1
|
Tonosaki M, Kushikata T, Nikaido Y, Takekawa D, Kinoshita H, Saito J, Hirota K. Roles of orexinergic and noradrenergic neuronal activity in ketamine-induced sedation: a study using an orexin-ataxin-3 transgenic rat model. J Anesth 2025:10.1007/s00540-025-03521-x. [PMID: 40490582 DOI: 10.1007/s00540-025-03521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/18/2025] [Indexed: 06/11/2025]
Abstract
PURPOSE To investigate the role of brain noradrenergic and orexinergic activity in ketamine-induced sedation. METHODS We used orexin neuron-deficient transgenic rats (orexin/ataxin-3) and wild-type controls. Noradrenaline and orexin levels were measured in the pons, hypothalamus, and cerebral cortex. Ketamine-induced loss-of-righting reflex (LORR) was assessed under modulation of noradrenergic or orexinergic activity. RESULTS Wild-type rats had higher noradrenaline and orexin levels than transgenic rats across all regions except hypothalamic noradrenaline. Noradrenaline and orexin were correlated in the pons and cortex. Transgenic rats had a shorter LORR duration than wild-type rats (36.3 ± 10.4 vs. 46.7 ± 5.2 min, P = 0.002). Noradrenergic activation via intraperitoneal yohimbine prolonged LORR in both genotypes (wild-type: 38.8 ± 4.9 vs. 71.9 ± 15.3 min at 3.3 mg/kg, P = 0.002; transgenic: 28.1 ± 3.9 vs. 71.9 ± 24.8 min, P < 0.001). Noradrenergic deactivation by DSP4 reduced LORR duration (wild-type: 43.3 ± 2.18 vs. 36.4 ± 6.0 min, P = 0.005). Intracerebroventricular orexin (1.0 nmol) shortened LORR (44.0 ± 16.7 vs. 30.1 ± 15.5 min, P = 0.001), but co-administration of selective orexin type 1 receptor antagonist YNT-1310 (100 nmol) counteracted this effect. Notably, orexin or DSP4 reduced LORR duration in wild-type rats but prolonged it in transgenic rats (e.g., wild-type: 40.8 ± 6.2 vs. 32.5 ± 5.3 min with orexin, P = 0.0001; transgenic 28.6 ± 6.2 vs. 42.1 ± 5.6 min, P = 0.0026). CONCLUSION Orexin-preserved noradrenergic activity supports the typical ketamine-induced sedation profile, highlighting their interactive role in modulating anesthetic depth.
Collapse
Affiliation(s)
- Mitsuru Tonosaki
- Intensive Care Unit, Hirosaki University Hospital, Honcho 53, Hirosaki, Aomori, 0368563, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Zaifu 5, Hirosaki, Aomori, 0368562, Japan.
| | - Yoshikazu Nikaido
- Department of Metabolomics Innovation, Hirosaki University Graduate School of Medicine, Zaifu 5, Hirosaki, Aomori, 0368562, Japan
| | - Daiki Takekawa
- Department of Anesthesiology, Hirosaki University Hospital, Honcho 53, Hirosaki, Aomori, 0368563, Japan
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Hospital, Honcho 53, Hirosaki, Aomori, 0368563, Japan
| | - Jyunichi Saito
- Department of Anesthesiology, Hirosaki University Hospital, Honcho 53, Hirosaki, Aomori, 0368563, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Zaifu 5, Hirosaki, Aomori, 0368562, Japan
- Department of Perioperative Medicine for Community Healthcare, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 0368562, Japan
- Department of Perioperative Stress Management, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
2
|
Chen H, Liu C, Liu J, Yuan C, He H, Zhang Y, Yu S, Luo T, Shen W, Yu T. Zona Incerta GABAergic Neurons Facilitate Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2024; 49:3297-3307. [PMID: 39312079 PMCID: PMC11502554 DOI: 10.1007/s11064-024-04230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024]
Abstract
The zona incerta (ZI) predominantly consists of gamma-aminobutyric acid (GABAergic) neurons, located adjacent to the lateral hypothalamus. GABA, acting on GABAA receptors, serves as a crucial neuromodulator in the initiation and maintenance of general anesthesia. In this study, we aimed to investigate the involvement of ZI GABAergic neurons in the general anesthesia process. Utilizing in-vivo calcium signal optical fiber recording, we observed a decrease in the activity of ZI GABAergic neurons during isoflurane anesthesia, followed by a significant increase during the recovery phase. Subsequently, we selectively ablated ZI GABAergic neurons to explore their role in general anesthesia, revealing no impact on the induction of isoflurane anesthesia but a prolonged recovery time, accompanied by a reduction in delta-band power in mice under isoflurane anesthesia. Finally, through optogenetic activation/inhibition of ZI GABAergic neurons during isoflurane anesthesia, we discovered that activation of these neurons facilitated emergence without affecting the induction process, while inhibition delayed emergence, leading to fluctuations in delta band activity. In summary, these findings highlight the involvement of ZI GABAergic neurons in modulating the emergence of isoflurane anesthesia.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, KweiChow Moutai Hospital, Renhuai, Guizhou, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Chengxi Liu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxiao Liu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Haifeng He
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Wei Shen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Tian Yu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Feng CH, Du XN, Wang Z, Wu T, Zhang LN. The activity of cholinergic neurons in the basal forebrain interferes with anesthesia-arousal process of propofol. Neuropeptides 2024; 107:102449. [PMID: 38908356 DOI: 10.1016/j.npep.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Previous research has demonstrated that basal forebrain (BF) regulates arousal during propofol anesthesia. However, as the BF comprises cholinergic neurons alongside two other types of neurons, the specific role of cholinergic neurons has not been definitively elucidated. In our study, calcium signal imaging was utilized to monitor the real-time activities of cholinergic neurons in the BF during propofol anesthesia. Additionally, we selectively stimulated these neurons to investigate EEG and behavioral responses during propofol anesthesia. Furthermore, we specifically lesioned cholinergic neurons in the BF to investigate the sensitivity to propofol and the induction time. The results revealed that propofol suppressed calcium signals of cholinergic neurons within the BF following intraperitoneal injection. Notably, upon recovery of the righting reflex, the calcium signals partially recovered. Spectral analysis of the EEG elucidated that optical stimulation of cholinergic neurons led to a decrease in δ power underlie propofol anesthesia. Conversely, depletion of cholinergic neurons in the BF enhanced sensitivity to propofol and shortened the induction time. These findings clarify the role of cholinergic neurons in the anesthesia-arousal process, as well as the depth and the sensitivity of propofol anesthesia.
Collapse
Affiliation(s)
- Cai-Hua Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Nan Du
- Department of Anesthesiology, Central Hospital of Wuhan Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430014, China
| | - Zhi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ting Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Li-Na Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
4
|
Prabhakar P, Chandran SD, Tembhurne SA, Mathew A, Rai E. Coffin-Siris syndrome and delayed emergence-Is this an unusual or unknown anesthetic complication? Paediatr Anaesth 2024; 34:680-681. [PMID: 38586918 DOI: 10.1111/pan.14892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Affiliation(s)
| | | | | | - Amit Mathew
- Department of Anaesthesiology, Christian Medical College, Vellore, India
| | - Ekta Rai
- Department of Anaesthesiology, Christian Medical College, Vellore, India
| |
Collapse
|
5
|
Barra ME, Solt K, Yu X, Edlow BL. Restoring consciousness with pharmacologic therapy: Mechanisms, targets, and future directions. Neurotherapeutics 2024; 21:e00374. [PMID: 39019729 PMCID: PMC11452330 DOI: 10.1016/j.neurot.2024.e00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 07/19/2024] Open
Abstract
Severe brain injury impairs consciousness by disrupting a broad spectrum of neurotransmitter systems. Emerging evidence suggests that pharmacologic modulation of specific neurotransmitter systems, such as dopamine, promotes recovery of consciousness. Clinical guidelines now endorse the use of amantadine in individuals with traumatic disorders of consciousness (DoC) based on level 1 evidence, and multiple neurostimulants are used off-label in clinical practice, including methylphenidate, modafinil, bromocriptine, levodopa, and zolpidem. However, the relative contributions of monoaminergic, glutamatergic, cholinergic, GABAergic, and orexinergic neurotransmitter systems to recovery of consciousness after severe brain injury are unknown, and personalized approaches to targeted therapy have yet to be developed. This review summarizes the state-of-the-science in the neurochemistry and neurobiology of neurotransmitter systems involved in conscious behaviors, followed by a discussion of how pharmacologic therapies may be used to modulate these neurotransmitter systems and promote recovery of consciousness. We consider pharmacologic modulation of consciousness at the synapse, circuit, and network levels, with a focus on the mesocircuit model that has been proposed to explain the consciousness-promoting effects of various monoaminergic, glutamatergic, and paradoxically, GABAergic therapies. Though fundamental questions remain about neurotransmitter mechanisms, target engagement and optimal therapy selection for individual patients, we propose that pharmacologic therapies hold great promise to promote recovery and improve quality of life for patients with severe brain injuries.
Collapse
Affiliation(s)
- Megan E Barra
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xin Yu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
7
|
Bendrath SC, Cook CA, Knapp DJ, Thiele TE. Orexinergic lateral hypothalamus (LH) projections to medial septum (MS) modulate ethanol-induced sedation in male and female mice and binge-like ethanol drinking in male mice only. Alcohol 2024; 115:13-22. [PMID: 37717641 PMCID: PMC10922035 DOI: 10.1016/j.alcohol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Orexin in both the lateral hypothalamus (LH) and medial septum (MS) is involved in sleep- and consciousness-related conditions. Since orexin modulates the intoxicating as well as rewarding effects of ethanol, this study focused on the role of orexin-projecting neurons from the LH to the MS, and this neurocircuit's role in mediating the sedative effects of alcohol. Drinking-in-the-Dark (DID) behavior was also assessed as a measure of the role of the LH-MS pathway in modulating binge-like ethanol intake, with a particular focus on sex differences in both behavioral paradigms. Male and female Hcrt-ires-cre mice received cannulation in the MS, while the LH was injected bilaterally with cre-dependent excitatory (Gq) Designer Receptor Exclusively Activated by Designer Drug (DREADD), inhibitory (Gi) DREADD or control virus. All subjects received a 3.75 g/kg dose of 20 % ethanol intraperitoneally and the sedative effect was assessed by the loss of righting reflex (LORR). After behavioral testing, brains were used for c-Fos immunohistochemistry analyses. A separate cohort of mice was used for a 2-week DID protocol using excitatory (Gq) DREADD and control virus. Gq DREADD-induced activation of the orexin neurocircuitry from the LH to the MS significantly reduced sedation time in both female and male mice. Furthermore, CNO treatment failed to alter ethanol sedation times in both animals expressing Gi DREADDs and control virus. There were no significant differences in blood ethanol concentrations (BECs) in any experimental group, suggesting that changes in sedation were not due to treatment-induced alterations of ethanol metabolism. Interestingly, in the DID study, only male mice decreased their ethanol consumption when Gq DREADDs were activated. These results provide novel evidence on the role played by this orexinergic LH to MS circuit on the sedative effects of ethanol and ethanol consumption in a sex-dependent manner. Thus, the MS should be considered further as a novel sexually dimorphic target.
Collapse
Affiliation(s)
- Sophie C Bendrath
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, United States
| | - Cory A Cook
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, United States
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7178, United States
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7178, United States.
| |
Collapse
|
8
|
Cylinder DM, van Zundert AA, Solt K, van Swinderen B. Time to Wake Up! The Ongoing Search for General Anesthetic Reversal Agents. Anesthesiology 2024; 140:610-627. [PMID: 38349760 PMCID: PMC10868874 DOI: 10.1097/aln.0000000000004846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
How general anesthetics work remains a topic of ongoing study. A parallel field of research has sought to identify methods to reverse general anesthesia. Reversal agents could shorten patients' recovery time and potentially reduce the risk of postoperative complications. An incomplete understanding of the mechanisms of general anesthesia has hampered the pursuit for reversal agents. Nevertheless, the search for reversal agents has furthered understanding of the mechanisms underlying general anesthesia. The study of potential reversal agents has highlighted the importance of rigorous criteria to assess recovery from general anesthesia in animal models, and has helped identify key arousal systems (e.g., cholinergic, dopaminergic, and orexinergic systems) relevant to emergence from general anesthesia. Furthermore, the effects of reversal agents have been found to be inconsistent across different general anesthetics, revealing differences in mechanisms among these drugs. The presynapse and glia probably also contribute to general anesthesia recovery alongside postsynaptic receptors. The next stage in the search for reversal agents will have to consider alternate mechanisms encompassing the tripartite synapse.
Collapse
Affiliation(s)
- Drew M. Cylinder
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - André A.J. van Zundert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, U.S.A
- Department of Anaesthesia, Harvard Medical School, Boston, MA, U.S.A
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Li L, Wang X, Wang S, Wen L, Zhang H. Altitude effect on Propofol Pharmacokinetics in Rats. Curr Drug Metab 2024; 25:81-90. [PMID: 38468514 PMCID: PMC11327735 DOI: 10.2174/0113892002285571240220131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric-hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high-altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments. METHODS Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography-mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters. RESULTS We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, and the recovery time was prolonged with increased altitude. Compared with the plain group, the clearance of Propofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration, and average residence time extension increased. CONCLUSION The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.
Collapse
Affiliation(s)
- Lijun Li
- Department of Anesthesiology, The First People's Hospital of Ziyang City, Ziyang 641300, China
| | - Xuejun Wang
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining 810000, China
| | - Sheng Wang
- Department of Anesthesiology, Dazhou Central Hospital, Dazhou 635000, China
| | - Li Wen
- Department of Anesthesiology, The Third Military Medical University, Chongqing 400000, China
| | - Haopeng Zhang
- Department of Anesthesiology, Xijing Hospital of Air Force Military Medical University, Xi'an710000, China
| |
Collapse
|
10
|
Lu K, Wang Z, Bai N, Zhao Z, Zhao X, He Y. Selective optogenetic modulation of the PBN terminals in the lateral hypothalamic area and basal forebrain regulates emergence from isoflurane anesthesia in mice. BMC Anesthesiol 2023; 23:328. [PMID: 37784027 PMCID: PMC10544560 DOI: 10.1186/s12871-023-02294-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
While the mechanism of general anesthesia has been extensively studied, the underlying neural circuitry has yet to be fully understood. The parabrachial nucleus (PBN) plays a crucial role in modulating wakefulness and promoting arousal from general anesthesia. However, the specific role of PBN projections in the process of general anesthesia remains unclear. In this study, we bilaterally injected AAV-associated viruses encoding excitatory or inhibitory optogenetic probes into the PBN and implanted optical fibers in the LH or BF area. After four weeks, we optogenetically activated or inhibited the PBN-LH and PBN-BF pathways under 1.5 vol% isoflurane. We calculated the time it took for anesthesia induction and emergence, simultaneously monitoring changes in the burst-suppression ratio using electroencephalogram recording. Our findings indicate that optogenetic activation of the PBN-LH and PBN-BF projections plays a significant role in promoting both cortical and behavioral emergence from isoflurane inhalation, without significantly affecting the induction time. Conversely, photoinhibition of these pathways prolonged the recovery time, with no notable difference observed during the induction phase.In summary, our results demonstrate that the PBN-LH and PBN-BF pathways are crucial for promoting arousal from isoflurane general anesthesia, but do not have a pronounced impact on the induction phase.
Collapse
Affiliation(s)
- Kai Lu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immunity, Shannxi, China
| | - Zhenhuan Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Shaanxi, China
| | - Ziyu Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Shaanxi, China
| | - Xinrong Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Shaanxi, China
| | - Yun He
- Shaanxi Provincial Key Laboratory of Infection and Immunity, Shannxi, China.
- Department of Anesthesiology, Shannxi Provincial Cancer Hospital, Yanta District, 309 Yanta W Rd, Xi'An, 710063, Shaanxi, China.
| |
Collapse
|
11
|
Vincent KF, Solt K. Modulating anesthetic emergence with pathway-selective dopamine signaling. Curr Opin Anaesthesiol 2023; 36:468-475. [PMID: 37552017 PMCID: PMC10528732 DOI: 10.1097/aco.0000000000001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
PURPOSE OF REVIEW To summarize the recent preclinical findings investigating dopaminergic circuits for their involvement in reversing anesthetic-induced unconsciousness. RECENT FINDINGS The release of dopamine from the ventral tegmental area onto dopamine D1 receptor-expressing neurons in the nucleus accumbens promotes emergence following general anesthesia. Two relevant targets of dopamine D1 receptor-expressing neurons in the nucleus accumbens include the lateral hypothalamus and ventral pallidum. Activating mesocortical dopaminergic projections from the ventral tegmental area to the prelimbic cortex has also been shown to hasten emergence from general anesthesia. In contrast, the nigrostriatal dopamine pathway is not involved in regulating anesthetic emergence. The role of the tuberoinfundibular endocrine dopamine pathway remains to be tested; however, recent studies have identified an important function of neuroendocrine signaling on modulating general anesthesia. SUMMARY Potential avenues for accelerating anesthetic emergence may be found through targeting specific arousal-promoting pathways in the brain. Accumulating evidence from rodent studies manipulating cell type- and circuit-specific signaling pathways have identified dopamine as a potent modulator of general anesthesia. Specifically, dopamine signaling along the mesolimbic and mesocortical pathways plays a fundamental role in regulating consciousness.
Collapse
Affiliation(s)
- Kathleen F. Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Bao WW, Jiang S, Qu WM, Li WX, Miao CH, Huang ZL. Understanding the Neural Mechanisms of General Anesthesia from Interaction with Sleep-Wake State: A Decade of Discovery. Pharmacol Rev 2023; 75:532-553. [PMID: 36627210 DOI: 10.1124/pharmrev.122.000717] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/10/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
The development of cutting-edge techniques to study specific brain regions and neural circuits that regulate sleep-wake brain states and general anesthesia (GA), has increased our understanding of these states that exhibit similar neurophysiologic traits. This review summarizes current knowledge focusing on cell subtypes and neural circuits that control wakefulness, rapid eye movement (REM) sleep, non-REM sleep, and GA. We also review novel insights into their interactions and raise unresolved questions and challenges in this field. Comparisons of the overlapping neural substrates of sleep-wake and GA regulation will help us to understand sleep-wake transitions and how anesthetics cause reversible loss of consciousness. SIGNIFICANCE STATEMENT: General anesthesia (GA), sharing numerous neurophysiologic traits with the process of natural sleep, is administered to millions of surgical patients annually. In the past decade, studies exploring the neural mechanisms underlying sleep-wake and GA have advanced our understanding of their interactions and how anesthetics cause reversible loss of consciousness. Pharmacotherapies targeting the neural substrates associated with sleep-wake and GA regulations have significance for clinical practice in GA and sleep medicine.
Collapse
Affiliation(s)
- Wei-Wei Bao
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Shan Jiang
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Wen-Xian Li
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Chang-Hong Miao
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| |
Collapse
|
13
|
Wang J, Miao X, Sun Y, Li S, Wu A, Wei C. Dopaminergic System in Promoting Recovery from General Anesthesia. Brain Sci 2023; 13:brainsci13040538. [PMID: 37190503 DOI: 10.3390/brainsci13040538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Dopamine is an important neurotransmitter that plays a biological role by binding to dopamine receptors. The dopaminergic system regulates neural activities, such as reward and punishment, memory, motor control, emotion, and sleep-wake. Numerous studies have confirmed that the dopaminergic system has the function of maintaining wakefulness in the body. In recent years, there has been increasing evidence that the sleep-wake cycle in the brain has similar neurobrain network mechanisms to those associated with the loss and recovery of consciousness induced by general anesthesia. With the continuous development and innovation of neurobiological techniques, the dopaminergic system has now been proved to be involved in the emergence from general anesthesia through the modulation of neuronal activity. This article is an overview of the dopaminergic system and the research progress into its role in wakefulness and general anesthesia recovery. It provides a theoretical basis for interpreting the mechanisms regulating consciousness during general anesthesia.
Collapse
Affiliation(s)
- Jinxu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaolei Miao
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Sijie Li
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
14
|
Yin J, Qin J, Lin Z, Li A, Liu D, Jiang Y, Zhao Q, Chen L, Liu C. Glutamatergic neurons in the paraventricular hypothalamic nucleus regulate isoflurane anesthesia in mice. FASEB J 2023; 37:e22762. [PMID: 36719765 DOI: 10.1096/fj.202200974rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
The glutamatergic-mediated excitatory system in the brain is vital for the regulation of sleep-wake and general anesthesia. Specifically, the paraventricular hypothalamic nucleus (PVH), which contains mainly glutamatergic neurons, has been shown to play a critical role in sleep-wake. Here, we sought to explore whether the PVH glutamatergic neurons have an important effect on the process of general anesthesia. We used c-fos staining and in vivo calcium signal recording to observe the activity changes of the PVH glutamatergic neurons during isoflurane anesthesia and found that both c-fos expression in the PVH and the calcium activity of PVH glutamatergic neurons decreased in isoflurane anesthesia and significantly increased during the recovery process. Chemogenetic activation of PVH glutamatergic neurons prolonged induction time and shortened emergence time from anesthesia by decreasing the depth of anesthesia. Using chemogenetic inhibition of PVH glutamatergic neurons under isoflurane anesthesia, we found that inhibition of PVH glutamatergic neurons facilitated the induction process and delayed the emergence accompanied by deepening the depth of anesthesia. Together, these results identify a crucial role for PVH glutamatergic neurons in modulating isoflurane anesthesia.
Collapse
Affiliation(s)
- Jianyin Yin
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Jie Qin
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.,Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhaojing Lin
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Aiyuan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Damin Liu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Yurong Jiang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Qiuni Zhao
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Liang Chen
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital (Hunan Institute of Reproductive Medicine), Changsha, China
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.,Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
15
|
Yang Q, Zhou F, Li A, Dong H. Neural Substrates for Regulation of Sleep and General Anesthesia. Curr Neuropharmacol 2021; 20:72-84. [PMID: 34906058 PMCID: PMC9199549 DOI: 10.2174/1570159x19666211214144639] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
General anesthesia has been successfully used in clinics for over 170 years, but its mechanisms of effect remain unclear. Behaviorally, general anesthesia is similar to sleep as it produces a reversible transition between wakefulness and the state of being unaware of one’s surroundings. A discussion regarding the common circuits of sleep and general anesthesia has been ongoing as an increasing number of sleep-arousal regulatory nuclei are reported to participate in the consciousness shift occurring during general anesthesia. Recently, with progress in research technology, both positive and negative evidence for overlapping neural circuits between sleep and general anesthesia has emerged. This article provides a review of the latest evidence on the neural substrates for sleep and general anesthesia regulation by comparing the roles of pivotal nuclei in sleep and anesthesia.
Collapse
Affiliation(s)
- Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| | - Fang Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| |
Collapse
|
16
|
Zhang D, Liu J, Zhu T, Zhou C. Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System. Curr Neuropharmacol 2021; 20:55-71. [PMID: 34503426 PMCID: PMC9199548 DOI: 10.2174/1570159x19666210909150200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| |
Collapse
|
17
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
18
|
Zhao S, Wang S, Li H, Guo J, Li J, Wang D, Zhang X, Yin L, Li R, Li A, Li H, Fan Z, Yang Q, Zhong H, Dong H. Activation of Orexinergic Neurons Inhibits the Anesthetic Effect of Desflurane on Consciousness State via Paraventricular Thalamic Nucleus in Rats. Anesth Analg 2021; 133:781-793. [PMID: 34403389 DOI: 10.1213/ane.0000000000005651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Orexin, a neuropeptide derived from the perifornical area of the hypothalamus (PeFLH), promotes the recovery of propofol, isoflurane, and sevoflurane anesthesias, without influencing the induction time. However, whether the orexinergic system also plays a similar role in desflurane anesthesia, which is widely applied in clinical practice owing to its most rapid onset and offset time among all volatile anesthetics, has not yet been studied. In the present study, we explored the effect of the orexinergic system on the consciousness state induced by desflurane anesthesia. METHODS The c-Fos staining was used to observe the activity changes of orexinergic neurons in the PeFLH and their efferent projection regions under desflurane anesthesia. Chemogenetic and optogenetic techniques were applied to compare the effect of PeFLH orexinergic neurons on the induction, emergence, and maintenance states between desflurane and isoflurane anesthesias. Orexinergic terminals in the paraventricular thalamic nucleus (PVT) were manipulated with pharmacologic, chemogenetic, and optogenetic techniques to assess the effect of orexinergic circuitry on desflurane anesthesia. RESULTS Desflurane anesthesia inhibited the activity of orexinergic neurons in the PeFLH, as well as the neuronal activity in PVT, basal forebrain, dorsal raphe nucleus, and ventral tegmental area, as demonstrated by c-Fos staining. Activation of PeFLH orexinergic neurons prolonged the induction time and accelerated emergence from desflurane anesthesia but only influenced the emergence in isoflurane anesthesia, as demonstrated by chemogenetic and pharmacologic techniques. Meanwhile, optical activation of orexinergic neurons exhibited a long-lasting inhibitory effect on burst-suppression ratio (BSR) under desflurane anesthesia, and the effect may be contributed by the orexinergic PeFLH-PVT circuitry. The orexin-2 receptor (OX2R), but not orexin-1 receptor (OX1R), in the PVT, which had been inhibited most significantly by desflurane, mediated the proemergence effect of desflurane anesthesia. CONCLUSIONS We discovered, for the first time, that orexinergic neurons in the PeFLH could not only influence the maintenance and emergence from isoflurane and desflurane anesthesias but also affect the induction under desflurane anesthesia. Furthermore, this specific effect is probably mediated by orexinergic PeFLH-PVT circuitry, especially OX2Rs in the PVT.
Collapse
Affiliation(s)
- Shiyi Zhao
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang B, Ao Y, Liu Y, Zhang X, Li Y, Tang F, Xu H. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2021; 46:1487-1501. [PMID: 33710536 DOI: 10.1007/s11064-021-03291-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
Activation of dopamine (DA) neurons is essential for the transition from sleep to wakefulness and maintenance of awakening, and sufficient to accelerate the emergence from general anesthesia in animals. Dopamine receptors (DR) are involve in arousal mediation. In the present study, we showed that the olfactory tubercle (OT) was active during emergence from isoflurane anesthesia, local injection of dopamine D1 receptor (D1R) agonist chloro-APB (1 mg/mL) and D2 receptor (D2R) agonist quinpirole (1 mg/mL) into OT enhanced behavioural and cortical arousal from isoflurane anesthesia, while D1R antagonist SCH-23390 (1 mg/mL) and D2R antagonist raclopride (2.5 mg/mL) prolonged recovery time. Optogenetic activation of DAergic terminals in OT also promoted behavioural and cortical arousal from isoflurane anesthesia. However, neither D1R/D2R agonists nor D1R/D2R antagonists microinjection had influences on the induction of isoflurane anesthesia. Optogenetic stimulation on DAergic terminals in OT also had no impact on the anesthesia induction. Our results indicated that DA signals in OT accelerated emergence from isoflurane anesthesia. Furthermore, the induction of general anesthesia, different from the emergence process, was not mediated by the OT DAergic pathways.
Collapse
Affiliation(s)
- Bo Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yawen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xuefen Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
20
|
Yue XF, Wang AZ, Hou YP, Fan K. Effects of propofol on sleep architecture and sleep-wake systems in rats. Behav Brain Res 2021; 411:113380. [PMID: 34033853 DOI: 10.1016/j.bbr.2021.113380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Previous studies have shown that the synchronization of electroencephalogram (EEG) signals is found during propofol-induced general anesthesia, which is similar to that of slow-wave sleep (SWS). However, a complete understanding is lacking in terms of the characteristics of EEG changes in rats after propofol administration and whether propofol acts through natural sleep circuits. Here, we examined the characteristics of EEG patterns induced by intraperitoneal injection of propofol in rats. We found that high (10 mg/kg) and medium (5 mg/kg) doses of propofol induced a cortical EEG of low-frequency, high-amplitude activity with rare electromyographic activity and markedly shortened sleep latency. The high dose of propofol increased deep slow-wave sleep (SWS2) to 4 h, as well as the number of large SWS2 bouts (>480 s), their mean duration and the peak of the power density curve in the delta range of 0.75-3.25 Hz. After the medium dose of propofol, the total number of wakefulness, light slow-wave sleep (SWS1) and SWS2 episodes increased, whereas the mean duration of wakefulness decreased. The high dose of propofol significantly increased c-fos expression in the ventrolateral preoptic nucleus (VLPO) sleep center and decreased the number of c-fos-immunoreactive neurons in wake-related systems including the tuberomammillary nucleus (TMN), perifornical nucleus (PeF), lateral hypothalamic nucleus (LH), ventrolateral periaqueductal gray (vPAG) and supramammillary region (SuM). These results indicated that the high dose of propofol produced high-quality sleep by increasing SWS2, whereas the medium dose produced fragmented and low-quality sleep by disrupting the continuity of wakefulness. Furthermore, sleep-promoting effects of propofol are correlated with activation of the VLPO cluster and inhibition of the TMN, PeF, LH, vPAG and SuM.
Collapse
Affiliation(s)
- Xiao-Fang Yue
- Department of Neurology, Shanghai Jiao Tong University, Affiliated Sixth People' s Hospital, NO. 222, Huanhuxisan Road, Shanghai, 201306, PR China
| | - Ai-Zhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University, Affiliated Sixth People' s Hospital, NO. 222, Huanhuxisan Road, Shanghai, 201306, PR China
| | - Yi-Ping Hou
- Department of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.
| | - Kun Fan
- Department of Anesthesiology, Shanghai Jiao Tong University, Affiliated Sixth People' s Hospital, NO. 222, Huanhuxisan Road, Shanghai, 201306, PR China.
| |
Collapse
|
21
|
Kato R, Zhang ER, Mallari OG, Moody OA, Vincent KF, Melonakos ED, Siegmann MJ, Nehs CJ, Houle TT, Akeju O, Solt K. D-Amphetamine Rapidly Reverses Dexmedetomidine-Induced Unconsciousness in Rats. Front Pharmacol 2021; 12:668285. [PMID: 34084141 PMCID: PMC8167047 DOI: 10.3389/fphar.2021.668285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
D-amphetamine induces emergence from sevoflurane and propofol anesthesia in rats. Dexmedetomidine is an α2-adrenoreceptor agonist that is commonly used for procedural sedation, whereas ketamine is an anesthetic that acts primarily by inhibiting NMDA-type glutamate receptors. These drugs have different molecular mechanisms of action from propofol and volatile anesthetics that enhance inhibitory neurotransmission mediated by GABAA receptors. In this study, we tested the hypothesis that d-amphetamine accelerates recovery of consciousness after dexmedetomidine and ketamine. Sixteen rats (Eight males, eight females) were used in a randomized, blinded, crossover experimental design and all drugs were administered intravenously. Six additional rats with pre-implanted electrodes in the prefrontal cortex (PFC) were used to analyze changes in neurophysiology. After dexmedetomidine, d-amphetamine dramatically decreased mean time to emergence compared to saline (saline:112.8 ± 37.2 min; d-amphetamine:1.8 ± 0.6 min, p < 0.0001). This arousal effect was abolished by pre-administration of the D1/D5 dopamine receptor antagonist, SCH-23390. After ketamine, d-amphetamine did not significantly accelerate time to emergence compared to saline (saline:19.7 ± 18.0 min; d-amphetamine:20.3 ± 16.5 min, p = 1.00). Prefrontal cortex local field potential recordings revealed that d-amphetamine broadly decreased spectral power at frequencies <25 Hz and restored an awake-like pattern after dexmedetomidine. However, d-amphetamine did not produce significant spectral changes after ketamine. The duration of unconsciousness was significantly longer in females for both dexmedetomidine and ketamine. In conclusion, d-amphetamine rapidly restores consciousness following dexmedetomidine, but not ketamine. Dexmedetomidine reversal by d-amphetamine is inhibited by SCH-23390, suggesting that the arousal effect is mediated by D1 and/or D5 receptors. These findings suggest that d-amphetamine may be clinically useful as a reversal agent for dexmedetomidine.
Collapse
Affiliation(s)
- Risako Kato
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Olivia G Mallari
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Eric D Melonakos
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Morgan J Siegmann
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Timothy T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021; 37:934-946. [PMID: 33847915 PMCID: PMC8275739 DOI: 10.1007/s12264-021-00674-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 01/19/2023] Open
Abstract
The lateral hypothalamic area (LHA) plays a pivotal role in regulating consciousness transition, in which orexinergic neurons, GABAergic neurons, and melanin-concentrating hormone neurons are involved. Glutamatergic neurons have a large population in the LHA, but their anesthesia-related effect has not been explored. Here, we found that genetic ablation of LHA glutamatergic neurons shortened the induction time and prolonged the recovery time of isoflurane anesthesia in mice. In contrast, chemogenetic activation of LHA glutamatergic neurons increased the time to anesthesia and decreased the time to recovery. Optogenetic activation of LHA glutamatergic neurons during the maintenance of anesthesia reduced the burst suppression pattern of the electroencephalogram (EEG) and shifted EEG features to an arousal pattern. Photostimulation of LHA glutamatergic projections to the lateral habenula (LHb) also facilitated the emergence from anesthesia and the transition of anesthesia depth to a lighter level. Collectively, LHA glutamatergic neurons and their projections to the LHb regulate anesthetic potency and EEG features.
Collapse
Affiliation(s)
- Shiyi Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huihui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tingting Tong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Haixing Zhong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
23
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 PMCID: PMC7960927 DOI: 10.3389/fnins.2021.643871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R. B. Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021; 15:644330. [PMID: 33642991 PMCID: PMC7907457 DOI: 10.3389/fnins.2021.644330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the hypothalamic preoptic area (POA) in arousal state regulation has been studied since Constantin von Economo first recognized its importance in the early twentieth century. Over the intervening decades, the POA has been shown to modulate arousal in both natural (sleep and wake) as well as drug-induced (anesthetic-induced unconsciousness) states. While the POA is well known for its role in sleep promotion, populations of wake-promoting neurons within the region have also been identified. However, the complexity and molecular heterogeneity of the POA has made distinguishing these two populations difficult. Though multiple lines of evidence demonstrate that general anesthetics modulate the activity of the POA, the region's heterogeneity has also made it challenging to determine whether the same neurons involved in sleep/wake regulation also modulate arousal in response to general anesthetics. While a number of studies show that sleep-promoting POA neurons are activated by various anesthetics, recent work suggests this is not universal to all arousal-regulating POA neurons. Technical innovations are making it increasingly possible to classify and distinguish the molecular identities of neurons involved in sleep/wake regulation as well as anesthetic-induced unconsciousness. Here, we review the current understanding of the POA's role in arousal state regulation of both natural and drug-induced forms of unconsciousness, including its molecular organization and connectivity to other known sleep and wake promoting regions. Further insights into the molecular identities and connectivity of arousal-regulating POA neurons will be critical in fully understanding how this complex region regulates arousal states.
Collapse
Affiliation(s)
- Sarah L. Reitz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Venincasa MJ, Randlett O, Sumathipala SH, Bindernagel R, Stark MJ, Yan Q, Sloan SA, Buglo E, Meng QC, Engert F, Züchner S, Kelz MB, Syed S, Dallman JE. Elevated preoptic brain activity in zebrafish glial glycine transporter mutants is linked to lethargy-like behaviors and delayed emergence from anesthesia. Sci Rep 2021; 11:3148. [PMID: 33542258 PMCID: PMC7862283 DOI: 10.1038/s41598-021-82342-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Delayed emergence from anesthesia was previously reported in a case study of a child with Glycine Encephalopathy. To investigate the neural basis of this delayed emergence, we developed a zebrafish glial glycine transporter (glyt1 - / -) mutant model. We compared locomotor behaviors; dose-response curves for tricaine, ketamine, and 2,6-diisopropylphenol (propofol); time to emergence from these anesthetics; and time to emergence from propofol after craniotomy in glyt1-/- mutants and their siblings. To identify differentially active brain regions in glyt1-/- mutants, we used pERK immunohistochemistry as a proxy for brain-wide neuronal activity. We show that glyt1-/- mutants initiated normal bouts of movement less frequently indicating lethargy-like behaviors. Despite similar anesthesia dose-response curves, glyt1-/- mutants took over twice as long as their siblings to emerge from ketamine or propofol, mimicking findings from the human case study. Reducing glycine levels rescued timely emergence in glyt1-/- mutants, pointing to a causal role for elevated glycine. Brain-wide pERK staining showed elevated activity in hypnotic brain regions in glyt1-/- mutants under baseline conditions and a delay in sensorimotor integration during emergence from anesthesia. Our study links elevated activity in preoptic brain regions and reduced sensorimotor integration to lethargy-like behaviors and delayed emergence from propofol in glyt1-/- mutants.
Collapse
Affiliation(s)
- Michael J Venincasa
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008, Lyon, France
| | - Sureni H Sumathipala
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Richard Bindernagel
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Matthew J Stark
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Qing Yan
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Steven A Sloan
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Elena Buglo
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, 33101, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Qing Cheng Meng
- Departments of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, 33101, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Max B Kelz
- Departments of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Julia E Dallman
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA.
| |
Collapse
|
26
|
Ao Y, Yang B, Zhang C, Li S, Xu H. Application of quinpirole in the paraventricular thalamus facilitates emergence from isoflurane anesthesia in mice. Brain Behav 2021; 11:e01903. [PMID: 33128305 PMCID: PMC7821568 DOI: 10.1002/brb3.1903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine is well-known to contribute to emergence from anesthesia. Previous studies have demonstrated that the paraventricular thalamus (PVT) in the midline nuclei is crucial for wakefulness. Moreover, the PVT receives dopaminergic projections from the brainstem. Therefore, we hypothesize that the dopaminergic signaling in the PVT plays a role in emergence from isoflurane anesthesia. METHODS We used c-Fos immunohistochemistry to reveal the activity of PVT neurons in three groups: The first group (iso+ EM- ) underwent the anesthesia protocol and was sacrificed before emergence. The second group (iso+ EM+ ) underwent passive emergence from the same anesthesia protocol. The last group (oxy+ ) received oxygen. D2-like agonist quinpirole (2 or 4 mM) or D2-like antagonist raclopride (2 or 5 mM) was microinjected into the PVT, and their effects on emergence and induction time were analyzed. Surface cortical electroencephalogram (EEG) recordings were used to explore the effects of quinpirole injection into the PVT on cortical excitability during isoflurane anesthesia. The activity of PVT neurons after quinpirole injection was assessed by c-Fos immunohistochemistry. RESULTS The number of c-Fos-positive nuclei for the iso+ EM+ group was significantly higher than the oxy+ and iso+ EM- groups. Application of quinpirole (4 mM) into the PVT shortened emergence time compared with the saline group (p < .01). In contrast, administration of raclopride (2 mM) delayed emergence time (p < .05). Neither quinpirole nor raclopride exerted an effect on induction time. EEG analyses showed that quinpirole (4 mM) decreased the burst suppression ratio during isoflurane anesthesia (p < .01). The number of c-Fos-positive nuclei for the quinpirole (4 mM) group was significantly higher than saline group (p < .01). CONCLUSIONS Our findings suggest that the activity of PVT neurons is enhanced after emergence from anesthesia, and the dopaminergic signaling in the PVT may facilitate emergence from isoflurane anesthesia.
Collapse
Affiliation(s)
- Yawen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Caiju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.64387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 05/20/2023] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Liu C, Shi F, Fu B, Luo T, Zhang L, Zhang Y, Zhang Y, Yu S, Yu T. GABA A receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int J Neurosci 2020; 132:802-814. [PMID: 33174773 DOI: 10.1080/00207454.2020.1840375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of the current study was to explore the role of the basal forebrain (BF) in propofol anaesthesia. METHODS In the present study, we observed the neural activities of the BF during propofol anaesthesia using calcium fibre photometry recording. Subsequently, ibotenic acid was injected into the BF to verify the role of the BF in propofol anaesthesia. Finally, to test whether GABAA receptors in the BF were involved in modulating propofol anaesthesia, muscimol (GABAA receptor agonist) and gabazine (GABAA receptor antagonist) were microinjected into the BF. Cortical electroencephalogram (EEG), time to loss of righting reflex (LORR), and recovery of righting reflex (RORR) under propofol anaesthesia were recorded and analysed. RESULTS The activity of BF neurons was inhibited during induction of propofol anaesthesia and activated during emergence from propofol anaesthesia. In addition, non-specifical lesion of BF neurons significantly prolonged the time to RORR and increased delta power in the frontal cortex under propofol anaesthesia. Next, microinjection of muscimol into the BF delayed emergence from propofol anaesthesia, increased delta power of the frontal cortex, and decreased gamma power under propofol anaesthesia. Conversely, infusion of gabazine accelerated emergence times and decreased EEG delta power. CONCLUSIONS The basal forebrain is involved in modulating frontal cortex delta activity and emergence from propofol anaesthesia. Additionally, the GABAA receptors in the basal forebrain are involved in regulating emergence propofol anaesthesia.
Collapse
Affiliation(s)
- Chengxi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Fu Shi
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Bao Fu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
29
|
Wang D, Guo Y, Li H, Li J, Ran M, Guo J, Yin L, Zhao S, Yang Q, Dong H. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats. Br J Anaesth 2020; 126:279-292. [PMID: 33131759 DOI: 10.1016/j.bja.2020.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The neuropeptide orexin promotes arousal from general anaesthesia, however the neuronal circuits that mediate this effect have not been defined. We investigated whether orexinergic neurones modulate the basal forebrain (BF) and locus coeruleus (LC) in emergence from anaesthesia. METHODS Hcrtcre rats were generated using a CRISPR/Cas9-based approach. Viruses encoding optogenetic probes were injected into the perifornical lateral hypothalamic (PeFLH) area, optogenetic fibres were embedded in the PeFLH, BF, or LC, and changes in anaesthesia state under 1.4 vol% or 0.8 vol% isoflurane were determined. RESULTS In the PeFLH, 98.8% (0.4%) of orexin-A-positive cells expressed tdTomato, and 91.9% (2.2%) of tdTomato cells were orexin-A-positive. Under 1.4 vol% isoflurane anaesthesia, compared with control groups, burst suppression ratio was less, and emergence time was shorter in groups with optogenetic activation of orexinergic cell bodies in the PeFLH (923 [162] vs 493 [68] s, P=0.0003) or orexinergic terminals in the BF (937 (122) vs 674 (108) s, P=0.0049) or LC (913 [128] vs 742 [76] s, P=0.022). Optical stimulation of orexinergic terminals in the BF and LC also improved the movement scores of rats under 0.8 vol% isoflurane anaesthesia. CONCLUSIONS Activation of orexinergic terminals in the FB or LC mediates facilitation of emergence from anaesthesia by orexinergic neurones during isoflurane anaesthesia.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongxin Guo
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huiming Li
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiannan Li
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingzi Ran
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Guo
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Yin
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiyi Zhao
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qianzi Yang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Hailong Dong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
30
|
Vertes RP, Linley SB. No cognitive processing in the unconscious,
anesthetic‐like
, state of sleep. J Comp Neurol 2020; 529:524-538. [DOI: 10.1002/cne.24963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
31
|
Increased minimum alveolar concentration-awake of Sevoflurane in women of breast surgery with sleep disorders. BMC Anesthesiol 2020; 20:17. [PMID: 31959101 PMCID: PMC6970294 DOI: 10.1186/s12871-020-0931-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleep disorders are commonly encountered in clinic. Evidences showed that sleep deprivation may modulate the effectiveness of general anesthetics in rats. However, this phenomenon has not been explored in humans. The study aimed to investigate whether the hypnotic potency of sevoflurane in patients with sleep disorders differ from patients with normal sleep habits. METHODS We recruited 44 patients scheduled for elective breast surgery and eventually analyzed 38 patients, including 19 subjects with normal sleep habits and 19 subjects with sleep disorders. According to the Dixon 'up-and-down' design, patients received sevoflurane at preselected concentrations starting at 1.0 vol%. After a steady-state period, a verbal command for testing awakening was performed. Based on the negative or positive response to the verbal command, we decreased or increased the concentration of sevoflurane by 0.2 vol% in the next patient accordingly. Plasma orexin-A was also measured before observation. RESULTS The MACawake of sevoflurane was 0.80% [95% confidence interval (CI), 0.683-0.926%] in the sleep disordered group vs 0.60% [95% CI, 0.493-0.689%] in the control group. The relative median potency between groups was 0.750 (95% CI, 0.236-0.969). Patients with sleep disorders had significantly higher orexin-A levels than control (72.17 ± 18.24 vs. 36.16 ± 14.18 pg/mL). A significant, positive relationship was detected between orexin-A level and probability of awakening (OR = 1.081, 95% CI is 1.020-1.146, P = 0.008). CONCLUSIONS MACawake of sevoflurane is higher in mild-aged women of breast surgery with sleep disorders compared to those with normal sleep habits. The increased anesthetic requirement may be related to changes of orexin-A levels. These findings suggest that sleep may have a potential impact on clinical anesthesia, including changes of sensitivity to anesthetics or postoperative complications. Further research is needed to confirm this hypothesis. CLINICAL TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR1800016022), date of registration 07 May 2018.
Collapse
|
32
|
Abstract
The neural mechanisms of sleep, a fundamental biological behavior from invertebrates to humans, have been a long-standing mystery and present an enormous challenge. Gradually, perspectives on the neurobiology of sleep have been more various with the technical innovations over the recent decades, and studies have now identified many specific neural circuits that selectively regulate the initiation and maintenance of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. The cholinergic system in basal forebrain (BF) that fire maximally during waking and REM sleep is one of the key neuromodulation systems related to waking and REM sleep. Here we outline the recent progress of the BF cholinergic system in sleep-wake cycle. The intricate local connectivity and multiple projections to other cortical and subcortical regions of the BF cholinergic system elaborately presented here form a conceptual framework for understanding the coordinating effects with the dissecting regions. This framework also provides evidences regarding the relationships between the general anesthesia and wakefulness/sleep cycle focusing on the neural circuitry of unconsciousness induced by anesthetic drugs.
Collapse
|
33
|
Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H. Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits 2019; 13:73. [PMID: 31798420 PMCID: PMC6878851 DOI: 10.3389/fncir.2019.00073] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
The ventral tegmental area (VTA) reportedly regulates sleep and wakefulness through communication with the lateral hypothalamus (LH). It has also been suggested that adequate anesthesia produced by administration of chloral hydrate, ketamine, or halothane significantly reduces the GABAergic neuronal firing rate within the VTA. However, the exact effects on GABAergic neurons in the VTA and the mechanisms through which these neurons modulate anesthesia through associated neural circuits is still unclear. Here, we used optogenetic and chemogenetic methods to specifically activate or inhibit GABAergic neuronal perikarya in the VTA or their projections to the LH in Vgat-Cre mice. Electroencephalogram (EEG) spectral analyses and burst suppression ratio (BSR) calculations were conducted following administration of 0.8 or 1.0% isoflurane, respectively; and loss of righting reflex (LORR), recovery of righting reflex (RORR), and anesthesia sensitivity were assessed under 1.4% isoflurane anesthesia. The results showed that activation of GABAergic neurons in the VTA increased delta wave power from 40.0 to 46.4% (P = 0.006) and decreased gamma wave power from 15.2 to 11.5% (P = 0.017) during anesthesia maintenance. BSR was increased from 51.8 to 68.3% (P = 0.017). Induction time (LORR) was reduced from 333 to 290 s (P = 0.019), whereas arousal time (RORR) was prolonged from 498 to 661 s (P = 0.007). Conversely, inhibition of VTA GABAergic neurons led to opposite effects. In contrast, optical activation of VTA-LH GABAergic projection neurons increased power of slow delta waves from 44.2 to 48.8% (P = 0.014) and decreased that of gamma oscillations from 10.2 to 8.0%. BSR was increased from 39.9 to 60.2% (P = 0.0002). LORR was reduced from 330 to 232 s (P = 0.002), and RORR increased from 396 to 565 s (P = 0.007). Optical inhibition of the projection neurons caused opposite effects in terms of both the EEG spectrum and the BSR, except that inhibition of this projection did not accelerate arousal time. These results indicate that VTA GABAergic neurons could facilitate the anesthetic effects of isoflurane during induction and maintenance while postponing anesthetic recovery, at least partially, through modulation of their projections to the LH.
Collapse
Affiliation(s)
- Lu Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - YongXin Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - XinXin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - HuiMing Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - ShiYi Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - HaiXing Zhong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - HaiLong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
34
|
Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. Br J Anaesth 2019; 123:497-505. [DOI: 10.1016/j.bja.2019.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 11/22/2022] Open
|
35
|
Yang C, Zhang L, Hao H, Ran M, Li J, Dong H. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats. Neuropeptides 2019; 75:25-33. [PMID: 30935682 DOI: 10.1016/j.npep.2019.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/23/2022]
Abstract
Previous studies have demonstrated that the activation of orexinergic neurons facilitates the recovery of animals from general anesthesia. Moreover, serotonergic neurons that receive projections from orexin neurons have also been shown to participate in sleep-wakefulness regulation. In the present study, we aimed to explore whether orexinergic neurons facilitate emergence from isoflurane anesthesia in rats by activating serotonergic neurons. Orexin A (30 or 100 pmol), orexin B (30 or 100 pmol), and their respective antagonists SB-334867 and TCS-OX2-29 (5 or 20 μg) were microinjected into the dorsal raphe nucleus (DRN) of rats, and their effects on induction and emergence times were analyzed. Electroencephalogram (EEG) changes were also recorded and analyzed to illuminate the effect of orexin injection into the DRN on cortical excitability under isoflurane anesthesia. Activation of serotonergic neurons was detected via immunohistochemical analysis of c-Fos expression following orexin administration. Our results indicated that injection of neither orexins nor orexin antagonists into the rat DRN exerted an impact on induction time, whereas orexin-A injection (100 pmol) enhanced arousal when compared with the saline group. In contrast, administration of orexin receptor type 1 antagonist SB-334867 (20 μg) prolonged emergence time from isoflurane anesthesia. Microinjection of orexin-A induced an arousal pattern on EEG, and decreased the burst suppression ratio under isoflurane anesthesia. Isoflurane anesthesia inhibited the activity of serotonergic neurons, as shown by decrease in the number of c-Fos-immunoreactive serotonergic neurons when compared with the sham group. This inhibitory effect was partially reversed by administration of orexin-A. Taken together, our findings suggest that orexinergic signals facilitate emergence from isoflurane anesthesia, at least partially, by reversing the effects of isoflurane on serotonergic neurons of the DRN.
Collapse
Affiliation(s)
- Cen Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China; Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong Province 518055, China
| | - Lina Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of stomatology, Xi'an Jiaotong University, Xi'an 710032, Shaanxi, China
| | - Haizhi Hao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Mingzi Ran
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
36
|
Finley J. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Med Hypotheses 2019; 124:42-52. [PMID: 30798915 DOI: 10.1016/j.mehy.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
The neural correlates of consciousness and the mechanisms by which general anesthesia (GA) modulate such correlates to induce loss of consciousness (LOC) has been described as one of the biggest mysteries of modern medicine. Several cellular targets and neural circuits have been identified that play a critical role in LOC induced by GA, including the GABAA receptor and ascending arousal nuclei located in the basal forebrain, hypothalamus, and brain stem. General anesthetics (GAs) including propofol and inhalational agents induce LOC in part by potentiating chloride influx through the GABAA receptor, leading to neural inhibition and LOC. Interestingly, nearly all GAs used clinically may also induce paradoxical excitation, a phenomenon in which GAs promote neuronal excitation at low doses before inducing unconsciousness. Additionally, emergence from GA, a passive process that occurs after anesthetic removal, is associated with lower anesthetic concentrations in the brain compared to doses associated with induction of GA. AMPK, an evolutionarily conserved kinase activated by cellular stress (e.g. increases in calcium [Ca2+] and/or reactive oxygen species [ROS], etc.) increases lifespan and healthspan in several model organisms. AMPK is located throughout the mammalian brain, including in neurons of the thalamus, hypothalamus, and striatum as well as in pyramidal neurons in the hippocampus and cortex. Increases in ROS and Ca2+ play critical roles in neuronal excitation and glutamate, the primary excitatory neurotransmitter in the human brain, activates AMPK in cortical neurons. Nearly every neurotransmitter released from ascending arousal circuits that promote wakefulness, arousal, and consciousness activates AMPK, including acetylcholine, histamine, orexin-A, dopamine, and norepinephrine. Several GAs that are commonly used to induce LOC in human patients also activate AMPK (e.g. propofol, sevoflurane, isoflurane, dexmedetomidine, ketamine, midazolam). Various compounds that accelerate emergence from anesthesia, thus mitigating problematic effects associated with delayed emergence such as delirium, also activate AMPK (e.g. nicotine, caffeine, forskolin, carbachol). GAs and neurotransmitters also act as preconditioning agents and the GABAA receptor inhibitor bicuculline, which reverses propofol anesthesia, also activates AMPK in cortical neurons. We propose the novel hypothesis that cellular stress-induced AMPK activation links wakefulness, arousal, and consciousness with paradoxical excitation and accelerated emergence from anesthesia. Because AMPK activators including metformin and nicotine promote proliferation and differentiation of neural stem cells located in the subventricular zone and the dentate gyrus, AMPK activation may also enhance brain repair and promote potential recovery from disorders of consciousness (i.e. minimally conscious state, vegetative state, coma).
Collapse
|
37
|
Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018; 11:420. [PMID: 30564094 PMCID: PMC6288364 DOI: 10.3389/fnmol.2018.00420] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
General anesthesia has been used clinically for more than 170 years, yet its underlying mechanisms are still not fully understood. The parabrachial nucleus (PBN) in the brainstem has been known to be crucial for regulating wakefulness and signs of arousal on the cortical electroencephalogram (EEG). Lesions of the parabrachial complex lead to unresponsiveness and a monotonous high-voltage, and a slow-wave EEG, which are the two main features of general anesthesia. However, it is unclear whether and how the PBN functions in the process of general anesthesia. By recording the levels of calcium in vivo in real-time, we found that the neural activity in PBN is suppressed during anesthesia, while it is robustly activated during recovery from propofol and isoflurane anesthesia. The activation of PBN neurons by “designer receptors exclusively activated by designer drugs” (DREADDs) shortened the recovery time but did not change the induction time. Cortical EEG recordings revealed that the neural activation of PBN specifically affected the recovery period, with a decrease of δ-band power or an increase in β-band power; no EEG changes were seen in the anesthesia period. Furthermore, the activation of PBN elicited neural activation in the prefrontal cortex, basal forebrain, lateral hypothalamus, thalamus, and supramammillary nucleus. Thus, PBN is critical for behavioral and electroencephalographic arousal without affecting the induction of general anesthesia.
Collapse
Affiliation(s)
- Tianyuan Luo
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Shuang Cai
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Orexin-1 receptor is involved in ageing-related delayed emergence from general anaesthesia in rats. Br J Anaesth 2018; 121:1097-1104. [DOI: 10.1016/j.bja.2018.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022] Open
|
39
|
Activation of orexin system facilitates anesthesia emergence and pain control. Proc Natl Acad Sci U S A 2018; 115:E10740-E10747. [PMID: 30348769 DOI: 10.1073/pnas.1808622115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orexin (also known as hypocretin) neurons in the hypothalamus play an essential role in sleep-wake control, feeding, reward, and energy homeostasis. The likelihood of anesthesia and sleep sharing common pathways notwithstanding, it is important to understand the processes underlying emergence from anesthesia. In this study, we investigated the role of the orexin system in anesthesia emergence, by specifically activating orexin neurons utilizing the designer receptors exclusively activated by designer drugs (DREADD) chemogenetic approach. With injection of adeno-associated virus into the orexin-Cre transgenic mouse brain, we expressed the DREADD receptor hM3Dq specifically in orexin neurons and applied the hM3Dq ligand clozapine to activate orexin neurons. We monitored orexin neuronal activities by c-Fos staining and whole-cell patch-clamp recording and examined the consequence of orexin neuronal activation via EEG recording. Our results revealed that the orexin-DREADD mice with activated orexin neurons emerged from anesthesia with significantly shorter latency than the control mice. As an indication of reduced pain sensitivity, these orexin-DREADD mice took longer to respond to the 55 °C thermal stimuli in the hot plate test and exhibited significantly less frequent licking of the formalin-injected paw in the formalin test. Our study suggests that approaches to activate the orexin system can be beneficial in postoperative recovery.
Collapse
|
40
|
Cascella M, Bimonte S, Muzio MR. Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications. World J Methodol 2018; 8:9-16. [PMID: 30345225 PMCID: PMC6189114 DOI: 10.5662/wjm.v8.i2.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
Emergence from anesthesia (AE) is the ending stage of anesthesia featuring the transition from unconsciousness to complete wakefulness and recovery of consciousness (RoC). A wide range of undesirable complications, including coughing, respiratory/cardiovascular events, and mental status changes such as emergence delirium, and delayed RoC, may occur during this critical phase. In general anesthesia processes, induction and AE represent a neurobiological example of "hysteresis". Indeed, AE mechanisms should not be simply considered as reverse events of those occurring in the induction phase. Anesthesia-induced loss of consciousness (LoC) and AE until RoC are quite distinct phenomena with, in part, a distinct neurobiology. Althoughanaesthetics produce LoC mostly by affecting cortical connectivity, arousal processes at the end of anesthesia are triggered by structures deep in the brain, rather than being induced within the neocortex. This work aimed to provide an overview on AE processes research, in terms of mechanisms, and EEG findings. Because most of the research in this field concerns preclinical investigations, translational suggestions and research perspectives are proposed. However, little is known about the relationship between AE neurobiology, and potential complications occurring during the emergence, and after the RoC. Thus, another scope of this review is to underline why a better understanding of AE mechanisms could have significant clinical implications, such as improving the patients' quality of recovery, and avoiding early and late postoperative complications.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Management, Department of Supportive Care, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCSS, Naples 80131, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Management, Department of Supportive Care, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCSS, Naples 80131, Italy
| | - Maria Rosaria Muzio
- Division of Infantile Neuropsychiatry, UOMI-Maternal and Infant Health, ASL NA3 SUD Torre del Greco, Naples 80059, Italy
| |
Collapse
|
41
|
Li J, Yu T, Shi F, Zhang Y, Duan Z, Fu B, Zhang Y. Involvement of Ventral Periaqueductal Gray Dopaminergic Neurons in Propofol Anesthesia. Neurochem Res 2018; 43:838-847. [PMID: 29417470 DOI: 10.1007/s11064-018-2486-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/28/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
It has been reported that central dopaminergic system is implicated in the mechanism underlying general anesthesia. Whether dopamine (DA) neurons in midbrain ventral periaqueductal gray (vPAG) are involved in general anesthesia and how general anesthetics affect these neurons remain sparsely documented. To determine the role of vPAG DA neurons in propofol-induced anesthesia, we performed microinjection of 6-hydroxydopamine (6-OHDA) into vPAG to damage DA neurons and investigated the alteration in somatosensory electroencephalogram (EEG), as well as the induction and recovery time of propofol anesthesia. Subsequently, we examined the effect of propofol on the electrophysiological activity of DA neurons in vPAG using whole-cell patch clamp. Two weeks after 6-OHDA microinfusion, DA neurons in the vPAG were markedly reduced by 63.6% in the 6-OHDA-treated rats compared with vehicle rats. This lesion significantly shortened the induction time (7.15 ± 3.97 s vs. 11.18 ± 2.83 s, P < 0.05) and prolonged the recovery time of propofol anesthesia (780.26 ± 150.86 s vs. 590.68 ± 107.97 s, P < 0.05). Meanwhile, EEG in somatosensory cortex revealed that delta power (0-4 Hz) was significantly higher in 6-OHDA-treated rats than vehicle rats. In the electrophysiological experiment, propofol decreased the frequency of spontaneous excitatory postsynaptic currents rather than the amplitude and decay time. In addition, propofol preferentially increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents without affecting the amplitude. SIGNIFICANCE Propofol can promote presynaptic GABA release, inhibit presynaptic glutamate release and increase postsynaptic GABAA receptor sensitivity, which eventually inhibits the activity of vPAG DA neurons and thereby influences the state of consciousness.
Collapse
Affiliation(s)
- Jia Li
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Medical College, No. 48 Fenghao West Road, Xi'an, 710077, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, 563000, China
| | - Fu Shi
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China
| | - Zikun Duan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China
| | - Bao Fu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China.,Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, 563000, China
| | - Yi Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China. .,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, 563000, China.
| |
Collapse
|
42
|
Zhang LN, Yang C, Ouyang PR, Zhang ZC, Ran MZ, Tong L, Dong HL, Liu Y. Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain. Neuropeptides 2016; 58:7-14. [PMID: 26919917 DOI: 10.1016/j.npep.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
Previous studies have demonstrated that orexinergic neurons involve in promoting emergence from anesthesia of propofol, an intravenous anesthetics, while whether both of orexin-A and orexin-B have promotive action on emergence via mediation of basal forebrain (BF) in isoflurane anesthesia has not been elucidated. In this study, we observed c-Fos expressions in orexinergic neurons following isoflurane inhalation (for 0, 30, 60, and 120min) and at the time when the righting reflex returned after the cessation of anesthesia. The plasma concentrations of orexin-A and -B in anesthesia-arousal process were measured by radioimmunoassay. Orexin-A and -B (30 or 100pmol) or the orexin receptor-1 and -2 antagonist SB-334867A and TCS-OX2-29 (5 or 20μg) were microinjected into the basal forebrain respectively. The effects of them on the induction (loss of the righting reflex) and the emergence time (return of the righting reflex) under isoflurane anesthesia were observed. The results showed that the numbers of c-Fos-immunoreactive orexinergic neurons in the hypothalamus decreased over time with continued isoflurane inhalation, but restored at emergence. Similar alterations were observed in changes of plasma orexin-A concentrations but not in orexin-B during emergence. Administration of orexins had no effect on the induction time, but orexin-A facilitated the emergence of rats from isoflurane anesthesia while orexin-B didn't. Conversely, microinjection of the orexin receptor-1 antagonist SB-334867A delayed emergence from isoflurane anesthesia. The results indicate that orexin-A plays a promotive role in the emergence of isoflurane anesthesia and this effect is mediated by the basal forebrain.
Collapse
Affiliation(s)
- Li-Na Zhang
- Institute of Neurobiology, Key Laboratory of Environment and Genes Related to Diseases, Education Ministry, Xian Jiaotong University School of Medicine, China
| | - Cen Yang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, China
| | - Peng-Rong Ouyang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, China
| | - Zhi-Chao Zhang
- Institute of Neurobiology, Key Laboratory of Environment and Genes Related to Diseases, Education Ministry, Xian Jiaotong University School of Medicine, China
| | - Ming-Zi Ran
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, China
| | - Li Tong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, China
| | - Hai-Long Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, China.
| | - Yong Liu
- Institute of Neurobiology, Key Laboratory of Environment and Genes Related to Diseases, Education Ministry, Xian Jiaotong University School of Medicine, China.
| |
Collapse
|
43
|
Ketamine and propofol have opposite effects on postanesthetic sleep architecture in rats: relevance to the endogenous sleep-wakefulness substances orexin and melanin-concentrating hormone. J Anesth 2016; 30:437-43. [PMID: 26984688 DOI: 10.1007/s00540-016-2161-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Anesthesia and surgery disturb sleep. Disturbed sleep adversely affects postoperative complications involving the cardiovascular system, diabetes, and infection. General anesthetics share neuronal mechanisms involving endogenous sleep-wakefulness-related substances, such as orexin (OX) and melanin-concentrating hormone (MCH). We evaluated changes in sleep architecture and the concentration of OX and MCH during the peri-anesthetic period. METHODS To examine sleep architecture, male Sprague-Dawley rats weighing 350-450 g received ketamine 100 mg/kg (n = 9) or propofol 80 mg/kg (n = 6) by intraperitoneal injection. Electroencephalography was recorded from 2 days pre- to 5 days postanesthesia. To quantify levels of OX and MCH, 144 similar rats received the same doses of ketamine (n = 80) or propofol (n = 64). Brain concentrations of these substances were determined at 0, 20, 60, and 120 min after anesthetic administration. RESULTS Ketamine decreased OX content in the hypothalamus during the anesthesia period. OX content was restored to pre-anesthesia levels in the hypothalamus and pons. Both anesthetics increased brain MCH content in the postanesthetic period, with the degree of increase being greater with propofol. Ketamine enhanced wakefulness and inhibited non-rapid eye movement sleep (NREMS) immediately after anesthesia. Conversely, propofol inhibited wakefulness and enhanced NREMS in that period. Ketamine inhibited wakefulness and enhanced NREMS during the dark phase on the first postanesthesia day. CONCLUSIONS Anesthetics affect various endogenous sleep-wakefulness-related substances; however, the modulation pattern may depend on the type of anesthetic. The process of postanesthetic sleep disturbance was agent specific. Our results provide fundamental evidence to treat anesthetic-related sleep disturbance.
Collapse
|
44
|
Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence. PLoS One 2015; 10:e0131914. [PMID: 26148114 PMCID: PMC4492624 DOI: 10.1371/journal.pone.0131914] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Methylphenidate induces reanimation (active emergence) from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each). When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6). After a single dose of propofol (8 mg/kg IV), the mean emergence times for rats that received normal saline (vehicle) and dextroamphetamine (1 mg/kg IV) were 641 sec and 404 sec, respectively (n = 8 each). The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8), this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1–4 Hz) to θ (4–8 Hz) during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation causes significant neurophysiological changes, but does not promote behavioral arousal during general anesthesia. We hypothesize that dextroamphetamine is more likely than atomoxetine to be clinically useful for restoring consciousness in anesthetized patients, mainly due to its stimulation of dopaminergic neurotransmission.
Collapse
|
45
|
Umezawa N, Arisaka H, Sakuraba S, Sugita T, Matsumoto A, Kaku Y, Yoshida KI, Kuwana SI. Orexin-B antagonized respiratory depression induced by sevoflurane, propofol, and remifentanil in isolated brainstem-spinal cords of neonatal rats. Respir Physiol Neurobiol 2015; 205:61-5. [DOI: 10.1016/j.resp.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/16/2022]
|
46
|
Vazquez-DeRose J, Schwartz MD, Nguyen AT, Warrier DR, Gulati S, Mathew TK, Neylan TC, Kilduff TS. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct 2014; 221:923-40. [PMID: 25431268 DOI: 10.1007/s00429-014-0946-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 11/15/2014] [Indexed: 12/31/2022]
Abstract
Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.
Collapse
Affiliation(s)
- Jacqueline Vazquez-DeRose
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Michael D Schwartz
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Alexander T Nguyen
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Deepti R Warrier
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Srishti Gulati
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Thomas K Mathew
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Thomas C Neylan
- UCSF San Francisco VA Medical Center/NCIRE, San Francisco, CA, 94121, USA
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.
| |
Collapse
|
47
|
Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol 2014; 122:24-44. [PMID: 25172271 DOI: 10.1016/j.pneurobio.2014.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/03/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
This document reviews the literature on local brain manipulation of general anesthesia in animals, focusing on behavioral and electrographic effects related to hypnosis or loss of consciousness. Local inactivation or lesion of wake-active areas, such as locus coeruleus, dorsal raphe, pedunculopontine tegmental nucleus, perifornical area, tuberomammillary nucleus, ventral tegmental area and basal forebrain, enhanced general anesthesia. Anesthesia enhancement was shown as a delayed emergence (recovery of righting reflex) from anesthesia or a decrease in the minimal alveolar concentration that induced loss of righting. Local activation of various wake-active areas, including pontis oralis and centromedial thalamus, promoted behavioral or electrographic arousal during maintained anesthesia and facilitated emergence. Lesion of the sleep-active ventrolateral preoptic area resulted in increased wakefulness and decreased isoflurane sensitivity, but only for 6 days after lesion. Inactivation of any structure within limbic circuits involving the medial septum, hippocampus, nucleus accumbens, ventral pallidum, and ventral tegmental area, amygdala, entorhinal and piriform cortex delayed emergence from anesthesia, and often reduced anesthetic-induced behavioral excitation. In summary, the concept that anesthesia works on the sleep-wake system has received strong support from studies that inactivated/lesioned or activated wake-active areas, and weak support from studies that lesioned sleep-active areas. In addition to the conventional wake-sleep areas, limbic structures such as the medial septum, hippocampus and prefrontal cortex are also involved in the behavioral response to general anesthesia. We suggest that hypnosis during general anesthesia may result from disrupting the wake-active neuronal activities in multiple areas and suppressing an atropine-resistant cortical activation associated with movements.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | - Tao Luo
- Department of Anesthesiology, Peking University, Shenzhen Hospital, China
| | - Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Ian Herrick
- Department of Anaesthesiology and Perioperative Medicine, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
48
|
Katagiri A, Okamoto K, Thompson R, Rahman M, Bereiter DA. Posterior hypothalamic modulation of ocular-responsive trigeminal subnucleus caudalis neurons is mediated by Orexin-A and Orexin1 receptors. Eur J Neurosci 2014; 40:2619-27. [PMID: 24904977 DOI: 10.1111/ejn.12635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 12/23/2022]
Abstract
Orexin-A (OxA) is synthesized in posterior and lateral regions of the hypothalamus and contributes to homeostatic regulation of body functions including pain modulation. To determine if orexinergic mechanisms contribute to posterior hypothalamus (PH)-induced modulation of ocular input to subnucleus caudalis/upper cervical (Vc/C1) neurons, the orexin-1 receptor antagonist SB334867 was applied to the dorsal brainstem surface prior to PH disinhibition, by bicuculline methiodide, in male rats under isoflurane anesthesia. Ocular input to Vc/C1 units by bright light or hypertonic saline was markedly reduced by PH disinhibition and reversed completely by local Vc/C1 application of SB334867. OxA applied to the Vc/C1 surface mimicked the effects of PH disinhibition in a dose-dependent manner. OxA-induced inhibition was prevented by co-application of SB334867, but not by the orexin-2 receptor antagonist TCS Ox2 29. PH disinhibition and local OxA application also reduced the high threshold convergent cutaneous receptive field area of ocular units, suggesting widespread effects on somatic input to Vc/C1 ocular units. Vc/C1 application of OxA or SB334867 alone did not affect the background discharge of ocular units and suggested that the PH-OxA influence on ocular unit activity was not tonically active. Vc/C1 application of OxA or SB334867 alone also did not alter mean arterial pressure, whereas PH disinhibition evoked prompt and sustained increases. These results suggest that stimulus-evoked increases in PH outflow acts through OxA and orexin-1 receptors to alter the encoding properties of trigeminal brainstem neurons responsive to input from the ocular surface and deep tissues of the eye.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
49
|
Wang ZH, Ni XL, Li JN, Xiao ZY, Wang C, Zhang LN, Tong L, Dong HL. Changes in plasma orexin-A levels in sevoflurane-remifentanil anesthesia in young and elderly patients undergoing elective lumbar surgery. Anesth Analg 2014; 118:818-22. [PMID: 24651236 DOI: 10.1213/ane.0000000000000109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Delayed emergence from general anesthesia frequently occurs in elderly patients, but the reason is not clear. Orexin has been shown to be involved in arousal from general anesthesia. In this study, we examined plasma orexin-A levels in both elderly and young patients during the anesthesia arousal cycle. METHODS We recruited 41 patients scheduled for elective lumbar surgery and eventually evaluated 34 patients. Patients were divided into a young group (age 30-55, N = 16) and an elderly group (age 65-77, N = 18). Anesthesia with sevoflurane-remifentanil was titrated to maintain the Bispectral Index between 45 and 65. The times from stopping anesthesia to eyes opening and extubation were recorded. Arterial blood was collected, and plasma orexin-A was determined by radioimmunoassay at the following 4 time points: preanesthesia (T0), 1 hour after anesthesia induction (T1), emergence (5 minutes after tracheal extubation) (T2), and 30 minutes after tracheal extubation (T3). RESULTS The times from stopping anesthesia to eyes opening and tracheal extubation were both significantly longer in the elderly group than in the young group (P = 0.004, P = 0.01, respectively). Basal (T0) orexin-A levels were higher in the elderly group than in the young group (T0, 26.13 ± 1.25 vs 17.9 ± 1.30 pg/mL, P < 0.0001). Plasma orexin-A levels did not change during induction of anesthesia in either group but significantly increased at T2 (vs T0, P <0.0001) in both elderly (35.0 ± 1.7 pg/mL) and young (29.2 ± 1.9 pg/mL) groups. Orexin-A levels were significantly higher in the elderly than in the young group at T1, T2, and T3. CONCLUSION Plasma orexin-A levels are not responsible for the delayed emergence from general anesthesia in elderly patients.
Collapse
Affiliation(s)
- Zhi-Hua Wang
- From the Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|