1
|
Cao F, Yu S, Chen X, Xiao L, Qiu T, Wang X, Zhang D, Yuan X, Shi P. Identification and pharmacological properties of 2-(1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (MDMB-INACA), N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (ADB-INACA), and N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). J Pharm Biomed Anal 2025; 255:116566. [PMID: 39616837 DOI: 10.1016/j.jpba.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 01/27/2025]
Abstract
Synthetic cannabinoids (SCs) are an evolving class of new psychoactive substances (NPS) with structurally various compounds that are increasing over the past few years. Therefore, they are initially hard to identify because of the lack of analytical information. Moreover, there is little to no information regarding the pharmacology of these compounds despite human abuse. In the present study, gas chromatography-mass spectrometry (GC-MS), ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS), and nuclear magnetic resonance (NMR) spectroscopy were used to identify the structure of three compounds obtained from seized materials. The pharmacological properties of these compounds were evaluated by subsequent behavioral testing, including von Frey and cold allodynia tests. The results indicated that these compounds were determined to be 2-(1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (MDMB-INACA), N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (ADB-INACA), and N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA) via GC-MS, UPLC-Q-TOF MS and NMR analysis, and they can attenuate mechanical and cold allodynia induced by paclitaxel in rats with peripheral neuropathy. Compared with MDMB-INACA and ADB-HINACA, ADB-INACA showed better analgesic effects on paclitaxel-induced peripheral neuropathy (PIPN) in rats, and its effect was similar to that of the positive drug N'-(1-hexyl-2-oxoindolin-3-ylidene) benzohydrazide (MDA-19).
Collapse
Affiliation(s)
- Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Shuchen Yu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China.
| | - Xiujuan Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China.
| | - Lu Xiao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Tingting Qiu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Xiru Wang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Daiwen Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Xiaoliang Yuan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Abdollahzadeh Hamzekalayi MR, Hooshyari Ardakani M, Moeini Z, Rezaei R, Hamidi N, Rezaei Somee L, Zolfaghar M, Darzi R, Kamalipourazad M, Riazi G, Meknatkhah S. A systematic review of novel cannabinoids and their targets: Insights into the significance of structure in activity. Eur J Pharmacol 2024; 976:176679. [PMID: 38821167 DOI: 10.1016/j.ejphar.2024.176679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.
Collapse
Affiliation(s)
| | | | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Rezaei
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Negin Hamidi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Leila Rezaei Somee
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdis Zolfaghar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Raheleh Darzi
- Department of Plant Science, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Kamalipourazad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Patel M, Zheng X, Akinfiresoye LR, Prioleau C, Walker TD, Glass M, Marusich JA. Pharmacological evaluation of new generation OXIZID synthetic cannabinoid receptor agonists. Eur J Pharmacol 2024; 971:176549. [PMID: 38561104 PMCID: PMC11132922 DOI: 10.1016/j.ejphar.2024.176549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and β-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Xiaoxi Zheng
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Institute of Environmental Science and Research Ltd (ESR), New Zealand
| | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Cassandra Prioleau
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Teneille D Walker
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Michelle Glass
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Institute of Environmental Science and Research Ltd (ESR), New Zealand.
| | - Julie A Marusich
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
4
|
Farkas DJ, Inan S, Heydari LN, Johnson CT, Zhao P, Bradshaw HB, Ward SJ, Rawls SM. Cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid mitragynine against neuropathic, but not inflammatory pain. Life Sci 2023; 328:121878. [PMID: 37392779 PMCID: PMC10527577 DOI: 10.1016/j.lfs.2023.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
AIMS Mitragynine (MG) is an alkaloid found in Mitragyna speciosa (kratom), a plant used to self-treat symptoms of opioid withdrawal and pain. Kratom products are commonly used in combination with cannabis, with the self-treatment of pain being a primary motivator of use. Both cannabinoids and kratom alkaloids have been characterized to alleviate symptoms in preclinical models of neuropathic pain such as chemotherapy-induced peripheral neuropathy (CIPN). However, the potential involvement of cannabinoid mechanisms in MG's efficacy in a rodent model of CIPN have yet to be explored. MAIN METHODS Prevention of oxaliplatin-induced mechanical hypersensitivity and formalin-induced nociception were assessed following intraperitoneal administration of MG and CB1, CB2, or TRPV1 antagonists in wildtype and cannabinoid receptor knockout mice. The effects of oxaliplatin and MG exposure on the spinal cord endocannabinoid lipidome was assessed by HPLC-MS/MS. KEY FINDINGS The efficacy of MG on oxaliplatin-induced mechanical hypersensitivity was partially attenuated upon genetic deletion of cannabinoid receptors, and completely blocked upon pharmacological inhibition of CB1, CB2, and TRPV1 channels. This cannabinoid involvement was found to be selective to a model of neuropathic pain, with minimal effects on MG-induced antinociception in a model of formalin-induced pain. Oxaliplatin was found to selectively disrupt the endocannabinoid lipidome in the spinal cord, which was prevented by repeated MG exposure. SIGNIFICANCE Our findings suggest that cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid MG in a model of CIPN, which may result in increased therapeutic efficacy when co-administered with cannabinoids.
Collapse
Affiliation(s)
- Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA.
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Laila N Heydari
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Clare T Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| |
Collapse
|
5
|
de Araujo KRG, Fabris AL, Neves Júnior LF, de Carvalho Ponce J, Soares AL, Costa JL, Yonamine M. The mystery behind the apprehensions of the selective cannabinoid receptor type-2 agonist BZO-HEXOXIZID (MDA-19) as a drug of abuse. Forensic Toxicol 2023; 41:142-150. [PMID: 36652069 DOI: 10.1007/s11419-022-00646-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE MDA-19 or BZO-HEXOXIZID (N'-[(3Z)-1-(1-hexyl)-2-oxo-1,2-dihydro-3H-indol-3-ylidene]-benzohydrazide), in a more recent nomenclature, was first synthesized in 2008 as a selective type-2 cannabinoid receptor (CB2) agonist due to its potential to treat neuropathic pain. In Brazil, this substance was identified in a series of 53 apprehensions between September 2021 and February 2022. Nevertheless, what intrigues toxicologists is that BZO-HEXOXIZID does not exert significant type-1 cannabinoid receptor (CB1) agonism-which is responsible for the well-known psychoactivity of Δ-9-tetrahydrocannabinol. Thus, the objective of this work is to report the first apprehension and identification of BZO-HEXOXIZID in Brazil and to discuss pharmacologically the possible reasons why a CB2 agonist has been incorporated to the illicit market. METHODS Suspected seized samples were sent to the Laboratory of the Scientific Police of the State of Sao Paulo. After the screening, samples were confirmed for the presence of BZO-HEXOXIZID using chromatography gas-mass spectrometry, Fourier-transform infrared spectroscopy and nuclear magnetic resonance techniques. RESULTS Of the 53 samples analyzed, 25 contained only BZO-HEXOXIZID and 28 with mixtures, of which 11 with the CB1 agonist ADB-BUTINACA. Other substances were found in association such as cocaine and caffeine. CONCLUSIONS BZO-HEXOXIZID was detected in a series of seized materials for the first time in Brazil. Nevertheless, there are still unanswered questions regarding the use of this selective CB2 agonist as a drug of abuse.
Collapse
Affiliation(s)
| | - André Luis Fabris
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Luiz F Neves Júnior
- Superintendence of the Technical-Scientific Police, Institute of Criminalistics, São Paulo, SP, 05507-060, Brazil
| | - Júlio de Carvalho Ponce
- Superintendence of the Technical-Scientific Police, Institute of Criminalistics, São Paulo, SP, 05507-060, Brazil
| | - Alexandre Learth Soares
- Instrumental Analysis Laboratory of the Technical-Scientific Police, Institute of Criminalistics, São Paulo, SP, 05507-060, Brazil
| | - José Luiz Costa
- Campinas Poison Control Center, University of Campinas, Campinas, SP, 13083-859, Brazil
| | - Mauricio Yonamine
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
6
|
Lee KZH, Wang Z, Fong CY, Goh EML, Moy HY, Chan ECY. Identification of Optimal Urinary Biomarkers of Synthetic Cannabinoids BZO-HEXOXIZID, BZO-POXIZID, 5F-BZO-POXIZID, and BZO-CHMOXIZID for Illicit Abuse Monitoring. Clin Chem 2022; 68:1436-1448. [PMID: 36175111 DOI: 10.1093/clinchem/hvac138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The continuous introduction of new synthetic cannabinoid (SC) subtypes and analogues remains a major problem worldwide. Recently, a new "OXIZID" generation of SCs surfaced in seized materials across various countries. Hence, there is an impetus to identify urinary biomarkers of the OXIZIDs to detect their abuse. METHODS We adapted our previously reported two-pronged approach to investigate the metabolite profiles and disposition kinetics of 4 OXIZID analogues, namely, BZO-HEXOXIZID (MDA-19), BZO-POXIZID (5C-MDA-19), 5F-BZO-POXIZID (5F-MDA-19), and BZO-CHMOXIZID (CHM-MDA-19). First, bottom-up in vitro incubation experiments comprising metabolite identification, metabolic stability, and reaction phenotyping were performed using human liver microsomes and recombinant human cytochrome P450 enzymes. Second, top-down analysis of authentic urine samples from drug abusers was performed to corroborate the in vitro findings and establish a panel of urinary biomarkers. RESULTS A total of 42 to 51 metabolites were detected for each OXIZID, and their major metabolic pathways included N-alkyl and phenyl hydroxylation, oxidative defluorination (for 5F-BZO-POXIZID), oxidation to ketone and carboxylate, amide hydrolysis, and N-dealkylation. The OXIZIDs were metabolically unstable, mainly metabolized by cytochromes P3A4, P3A5, and P2C9, and demonstrated mechanism-based inactivation of cytochrome P3A4. Integrating with the results of 4 authentic urine samples, the parent drug and both N-alkyl and phenyl mono-hydroxylated metabolites of each OXIZID were determined as suitable urinary biomarkers. CONCLUSIONS Drug enforcement agencies worldwide may apply these biomarkers in routine monitoring procedures to identify abusers and counter the escalation of OXIZID abuse.
Collapse
Affiliation(s)
- Keane Zhi Hao Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Ziteng Wang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Ching Yee Fong
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, Singapore
| | - Evelyn Mei Ling Goh
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, Singapore
| | - Hooi Yan Moy
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
7
|
Deventer MH, Van Uytfanghe K, Vinckier IMJ, Reniero F, Guillou C, Stove CP. Cannabinoid receptor activation potential of the next generation, generic ban evading OXIZID synthetic cannabinoid receptor agonists. Drug Test Anal 2022; 14:1565-1575. [PMID: 35560866 DOI: 10.1002/dta.3283] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
In recent years, several nations have implemented various measures to control the surge of new synthetic cannabinoid receptor agonists (SCRAs) entering the recreational drug market. In July 2021, China put into effect a new generic legislation, banning SCRAs containing one of 7 general core scaffolds. However, this has driven manufacturers towards the synthesis of SCRAs with alternative core structures, exemplified by the recent emergence of "OXIZID SCRAs". Here, using in vitro β-arrestin2 recruitment assays, we report on the CB1 and CB2 potency and efficacy of five members of this new class of SCRAs: BZO-HEXOXIZID, BZO-POXIZID, 5-fluoro BZO-POXIZID, BZO-4en-POXIZID and BZO-CHMOXIZID. All compounds behaved as full agonists at CB1 and partial agonists at CB2 . Potencies ranged from 84.6 - 721 nM at CB1 and 2.21 - 25.9 nM at CB2 . Shortening the n-hexyl tail to a pentyl tail enhanced activity at both receptors. Fluorination of this pentyl analog did not yield a higher receptor activation potential, whereas an unsaturated tail resulted in decreased potency and efficacy at CB1 . The cyclohexyl methyl analog BZO-CHMOXIZID was the most potent compound at both receptors, with EC50 values of 84.6 and 2.21 nM at CB1 and CB2 , respectively. Evaluation of the activity of a seized powder containing BZO-4en-POXIZID suggested a high purity, in line with HPLC-DAD, GC-MS, LC-QTOF-MS and FTIR and NMR analysis. Furthermore, all tested compounds showed a preference for CB2 , except for BZO-POXIZID. Overall, these findings inform public health officials, law enforcement agencies and clinicians on these newly emerging SCRAs.
Collapse
Affiliation(s)
- M H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - K Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - F Reniero
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, VA, Italy
| | - C Guillou
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, VA, Italy
| | - C P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Caudle RM, Neubert JK. Effects of Oxaliplatin on Facial Sensitivity to Cool Temperatures and TRPM8 Expressing Trigeminal Ganglion Neurons in Mice. FRONTIERS IN PAIN RESEARCH 2022; 3:868547. [PMID: 35634452 PMCID: PMC9130462 DOI: 10.3389/fpain.2022.868547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The chemotherapeutic agent oxaliplatin is commonly used to treat colorectal cancer. Although effective as a chemotherapeutic, it frequently produces painful peripheral neuropathies. These neuropathies can be divided into an acute sensitivity to cool temperatures in the mouth and face, and chronic neuropathic pain in the limbs and possible numbness. The chronic neuropathy also includes sensitivity to cool temperatures. Neurons that detect cool temperatures are reported to utilize Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Therefore, we investigated the effects of oxaliplatin on facial nociception to cool temperatures (18°C) in mice and on TRPM8 expressing trigeminal ganglion (TRG) neurons. Paclitaxel, a chemotherapeutic that is used to treat breast cancer, was included for comparison because it produces neuropathies, but acute cool temperature sensitivity in the oral cavity or face is not typically reported. Behavioral testing of facial sensitivity to 18°C indicated no hypersensitivity either acutely or chronically following either chemotherapeutic agent. However, whole cell voltage clamp experiments in TRPM8 expressing TRG neurons indicated that both oxaliplatin and paclitaxel increased Hyperpolarization-Activated Cyclic Nucleotide-Gated channel (HCN), voltage gated sodium channel (Nav), and menthol evoked TRPM8 currents. Voltage gated potassium channel (Kv) currents were not altered. Histological examination of TRPM8 fibers in the skin of the whisker pads demonstrated that the TRPM8 expressing axons and possible Merkel cell-neurite complexes were damaged by oxaliplatin. These findings indicate that oxaliplatin induces a rapid degeneration of TRG neuron axons that express TRPM8, which prevents evoked activation of the sensitized neurons and likely leads to reduced sensitivity to touch and cool temperatures. The changes in HCN, Nav, and TRPM8 currents suggest that spontaneous firing of action potentials may be increased in the deafferented neurons within the ganglion, possibly producing spontaneously induced cooling or nociceptive sensations.
Collapse
Affiliation(s)
- Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, United States
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Liu CM, Hua ZD, Jia W, Li T. Identification of AD-18, 5F-MDA-19, and pentyl MDA-19 in seized materials after the class-wide ban of synthetic cannabinoids in China. Drug Test Anal 2021; 14:307-316. [PMID: 34694738 DOI: 10.1002/dta.3185] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/05/2022]
Abstract
To curb the manufacturing, trafficking, and abuse of synthetic cannabinoids, China implemented a class-wide regulation on synthetic cannabinoids in July 2021. Recently, three different types of synthetic cannabinoid analogs that were not covered by the generic definitions were detected in seized powdered and e-liquid materials. These derivatives included 2-(2-(1-(4-fluorobenzyl)-1H-indol-3-yl)acetamido)-3,3-dimethylbutanamide (AD-18), N'-(1-(5-fluoropentyl)-2-oxoindolin-3-ylidene)benzohydrazide (5F-MDA-19), and N'-(2-oxo-1-pentylindolin-3-ylidene)benzohydrazide (pentyl MDA-19). Identification was based on ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance spectroscopy (NMR), and Fourier transform infrared spectroscopy (FT-IR). AD-18 is a methylene analog of ADB-FUBICA. No chemical or pharmacological data about AD-18 and 5F-MDA-19 have appeared until now, making this the first report on these two compounds. Pentyl MDA-19 has previously been reported to have high affinity for cannabinoid CB1 and CB2 receptors, but this is the first report of its presence in the recreational drug market. Moreover, the collision-induced dissociation (CID) and electron ionization (EI) characteristic fragmentation routes of AD-18 and the other two MDA-19 derivatives were also discussed to facilitate forensic laboratories in their identification of other substances with a similar structure in their case work.
Collapse
Affiliation(s)
- Cui-Mei Liu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C., Beijing, China
| | - Zhen-Dong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C., Beijing, China
| | - Wei Jia
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C., Beijing, China
| | - Tao Li
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C., Beijing, China
| |
Collapse
|
10
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The prevalence of cancer pain will continue to rise as pain is common among the survivorship and general cancer population. As interest in cannabis and cannabinoids for medicinal use including pain management continues to rise, there is growing need to update and review the current state of evidence for their use. The literature was searched for articles in English with key words cannabis, cannabinoids, and cancer pain. The sources of articles were PubMed, Embase, and open Google search. RECENT FINDINGS In a double-blind randomized placebo-controlled trial including a 3-week treatment period of nabiximol for advanced cancer patients with pain refractory to optimized opiate therapy, improvements in average pain were seen in the intention to treat population (P = 0.0854) and per- protocol population (P = 0.0378). SUMMARY To date, preclinical data has demonstrated evidence to suggest promising potential for cancer pain and the urgent need to translate this into clinical practice. Unfortunately, due to limited data, for adults with advanced cancer being treated with opiate therapy, the addition of cannabis or cannabinoids is not currently supported to address cancer pain effectively.
Collapse
|
12
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
13
|
Blanton HL, Brelsfoard J, DeTurk N, Pruitt K, Narasimhan M, Morgan DJ, Guindon J. Cannabinoids: Current and Future Options to Treat Chronic and Chemotherapy-Induced Neuropathic Pain. Drugs 2019; 79:969-995. [PMID: 31127530 PMCID: PMC8310464 DOI: 10.1007/s40265-019-01132-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increases in cancer diagnosis have tremendous negative impacts on patients and their families, and major societal and economic costs. The beneficial effect of chemotherapeutic agents on tumor suppression comes with major unwanted side effects such as weight and hair loss, nausea and vomiting, and neuropathic pain. Chemotherapy-induced peripheral neuropathy (CIPN), which can include both painful and non-painful symptoms, can persist 6 months or longer after the patient's last chemotherapeutic treatment. These peripheral sensory and motor deficits are poorly treated by our current analgesics with limited effectiveness. Therefore, the development of novel treatment strategies is an important preclinical research focus and an urgent need for patients. Approaches to prevent CIPN have yielded disappointing results since these compounds may interfere with the anti-tumor properties of chemotherapeutic agents. Nevertheless, the first (serotonin noradrenaline reuptake inhibitors [SNRIs], anticonvulsants, tricyclic antidepressants) and second (5% lidocaine patches, 8% capsaicin patches and weak opioids such as tramadol) lines of treatment for CIPN have shown some efficacy. The clinical challenge of CIPN management in cancer patients and the need to target novel therapies with long-term efficacy in alleviating CIPN are an ongoing focus of research. The endogenous cannabinoid system has shown great promise and efficacy in alleviating CIPN in preclinical and clinical studies. In this review, we will discuss the mechanisms through which the platinum, taxane, and vinca alkaloid classes of chemotherapeutics may produce CIPN and the potential therapeutic effect of drugs targeting the endocannabinoid system in preclinical and clinical studies, in addition to cannabinoid compounds diffuse mechanisms of action in alleviation of CIPN.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jennifer Brelsfoard
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nathan DeTurk
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX, 79430, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
14
|
Rao M, Chen D, Zhan P, Jiang J. MDA19, a novel CB2 agonist, inhibits hepatocellular carcinoma partly through inactivation of AKT signaling pathway. Biol Direct 2019; 14:9. [PMID: 31053086 PMCID: PMC6500002 DOI: 10.1186/s13062-019-0241-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CB2 (cannabinoid receptor 2) agonists have been shown to exert anti-tumor activities in different tumor types. However, there is no study exploring the role of MDA19 (a novel CB2 agonist) in tumors. In this study we aimed to investigate the effects of MDA19 treatment on HCC cell lines, Hep3B and HepG2 and determine the relevant mechanisms. RESULTS Cell proliferation analysis, including CCK8 and colony formation assays, indicated that MDA19 treatment inhibited HCC cell proliferation in a dose- and time-dependent manner. Flow cytometry suggested that MDA19 induced cell apoptosis and activation of mitochondrial apoptosis pathway. Transwell assay indicated that HCC cell migration and invasion were significantly inhibited by MDA19 treatment. Mechanism investigation suggested that MDA19 induced inactivation of AKT signaling pathway in HCC cells. In addition, we investigated the function of CB2receptor in HCC and its role in the anti-tumor activity of MDA19. By searching on Kaplan-Meier plotter ( http://kmplot.com/analysis/ ), we found that HCC patients with high CB2 expression had a better survival and CB2 expression was significantly associated with gender, clinical stages and race of HCC patients (P < 0.05). CB2 inhibited the progression of HCC cells and its knockdown could rescue the growth inhibition induced by MDA19 in HCC. Moreover, the inhibitory effect of MDA19 on AKT signaling pathway was also reversed by CB2 knockdown. CONCLUSION Our data suggest that MDA-19 exerts an anti-tumor activity at least partly through inactivation of AKT signaling pathway in HCC. CB2 functions as a tumor suppressor gene in HCC, and MDA19-induced growth inhibition of HCC cells depends on its binding to CB2 to activate it. MDA-19 treatment may be a promising strategy for HCC therapy. REVIEWER This article was reviewed by Tito Cali, Mohamed Naguib and Bo Chen.
Collapse
Affiliation(s)
- Mei Rao
- Department of Pharmacy, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, Fujian, 364000, People's Republic of China
| | - Dongfeng Chen
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China
| | - Peng Zhan
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China
| | - Jianqing Jiang
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China.
| |
Collapse
|
15
|
Li ZH, Cui D, Qiu CJ, Song XJ. Cyclic nucleotide signaling in sensory neuron hyperexcitability and chronic pain after nerve injury. NEUROBIOLOGY OF PAIN 2019; 6:100028. [PMID: 31223142 PMCID: PMC6565612 DOI: 10.1016/j.ynpai.2019.100028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Activation of cAMP-PKA and cGMP-PKG pathways contributes to injury-induced sensory neuron hyperexcitability. Activation of cAMP and cGMP contributes to the development of bone cancer pain. PAR2 activation mediates injury-induced cAMP-dependent sensory neuron hyperexcitability.
The cyclic nucleotide signaling, including cAMP-PKA and cGMP-PKG pathways, has been well known to play critical roles in regulating cellular growth, metabolism and many other intracellular processes. In recent years, more and more studies have uncovered the roles of cAMP and cGMP in the nervous system. The cAMP and cGMP signaling mediates chronic pain induced by different forms of injury and stress. Here we summarize the roles of cAMP-PKA and cGMP-PKG signaling pathways in the pathogenesis of chronic pain after nerve injury. In addition, acute dissociation and chronic compression of the dorsal root ganglion (DRG) neurons, respectively, leads to neural hyperexcitability possibly through PAR2 activation-dependent activation of cAMP-PKA pathway. Clinically, radiotherapy can effectively alleviate bone cancer pain at least partly through inhibiting the cancer cell-induced activation of cAMP-PKA pathway. Roles of cyclic nucleotide signaling in neuropathic and inflammatory pain are also seen in many other animal models and are involved in many pro-nociceptive mechanisms including the activation of hyperpolarization-activated cyclic nucleotide (HCN)-modulated ion channels and the exchange proteins directly activated by cAMP (EPAC). Further understanding the roles of cAMP and cGMP signaling in the pathogenesis of chronic pain is theoretically significant and clinically valuable for treatment of chronic pain.
Collapse
Affiliation(s)
- Ze-Hua Li
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Dong Cui
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Cheng-Jie Qiu
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xue-Jun Song
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
16
|
Dang N, Meng X, Ma S, Zhang Q, Sun X, Wei J, Huang S. MDA-19 Suppresses Progression of Melanoma Via Inhibiting the PI3K/Akt Pathway. Open Med (Wars) 2018; 13:416-424. [PMID: 30613786 PMCID: PMC6310917 DOI: 10.1515/med-2018-0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/20/2018] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the effect of MDA-19 on progression of melanoma, and explore the relevant mechanism. Methods The melanoma cell lines, M14 and UACC257, were treated with different concentrations of MDA-19, then CCK8, clone formation assay, Transwell and flow cytometry assays were performed to examine cell proliferation, migration, invasion and apoptosis, respectively. The expression of apoptosis-related proteins (Bcl-2, Bax and caspase 3 P17), EMT and signaling pathway-related proteins were also detected by Western blot. Results MDA-19 inhibited melanoma cells in a dose-dependent manner. Compared to the NC group, MDA-19 significantly inhibited cell growth capacity, migration and invasion of M14 and UACC257 cells, and accelerated cell apoptosis in a mitochondrial pathway through regulating Bcl-2/Bax and Caspase 3 in M14 and UACC257 cells. Moreover, MDA-19 was observed to up-regulate the expression of E-cad and down-regulate the expression of N-cad, Vimentin and Slug in melanoma cells in vitro. Furthermore, MDA-19 could inhibit the PI3K/Akt pathway by blocking Akt phosphorylation (p-Akt) and downstream proteins, P70 and Cyclin D1 in M14 and UACC257 cells. Conclusion Our data demonstrate that MDA-19 could inhibit progression of melanoma by suppressing the PI3K/Akt pathway, suggesting that MDA-19 is a potential anti-cancer agent for therapy of melanoma.
Collapse
Affiliation(s)
- Ningning Dang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Shanshan Ma
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Qian Zhang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - XiYa Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu Province, P.R. China
| | - Jingjing Wei
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan 250012, Shandong Province, P.R. China
| | - Shuhong Huang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan 250012, Shandong Province, P.R. China
| |
Collapse
|
17
|
Anti-tumoral potential of MDA19 in human osteosarcoma via suppressing PI3K/Akt/mTOR signaling pathway. Biosci Rep 2018; 38:BSR20181501. [PMID: 30442873 PMCID: PMC6294623 DOI: 10.1042/bsr20181501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignancy of skeleton with higher mortality rates amongst children and young adults worldwide, whereas effective and secure therapies have also been sought by researches with ongoing efforts. The purpose of the present study was to investigate the impact of N′-[(3Z)-1-(1-hexyl)-2-oxo-1,2-dihydro-3H-indol-3-ylidene] benzohydrazide (MDA19) on OS and explore its potential mechanism. Cell Counting Kit-8 (CCK8) and colony formation assay were employed to evaluate the potential effect of MDA19 on U2OS and MG-63 cells proliferation. Moreover, transwell migration and invasion assay were performed to assess the influence of MDA19 on U2OS and MG-63 cells migration and invasion. In addition, Annexin V-FITC/propidium iodide (Annexin V-FITC/PI) staining and flow cytometry were used to examine apoptotic ratio of the U2OS and MG-63 cells. Meanwhile, Western blot analysis was applied to explore change of relevant mechanism proteins in OS cells treated with MDA19. Our study showed that MDA19 had anti-proliferative activity of OS cells in a dose- and time-dependent manner, simultaneously, inhibition of colony formation was also observed in U2OS and MG-63 cells after incubation of MDA19. Besides, MDA19 could significantly inhibit the number of migrated and invaded OS cells and markedly increase the OS cells apoptosis rate. Mechanistically, we detected detectable reductions in apoptosis related proteins, epithelial–mesenchymal transition (EMT)-related proteins and activity of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling in U2OS and MG-63 cells exposure to MDA19. Overall, the current study indicates in vitro anti-proliferative, anti-metastatic, and pro-apoptotic potential of MDA19 in U2OS and MG-63 cells. Our findings propose a clue for further studies with this compound in preclinical and clinical treatment for OS.
Collapse
|
18
|
Targeting the Endocannabinoid System for Prevention or Treatment of Chemotherapy-Induced Neuropathic Pain: Studies in Animal Models. Pain Res Manag 2018; 2018:5234943. [PMID: 30147813 PMCID: PMC6083482 DOI: 10.1155/2018/5234943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
There is a scarcity of drugs to either prevent or properly manage chemotherapy-induced neuropathic pain (CINP). Cannabis or cannabinoids have been reported to improve pain measures in patients with neuropathic pain. For this review, a search was done in PubMed for papers that examined the expression of and/or evaluated the use of cannabinoids or drugs that prevent or treat established CINP in a CB receptor-dependent manner in animal models. Twenty-eight articles that fulfilled the inclusion and exclusion criteria established were analysed. Studies suggest there is a specific deficiency of endocannabinoids in the periphery during CINP. Inhibitors of FAAH and MGL, enzymes that degrade the endocannabinoids, CB receptor agonists, desipramine, and coadministered indomethacin plus minocycline were found to either prevent the development and/or attenuate established CINP in a CB receptor-dependent manner. The studies analysed suggest that targeting the endocannabinoid system for prevention and treatment of CINP is a plausible therapeutic option. Almost 90% of the studies on animal models of CINP analysed utilised male rodents. Taking into consideration clinical and experimental findings that show gender differences in the mechanisms involved in pain including CINP and in response to analgesics, it is imperative that future studies on CINP utilise more female models.
Collapse
|
19
|
De Min A, Matera C, Bock A, Holze J, Kloeckner J, Muth M, Traenkle C, De Amici M, Kenakin T, Holzgrabe U, Dallanoce C, Kostenis E, Mohr K, Schrage R. A New Molecular Mechanism To Engineer Protean Agonism at a G Protein-Coupled Receptor. Mol Pharmacol 2017; 91:348-356. [PMID: 28167741 DOI: 10.1124/mol.116.107276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/02/2017] [Indexed: 02/14/2025] Open
Abstract
Protean agonists are of great pharmacological interest as their behavior may change in magnitude and direction depending on the constitutive activity of a receptor. Yet, this intriguing phenomenon has been poorly described and understood, due to the lack of stable experimental systems and design strategies. In this study, we overcome both limitations: First, we demonstrate that modulation of the ionic strength in a defined experimental set-up allows for analysis of G protein-coupled receptor activation in the absence and presence of a specific amount of spontaneous receptor activity using the muscarinic M2 acetylcholine receptor as a model. Second, we employ this assay system to show that a dualsteric design principle, that is, molecular probes, carrying two pharmacophores to simultaneously adopt orthosteric and allosteric topography within a G protein-coupled receptor, may represent a novel approach to achieve protean agonism. We pinpoint three molecular requirements within dualsteric compounds that elicit protean agonism at the muscarinic M2 acetylcholine receptor. Using radioligand-binding and functional assays, we posit that dynamic ligand binding may be the mechanism underlying protean agonism of dualsteric ligands. Our findings provide both new mechanistic insights into the still enigmatic phenomenon of protean agonism and a rationale for the design of such compounds for a G protein-coupled receptor.
Collapse
Affiliation(s)
- Anna De Min
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Carlo Matera
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Andreas Bock
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Janine Holze
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Jessica Kloeckner
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Mathias Muth
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Christian Traenkle
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Marco De Amici
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Ulrike Holzgrabe
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Clelia Dallanoce
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Evi Kostenis
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Ramona Schrage
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
20
|
Abstract
Cannabinoid receptor type-2 (CB2, CB2 receptor or CB2-R) mediates analgesia via two mechanisms. CB2 receptors contained in peripheral immune tissue mediate analgesia by altering cytokine profiles, and thus have little adverse effects on central nervous systems (CNSs). CB2 is also expressed in the neurons and glial cells of the CNS. This neuronal expression may also contribute to pain attenuation. The CB2 receptor has been proposed as a potential target in treating chronic pain of several etiologies.
Collapse
Affiliation(s)
- Yuchao Shang
- a Department of Anesthesiology, West China Second Hospital , Sichuan University , Chengdu , China
| | - Yuying Tang
- a Department of Anesthesiology, West China Second Hospital , Sichuan University , Chengdu , China
| |
Collapse
|
21
|
Xu J, Tang Y, Xie M, Bie B, Wu J, Yang H, Foss JF, Yang B, Rosenquist RW, Naguib M. Activation of cannabinoid receptor 2 attenuates mechanical allodynia and neuroinflammatory responses in a chronic post-ischemic pain model of complex regional pain syndrome type I in rats. Eur J Neurosci 2016; 44:3046-3055. [PMID: 27717112 DOI: 10.1111/ejn.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Jijun Xu
- Department of Pain Management; Cleveland Clinic; Cleveland OH USA
- Department of Immunology; Cleveland Clinic; Cleveland OH USA
| | - Yuying Tang
- Department of Anesthesiology; West China Second Hospital; Sichuan University; Chengdu Sichuan China
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Mian Xie
- Department of Pain Management; Cleveland Clinic; Cleveland OH USA
| | - Bihua Bie
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Jiang Wu
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Hui Yang
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Joseph F. Foss
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Bin Yang
- Department of Pathology; Cleveland Clinic; Cleveland OH USA
| | | | - Mohamed Naguib
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
- Anesthesiology Institute; Cleveland Clinic; 9500 Euclid Ave. - NE6-306 Cleveland OH 44195 USA
| |
Collapse
|
22
|
Deng L, Guindon J, Cornett BL, Makriyannis A, Mackie K, Hohmann AG. Chronic cannabinoid receptor 2 activation reverses paclitaxel neuropathy without tolerance or cannabinoid receptor 1-dependent withdrawal. Biol Psychiatry 2015; 77:475-87. [PMID: 24853387 PMCID: PMC4209205 DOI: 10.1016/j.biopsych.2014.04.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/21/2014] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mixed cannabinoid receptor 1 and 2 (CB1 and CB2) agonists such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC) can produce tolerance, physical withdrawal, and unwanted CB1-mediated central nervous system side effects. Whether repeated systemic administration of a CB2-preferring agonist engages CB1 receptors or produces CB1-mediated side effects is unknown. METHODS We evaluated antiallodynic efficacy, possible tolerance, and cannabimimetic side effects of repeated dosing with a CB2-preferring agonist AM1710 in a model of chemotherapy-induced neuropathy produced by paclitaxel using CB1 knockout (CB1KO), CB2 knockout (CB2KO), and wild-type (WT) mice. Comparisons were made with the prototypic classic cannabinoid Δ(9)-THC. We also explored the site and possible mechanism of action of AM1710. RESULTS Paclitaxel-induced mechanical and cold allodynia developed to an equivalent degree in CB1KO, CB2KO, and WT mice. Both AM1710 and Δ(9)-THC suppressed established paclitaxel-induced allodynia in WT mice. In contrast to Δ(9)-THC, chronic administration of AM1710 did not engage CB1 activity or produce antinociceptive tolerance, CB1-mediated cannabinoid withdrawal, hypothermia, or motor dysfunction. Antiallodynic efficacy of systemic administration of AM1710 was absent in CB2KO mice and WT mice receiving the CB2 antagonist AM630, administered either systemically or intrathecally. Intrathecal administration of AM1710 also attenuated paclitaxel-induced allodynia in WT mice, but not CB2KO mice, implicating a possible role for spinal CB2 receptors in AM1710 antiallodynic efficacy. Finally, both acute and chronic administration of AM1710 decreased messenger RNA levels of tumor necrosis factor-α and monocyte chemoattractant protein 1 in lumbar spinal cord of paclitaxel-treated WT mice. CONCLUSIONS Our results highlight the potential of prolonged use of CB2 agonists for managing chemotherapy-induced allodynia with a favorable therapeutic ratio marked by sustained efficacy and absence of tolerance, physical withdrawal, or CB1-mediated side effects.
Collapse
Affiliation(s)
- Liting Deng
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA,Interdisciplinary Biochemistry Graduate Program, Indiana University, Bloomington, IN, USA
| | - Josée Guindon
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Benjamin L. Cornett
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Interdisciplinary Biochemistry Graduate Program, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrea G. Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Interdisciplinary Biochemistry Graduate Program, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA,Author for Correspondence: Dr. Andrea G. Hohmann, Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, Tel: 812-856-0672, Fax: 812-856-7187,
| |
Collapse
|
23
|
Rahn EJ, Deng L, Thakur GA, Vemuri K, Zvonok AM, Lai YY, Makriyannis A, Hohmann AG. Prophylactic cannabinoid administration blocks the development of paclitaxel-induced neuropathic nociception during analgesic treatment and following cessation of drug delivery. Mol Pain 2014; 10:27. [PMID: 24742127 PMCID: PMC3998744 DOI: 10.1186/1744-8069-10-27] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 12/30/2022] Open
Abstract
Background Chemotherapeutic treatment results in chronic pain in an estimated 30-40 percent of patients. Limited and often ineffective treatments make the need for new therapeutics an urgent one. We compared the effects of prophylactic cannabinoids as a preventative strategy for suppressing development of paclitaxel-induced nociception. The mixed CB1/CB2 agonist WIN55,212-2 was compared with the cannabilactone CB2-selective agonist AM1710, administered subcutaneously (s.c.), via osmotic mini pumps before, during, and after paclitaxel treatment. Pharmacological specificity was assessed using CB1 (AM251) and CB2 (AM630) antagonists. The impact of chronic drug infusion on transcriptional regulation of mRNA markers of astrocytes (GFAP), microglia (CD11b) and cannabinoid receptors (CB1, CB2) was assessed in lumbar spinal cords of paclitaxel and vehicle-treated rats. Results Both WIN55,212-2 and AM1710 blocked the development of paclitaxel-induced mechanical and cold allodynia; anti-allodynic efficacy persisted for approximately two to three weeks following cessation of drug delivery. WIN55,212-2 (0.1 and 0.5 mg/kg/day s.c.) suppressed the development of both paclitaxel-induced mechanical and cold allodynia. WIN55,212-2-mediated suppression of mechanical hypersensitivity was dominated by CB1 activation whereas suppression of cold allodynia was relatively insensitive to blockade by either CB1 (AM251; 3 mg/kg/day s.c.) or CB2 (AM630; 3 mg/kg/day s.c.) antagonists. AM1710 (0.032 and 3.2 mg/kg /day) suppressed development of mechanical allodynia whereas only the highest dose (3.2 mg/kg/day s.c.) suppressed cold allodynia. Anti-allodynic effects of AM1710 (3.2 mg/kg/day s.c.) were mediated by CB2. Anti-allodynic efficacy of AM1710 outlasted that produced by chronic WIN55,212-2 infusion. mRNA expression levels of the astrocytic marker GFAP was marginally increased by paclitaxel treatment whereas expression of the microglial marker CD11b was unchanged. Both WIN55,212-2 (0.5 mg/kg/day s.c.) and AM1710 (3.2 mg/kg/day s.c.) increased CB1 and CB2 mRNA expression in lumbar spinal cord of paclitaxel-treated rats in a manner blocked by AM630. Conclusions and implications Cannabinoids block development of paclitaxel-induced neuropathy and protect against neuropathic allodynia following cessation of drug delivery. Chronic treatment with both mixed CB1/CB2 and CB2 selective cannabinoids increased mRNA expression of cannabinoid receptors (CB1, CB2) in a CB2-dependent fashion. Our results support the therapeutic potential of cannabinoids for suppressing chemotherapy-induced neuropathy in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea G Hohmann
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
24
|
Paula-Freire LIG, Andersen ML, Gama VS, Molska GR, Carlini ELA. The oral administration of trans-caryophyllene attenuates acute and chronic pain in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:356-62. [PMID: 24055516 DOI: 10.1016/j.phymed.2013.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/09/2013] [Indexed: 05/09/2023]
Abstract
Trans-caryophyllene is a sesquiterpene present in many medicinal plants' essential oils, such as Ocimum gratissimum and Cannabis sativa. In this study, we evaluated the antinociceptive activity of trans-caryophyllene in murine models of acute and chronic pain and the involvement of trans-caryophyllene in the opioid and endocannabinoid systems. Acute pain was determined using the hot plate test (thermal nociception) and the formalin test (inflammatory pain). The chronic constriction injury (CCI) of the sciatic nerve induced hypernociception was measured by the hot plate and von Frey tests. To elucidate the mechanism of action, mice were pre-treated with naloxone or AM630 30 min before the trans-caryophyllene treatment. Afterwards, thermal nociception was evaluated. The levels of IL-1β were measured in CCI-mice by ELISA. Trans-caryophyllene administration significantly minimized the pain in both the acute and chronic pain models. The antinociceptive effect observed during the hot plate test was reversed by naloxone and AM630, indicating the participation of both the opioid and endocannabinoid system. Trans-caryophyllene treatment also decreased the IL-1β levels. These results demonstrate that trans-caryophyllene reduced both acute and chronic pain in mice, which may be mediated through the opioid and endocannabinoid systems.
Collapse
Affiliation(s)
- L I G Paula-Freire
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil.
| | - M L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
| | - V S Gama
- Faculdade de Farmácia, Universidade São Judas Tadeu, São Paulo, Brazil
| | - G R Molska
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
| | - E L A Carlini
- Departamento de Medicina Preventiva, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
25
|
Mastering tricyclic ring systems for desirable functional cannabinoid activity. Eur J Med Chem 2013; 69:881-907. [PMID: 24125850 DOI: 10.1016/j.ejmech.2013.09.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/23/2022]
Abstract
There is growing interest in using cannabinoid receptor 2 (CB2) agonists for the treatment of neuropathic pain and other indications. In continuation of our ongoing program aiming for the development of new small molecule cannabinoid ligands, we have synthesized a novel series of carbazole and γ-carboline derivatives. The affinities of the newly synthesized compounds were determined by a competitive radioligand displacement assay for human CB2 cannabinoid receptor and rat CB1 cannabinoid receptor. Functional activity and selectivity at human CB1 and CB2 receptors were characterized using receptor internalization and [(35)S]GTP-γ-S assays. The structure-activity relationship and optimization studies of the carbazole series have led to the discovery of a non-selective CB1 and CB2 agonist, compound 4. Our subsequent research efforts to increase CB2 selectivity of this lead compound have led to the discovery of CB2 selective compound 64, which robustly internalized CB2 receptors. Compound 64 had potent inhibitory effects on pain hypersensitivity in a rat model of neuropathic pain. Other potent and CB2 receptor-selective compounds, including compounds 63 and 68, and a selective CB1 agonist, compound 74 were also discovered. In addition, we identified the CB2 ligand 35 which failed to promote CB2 receptor internalization and inhibited compound CP55,940-induced CB2 internalization despite a high CB2 receptor affinity. The present study provides novel tricyclic series as a starting point for further investigations of CB2 pharmacology and pain treatment.
Collapse
|
26
|
Maione S, Costa B, Piscitelli F, Morera E, De Chiaro M, Comelli F, Boccella S, Guida F, Verde R, Ortar G, Di Marzo V. Piperazinyl carbamate fatty acid amide hydrolase inhibitors and transient receptor potential channel modulators as "dual-target" analgesics. Pharmacol Res 2013; 76:98-105. [PMID: 23911581 DOI: 10.1016/j.phrs.2013.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
We showed previously that inhibiting fatty acid amide hydrolase (FAAH), an endocannabinoid degrading enzyme, and transient receptor potential vanilloid type-1 (TRPV1) channels with the same molecule, the naturally occurring N-arachidonoyl-serotonin (AA-5-HT), produces more efficacious anti-nociceptive and anti-hyperalgesic actions than the targeting of FAAH or TRPV1 alone. We also reported the synthesis of some piperazinyl carbamates as "dual" FAAH inhibitors and either antagonists at TRPV1 or agonists/desensitizers of the transient receptor potential ankyrin type-1 (TRPA1) cannel, another target for analgesic drugs. We investigated here if two such compounds, the FAAH/TRPV1 blocker OMDM198 and the FAAH inhibitor/TRPA1 agonist, OMDM202, exert anti-nociceptive actions in the formalin test of pain in mice, and through what mechanism. Both compounds inhibited the second phase of the response to formalin, the effect being maximal at 3 mg/kg, i.p. Antagonism of CB1 or CB2 receptors with AM251 or AM630 (1 mg/kg, i.p.), respectively, reversed this effect. A TRPV1 agonist, palvanil (0.1 mg/kg, i.p.), also reversed the analgesic effect of OMDM198. OMDM202 action was also antagonized by a per se inactive dose of the selective TRPA1 blocker, AP-18 (0.05 mg/kg, i.p.), but not by a TRPV1 antagonist. AP-18 at higher doses (0.1-0.2 mg/kg) inhibited both the first and second phase of the formalin response. The effects of OMDM198 and OMDM202 were accompanied by elevation of anandamide levels in the spinal cord. OMDM198 (0.1-5.0 mg/kg, i.p.) also reversed carrageenan-induced oedema and thermal hyperalgesia in mice with efficacy similar to that of AA-5-HT. These data suggest that "dual" fatty acid amide hydrolase and transient receptor potential channel modulators should be clinically evaluated as novel analgesics.
Collapse
Affiliation(s)
- Sabatino Maione
- Endocannabinoid Research Group, Department of Experimental Medicine - Division of Pharmacology 'L. Donatelli', Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deng L, Guindon J. Muscarinic agonists in the treatment of neuropathic pain: a novel finding. Clin Exp Pharmacol Physiol 2013; 40:395-7. [DOI: 10.1111/1440-1681.12123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Josée Guindon
- Department of Psychological and Brain Sciences; Indiana University; Bloomington; IN; USA
| |
Collapse
|
28
|
Astruc-Diaz F, McDaniel SW, Xu JJ, Parola S, Brown DL, Naguib M, Diaz P. In vivo efficacy of enabling formulations based on hydroxypropyl-β-cyclodextrins, micellar preparation, and liposomes for the lipophilic cannabinoid CB2 agonist, MDA7. J Pharm Sci 2012. [PMID: 23192786 DOI: 10.1002/jps.23393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Enabling formulations based on hydroxypropyl-β-cyclodextrins (HPβCD), micellar preparation, and liposomes have been designed to deliver the racemic mixture of a lipophilic cannabinoid type 2 agonist, MDA7. The antiallodynic effects of MDA7 formulated in these three different systems were compared after intravenous (i.v.) administration in rats. Stoichiometry of the inclusion complex formed by MDA7 in HPβCD was determined by continuous variation plot, electrospray ionization-mass spectrometry (ESI-MS) analysis, phase solubility, and nuclear magnetic resonance studies and indicate formation of exclusively 1:1 adduct. Morphology and particle sizes determined by dynamic light scattering and transmission electron microscopy show the presence of a homogeneous population of closed round-shaped oligolamellar MDA7 containing liposomes, with an average size of 118 nm [polydispersity index (PDI) 0.03]. Monodisperse micelles exhibited an average size of 14 nm (PDI 0.09). HPβCD-based formulation administrated in vivo was composed of two discrete particles populations with a narrow size distribution of 3 nm (PDI 0.04) and 510 nm (PDI 0.02). HPβCD-based formulation dramatically improved antiallodynic effect of MDA7 in comparison with the liposomes preparation. Through inclusion complexation and possibly formation of aggregates, HPβCD can enhance the aqueous solubility of lipophilic drugs, thereby improving their bioavailability for i.v. administration.
Collapse
Affiliation(s)
- Fanny Astruc-Diaz
- The Department of Biomedical and Pharmaceutical Sciences, Core Laboratory for Neuromolecular Production, The University of Montana, Missoula, Montana 59812, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment. Pharmacol Res 2012; 67:94-109. [PMID: 23127915 DOI: 10.1016/j.phrs.2012.10.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 12/11/2022]
Abstract
Cisplatin, a platinum-derived chemotherapeutic agent, produces mechanical and coldallodynia reminiscent of chemotherapy-induced neuropathy in humans. The endocannabinoid system represents a novel target for analgesic drug development. The endocannabinoid signaling system consists of endocannabinoids (e.g. anandamide (AEA) and 2-arachidonoylglycerol (2-AG)), cannabinoid receptors (e.g. CB(1) and CB(2)) and the enzymes controlling endocannabinoid synthesis and degradation. AEA is hydrolyzed by fatty-acid amide hydrolase (FAAH) whereas 2-AG is hydrolyzed primarily by monoacylglycerol lipase (MGL). We compared effects of brain permeant (URB597) and impermeant (URB937) inhibitors of FAAH with an irreversible inhibitor of MGL (JZL184) on cisplatin-evoked behavioral hypersensitivities. Endocannabinoid modulators were compared with agents used clinically to treat neuropathy (i.e. the opioid analgesic morphine, the anticonvulsant gabapentin and the tricyclic antidepressant amitriptyline). Cisplatin produced robust mechanical and cold allodynia but did not alter responsiveness to heat. After neuropathy was fully established, groups received acute intraperitoneal (i.p.) injections of vehicle, amitriptyline (30 mg/kg), gabapentin (100 mg/kg), morphine (6 mg/kg), URB597 (0.1 or 1 mg/kg), URB937 (0.1 or 1 mg/kg) or JZL184 (1, 3 or 8 mg/kg). Pharmacological specificity was assessed by coadministering each endocannabinoid modulator with either a CB(1) (AM251 3 mg/kg), CB(2) (AM630 3 mg/kg), TRPV1 (AMG9810 3 mg/kg) or TRPA1 (HC030031 8 mg/kg) antagonist. Effects of cisplatin on endocannabinoid levels and transcription of receptors (CB(1), CB(2), TRPV1, TRPA1) and enzymes (FAAH, MGL) linked to the endocannabinoid system were also assessed. URB597, URB937, JZL184 and morphine reversed cisplatin-evoked mechanical and cold allodynia to pre-cisplatin levels. By contrast, gabapentin only partially reversed the observed allodynia while amitriptyline, administered acutely, was ineffective. CB(1) or CB(2) antagonists completely blocked the anti-allodynic effects of both FAAH (URB597, URB937) and MGL (JZL184) inhibitors to mechanical and cold stimulation. By contrast, the TRPV1 antagonist AMG9810 blocked the anti-allodynic efficacy of both FAAH inhibitors, but not the MGL inhibitor. By contrast, the TRPA1 antagonist HC30031 did not attenuate anti-allodynic efficacy of any endocannabinoid modulator. When the levels of endocannabinoids were examined, cisplatin increased both anandamide (AEA) and 2-arachidonoylglycerol (2-AG) levels in the lumbar spinal cord and decreased 2-AG levels (but not AEA) in dorsal hind paw skin. RT-PCR showed that mRNA for FAAH, but not other markers, was upregulated by cisplatin treatment in lumbar spinal cord. The present studies demonstrate that cisplatin alters endocannabinoid tone and that inhibition of endocannabinoid hydrolysis alleviates chemotherapy-induced mechanical and cold allodynia. The anti-allodynic effects of FAAH and MGL inhibitors are mediated by CB(1) and CB(2) cannabinoid receptors, whereas TRPV1, but not TRPA1, -dependent mechanisms contribute to the anti-allodynic efficacy of FAAH (but not MGL) inhibitors. Strikingly, endocannabinoid modulators potently suppressed cisplatin-evoked allodynia with a rapid onset and showed efficacy that equaled or exceeded that of major classes of anti-neuropathic pain medications used clinically. Thus, inhibition of endocannabinoid hydrolysis, via FAAH or MGL inhibitors, represents an efficacious pharmacological approach for suppressing chemotherapy-induced neuropathic pain.
Collapse
|
30
|
Deng L, Guindon J, Vemuri VK, Thakur GA, White FA, Makriyannis A, Hohmann AG. The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB₂ receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy. Mol Pain 2012; 8:71. [PMID: 22998838 PMCID: PMC3502129 DOI: 10.1186/1744-8069-8-71] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/19/2012] [Indexed: 12/18/2022] Open
Abstract
Background Chemotherapeutic agents produce dose-limiting peripheral neuropathy through mechanisms that remain poorly understood. We previously showed that AM1710, a cannabilactone CB2 agonist, produces antinociception without producing central nervous system (CNS)-associated side effects. The present study was conducted to examine the antinociceptive effect of AM1710 in rodent models of neuropathic pain evoked by diverse chemotherapeutic agents (cisplatin and paclitaxel). A secondary objective was to investigate the potential contribution of alpha-chemokine receptor (CXCR4) signaling to both chemotherapy-induced neuropathy and CB2 agonist efficacy. Results AM1710 (0.1, 1 or 5 mg/kg i.p.) suppressed the maintenance of mechanical and cold allodynia in the cisplatin and paclitaxel models. Anti-allodynic effects of AM1710 were blocked by the CB2 antagonist AM630 (3 mg/kg i.p.), but not the CB1 antagonist AM251 (3 mg/kg i.p.), consistent with a CB2-mediated effect. By contrast, blockade of CXCR4 signaling with its receptor antagonist AMD3100 (10 mg/kg i.p.) failed to attenuate mechanical or cold hypersensitivity induced by either cisplatin or paclitaxel. Moreover, blockade of CXCR4 signaling failed to alter the anti-allodynic effects of AM1710 in the paclitaxel model, further suggesting distinct mechanisms of action. Conclusions Our results indicate that activation of cannabinoid CB2 receptors by AM1710 suppresses both mechanical and cold allodynia in two distinct models of chemotherapy-induced neuropathic pain. By contrast, CXCR4 signaling does not contribute to the maintenance of chemotherapy-induced established neuropathy or efficacy of AM1710. Our studies suggest that CB2 receptors represent a promising therapeutic target for the treatment of toxic neuropathies produced by cisplatin and paclitaxel chemotherapeutic agents.
Collapse
Affiliation(s)
- Liting Deng
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
GILBERT EJ, LUNN CA. Recent Advances in Selective CB2 Agonists for the Treatment of Pain. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cannabinoid CB2 receptor is one of a family of GPCRs that mediate the effects of endocannabinoids. Several agonists of this receptor are currently in clinical trials for the treatment of pain and inflammation, indications that have been validated by pre-clinical studies on agonists and in receptor knockout mice. Key to the clinical advancement of CB2 agonists is achieving selectivity over the related CB1 receptor, whose activation results in undesirable CNS effects, limiting therapeutic utility. A variety of CB2 receptor agonist chemotypes are reviewed including mono-, bi- and tricyclic cores and bi- and triaryl cores. Pharmacology, with a focus on selectivity requirements and a variety of pre-clinical animal models to assess activity and selectivity, is presented.
Collapse
Affiliation(s)
- E. J. GILBERT
- Department of Medicinal Chemistry Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, NJ, 07033 USA
| | - C. A. LUNN
- Department of In Vitro Pharmacology Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, NJ, 07033 USA
| |
Collapse
|
32
|
Pasquini S, Mugnaini C, Ligresti A, Tafi A, Brogi S, Falciani C, Pedani V, Pesco N, Guida F, Luongo L, Varani K, Borea PA, Maione S, Di Marzo V, Corelli F. Design, synthesis, and pharmacological characterization of indol-3-ylacetamides, indol-3-yloxoacetamides, and indol-3-ylcarboxamides: potent and selective CB2 cannabinoid receptor inverse agonists. J Med Chem 2012; 55:5391-402. [PMID: 22548457 DOI: 10.1021/jm3003334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In our search for new cannabinoid receptor modulators, we describe herein the design and synthesis of three sets of indole-based ligands characterized by an acetamide, oxalylamide, or carboxamide chain, respectively. Most of the compounds showed affinity for CB2 receptors in the nanomolar range, with K(i) values spanning 3 orders of magnitude (377-0.37 nM), and moderate to good selectivity over CB1 receptors. Their in vitro functional activity as inverse agonists was confirmed in vivo in the formalin test of acute peripheral and inflammatory pain in mice, in which compounds 10a and 11e proved to be able to reverse the effect of the CB2 selective agonist COR167.
Collapse
Affiliation(s)
- Serena Pasquini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mugnaini C, Nocerino S, Pedani V, Pasquini S, Tafi A, De Chiaro M, Bellucci L, Valoti M, Guida F, Luongo L, Dragoni S, Ligresti A, Rosenberg A, Bolognini D, Cascio MG, Pertwee RG, Moaddel R, Maione S, Di Marzo V, Corelli F. Investigations on the 4-quinolone-3-carboxylic acid motif part 5: modulation of the physicochemical profile of a set of potent and selective cannabinoid-2 receptor ligands through a bioisosteric approach. ChemMedChem 2012; 7:920-34. [PMID: 22383251 PMCID: PMC3516921 DOI: 10.1002/cmdc.201100573] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/24/2012] [Indexed: 11/07/2022]
Abstract
Three heterocyclic systems were selected as potential bioisosteres of the amide linker for a series of 1,6-disubstituted-4-quinolone-3-carboxamides, which are potent and selective CB2 ligands that exhibit poor water solubility, with the aim of improving their physicochemical profile and also of clarifying properties of importance for amide bond mimicry. Among the newly synthesized compounds, a 1,2,3-triazole derivative (1-(adamantan-1-yl)-4-[6-(furan-2-yl)-1,4-dihydro-4-oxo-1-pentylquinolin-3-yl]-1H-1,2,3-triazole) emerged as the most promising in terms of both physicochemical and pharmacodynamic properties. When assayed in vitro, this derivative exhibited inverse agonist activity, whereas, in the formalin test in mice, it produced analgesic effects antagonized by a well-established inverse agonist. Metabolic studies allowed the identification of a side chain hydroxylated derivative as its only metabolite, which, in its racemic form, still showed appreciable CB2 selectivity, but was 150-fold less potent than the parent compound.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy. Fax 0039-(0)577-234333
| | - Stefania Nocerino
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy. Fax 0039-(0)577-234333
| | - Valentina Pedani
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy. Fax 0039-(0)577-234333
| | - Serena Pasquini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy. Fax 0039-(0)577-234333
| | - Andrea Tafi
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy. Fax 0039-(0)577-234333
| | - Maria De Chiaro
- Dipartimento di Medicina Sperimentale – Sezione di Farmacologia ‘L. Donatelli’, Seconda Università di Napoli, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy
| | - Luca Bellucci
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy. Fax 0039-(0)577-234333
| | - Massimo Valoti
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy
| | - Francesca Guida
- Dipartimento di Medicina Sperimentale – Sezione di Farmacologia ‘L. Donatelli’, Seconda Università di Napoli, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy
| | - Livio Luongo
- Dipartimento di Medicina Sperimentale – Sezione di Farmacologia ‘L. Donatelli’, Seconda Università di Napoli, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy
| | - Stefania Dragoni
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche Via Campi Flegrei 34, Fabbr. 70, 80078 Pozzuoli (Napoli) Italy
| | - Avraham Rosenberg
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Daniele Bolognini
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria Grazia Cascio
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale – Sezione di Farmacologia ‘L. Donatelli’, Seconda Università di Napoli, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche Via Campi Flegrei 34, Fabbr. 70, 80078 Pozzuoli (Napoli) Italy
| | - Federico Corelli
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena Via De Gasperi, 2 53100 Siena, Italy. Fax 0039-(0)577-234333
| |
Collapse
|
34
|
Naguib M, Xu JJ, Diaz P, Brown DL, Cogdell D, Bie B, Hu J, Craig S, Hittelman WN. Prevention of paclitaxel-induced neuropathy through activation of the central cannabinoid type 2 receptor system. Anesth Analg 2012; 114:1104-20. [PMID: 22392969 DOI: 10.1213/ane.0b013e31824b0191] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB(2)) receptors are expressed in the microglia in neurodegenerative disease models. METHODS To explore the potential of CB(2) agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB(2)-selective agonist, namely, MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB(2)(+/+) and CB(2)(-/-) mice. We hypothesized that the CB(2) receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. RESULTS We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB(2)(-/-) mice and was blocked by CB(2) antagonists, suggesting that MDA7's action directly involves CB(2) receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced toll-like receptor and CB(2) expression in the lumbar spinal cord, reduced levels of extracellular signal-regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. CONCLUSIONS Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae.
Collapse
Affiliation(s)
- Mohamed Naguib
- Institute of Anesthesiology, Cleveland Clinic, 9500 Euclid Ave., NE6-306, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cannabinoid agonist WIN 55,212-2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal glial cells. Eur J Pharmacol 2012; 682:62-72. [PMID: 22374260 DOI: 10.1016/j.ejphar.2012.02.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 02/07/2023]
Abstract
Spinal glial activation contributes to the development and maintenance of chronic pain states, including neuropathic pain of diverse etiologies. Cannabinoid compounds have shown antinociceptive properties in a variety of neuropathic pain models and are emerging as a promising class of drugs to treat neuropathic pain. Thus, the effects of repeated treatment with WIN 55,212-2, a synthetic cannabinoid agonist, were examined throughout the development of paclitaxel-induced peripheral neuropathy. Painful neuropathy was induced in male Wistar rats by intraperitoneal (i.p.) administration of paclitaxel (1mg/kg) on four alternate days. Paclitaxel-treated animals received WIN 55,212-2 (1mg/kg, i.p.) or minocycline (15 mg/kg, i.p.), a microglial inhibitor, daily for 14 days, simultaneous with the antineoplastic. The development of hypersensitive behaviors was assessed on days 1, 7, 14, 21 and 28 following the initial administration of drugs. Both the activation of glial cells (microglia and astrocytes) at day 29 and the time course of proinflammatory cytokine release within the spinal cord were also determined. Similar to minocycline, repeated administration of WIN 55,212-2 prevented the development of thermal hyperalgesia and mechanical allodynia in paclitaxel-treated rats. WIN 55,212-2 treatment also prevented spinal microglial and astrocytic activation evoked by paclitaxel at day 29 and attenuated the early production of spinal proinflammatory cytokines (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α). Our results confirm changes in the reactivity of glial cells during the development of peripheral neuropathy induced by paclitaxel and support a preventive effect of WIN 55,212-2, probably via glial cells reactivity inactivation, on the development of this neuropathy.
Collapse
|
36
|
Wilkerson JL, Milligan ED. The Central Role of Glia in Pathological Pain and the Potential of Targeting the Cannabinoid 2 Receptor for Pain Relief. ACTA ACUST UNITED AC 2011; 2011. [PMID: 22442754 DOI: 10.5402/2011/593894] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Under normal conditions, acute pain processing consists of well-characterized neuronal signaling events. When dysfunctional pain signaling occurs, pathological pain ensues. Glial activation and their released factors participate in the mediation of pathological pain. The use of cannabinoid compounds for pain relief is currently an area of great interest for both basic scientists and physicians. These compounds, bind mainly either the cannabinoid receptor subtype 1 (CB(1)R) or cannabinoid receptor subtype 2 (CB(2)R) and are able to modulate pain. Although cannabinoids were initially only thought to modulate pain via neuronal mechanisms within the central nervous system, strong evidence now supports that CB(2)R cannabinoid compounds are capable of modulating glia, (e.g. astrocytes and microglia) for pain relief. However, the mechanisms underlying cannabinoid receptor-mediated pain relief remain largely unknown. An emerging body of evidence supports that CB(2)R agonist compounds may prove to be powerful novel therapeutic candidates for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, School of Medicine, University of New Mexico, HSC, MSC08-4740, Albuquerque, NM 87131, USA
| | | |
Collapse
|
37
|
Pasquini S, De Rosa M, Pedani V, Mugnaini C, Guida F, Luongo L, De Chiaro M, Maione S, Dragoni S, Frosini M, Ligresti A, Di Marzo V, Corelli F. Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 4. Identification of New Potent and Selective Ligands for the Cannabinoid Type 2 Receptor with Diverse Substitution Patterns and Antihyperalgesic Effects in Mice. J Med Chem 2011; 54:5444-53. [DOI: 10.1021/jm200476p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Serena Pasquini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Maria De Rosa
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Valentina Pedani
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Claudia Mugnaini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Francesca Guida
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Maria De Chiaro
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Stefania Dragoni
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Maria Frosini
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Federico Corelli
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| |
Collapse
|
38
|
Pasquini S, Ligresti A, Mugnaini C, Semeraro T, Cicione L, De Rosa M, Guida F, Luongo L, De Chiaro M, Cascio MG, Bolognini D, Marini P, Pertwee R, Maione S, Marzo VD, Corelli F. Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 3. Synthesis, Structure−Affinity Relationships, and Pharmacological Characterization of 6-Substituted 4-Quinolone-3-carboxamides as Highly Selective Cannabinoid-2 Receptor Ligands. J Med Chem 2010; 53:5915-28. [DOI: 10.1021/jm100123x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Serena Pasquini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Claudia Mugnaini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Teresa Semeraro
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Lavinia Cicione
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Maria De Rosa
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Francesca Guida
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Maria De Chiaro
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Maria Grazia Cascio
- Institute of Medical Sciences University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Daniele Bolognini
- DBSF, Pharmacology Section and Neuroscience Centre, University of Insubria, Busto Arsizio (Va), Italy
- Institute of Medical Sciences University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Pietro Marini
- Institute of Medical Sciences University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Roger Pertwee
- Institute of Medical Sciences University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Sabatino Maione
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, Second University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Federico Corelli
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| |
Collapse
|