: 10.1016/j.ejmech.2020.112261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
The pentameric γ-aminobutyric acid type A receptors (GABAARs) are the major inhibitory ligand-gated ion channels in the central nervous system. They mediate diverse physiological functions, mutations in them are associated with mental disorders and they are the target of many drugs such as general anesthetics, anxiolytics and anti-convulsants. The five subunits of synaptic GABAARs are arranged around a central pore in the order β-α-β-α-γ. In the outer third of the transmembrane domain (TMD) drugs may bind to five homologous intersubunit binding sites. Etomidate binds between the pair of β - α subunit interfaces (designated as β+/α-) and R-mTFD-MPAB binds to an α+/β- and an γ+/β- subunit interface (a β- selective ligand). Ligands that bind selectively to other homologous sites have not been characterized. We have synthesized a novel photolabel, (2,6-diisopropyl-4-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenyl)methanol or pTFD-di-iPr-BnOH). It is a potent general anesthetic that positively modulates agonist and benzodiazepine binding. It enhances GABA-induced currents, shifting the GABA concentration-response curve to lower concentrations. Photolabeling-protection studies show that it has negligible affinity for the etomidate sites and high affinity for only one of the two R-mTFD-MPAB sites. Exploratory site-directed mutagenesis studies confirm the latter conclusions and hint that pTFD-di-iPr-BnOH may bind between the α+/β- and α+/γ- subunits in the TMD, making it an α+ ligand. The latter α+/γ- site has not previously been implicated in ligand binding. Thus, pTFD-di-iPr-BnOH is a promising new photolabel that may open up a new pharmacology for synaptic GABAARs.
Collapse
Affiliation(s)
- Abdelrahman R Shalabi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Zhiyi Yu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Hanwen Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| | - Jiajia Dai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| | - Daniel E Kent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA; Department of Health Science, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Jonathan B Cohen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
27
|
Drug-selective Anesthetic Insensitivity of Zebrafish Lacking γ-Aminobutyric Acid Type A Receptor β3 Subunits. Anesthesiology 2020; 131:1276-1291. [PMID: 31567362 DOI: 10.1097/aln.0000000000002963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transgenic mouse studies suggest that γ-aminobutyric acid type A (GABAA) receptors containing β3 subunits mediate important effects of etomidate, propofol, and pentobarbital. Zebrafish, recently introduced for rapid discovery and characterization of sedative-hypnotics, could also accelerate pharmacogenetic studies if their transgenic phenotypes reflect those of mammals. The authors hypothesized that, relative to wild-type, GABAA-β3 functional knock-out (β3) zebrafish would show anesthetic sensitivity changes similar to those of β3 mice. METHODS Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mutagenesis was used to create a β3 zebrafish line. Wild-type and β3 zebrafish were compared for fertility, growth, and craniofacial development. Sedative and hypnotic effects of etomidate, propofol, pentobarbital, alphaxalone, ketamine, tricaine, dexmedetomidine, butanol, and ethanol, along with overall activity and thigmotaxis were quantified in 7-day postfertilization larvae using video motion analysis of up to 96 animals simultaneously. RESULTS Xenopus oocyte electrophysiology showed that the wild-type zebrafish β3 gene encodes ion channels activated by propofol and etomidate, while the β3 zebrafish transgene does not. Compared to wild-type, β3 zebrafish showed similar morphology and growth, but more rapid swimming. Hypnotic EC50s (mean [95% CI]) were significantly higher for β3 versus wild-type larvae with etomidate (1.3 [1.0 to 1.6] vs. 0.6 [0.5 to 0.7] µM; P < 0.0001), propofol (1.1 [1.0 to 1.4] vs. 0.7 [0.6 to 0.8] µM; P = 0.0005), and pentobarbital (220 [190 to 240] vs. 130 [94 to 179] μM; P = 0.0009), but lower with ethanol (150 [106 to 213] vs. 380 [340 to 420] mM; P < 0.0001) and equivalent with other tested drugs. Comparing β3 versus wild-type sedative EC50s revealed a pattern similar to hypnosis. CONCLUSIONS Global β3 zebrafish are selectively insensitive to the same few sedative-hypnotics previously reported in β3 transgenic mice, indicating phylogenetic conservation of β3-containing GABAA receptors as anesthetic targets. Transgenic zebrafish are potentially valuable models for sedative-hypnotic mechanisms research.
Collapse
|
28
|
Kent DE, Savechenkov PY, Bruzik KS, Miller KW. Binding site location on GABA A receptors determines whether mixtures of intravenous general anaesthetics interact synergistically or additively in vivo. Br J Pharmacol 2019; 176:4760-4772. [PMID: 31454409 DOI: 10.1111/bph.14843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE General anaesthetics can act on synaptic GABAA receptors by binding to one of three classes of general anaesthetic sites. Canonical drugs that bind selectively to only one class of site are etomidate, alphaxalone, and the mephobarbital derivative, R-mTFD-MPAB. We tested the hypothesis that the general anaesthetic potencies of mixtures of such site-selective agents binding to the same or to different sites would combine additively or synergistically respectively. EXPERIMENTAL APPROACH The potency of general anaesthetics individually or in combinations to cause loss of righting reflexes in tadpoles was determined, and the results were analysed using isobolographic methods. KEY RESULTS The potencies of combinations of two or three site-selective anaesthetics that all acted on a single class of site were strictly additive, regardless of which single site was involved. Combinations of two or three site-selective anaesthetics that all bound selectively to different sites always interacted synergistically. The strength of the synergy increased with the number of separate sites involved such that the percentage of each agent's EC50 required to cause anaesthesia was just 35% and 14% for two or three sites respectively. Propofol, which binds non-selectively to the etomidate and R-mTFD-MPAB sites, interacted synergistically with each of these agents. CONCLUSIONS AND IMPLICATIONS The established pharmacology of the three anaesthetic binding sites on synaptic GABAA receptors was sufficient to predict whether a mixture of anaesthetics interacted additively or synergistically to cause loss of righting reflexes in vivo. The principles established here have implications for clinical practice.
Collapse
Affiliation(s)
- Daniel E Kent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Health Sciences, Northeastern University, Boston, Massachusetts
| | | | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Etomidate and Etomidate Analog Binding and Positive Modulation of γ-Aminobutyric Acid Type A Receptors: Evidence for a State-dependent Cutoff Effect. Anesthesiology 2019; 129:959-969. [PMID: 30052529 DOI: 10.1097/aln.0000000000002356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Naphthalene-etomidate, an etomidate analog containing a bulky phenyl ring substituent group, possesses very low γ-aminobutyric acid type A (GABAA) receptor efficacy and acts as an anesthetic-selective competitive antagonist. Using etomidate analogs containing phenyl ring substituents groups that range in volume, we tested the hypothesis that this unusual pharmacology is caused by steric hindrance that reduces binding to the receptor's open state. METHODS The positive modulatory potencies and efficacies of etomidate and phenyl ring-substituted etomidate analogs were electrophysiology defined in oocyte-expressed α1β3γ2L GABAA receptors. Their binding affinities to the GABAA receptor's two classes of transmembrane anesthetic binding sites were assessed from their abilities to inhibit receptor labeling by the site-selective photolabels [H]azi-etomidate and tritiated R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS The positive modulatory activities of etomidate and phenyl ring-substituted etomidate analogs progressively decreased with substituent group volume, reflecting significant decreases in both potency (P = 0.005) and efficacy (P < 0.0001). Affinity for the GABAA receptor's two β - α anesthetic binding sites similarly decreased with substituent group volume (P = 0.003), whereas affinity for the receptor's α - β/γ - β sites did not (P = 0.804). Introduction of the N265M mutation, which is located at the β - α binding sites and renders GABAA receptors etomidate-insensitive, completely abolished positive modulation by naphthalene-etomidate. CONCLUSIONS Steric hindrance selectively reduces phenyl ring-substituted etomidate analog binding affinity to the two β - α anesthetic binding sites on the GABAA receptor's open state, suggesting that the binding pocket where etomidate's phenyl ring lies becomes smaller as the receptor isomerizes from closed to open.
Collapse
|
30
|
|
31
|
Iorio MT, Rehman S, Bampali K, Stoeger B, Schnürch M, Ernst M, Mihovilovic MD. Variations on a scaffold - Novel GABA A receptor modulators. Eur J Med Chem 2019; 180:340-349. [PMID: 31325782 DOI: 10.1016/j.ejmech.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022]
Abstract
Allosteric ligands of GABAA receptors exist in many different chemotypes owing to their great usefulness as therapeutics, with benzodiazepines being among the best known examples. Many allosteric binding sites have been described, among them a site at the extracellular interface between the alpha principal face and the beta complementary face (α+/β-). Pyrazoloquinolinones have been shown to bind at α+/β-binding sites of GABAA receptors, exerting chiefly positive allosteric modulation at this location. In order to further explore molecular determinants of this type of allosteric modulation, we synthesized a library of ligands based on the PQ pharmacophore employing a ring-chain bioisosteric approach. In this study we analyzed the structure-activity-relationship (SAR) of these novel ligands based on an azo-biaryl structural motif in α1β3 GABAA receptors, indicating interesting novel properties of the compound class.
Collapse
Affiliation(s)
- Maria Teresa Iorio
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163-OC, 1060, Vienna, Austria.
| | - Sabah Rehman
- Medical University of Vienna, Center for Brain Research, Spitalgasse 4, 1090, Vienna, Austria.
| | - Konstantina Bampali
- Medical University of Vienna, Center for Brain Research, Spitalgasse 4, 1090, Vienna, Austria.
| | - Berthold Stoeger
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163-OC, 1060, Vienna, Austria.
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163-OC, 1060, Vienna, Austria.
| | - Margot Ernst
- Medical University of Vienna, Center for Brain Research, Spitalgasse 4, 1090, Vienna, Austria.
| | - Marko D Mihovilovic
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163-OC, 1060, Vienna, Austria.
| |
Collapse
|
32
|
Olsen RW, Lindemeyer AK, Wallner M, Li X, Huynh KW, Zhou ZH. Cryo-electron microscopy reveals informative details of GABA A receptor structural pharmacology: implications for drug discovery. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S144. [PMID: 31576351 DOI: 10.21037/atm.2019.06.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Richard W Olsen
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiaorun Li
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Kevin W Huynh
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Jayakar SS, Zhou X, Chiara DC, Jarava-Barrera C, Savechenkov PY, Bruzik KS, Tortosa M, Miller KW, Cohen JB. Identifying Drugs that Bind Selectively to Intersubunit General Anesthetic Sites in the α1 β3 γ2 GABA AR Transmembrane Domain. Mol Pharmacol 2019; 95:615-628. [PMID: 30952799 PMCID: PMC6505378 DOI: 10.1124/mol.118.114975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/29/2019] [Indexed: 12/19/2022] Open
Abstract
GABAA receptors (GABAARs) are targets for important classes of clinical agents (e.g., anxiolytics, anticonvulsants, and general anesthetics) that act as positive allosteric modulators (PAMs). Previously, using photoreactive analogs of etomidate ([3H]azietomidate) and mephobarbital [[3H]1-methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid ([3H]R-mTFD-MPAB)], we identified two homologous but pharmacologically distinct classes of general anesthetic binding sites in the α1β3γ2 GABAAR transmembrane domain at β +-α - (β + sites) and α +-β -/γ +-β - (β - sites) subunit interfaces. We now use competition photolabeling with [3H]azietomidate and [3H]R-mTFD-MPAB to identify para-substituted propofol analogs and other drugs that bind selectively to intersubunit anesthetic sites. Propofol and 4-chloro-propofol bind with 5-fold selectivity to β +, while derivatives with bulkier lipophilic substitutions [4-(tert-butyl)-propofol and 4-(hydroxyl(phenyl)methyl)-propofol] bind with ∼10-fold higher affinity to β - sites. Similar to R-mTFD-MPAB and propofol, these drugs bind in the presence of GABA with similar affinity to the α +-β - and γ +-β - sites. However, we discovered four compounds that bind with different affinities to the two β - interface sites. Two of these bind with higher affinity to one of the β - sites than to the β + sites. We deduce that 4-benzoyl-propofol binds with >100-fold higher affinity to the γ +-β - site than to the α +-β - or β +-α - sites, whereas loreclezole, an anticonvulsant, binds with 5- and 100-fold higher affinity to the α +-β - site than to the β + and γ +-β - sites. These studies provide a first identification of PAMs that bind selectively to a single intersubunit site in the GABAAR transmembrane domain, a property that may facilitate the development of subtype selective GABAAR PAMs.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - Xiaojuan Zhou
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - Carlos Jarava-Barrera
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - Pavel Y Savechenkov
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - Karol S Bruzik
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - Mariola Tortosa
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - Keith W Miller
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| | - Jonathan B Cohen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (S.S.J., D.C.C., J.B.C.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (X.Z., K.W.M.); Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.); and the Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Madrid, Spain (C.J.-B., M.T.)
| |
Collapse
|
34
|
Antkowiak B, Rammes G. GABA(A) receptor-targeted drug development -New perspectives in perioperative anesthesia. Expert Opin Drug Discov 2019; 14:683-699. [DOI: 10.1080/17460441.2019.1599356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University,
Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, Experimental Anaesthesiology Section, Werner Reichardt Center for Integrative Neuroscience, Tübingen,
Germany
| | - Gerhard Rammes
- University Hospital rechts der Isar, Department of Anesthesiology, München,
Germany
| |
Collapse
|
35
|
Szabo A, Nourmahnad A, Halpin E, Forman SA. Monod-Wyman-Changeux Allosteric Shift Analysis in Mutant α1 β3 γ2L GABA A Receptors Indicates Selectivity and Crosstalk among Intersubunit Transmembrane Anesthetic Sites. Mol Pharmacol 2019; 95:408-417. [PMID: 30696720 PMCID: PMC6399575 DOI: 10.1124/mol.118.115048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/19/2019] [Indexed: 12/28/2022] Open
Abstract
Propofol, etomidate, and barbiturate anesthetics are allosteric coagonists at pentameric α1β3γ2 GABAA receptors, modulating channel activation via four biochemically established intersubunit transmembrane pockets. Etomidate selectively occupies the two β +/α - pockets, the barbiturate photolabel R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) occupies homologous α +/β - and γ +/β - pockets, and propofol occupies all four. Functional studies of mutations at M2-15' or M3-36' loci abutting these pockets provide conflicting results regarding their relative contributions to propofol modulation. We electrophysiologically measured GABA-dependent channel activation in α1β3γ2L or receptors with single M2-15' (α1S270I, β3N265M, and γ2S280W) or M3-36' (α1A291W, β3M286W, and γ2S301W) mutations, in the absence and presence of equipotent clinical range concentrations of etomidate, R-mTFD-MPAB, and propofol. Estimated open probabilities were calculated and analyzed using global two-state Monod-Wyman-Changeux models to derive log(d) parameters proportional to anesthetic-induced channel modulating energies (where d is the allosteric anesthetic shift factor). All mutations reduced the log(d) values for anesthetics occupying both abutting and nonabutting pockets. The Δlog(d) values [log(d, mutant) - log(d, wild type)] for M2-15' mutations abutting an anesthetic's biochemically established binding sites were consistently larger than the Δlog(d) values for nonabutting mutations, although this was not true for the M3-36' mutant Δlog(d) values. The sums of the anesthetic-associated Δlog(d) values for sets of M2-15' or M3-36' mutations were all much larger than the wild-type log(d) values. Mutant Δlog(d) values qualitatively reflect anesthetic site occupancy patterns. However, the lack of Δlog(d) additivity undermines quantitative comparisons of distinct site contributions to anesthetic modulation because the mutations impaired both abutting anesthetic binding effects and positive cooperativity between anesthetic binding sites.
Collapse
Affiliation(s)
- Andrea Szabo
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anahita Nourmahnad
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Halpin
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart A Forman
- Beecher-Mallinckrodt Laboratories, Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
36
|
Yu Z, Chiara DC, Savechenkov PY, Bruzik KS, Cohen JB. A photoreactive analog of allopregnanolone enables identification of steroid-binding sites in a nicotinic acetylcholine receptor. J Biol Chem 2019; 294:7892-7903. [PMID: 30923128 DOI: 10.1074/jbc.ra118.007172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
Many neuroactive steroids potently and allosterically modulate pentameric ligand-gated ion channels, including GABAA receptors (GABAAR) and nicotinic acetylcholine receptors (nAChRs). Allopregnanolone and its synthetic analog alphaxalone are GABAAR-positive allosteric modulators (PAMs), whereas alphaxalone and most neuroactive steroids are nAChR inhibitors. In this report, we used 11β-(p-azidotetrafluorobenzoyloxy)allopregnanolone (F4N3Bzoxy-AP), a general anesthetic and photoreactive allopregnanolone analog that is a potent GABAAR PAM, to characterize steroid-binding sites in the Torpedo α2βγδ nAChR in its native membrane environment. We found that F4N3Bzoxy-AP (IC50 = 31 μm) is 7-fold more potent than alphaxalone in inhibiting binding of the channel blocker [3H]tenocyclidine to nAChRs in the desensitized state. At 300 μm, neither steroid inhibited binding of [3H]tetracaine, a closed-state selective channel blocker, or of [3H]acetylcholine. Photolabeling identified three distinct [3H]F4N3Bzoxy-AP-binding sites in the nAChR transmembrane domain: 1) in the ion channel, identified by photolabeling in the M2 helices of βVal-261 and δVal-269 (position M2-13'); 2) at the interface between the αM1 and αM4 helices, identified by photolabeling in αM1 (αCys-222/αLeu-223); and 3) at the lipid-protein interface involving γTrp-453 (M4), a residue photolabeled by small lipophilic probes and promegestone, a steroid nAChR antagonist. Photolabeling in the ion channel and αM1 was higher in the nAChR-desensitized state than in the resting state and inhibitable by promegestone. These results directly indicate a steroid-binding site in the nAChR ion channel and identify additional steroid-binding sites also occupied by other lipophilic nAChR antagonists.
Collapse
Affiliation(s)
- Zhiyi Yu
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - David C Chiara
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Pavel Y Savechenkov
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Karol S Bruzik
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Jonathan B Cohen
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
37
|
Joyce RL, Beyer NP, Vasilopoulos G, Woll KA, Hall AC, Eckenhoff RG, Barman DN, Warren JD, Tibbs GR, Goldstein PA. Alkylphenol inverse agonists of HCN1 gating: H-bond propensity, ring saturation and adduct geometry differentially determine efficacy and potency. Biochem Pharmacol 2019; 163:493-508. [PMID: 30768926 DOI: 10.1016/j.bcp.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND PURPOSE In models of neuropathic pain, inhibition of HCN1 is anti-hyperalgesic. 2,6-di-iso-propyl phenol (propofol) and its non-anesthetic congener, 2,6-di-tert-butyl phenol, inhibit HCN1 channels by stabilizing closed state(s). EXPERIMENTAL APPROACH Using in vitro electrophysiology and kinetic modeling, we systematically explore the contribution of ligand architecture to alkylphenol-channel coupling. KEY RESULTS When corrected for changes in hydrophobicity (and propensity for intra-membrane partitioning), the decrease in potency upon 1-position substitution (NCO∼OH >> SH >>> F) mirrors the ligands' H-bond acceptor (NCO > OH > SH >>> F) but not donor profile (OH > SH >>> NCO∼F). H-bond elimination (OH to F) corresponds to a ΔΔG of ∼4.5 kCal mol-1 loss of potency with little or no disruption of efficacy. Substitution of compact alkyl groups (iso-propyl, tert-butyl) with shorter (ethyl, methyl) or more extended (sec-butyl) adducts disrupts both potency and efficacy. Ring saturation (with the obligate loss of both planarity and π electrons) primarily disrupts efficacy. CONCLUSIONS AND IMPLICATIONS A hydrophobicity-independent decrement in potency at higher volumes suggests the alkylbenzene site has a volume of ≥800 Å3. Within this, a relatively static (with respect to ligand) H-bond donor contributes to initial binding with little involvement in generation of coupling energy. The influence of π electrons/ring planarity and alkyl adducts on efficacy reveals these aspects of the ligand present towards a face of the channel that undergoes structural changes during opening. The site's characteristics suggest it is "druggable"; introduction of other adducts on the ring may generate higher potency inverse agonists.
Collapse
Affiliation(s)
| | | | | | - Kellie A Woll
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Adam C Hall
- Smith College, Northampton, MA, United States
| | - Roderic G Eckenhoff
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | | | | | | |
Collapse
|
38
|
Weir CJ, Mitchell SJ, Lambert JJ. Role of GABAA receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br J Anaesth 2019; 119:i167-i175. [PMID: 29161398 DOI: 10.1093/bja/aex369] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since the introduction of general anaesthetics into clinical practice, researchers have been mystified as to how these chemically disparate drugs act to produce their dramatic effects on central nervous system function and behaviour. Scientific advances, particularly during the last 25 years, have now begun to reveal the molecular mechanisms underpinning their behavioural effects. For certain i.v. general anaesthetics, such as etomidate and propofol, a persuasive case can now be made that the GABAA receptor, a major inhibitory receptor in the mammalian central nervous system, is an important target. Advances in molecular pharmacology and in genetic manipulation of rodent genes reveal that different subtypes of the GABAA receptor are responsible for mediating particular aspects of the anaesthetic behavioural repertoire. Such studies provide a better understanding of the neuronal circuitry involved in the various anaesthetic-induced behaviours and, in the future, may result in the development of novel therapeutics with a reduced propensity for side-effects.
Collapse
Affiliation(s)
- C J Weir
- Institute of Academic Anaesthesia
| | - S J Mitchell
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J J Lambert
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
39
|
Liao Y, Liu X, Jounaidi Y, Forman SA, Feng HJ. Etomidate Effects on Desensitization and Deactivation of α4 β3 δ GABA A Receptors Inducibly Expressed in HEK293 TetR Cells. J Pharmacol Exp Ther 2019; 368:100-105. [PMID: 30389723 PMCID: PMC6304376 DOI: 10.1124/jpet.118.252403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/31/2018] [Indexed: 02/01/2023] Open
Abstract
Central α4βδ receptors are the most abundant isoform of δ subunit-containing extrasynaptic GABAA receptors that mediate tonic inhibition. Although the amplitude of GABA-activated currents through α4βδ receptors is modulated by multiple general anesthetics, the effects of general anesthetics on desensitization and deactivation of α4βδ receptors remain unknown. In the current study, we investigated the effect of etomidate, a potent general anesthetic, on the kinetics and the pseudo steady-state current amplitude of α4β3δ receptors inducibly expressed in human embryonic kidney 293 TetR cells. Etomidate directly activates α4β3δ receptors in a concentration-dependent manner. Etomidate at a clinically relevant concentration (3.2 μM) enhances maximal response without altering the EC50 of GABA concentration response. Etomidate also increases the extent of desensitization and prolongs the deactivation of α4β3δ receptors in the presence of maximally activating concentrations of GABA (1 mM). To mimic the modulatory effect of etomidate on tonic currents, long pulses (30-60 seconds) of a low GABA concentration (1 μM) were applied to activate α4β3δ receptors in the absence and presence of etomidate. Although etomidate increases the desensitization of α4β3δ receptors, the pseudo steady-state current amplitude at 1 μM GABA is augmented by etomidate. Our data demonstrate that etomidate enhances the pseudo steady-state current of α4β3δ receptors evoked by a GABA concentration comparable to an ambient GABA level, suggesting that α4β3δ receptors may mediate etomidate's anesthetic effect in the brain.
Collapse
Affiliation(s)
- Yiwei Liao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Y.L., X.L., Y.J., S.A.F., H.-J.F.); Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China (Y.L.); and Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (X.L.)
| | - Xiang Liu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Y.L., X.L., Y.J., S.A.F., H.-J.F.); Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China (Y.L.); and Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (X.L.)
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Y.L., X.L., Y.J., S.A.F., H.-J.F.); Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China (Y.L.); and Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (X.L.)
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Y.L., X.L., Y.J., S.A.F., H.-J.F.); Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China (Y.L.); and Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (X.L.)
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Y.L., X.L., Y.J., S.A.F., H.-J.F.); Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China (Y.L.); and Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (X.L.)
| |
Collapse
|
40
|
Laverty D, Desai R, Uchański T, Masiulis S, Stec WJ, Malinauskas T, Zivanov J, Pardon E, Steyaert J, Miller KW, Aricescu AR. Cryo-EM structure of the human α1β3γ2 GABA A receptor in a lipid bilayer. Nature 2019; 565:516-520. [PMID: 30602789 PMCID: PMC6364807 DOI: 10.1038/s41586-018-0833-4] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023]
Abstract
Type A γ-aminobutyric acid (GABAA) receptors are pentameric ligand-gated ion channels and the main drivers of fast inhibitory neurotransmission in the vertebrate nervous system1,2. Their dysfunction is implicated in a range of neurological disorders, including depression, epilepsy and schizophrenia3,4. Among the numerous assemblies that are theoretically possible, the most prevalent in the brain are the α1β2/3γ2 GABAA receptors5. The β3 subunit has an important role in maintaining inhibitory tone, and the expression of this subunit alone is sufficient to rescue inhibitory synaptic transmission in β1-β3 triple knockout neurons6. So far, efforts to generate accurate structural models for heteromeric GABAA receptors have been hampered by the use of engineered receptors and the presence of detergents7-9. Notably, some recent cryo-electron microscopy reconstructions have reported 'collapsed' conformations8,9; however, these disagree with the structure of the prototypical pentameric ligand-gated ion channel the Torpedo nicotinic acetylcholine receptor10,11, the large body of structural work on homologous homopentameric receptor variants12 and the logic of an ion-channel architecture. Here we present a high-resolution cryo-electron microscopy structure of the full-length human α1β3γ2L-a major synaptic GABAA receptor isoform-that is functionally reconstituted in lipid nanodiscs. The receptor is bound to a positive allosteric modulator 'megabody' and is in a desensitized conformation. Each GABAA receptor pentamer contains two phosphatidylinositol-4,5-bisphosphate molecules, the head groups of which occupy positively charged pockets in the intracellular juxtamembrane regions of α1 subunits. Beyond this level, the intracellular M3-M4 loops are largely disordered, possibly because interacting post-synaptic proteins are not present. This structure illustrates the molecular principles of heteromeric GABAA receptor organization and provides a reference framework for future mechanistic investigations of GABAergic signalling and pharmacology.
Collapse
Affiliation(s)
- Duncan Laverty
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Rooma Desai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Wojciech J Stec
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Wu B, Jayakar SS, Zhou X, Titterton K, Chiara DC, Szabo AL, Savechenkov PY, Kent DE, Cohen JB, Forman SA, Miller KW, Bruzik KS. Inhibitable photolabeling by neurosteroid diazirine analog in the β3-Subunit of human hetereopentameric type A GABA receptors. Eur J Med Chem 2018; 162:810-824. [PMID: 30544077 DOI: 10.1016/j.ejmech.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
Pregnanolone and allopregnanolone-type ligands exert general anesthetic, anticonvulsant and anxiolytic effects due to their positive modulatory interactions with the GABAA receptors in the brain. Binding sites for these neurosteroids have been recently identified at subunit interfaces in the transmembrane domain (TMD) of homomeric β3 GABAA receptors using photoaffinity labeling techniques, and in homomeric chimeric receptors containing GABAA receptor α subunit TMDs by crystallography. Steroid binding sites have yet to be determined in human, heteromeric, functionally reconstituted, full-length, glycosylated GABAA receptors. Here, we report on the synthesis and pharmacological characterization of several photoaffinity analogs of pregnanolone and allopregnanolone, of which 21-[4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoxy]allopregnanolone (21-pTFDBzox-AP) was the most potent ligand. It is a partial positive modulator of the human α1β3 and α1β3γ2L GABAA receptors at sub-micromolar concentrations. [3H]21-pTFDBzox-AP photoincorporated in a pharmacologically specific manner into the α and β subunits of those receptors, with the β3 subunit photolabeled most efficiently. Importantly, photolabeling by [3H]21-pTFDBzox-AP was inhibited by the positive steroid modulators alphaxalone, pregnanolone and allopregnanolone, but not by inhibitory neurosteroid pregnenolone sulfate or by two potent general anesthetics and GABAAR positive allosteric modulators, etomidate and an anesthetic barbiturate. The latter two ligands bind to sites at subunit interfaces in the GABAAR that are different from those interacting with neurosteroids. 21-pTFDBzox-AP's potency and pharmacological specificity of photolabeling indicate its suitability for characterizing neurosteroid binding sites in native GABAA receptors.
Collapse
Affiliation(s)
- Bo Wu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Selwyn S Jayakar
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - Katherine Titterton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - David C Chiara
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea L Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - Pavel Y Savechenkov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Daniel E Kent
- Department of Health Science, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Jonathan B Cohen
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA; Department of Biological Chemistry and Molecular Pharmacology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
42
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABA A Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [PMID: 30275042 DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
GABAA receptors are the major inhibitory transmitter receptors in the brain. They are ligand-gated chloride channels and the site of action of benzodiazepines, barbiturates, neuroactive steroids, anesthetics, and convulsants. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 homologous subunits and their distinct regional, cellular, and subcellular distribution gives rise to a large number of GABAA receptor subtypes with distinct pharmacology, which modulate different functions of the brain. A variety of compounds have been identified that were claimed to modulate selectively individual GABAA receptor subtypes. However, many of these compounds have only incompletely been investigated or, in addition to a preferential modulation of a receptor subtype, also modulate other subtypes at similar concentrations. Although their differential efficacy at distinct receptor subtypes reduced side effects in behavioral experiments in rodents, the exact receptor subtypes mediating their behavioral effects cannot be unequivocally delineated. In addition, the discrepant in vivo effects of some of these compounds in rodents and man raised doubts on the applicability of the concept of receptor subtype selectivity as a guide for the development of clinically useful drugs. Here, we provide an up-to-date review on the currently available GABAA receptor subtype-selective ligands. We present data on their actual activity at GABAA receptor subtypes, discuss the translational aspect of subtype-selective drugs, and make proposals for the future development of ligands with better anxioselectivity in humans. Finally, we discuss possible ways to strengthen the conclusions of behavioral studies with the currently available drugs.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.) and Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (M.M.S.)
| | - Miroslav M Savić
- Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.) and Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (M.M.S.)
| |
Collapse
|
43
|
Alphaxalone Binds in Inner Transmembrane β+-α- Interfaces of α1β3γ2 γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2018; 128:338-351. [PMID: 29210709 DOI: 10.1097/aln.0000000000001978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neurosteroids like alphaxalone are potent anxiolytics, anticonvulsants, amnestics, and sedative-hypnotics, with effects linked to enhancement of γ-aminobutyric acid type A (GABAA) receptor gating in the central nervous system. Data locating neurosteroid binding sites on synaptic αβγ GABAA receptors are sparse and inconsistent. Some evidence points to outer transmembrane β-α interfacial pockets, near sites that bind the anesthetics etomidate and propofol. Other evidence suggests that steroids bind more intracellularly in β-α interfaces. METHODS The authors created 12 single-residue β3 cysteine mutations: β3T262C and β3T266C in β3-M2; and β3M283C, β3Y284C, β3M286C, β3G287C, β3F289C, β3V290C, β3F293C, β3L297C, β3E298C, and β3F301C in β3-M3 helices. The authors coexpressed α1 and γ2L with each mutant β3 subunit in Xenopus oocytes and electrophysiologically tested each mutant for covalent sulfhydryl modification by the water-soluble reagent para-chloromercuribenzenesulfonate. Then, the authors assessed whether receptor-bound alphaxalone, etomidate, or propofol blocked cysteine modification, implying steric hindrance. RESULTS Eleven mutant β3 subunits, when coexpressed with α1 and γ2L, formed functional channels that displayed varied sensitivities to the three anesthetics. Exposure to para-chloromercuribenzenesulfonate produced irreversible functional changes in ten mutant receptors. Protection by alphaxalone was observed in receptors with β3V290C, β3F293C, β3L297C, or β3F301C mutations. Both etomidate and propofol protected receptors with β3M286C or β3V290C mutations. Etomidate also protected β3F289C. In α1β3γ2L structural homology models, all these protected residues are located in transmembrane β-α interfaces. CONCLUSIONS Alphaxalone binds in transmembrane β-α pockets of synaptic GABAA receptors that are adjacent and intracellular to sites for the potent anesthetics etomidate and propofol.
Collapse
|
44
|
Olsen RW. GABA A receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136:10-22. [PMID: 29407219 PMCID: PMC6027637 DOI: 10.1016/j.neuropharm.2018.01.036] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABAAR) and Type B (GABABR) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABABR is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABAAR pharmacology, the topic of this article. GABAAR are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABAAR the targets of agonist depressants and antagonist convulsants, but most GABAAR drugs act at other (allosteric) binding sites on the GABAAR proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABAAR subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABAAR subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABAAR subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABAAR subtype-dependent extracellular domain sites. Thus GABAAR subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of clinically important neuropharmacological agents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Dumps C, Halbeck E, Bolkenius D. Medikamente zur intravenösen Narkoseinduktion: Barbiturate. Anaesthesist 2018; 67:535-552. [DOI: 10.1007/s00101-018-0440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Abstract
It is difficult to study the genetics and molecular mechanisms of anesthesia in humans. Fortunately, the genetic approaches in model organisms can, and have, led to profound insights as to the targets of anesthetics. In turn, the organization of these putative targets into meaningful pathways has begun to elucidate the mechanisms of action of these agents. However, it is important to first appreciate the strengths, and limitations, of genetic approaches to understand the anesthetic action. Here we compare the commonly used genetic model organisms, various anesthetic endpoints, and different modes of genetic screens. Coupled with the more specific data presented in subsequent chapters, this chapter places those results in a framework with which to analyze the discoveries across organisms and eventually extend the resulting models to humans.
Collapse
|
47
|
Woll KA, Zhou X, Bhanu NV, Garcia BA, Covarrubias M, Miller KW, Eckenhoff RG. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J 2018; 32:4172-4189. [PMID: 29505303 DOI: 10.1096/fj.201701347r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most general anesthetics enhance GABA type A (GABAA) receptor activity at clinically relevant concentrations. Sites of action of volatile anesthetics on the GABAA receptor remain unknown, whereas sites of action of many intravenous anesthetics have been identified in GABAA receptors by using photolabeling. Here, we used photoactivatable analogs of isoflurane (AziISO) and sevoflurane (AziSEVO) to locate their sites on α1β3γ2L and α1β3 GABAA receptors. As with isoflurane and sevoflurane, AziISO and AziSEVO enhanced the currents elicited by GABA. AziISO and AziSEVO each labeled 10 residues in α1β3 receptors and 9 and 8 residues, respectively, in α1β3γ2L receptors. Photolabeled residues were concentrated in transmembrane domains and located in either subunit interfaces or in the interface between the extracellular domain and the transmembrane domain. The majority of these transmembrane residues were protected from photolabeling with the addition of excess parent anesthetic, which indicated specificity. Binding sites were primarily located within α+/β- and β+/α- subunit interfaces, but residues in the α+/γ- interface were also identified, which provided a basis for differential receptor subtype sensitivity. Isoflurane and sevoflurane did not always share binding sites, which suggests an unexpected degree of selectivity.-Woll, K. A., Zhou, X., Bhanu, N. V., Garcia, B. A., Covarrubias, M., Miller, K. W., Eckenhoff, R. G. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Forman SA. Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods Enzymol 2018; 602:369-389. [PMID: 29588039 DOI: 10.1016/bs.mie.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
General anesthetics are known to act in part by binding to and altering the function of pentameric ligand-gated ion channels such as nicotinic acetylcholine and γ-aminobutyric acid type A receptors. Combining heterologous expression of the subunits that assemble to form these ion channels, mutagenesis techniques and voltage-clamp electrophysiology have enabled a variety of "structure-function" approaches to questions of where anesthetic binds to these ion channels and how they enhance or inhibit channel function. Here, we review the evolution of concepts and experimental strategies during the last three decades, since molecular biological and electrophysiological tools became widely used. Topics covered include: (1) structural models as interpretive frameworks, (2) various electrophysiological approaches and their limitations, (3) Monod-Wyman-Changeux allosteric models as functional frameworks, (4) structural strategies including chimeras and point mutations, and (5) methods based on cysteine substitution and covalent modification. We discuss in particular depth the experimental design considerations for substituted cysteine modification-protection studies.
Collapse
Affiliation(s)
- Stuart A Forman
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
49
|
Abstract
The precise mechanism by which propofol enhances GABAergic transmission remains unclear, but much progress has been made regarding the underlying structural and dynamic mechanisms. Furthermore, it is now clear that propofol has additional molecular targets, many of which are functionally influenced at concentrations achieved clinically. Focusing primarily on molecular targets, this brief review attempts to summarize some of this recent progress while pointing out knowledge gaps and controversies. It is not intended to be comprehensive but rather to stimulate further thought, discussion, and study on the mechanisms by which propofol produces its pleiotropic effects.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Zhou X, Desai R, Zhang Y, Stec WJ, Miller KW, Jounaidi Y. High-level production and purification in a functional state of an extrasynaptic gamma-aminobutyric acid type A receptor containing α4β3δ subunits. PLoS One 2018; 13:e0191583. [PMID: 29352320 PMCID: PMC5774841 DOI: 10.1371/journal.pone.0191583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
The inhibitory γ-aminobutyric acid type A receptors are implicated in numerous physiological processes, including cognition and inhibition of neurotransmission, rendering them important molecular targets for many classes of drugs. Functionally, the entire GABAAR family of receptors can be subdivided into phasic, fast acting synaptic receptors, composed of α-, β- and γ-subunits, and tonic extrasynaptic receptors, many of which contain the δ-subunit in addition to α- and β-subunits. Whereas the subunit arrangement of the former group is agreed upon, that of the αβδ GABAARs remains unresolved by electrophysiological and pharmacological research. To resolve such issues will require biophysical techniques that demand quantities of receptor that have been previously unavailable. Therefore, we have engineered a stable cell line with tetracycline inducible expression of human α4-, β3- and N-terminally Flag-tagged δ-subunits. This cell line achieved a specific activity between 15 and 20 pmol [3H]muscimol sites/mg of membrane protein, making it possible to obtain 1 nmole of purified α4β3δ GABAAR from sixty 15-cm culture dishes. When induced, these cells exhibited agonist-induced currents with characteristics comparable to those previously reported for this receptor and a pharmacology that included strong modulation by etomidate and the δ-subunit-specific ligand, DS2. Immunoaffinity purification and reconstitution in CHAPS/asolectin micelles resulted in the retention of equilibrium allosteric interactions between the separate agonist, anesthetic and DS2 sites. Moreover, all three subunits retained glycosylation. The establishment of this well-characterized cell line will allow molecular level studies of tonic receptors to be undertaken.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rooma Desai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yinghui Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wojciech J. Stec
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Keith W. Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|