1
|
Ritter K, Somnuke P, Hu L, Griemert EV, Schäfer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci 2024; 25:10. [PMID: 38424488 PMCID: PMC10905838 DOI: 10.1186/s12868-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Lingjiao Hu
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany.
- Focus Program Translational Neurosciences (FTN, Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg- University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Iglesias LP, Soares N, Asth L, Moreira FA, Aguiar DC. Minocycline as a potential anxiolytic drug: systematic review and meta-analysis of evidence in murine models. Behav Pharmacol 2024; 35:4-13. [PMID: 38375658 DOI: 10.1097/fbp.0000000000000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Minocycline is a tetracycline antibiotic with off-label use as an anti-inflammatory drug. Because it can cross the blood-brain barrier, minocycline has been proposed as an alternative treatment for psychiatric disorders, in which inflammation plays an important role. However, its beneficial effects on anxiety disorders are unclear. Therefore, we performed a systematic review and meta-analysis to evaluate the efficacy of minocycline as an anxiolytic drug in preclinical models. We performed a PubMed search according to the PRISMA guidelines and PICOS strategy. The risk of bias was evaluated using the SYRCLE tool. We included studies that determined the efficacy of minocycline in animal models of anxiety that may involve exposures (e.g. stressors, immunomodulators, injury). Data extracted included treatment effect, dose range, route of administration, and potential mechanisms for the anxiolytic effect. Meta-analysis of twenty studies showed that minocycline reduced anxiety-like behavior in rodents previously exposed to stress or immunostimulants but not in exposure-naïve animals. This effect was not associated with the dose administered or treatment duration. The mechanism for the anxiolytic activity of minocycline may depend on its anti-inflammatory effects in the brain regions involving anxiety. These suggest that minocycline could be repurposed as a treatment for anxiety and related disorders and warrants further evaluation.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience, Universidade Federal de Minas Gerais (UFMG)
| | - Nicia Soares
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabricio A Moreira
- Graduate School in Neuroscience, Universidade Federal de Minas Gerais (UFMG)
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Bergold PJ, Furhang R, Lawless S. Treating Traumatic Brain Injury with Minocycline. Neurotherapeutics 2023; 20:1546-1564. [PMID: 37721647 PMCID: PMC10684850 DOI: 10.1007/s13311-023-01426-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury (TBI) results in both rapid and delayed brain damage. The speed, complexity, and persistence of TBI present large obstacles to drug development. Preclinical studies from multiple laboratories have tested the FDA-approved anti-microbial drug minocycline (MINO) to treat traumatic brain injury. At concentrations greater than needed for anti-microbial action, MINO readily inhibits microglial activation. MINO has additional pleotropic effects including anti-inflammatory, anti-oxidant, and anti-apoptotic activities. MINO inhibits multiple proteins that promote brain injury including metalloproteases, caspases, calpain, and polyADP-ribose-polymerase-1. At these elevated doses, MINO is well tolerated and enters the brain even when the blood-brain barrier is intact. Most preclinical studies with a first dose of MINO at less than 1 h after injury have shown improved multiple outcomes after TBI. Fewer studies with more delayed dosing have yielded similar results. A small number of clinical trials for TBI have established the safety of MINO and suggested some drug efficacy. Studies are also ongoing that either improve MINO pharmacology or combine MINO with other drugs to increase its therapeutic efficacy against TBI. This review builds upon a previous, recent review by some of the authors (Lawless and Bergold, Neural Regen Res 17:2589-92, 2022). The present review includes the additional preclinical studies examining the efficacy of minocycline in preclinical TBI models. This review also includes recommendations for a clinical trial to test MINO to treat TBI.
Collapse
Affiliation(s)
- Peter J Bergold
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
| | - Rachel Furhang
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| | - Siobhán Lawless
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| |
Collapse
|
4
|
Ozturk Y, Bozkurt I, Guvenc Y, Kepoglu U, Cingirt M, Gulbahar O, Ozcerezci T, Senturk S, Yaman ME. Modafinil attenuates the neuroinflammatory response after experimental traumatic brain injury. J Neurosurg Sci 2023; 67:498-506. [PMID: 34545730 DOI: 10.23736/s0390-5616.21.05382-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Modafinil has been proven to exert anti-inflammatory, anti-oxidative and neuroprotective effects on numerous neurological disorders. However, its effects after traumatic brain injury (TBI) have not been yet explored. The aim of this study was to explore if Modafinil can attenuate the neuroinflammatory phase of TBI and clarify the possible underlying mechanisms. METHODS A weight drop model was used to induce experimental TBI on 30 Wistar albino rats. The treatment group received Modafinil on the day of the trauma and the following 5 days. Garcia Test was used to assess for neurological status and histopathological examination along with biochemical analysis of NSE, S-100B, CASP3, and TBARS levels were performed. RESULTS Rats treated with Modafinil after the trauma had a statistically significant higher Garcia Test Score (P<0.001) and presented with increased evidence of anti-inflammatory and neuroprotective effect (P<0.05, P=0.005). Decreased levels of all biochemical parameters with NSE, CASP3, and TBARS having statistical significance was observed (P<0.05). CONCLUSIONS The findings of this paper support the notion that a psychoactive drug Modafinil, traditionally used for sleep disorders and also known as a cognitive enhancer may prove beneficial in decreasing mortality and morbidity after TBI through anti-inflammatory, anti-oxidative and neuroprotective effects.
Collapse
Affiliation(s)
- Yasar Ozturk
- Department of Neurosurgery, Yenimahalle Training and Research Hospital, Ankara, Türkiye
| | - Ismail Bozkurt
- Neurosurgery Clinic, Cankiri State Hospital, Cankiri, Türkiye -
| | - Yahya Guvenc
- Department of Neurosurgery, Marmara University Hospital, Istanbul, Türkiye
| | - Umit Kepoglu
- School of Medicine, Department of Neurosurgery, Bahcesehir University, Istanbul, Türkiye
| | - Mehmet Cingirt
- Department of Medical Biochemistry, Rize State Hospital, Rize, Türkiye
| | - Ozlem Gulbahar
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Tugba Ozcerezci
- School of Medicine, Department of Pathology, Hitit University, Corum, Türkiye
| | - Salim Senturk
- Neurosurgery Clinic, Memorial Spine Center, Istanbul, Türkiye
| | - Mesut E Yaman
- Department of Neurosurgery, Gazi University Hospital, Ankara, Türkiye
| |
Collapse
|
5
|
A novel aquaporin-4-associated optic neuritis rat model with severe pathological and functional manifestations. J Neuroinflammation 2022; 19:263. [PMID: 36303157 PMCID: PMC9615200 DOI: 10.1186/s12974-022-02623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Optic neuritis (ON) is a common manifestation of aquaporin-4 (AQP4) antibody seropositive neuromyelitis optica (NMO). The extent of tissue damage is frequently severe, often leading to loss of visual function, and there is no curative treatment for this condition. To develop a novel therapeutic strategy, elucidating the underlying pathological mechanism using a clinically relevant experimental ON model is necessary. However, previous ON animal models have only resulted in mild lesions with limited functional impairment. In the present study, we attempted to establish a feasible ON model with severe pathological and functional manifestations using a high-affinity anti-AQP4 antibody. Subsequently, we aimed to address whether our model is suitable for potential drug evaluation by testing the effect of minocycline, a well-known microglia/macrophage inhibitor. Methods AQP4-immunoglobulin G (IgG)-related ON in rats was induced by direct injection of a high-affinity anti-AQP4 monoclonal antibody, E5415A. Thereafter, the pathological and functional characterizations were performed, and the therapeutic potential of minocycline was investigated. Results We established an experimental ON model that reproduces the histological characteristics of ON in seropositive NMO, such as loss of AQP4/glial fibrillary acidic protein immunoreactivity, immune cell infiltration, and extensive axonal damage. We also observed that our rat model exhibited severe visual dysfunction. The histological analysis showed prominent accumulation of macrophages/activated microglia in the lesion site in the acute phase. Thus, we investigated the possible effect of the pharmacological inhibition of macrophages/microglia activation by minocycline and revealed that it effectively ameliorated axonal damage and functional outcome. Conclusions We established an AQP4-IgG-induced ON rat model with severe functional impairments that reproduce the histological characteristics of patients with NMO. Using this model, we revealed that minocycline treatment ameliorates functional and pathological outcomes, highlighting the usefulness of our model for evaluating potential therapeutic drugs for ON in NMO. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02623-7.
Collapse
|
6
|
Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14010152. [PMID: 35057048 PMCID: PMC8781803 DOI: 10.3390/pharmaceutics14010152] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality. Consequences vary from mild cognitive impairment to death and, no matter the severity of subsequent sequelae, it represents a high burden for affected patients and for the health care system. Brain trauma can cause neuronal death through mechanical forces that disrupt cell architecture, and other secondary consequences through mechanisms such as inflammation, oxidative stress, programmed cell death, and, most importantly, excitotoxicity. This review aims to provide a comprehensive understanding of the many classical and novel pathways implicated in tissue damage following TBI. We summarize the preclinical evidence of potential therapeutic interventions and describe the available clinical evaluation of novel drug targets such as vitamin B12 and ifenprodil, among others.
Collapse
|
7
|
Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, Su H. Review of treatment and therapeutic targets in brain arteriovenous malformation. J Cereb Blood Flow Metab 2021; 41:3141-3156. [PMID: 34162280 PMCID: PMC8669284 DOI: 10.1177/0271678x211026771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase (MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, USA
| | - Ethan Winkler
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Adib Abla
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| |
Collapse
|
8
|
Miwa K. Oral Minocycline Therapy Improves Symptoms of Myalgic Encephalomyelitis, Especially in the Initial Disease Stage. Intern Med 2021; 60:2577-2584. [PMID: 33896862 PMCID: PMC8429282 DOI: 10.2169/internalmedicine.6082-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Central nervous system dysfunction associated with myalgic encephalomyelitis (ME) has been suggested to be the main cause of chronic fatigue syndrome. In animal models of chronic fatigue, minocycline was reported to act as a suppressor of neural inflammation. Minocycline may thus exert favorable therapeutic effects in patients with ME. Methods Oral minocycline (100 mg×2 on the first day, followed by 100 mg/day for 41 days) was administered to 100 patients with ME. The performance status score (0-9), orthostatic intolerance during the 10-min standing test, neurologic disequilibrium, and neuropathic pain were compared before and after treatment. Results After therapy completion, favorable effects were observed with a decrease in the performance status score of ≥2 points in 27 patients (27%). Before treatment, 6 of the 27 patients had orthostatic intolerance with an inability to complete the 10-min standing test; after treatment, this symptom resolved in 4 and improved in 2 patients. In addition, after treatment, postural orthostatic tachycardia resolved in five of eight patients, disequilibrium resolved in five of eight patients, and fibromyalgia or neuropathic pain was attenuated in four of five patients. The favorable effects appeared dependent on a shorter disease duration, primarily for a duration of less than three years and most frequently within six months of the disease onset. However, acute adverse effects with nausea and/or dizziness caused 38 patients (38%) to discontinue treatment in the first few days. Conclusion Oral minocycline therapy may be an effective treatment option for patients with ME, especially in the initial stage of the disease.
Collapse
Affiliation(s)
- Kunihisa Miwa
- Department of Internal Medicine, Miwa Naika Clinic, Japan
| |
Collapse
|
9
|
Whitney K, Nikulina E, Rahman SN, Alexis A, Bergold PJ. Delayed dosing of minocycline plus N-acetylcysteine reduces neurodegeneration in distal brain regions and restores spatial memory after experimental traumatic brain injury. Exp Neurol 2021; 345:113816. [PMID: 34310944 DOI: 10.1016/j.expneurol.2021.113816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Multiple drugs to treat traumatic brain injury (TBI) have failed clinical trials. Most drugs lose efficacy as the time interval increases between injury and treatment onset. Insufficient therapeutic time window is a major reason underlying failure in clinical trials. Few drugs have been developed with therapeutic time windows sufficiently long enough to treat TBI because little is known about which brain functions can be targeted if therapy is delayed hours to days after injury. We identified multiple injury parameters that are improved by first initiating treatment with the drug combination minocycline (MINO) plus N-acetylcysteine (NAC) at 72 h after injury (MN72) in a mouse closed head injury (CHI) experimental TBI model. CHI produces spatial memory deficits resulting in impaired performance on Barnes maze, hippocampal neuronal loss, and bilateral damage to hippocampal neurons, dendrites, spines and synapses. MN72 treatment restores Barnes maze acquisition and retention, protects against hippocampal neuronal loss, limits damage to dendrites, spines and synapses, and accelerates recovery of microtubule associated protein 2 (MAP2) expression, a key protein in maintaining proper dendritic architecture and synapse density. These data show that in addition to the structural integrity of the dendritic arbor, spine and synapse density can be successfully targeted with drugs first dosed days after injury. Retention of substantial drug efficacy even when first dosed 72 h after injury makes MINO plus NAC a promising candidate to treat clinical TBI.
Collapse
Affiliation(s)
- Kristen Whitney
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America; Program in Neural and Behavioral Science, School of Graduate Studies, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Syed N Rahman
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Alisia Alexis
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America; Program in Neural and Behavioral Science, School of Graduate Studies, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America.
| |
Collapse
|
10
|
Mitochondria and Antibiotics: For Good or for Evil? Biomolecules 2021; 11:biom11071050. [PMID: 34356674 PMCID: PMC8301944 DOI: 10.3390/biom11071050] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The discovery and application of antibiotics in the common clinical practice has undeniably been one of the major medical advances in our times. Their use meant a drastic drop in infectious diseases-related mortality and contributed to prolonging human life expectancy worldwide. Nevertheless, antibiotics are considered by many a double-edged sword. Their extensive use in the past few years has given rise to a global problem: antibiotic resistance. This factor and the increasing evidence that a wide range of antibiotics can damage mammalian mitochondria, have driven a significant sector of the medical and scientific communities to advise against the use of antibiotics for purposes other to treating severe infections. Notwithstanding, a notorious number of recent studies support the use of these drugs to treat very diverse conditions, ranging from cancer to neurodegenerative or mitochondrial diseases. In this context, there is great controversy on whether the risks associated to antibiotics outweigh their promising beneficial features. The aim of this review is to provide insight in the topic, purpose for which the most relevant findings regarding antibiotic therapies have been discussed.
Collapse
|
11
|
Strickland BA, Bakhsheshian J, Emmanuel B, Amar A, Giannotta SL, Russin JJ, Mack W. Neuroprotective effect of minocycline against acute brain injury in clinical practice: A systematic review. J Clin Neurosci 2021; 86:50-57. [PMID: 33775346 DOI: 10.1016/j.jocn.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023]
Abstract
Acute brain injury is a leading cause of morbidity and mortality worldwide. The term is inclusive of traumatic brain injury, cerebral ischemia, subarachnoid hemorrhage, and intracerebral hemorrhage. Current pharmacologic treatments have had minimal effect on improving neurological outcomes leading to a significant interest in the development neuroprotective agents. Minocycline is a second-generation tetracycline with high blood brain barrier penetrance due to its lipophilic properties. It functions across multiple molecular pathways involved in secondary-injury cascades following acute brain injury. Animal model studies suggest that minocycline might lead to improved neurologic outcomes, but few such trials exist in humans. Clinical investigations have been limited to small randomized trials in ischemic stroke patients which have not demonstrated a clear advantage in neurologic outcomes, but also have not been sufficiently powered to draw definitive conclusions. The potential neuroprotective effect of minocycline in the setting of traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage have all been limited to pilot studies with phase II/III investigations pending. The authors aim to synthesize what is currently known about minocycline as a neuroprotective agent against acute brain injury in humans.
Collapse
Affiliation(s)
- Ben A Strickland
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA.
| | - Joshua Bakhsheshian
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben Emmanuel
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Arun Amar
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Steven L Giannotta
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan J Russin
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - William Mack
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 2020; 143:1297-1314. [PMID: 31919518 DOI: 10.1093/brain/awz393] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 01/24/2023] Open
Abstract
Abstract
The prognosis of intracerebral haemorrhage continues to be devastating despite much research into this condition. A prominent feature of intracerebral haemorrhage is neuroinflammation, particularly the excessive representation of pro-inflammatory CNS-intrinsic microglia and monocyte-derived macrophages that infiltrate from the circulation. The pro-inflammatory microglia/macrophages produce injury-enhancing factors, including inflammatory cytokines, matrix metalloproteinases and reactive oxygen species. Conversely, the regulatory microglia/macrophages with potential reparative and anti-inflammatory roles are outcompeted in the early stages after intracerebral haemorrhage, and their beneficial roles appear to be overwhelmed by pro-inflammatory microglia/macrophages. In this review, we describe the activation of microglia/macrophages following intracerebral haemorrhage in animal models and clinical subjects, and consider their multiple mechanisms of cellular injury after haemorrhage. We review strategies and medications aimed at suppressing the pro-inflammatory activities of microglia/macrophages, and those directed at elevating the regulatory properties of these myeloid cells after intracerebral haemorrhage. We consider the translational potential of these medications from preclinical models to clinical use after intracerebral haemorrhage injury, and suggest that several approaches still lack the experimental support necessary for use in humans. Nonetheless, the preclinical data support the use of deactivator or inhibitor of pro-inflammatory microglia/macrophages, whilst enhancing the regulatory phenotype, as part of the therapeutic approach to improve the prognosis of intracerebral haemorrhage.
Collapse
Affiliation(s)
- Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Lorente L, Martín MM, Pérez-Cejas A, González-Rivero AF, Argueso M, Ramos L, Solé-Violán J, Cáceres JJ, Jiménez A, García-Marín V. Serum caspase-3 levels during the first week of traumatic brain injury. Med Intensiva 2019; 45:131-137. [PMID: 31677852 DOI: 10.1016/j.medin.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/10/2019] [Accepted: 09/01/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Confluence between the intrinsic and extrinsic apoptosis pathways is reached at the point of caspase-3 activation, which induces death cell. Higher serum caspase-3 levels have been recorded on day 1 of traumatic brain injury (TBI) in 30-day non-survivors compared to survivors. The objectives of this study therefore were to determine whether serum caspase-3 levels are persistently higher in non-survivors than in survivors, and whether these levels may be used to predict 30-day mortality. DESIGN A prospective observational study was carried out. SETTING Six Spanish Intensive Care Units. PATIENTS Patients with severe isolated TBI (defined as Glasgow Coma Scale <9 points and non-cranial Injury Severity Score <10 points). INTERVENTIONS Serum caspase-3 concentrations were measured on days 1, 4 and 8 of TBI. MAIN VARIABLES OF INTEREST Thirty-day mortality was considered as the study endpoint. RESULTS In comparison with non-survivors (n=34), 30-day survivors (n=90) showed lower serum caspase-3 levels on days 1 (p=0.001), 4 (p<0.001) and 8 (p<0.001) of TBI. Analysis of the ROC curves showed serum caspase-3 concentrations on days 1, 4 and 8 of TBI to have an AUC (95% CI) in predicting 30-day mortality of 0.70 (0.61-0.78; p=0.001), 0.83 (0.74-0.89; p<0.001) and 0.87 (0.79-0.93; p<0.001), respectively. CONCLUSIONS The novel findings of our study were that serum caspase-3 levels during the first week of TBI were lower in survivors and could predict 30-day mortality.
Collapse
Affiliation(s)
- L Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain.
| | - M M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - A Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - A F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - M Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - L Ramos
- Intensive Care Unit, Hospital General de La Palma, Breña Alta, La Palma, Spain
| | - J Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES, Las Palmas de Gran Canaria, Spain
| | - J J Cáceres
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain
| | - A Jiménez
- Research Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - V García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
14
|
High Serum Caspase-Cleaved Cytokeratin-18 Levels and Mortality of Traumatic Brain Injury Patients. Brain Sci 2019; 9:brainsci9100269. [PMID: 31658711 PMCID: PMC6826452 DOI: 10.3390/brainsci9100269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/28/2023] Open
Abstract
Objective: Apoptosis increases in traumatic brain injury (TBI). Caspase-cleaved cytokeratin (CCCK)-18 in blood during apoptosis could appear. At the time of admission due to TBI, higher blood CCCK-18 levels were found in non-surviving than in surviving patients. Therefore, the objective of our study was to analyze whether serum CCCK-18 levels determined during the first week after TBI could predict early mortality (at 30 days). Methods: Severe TBI patients were included (considering severe when Glasgow Coma Scale < 9) in this observational and multicentre study. Serum CCCK-18 levels were determined at day 1 of TBI, and at days 4 and 8 after TBI. Results: Serum CCCK-18 levels at day 1 of TBI, and in the days 4 and 8 after TBI were higher (p < 0.001) in non-surviving than in surviving patients (34 and 90 patients, respectively) and could predict early mortality (p < 0.001 in the area under the curve). Conclusions: The new findings from our study were that serum CCCK-18 levels at any moment of the first week of TBI were higher in non-surviving patients and were able to predict early mortality.
Collapse
|
15
|
Anti-inflammatory and antiviral effects of minocycline in enterovirus 71 infections. Biomed Pharmacother 2019; 118:109271. [DOI: 10.1016/j.biopha.2019.109271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
|
16
|
Zhang T, Nong J, Alzahrani N, Wang Z, Oh SW, Meier T, Yang DG, Ke Y, Zhong Y, Fu J. Self-Assembly of DNA-Minocycline Complexes by Metal Ions with Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29512-29521. [PMID: 31397552 DOI: 10.1021/acsami.9b08126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we reported a study of metal ions-assisted assembly of DNA-minocycline (MC) complexes and their potential application for controlling MC release. In the presence of divalent cations of magnesium or calcium ions (M2+), MC, a zwitterionic tetracycline analogue, was found to bind to phosphate groups of nucleic acids via an electrostatic bridge of phosphate (DNA)-M2+-MC. We investigated multiple parameters for affecting the formation of DNA-Mg2+-MC complex, including metal ion concentrations, base composition, DNA length, and single- versus double-stranded DNA. For different nitrogen bases, single-stranded poly(A)20 and poly(T)20 showed a higher MC entrapment efficiency of DNA-Mg2+-MC complex than poly(C)20 and poly(G)20. Single-stranded DNA was also found to form a more stable DNA-Mg2+-MC complex than double-stranded DNA. Between different divalent metal ions, we observed that the formation of DNA-Ca2+-MC complex was more stable and efficient than the formation of DNA-Mg2+-MC complex. Toward drug release, we used agarose gel to encapsulate DNA-Mg2+-MC complexes and monitored MC release. Some DNA-Mg2+-MC complexes could prolong MC release from agarose gel to more than 10 days as compared with the quick release of free MC from agarose gel in less than 1 day. The released MC from DNA-Mg2+-MC complexes retained the anti-inflammatory bioactivity to inhibit nitric oxide production from pro-inflammatory macrophages. The reported study of metal ion-assisted DNA-MC assembly not only increased our understanding of biochemical interactions between tetracycline molecules and nucleic acids but also contributed to the development of a highly tunable drug delivery system to mediate MC release for clinical applications.
Collapse
Affiliation(s)
- Ting Zhang
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Nouf Alzahrani
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Sung Won Oh
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Tristan Meier
- Eastern Regional High School , 1401 Laurel Oak Road , Voorhees , New Jersey 08043 , United States
| | - Dong Gyu Yang
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering , Emory School of Medicine , 1760 Haygood Drive , Atlanta , Georgia 30322 , United States
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Jinglin Fu
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| |
Collapse
|
17
|
Desruelle AV, Louge P, Richard S, Blatteau JE, Gaillard S, De Maistre S, David H, Risso JJ, Vallée N. Demonstration by Infra-Red Imaging of a Temperature Control Defect in a Decompression Sickness Model Testing Minocycline. Front Physiol 2019; 10:933. [PMID: 31396102 PMCID: PMC6668502 DOI: 10.3389/fphys.2019.00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
The prevention, prognosis and resolution of decompression sickness (DCS) are not satisfactory. The etiology of DCS has highlighted thrombotic and inflammatory phenomena that could cause severe neurological disorders or even death. Given the immunomodulatory effects described for minocycline, an antibiotic in widespread use, we have decided to explore its effects in an experimental model for decompression sickness. 40 control mice (Ctrl) and 40 mice treated orally with 90 mg/kg of minocycline (MINO) were subjected to a protocol in a hyperbaric chamber, compressed with air. The purpose was to mimic a scuba dive to a depth of 90 msw and its pathogenic decompression phase. Clinical examinations and blood counts were conducted after the return to the surface. For the first time they were completed by a simple infrared (IR) imaging technique in order to assess feasibility and its clinical advantage in differentiating the sick mice (DCS) from the healthy mice (NoDCS). In this tudy, exposure to the hyperbaric protocol provoked a reduction in the number of circulating leukocytes. DCS in mice, manifesting itself by paralysis or convulsion for example, is also associated with a fall in platelets count. Cold areas ( < 25°C) were detected by IR in the hind paws and tail with significant differences (p < 0.05) between DCS and NoDCS. Severe hypothermia was also shown in the DCS mice. The ROC analysis of the thermograms has made it possible to determine that an average tail temperature below 27.5°C allows us to consider the animals to be suffering from DCS (OR = 8; AUC = 0.754, p = 0.0018). Minocycline modulates blood analysis and it seems to limit the mobilization of monocytes and granulocytes after the provocative dive. While a higher proportion of mice treated with minocycline experienced DCS symptoms, there is no significant difference. The infrared imaging has made it possible to show severe hypothermia. It suggests an modification of thermregulation in DCS animals. Surveillance by infrared camera is fast and it can aid the prognosis in the case of decompression sickness in mice.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Pierre Louge
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Jean-Eric Blatteau
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France.,Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Sébastien De Maistre
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | - Hélène David
- Apricot Inhalotherapeutics, Saint-Laurent-de-l'Île-d'Orléans, QC, Canada
| | - Jean-Jacques Risso
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Nicolas Vallée
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| |
Collapse
|
18
|
Faheem H, Mansour A, Elkordy A, Rashad S, Shebl M, Madi M, Elwy S, Niizuma K, Tominaga T. Neuroprotective effects of minocycline and progesterone on white matter injury after focal cerebral ischemia. J Clin Neurosci 2019; 64:206-213. [DOI: 10.1016/j.jocn.2019.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022]
|
19
|
Meythaler J, Fath J, Fuerst D, Zokary H, Freese K, Martin HB, Reineke J, Peduzzi-Nelson J, Roskos PT. Safety and feasibility of minocycline in treatment of acute traumatic brain injury. Brain Inj 2019; 33:679-689. [PMID: 30744442 DOI: 10.1080/02699052.2019.1566968] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Minocycline is a pleomorphic neuroprotective agent well studied in animal models of traumatic brain injury (TBI) and brain ischemia. METHODS To test the hypothesis that administration of minocycline in moderate to severe TBI (Glasgow Coma Score 3-12). Fifteen patients were enrolled in a two-dose escalation study of minocycline to evaluate the safety of twice the recommended antibiotic dosage; tier 1 n = 7 at a loading dose of 800 mg followed by 200 mg twice a day (BID) for 7 days; tier 2 n = 8 at a loading dose of 800 mg followed by 400 mg BID for 7 days. RESULTS The mean initial GCS was 5.6 for Tier 1 patients and 5.4 for Tier 2. The Disability Rating Scale (DRS) had a trend towards improvement with the higher dose 12.5 SD ± 7.7 (N = 5) for Tier 1 at 4 weeks and 8.5 SD ± 9.9 at week 12 (N = 5), whereas for Tier 2 it was 9.7 ± 6.9 (N = 6) for week 4 and 6.0 SD ± 6.1 (N = 7) for week 12 (p = .251 repeated measures ANOVA). Liver function tests increased but resolved after the first week and there were no infections. CONCLUSIONS Minocycline was safe for moderate to severe TBI at a dose twice that as recommended for treatment of infection. The higher dose did trend towards an improved outcome.
Collapse
Affiliation(s)
- Jay Meythaler
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - John Fath
- b Department of Surgery - Trauma Division , Oakwood Dearborn Hospital , Dearborn , Michigan
| | - Darren Fuerst
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Hashem Zokary
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Kristina Freese
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Heidi Baird Martin
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Joshua Reineke
- c School of Pharmacy , South Dakota State University , Dearborn , Michigan
| | - Jean Peduzzi-Nelson
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - P Tyler Roskos
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| |
Collapse
|
20
|
Schofield PW, Doty RL. The influence of head injury on olfactory and gustatory function. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:409-429. [PMID: 31604560 DOI: 10.1016/b978-0-444-63855-7.00023-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Head injury, particularly that resulting in brain injury, is a significant public health concern. For example, annual incidence rates of traumatic brain injury, a common consequence of head injury, range from 54 to 60 million people worldwide, including 2.2-3.6 million people whose trauma is moderate to severe. Trauma to the face and brain, including blast injuries common in modern warfare, can result in alterations in the ability to both smell and taste. In the case of smell, these include total loss of function (anosmia), decreased sensitivity (hyposmia), alterations in odor quality (dysosmia), and hallucination (phantosmia). Although taste dysfunction, i.e., altered perception of such basic taste-bud-mediated sensations as sweet, sour, bitter, salty, and savory (umami), can be similarly influenced by head trauma, the effects are typically more subtle and less studied. The present review provides an up-to-date assessment of what is known about the impact of head injury on quantitative measures of taste and smell function, including the influences of severity, type of injury, location of insults, prognosis, and approaches to therapy.
Collapse
Affiliation(s)
- Peter W Schofield
- Neuropsychiatry Service, Hunter New England Local Health District and Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, NSW, Australia.
| | - Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Jou C, Shah R, Figueroa A, Patel JK. The Role of Inflammatory Cytokines in Cardiac Arrest. J Intensive Care Med 2018; 35:219-224. [DOI: 10.1177/0885066618817518] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Post-cardiac arrest syndrome (PCAS) is characterized by systemic ischemia/reperfusion injury, anoxic brain injury, and post-arrest myocardial dysfunction superimposed on a precipitating pathology. The role of inflammatory cytokines in cardiac arrest remains unclear. Aims: We aimed to describe, with an emphasis on clinical applications, what is known about the role of inflammatory cytokines in cardiac arrest. Data Sources: A PubMed literature review was performed for relevant articles. Only articles in English that studied cytokines in patients with cardiac arrest were included. Results: Cytokines play a crucial role in the pathogenesis of PCAS. Following cardiac arrest, the large release of circulating cytokines mediates the ischemia/reperfusion injury, brain dysfunction, and myocardial dysfunction seen. Interleukins, tumor necrosis factor, and matrix metalloproteinases all play a unique prognostic role in PCAS. High levels of inflammatory cytokines have been associated with mortality and/or poor neurologic outcomes. Interventions to modify the systemic inflammation seen in PCAS continue to be heavily studied. Currently, the only approved medical intervention for comatose patients following cardiac arrest is targeted temperature management. Medical agents, including minocycline and sodium sulfide, have demonstrated promise in animal models. Conclusions: The role of inflammatory cytokines for both short- and long-term outcomes is an important area for future investigation.
Collapse
Affiliation(s)
- Christopher Jou
- Resuscitation Research Group, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Rian Shah
- Resuscitation Research Group, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Andrew Figueroa
- Resuscitation Research Group, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Jignesh K. Patel
- Resuscitation Research Group, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| |
Collapse
|
22
|
Cho DY, Jeun SS. Combination therapy of human bone marrow-derived mesenchymal stem cells and minocycline improves neuronal function in a rat middle cerebral artery occlusion model. Stem Cell Res Ther 2018; 9:309. [PMID: 30413178 PMCID: PMC6230290 DOI: 10.1186/s13287-018-1011-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The positive effects of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and minocycline on ischemic stroke models have been well described through numerous studies. The aim of this study was to evaluate the effectiveness of combination therapy of hBM-MSCs with minocycline in a middle cerebral artery occlusion rat model. METHODS Forty male Sprague-Dawley rats were enrolled in this study. After right middle cerebral artery occlusion, rats were randomly assigned to one of four groups: control, minocycline, hBM-MSCs, or hBM-MSCs with minocycline. Rotarod test, adhesive-removal test, and modified neurological severity score grading were performed before and 1, 7, 14, 21, and 28 days after right middle cerebral artery occlusion. All rats were sacrificed at day 28. The volume of the infarcted area was measured with triphenyl tetrazolium chloride staining. Neuronal nuclear antigen (NeuN)- and vascular endothelial growth factor (VEGF)-positive cells in the ischemic boundary zone were assessed by immunofluorescence. RESULTS Neurological outcome in the adhesive-removal test and rotarod test and modified neurological severity score were better in the combination therapy group than in the monotherapy and control groups. The volume of the infarcted area was smaller in the combination group compared with the others. The proportions of NeuN- and VEGF-positive cells in the ischemic boundary were highest in the combination therapy group. CONCLUSIONS Early combination therapy of hBM-MSCs with minocycline in an ischemic stroke model may enhance neurological recovery, reduce the volume of the infarcted area, and promote the expression of NeuN and VEGF in ischemic boundary cells.
Collapse
Affiliation(s)
- Dong Young Cho
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Korea. .,Department of Biomedical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Korea.
| |
Collapse
|
23
|
Drieu A, Levard D, Vivien D, Rubio M. Anti-inflammatory treatments for stroke: from bench to bedside. Ther Adv Neurol Disord 2018; 11:1756286418789854. [PMID: 30083232 PMCID: PMC6066814 DOI: 10.1177/1756286418789854] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
So far, intravenous tissue-type plasminogen activator (tPA) and mechanical
removal of arterial blood clot (thrombectomy) are the only available treatments
for acute ischemic stroke. However, the short therapeutic window and the lack of
specialized stroke unit care make the overall availability of both treatments
limited. Additional agents to combine with tPA administration or thrombectomy to
enhance efficacy and improve outcomes associated with stroke are needed.
Stroke-induced inflammatory processes are a response to the tissue damage due to
the absence of blood supply but have been proposed also as key contributors to
all the stages of the ischemic stroke pathophysiology. Despite promising results
in experimental studies, inflammation-modulating treatments have not yet been
translated successfully into the clinical setting. This review will (a) describe
the timing of the stroke immune pathophysiology; (b) detail the immune responses
to stroke sift-through cell type; and (c) discuss the pitfalls on the
translation from experimental studies to clinical trials testing the therapeutic
pertinence of immune modulators.
Collapse
Affiliation(s)
- Antoine Drieu
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France
| | - Damien Levard
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France
| | - Denis Vivien
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France Pathophysiology and Imaging of Neurological Disorders, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Marina Rubio
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Boulevard Henri Becquerel BP 5229, Caen Cedex, 14000, France
| |
Collapse
|
24
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
25
|
Lankford KL, Arroyo EJ, Kocsis JD. Postirradiation Necrosis after Slow Microvascular Breakdown in the Adult Rat Spinal Cord is Delayed by Minocycline Treatment. Radiat Res 2018; 190:151-163. [PMID: 29799318 DOI: 10.1667/rr15039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To better understand the spatiotemporal course of radiation-induced central nervous system (CNS) vascular necrosis and assess the therapeutic potential of approaches for protecting against radiation-induced necrosis, adult female Sprague Dawley rats received 40 Gy surface dose centered on the T9 thoracic spinal cord segment. Locomotor function, blood-spinal cord barrier (BSCB) integrity and histology were evaluated throughout the study. No functional symptoms were observed for several months postirradiation. However, a sudden onset of paralysis was observed at approximately 5.5 months postirradiation. The progression rapidly led to total paralysis and death within less than 48 h of symptom onset. Open-field locomotor scores and rotarod motor coordination testing showed no evidence of neurological impairment prior to the onset of overt paralysis. Histological examination revealed minimal changes to the vasculature prior to symptom onset. However, Evans blue dye (EvB) extravasation revealed a progressive deterioration of BSCB integrity, beginning at one week postirradiation, affecting regions well outside of the irradiated area. Minocycline treatment significantly delayed the onset of paralysis. The results of this study indicate that extensive asymptomatic disruption of the blood-CNS barrier may precede onset of vascular breakdown by several months and suggests that minocycline treatment has a therapeutic effect by delaying radiation-induced necrosis after CNS irradiation.
Collapse
Affiliation(s)
- Karen L Lankford
- Department of Neurology, Yale University School of Medicine, West Haven, Connecticut
| | - Edgardo J Arroyo
- Center for Neuroscience Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | | |
Collapse
|
26
|
Abstract
Accumulating research substantiates the statement that inflammation plays an important role in the development of stroke. Both proinflammatory and anti-inflammatory mediators are involved in the pathogenesis of stroke, an imbalance of which leads to inflammation. Anti-inflammation is a kind of hopeful strategy for the prevention and treatment of stroke. Substantial studies have demonstrated that minocycline, a second-generation semisynthetic antibiotic belonging to the tetracycline family, can inhibit neuroinflammation, inflammatory mediators and microglia activation, and improve neurological outcome. Experimental and clinical data have found the preclinical and clinical potential of minocycline in the treatment of stroke due to its anti-inflammation properties and anti-inflammation-induced pathogeneses, including antioxidative stress, antiapoptosis, inhibiting leukocyte migration and microglial activation, and decreasing matrix metalloproteinases activity. Hence, it suggests a great future for minocycline in the therapeutics of stroke that diminish the inflammatory progress of stroke.
Collapse
|
27
|
Zhang G, Zha J, Liu J, Di J. WITHDRAWN: Minocycline an antimicrobial agent attenuates the mitochondrial dependent cell death and stabilizes the expression of HIF-1α in spinal cord injury. Microb Pathog 2018:S0882-4010(18)30284-5. [PMID: 29530807 DOI: 10.1016/j.micpath.2018.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guolei Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junpu Zha
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jun Di
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
28
|
Karelina K, Nicholson S, Weil ZM. Minocycline blocks traumatic brain injury-induced alcohol consumption and nucleus accumbens inflammation in adolescent male mice. Brain Behav Immun 2018; 69:532-539. [PMID: 29395778 PMCID: PMC6698899 DOI: 10.1016/j.bbi.2018.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Alcohol use is a well characterized risk factor for traumatic brain injury (TBI); however, emerging clinical and experimental research suggests that TBI may also be an independent risk factor for the development of alcohol use disorders. In particular, TBIs incurred early in life predict the development of problem alcohol use and increase vulnerability to neuroinflammation as a consequence of alcohol use. Critically, the neuroinflammatory response to alcohol, mediated in large part by microglia, may also function as a driver of further alcohol use. Here, we tested the hypothesis that TBI increases alcohol consumption through microglia-mediated neuroinflammation. Mice were injured as juveniles and alcohol consumption and preference were assessed in a free-choice voluntary drinking paradigm in adolescence. TBI increased alcohol consumption; however, treatment with minocycline, an inhibitor of microglial activation, reduced alcohol intake in TBI mice to sham levels. Moreover, a single injection of ethanol (2 g/kg) significantly increased microglial activation in the nucleus accumbens and microglial expression of the proinflammatory cytokine IL-1β in TBI, but not sham or minocycline-treated, mice. Our data implicate TBI-induced microglial activation as a possible mechanism for the development of alcohol use disorders.
Collapse
Affiliation(s)
- Kate Karelina
- Department of Neuroscience, Group in Behavioral Neuroendocrinology, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Samuel Nicholson
- Department of Neuroscience, Group in Behavioral Neuroendocrinology, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
29
|
Taylor AN, Tio DL, Paydar A, Sutton RL. Sex Differences in Thermal, Stress, and Inflammatory Responses to Minocycline Administration in Rats with Traumatic Brain Injury. J Neurotrauma 2018; 35:630-638. [PMID: 29179648 DOI: 10.1089/neu.2017.5238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Persistent inflammation, mediated in part by increases in cytokines, is a hallmark of traumatlc brain injury (TBI). Minocycline has been shown to inhibit post-TBI neuroinflammation in male rats and mice, but has not been tested in females. Here, we studied sex differences in thermal, stress, and inflammatory responses to TBI and minocycline. Female rats were ovariectomized under isoflurane anesthesia at 33-36 days of age. At 45-55 days of age, male and female rats were implanted intraperitoneally (i.p.) with calibrated transmitters for monitoring body temperature. Moderate cortical contusion injury (CCI) or sham surgery was performed when the rats attained 60-70 days of age. One hour after surgery, rats were injected i.p. with minocycline (50 mg/kg) or saline (0.3 mL); injections were repeated once daily for the next 3 days. At 28 days after CCI or sham surgery, 30 min restraint stress was initiated and blood samples were obtained by tail venipuncture before the onset of restraint and at 30, 60, and 90 min after stress onset. At 35 days after CCI or sham surgery, rats were decapitated and blood was collected for corticosterone (CORT) and cytokine analysis. The brains were removed and ipsilateral cortical tissue and hippocampus were dissected and subsequently assayed for interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Hyperthermia occurred during days 1-6 post-CCI in male rats, but only on the day of CCI in female rats, and minocycline prevented its occurrence in both sexes. Minocycline facilitated suppression of the CORT response to restraint stress in both sexes. In females, but not males, hippocampal IL-6 content increased post-CCI compared with sham-injured controls, whereas IL-1β content was augmented by minocycline. Hippocampal TNF-α was unaffected by CCI and minocycline. These results demonstrate sex differences in immediate thermal and long-lasting stress and cytokine responses to CCI, and only short-term protective effects of minocycline on hyperthermia.
Collapse
Affiliation(s)
- Anna N Taylor
- 1 Department of Neurobiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Delia L Tio
- 1 Department of Neurobiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Afshin Paydar
- 2 Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Richard L Sutton
- 2 Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, California
| |
Collapse
|
30
|
Mansour HA, Hassan WA, Georgy GS. Neuroinflammatory reactions in sickness behavior induced by bacterial infection: Protective effect of minocycline. J Biochem Mol Toxicol 2017; 32. [PMID: 29243859 DOI: 10.1002/jbt.22020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022]
Abstract
The neurological changes elicited by bacterial infection are called sickness behavior. Minocycline (MIN) is neuroprotective with a remarkable brain tissue penetration. MIN was orally administered at a dose 90 mg/kg for 3 days, whereas Escherichia coli was given as a single intraperitoneal injection (0.2 mL of 24 h growth) on the third day. After 24 h of bacterial infection, behavioral tests namely open field and forced swimming were carried out, then animals were decapitated. Rats infected with E. coli displayed reduced struggling time in forced swimming test, as well as, exploration and locomotion in open field test with reduction in neurotransmitters (norepinephrine, dopamine, and serotonin) versus elevation in the inflammatory (tumor necrosis factor-alpha, interferon-gamma) and oxidative stress (thiobarbituric acid reactive substance, reduced glutathione) biomarkers. Inflammatory infiltrates of nuclear cells were observed in brains of infected rats. MIN administration prevented the deleterious effects of E. coli infection, thus protects against sickness behavior possibly via defending from neuroinflammation.
Collapse
Affiliation(s)
- Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Wedad A Hassan
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| |
Collapse
|
31
|
Dai C, Ciccotosto GD, Cappai R, Wang Y, Tang S, Xiao X, Velkov T. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress. J Antimicrob Chemother 2017; 72:1635-1645. [PMID: 28204513 DOI: 10.1093/jac/dkx037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Background Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
32
|
Lorente L. Biomarkers Associated with the Outcome of Traumatic Brain Injury Patients. Brain Sci 2017; 7:brainsci7110142. [PMID: 29076989 PMCID: PMC5704149 DOI: 10.3390/brainsci7110142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
This review focuses on biomarkers associated with the outcome of traumatic brain injury (TBI) patients, such as caspase-3; total antioxidant capacity; melatonin; S100B protein; glial fibrillary acidic protein (GFAP); glutamate; lactate; brain-derived neurotrophic factor (BDNF); substance P; neuron-specific enolase (NSE); ubiquitin carboxy-terminal hydrolase L-1 (UCH-L1); tau; decanoic acid; and octanoic acid.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife 38320, Spain.
| |
Collapse
|
33
|
Chhor V, Moretti R, Le Charpentier T, Sigaut S, Lebon S, Schwendimann L, Oré MV, Zuiani C, Milan V, Josserand J, Vontell R, Pansiot J, Degos V, Ikonomidou C, Titomanlio L, Hagberg H, Gressens P, Fleiss B. Role of microglia in a mouse model of paediatric traumatic brain injury. Brain Behav Immun 2017; 63:197-209. [PMID: 27818218 PMCID: PMC5441571 DOI: 10.1016/j.bbi.2016.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/22/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022] Open
Abstract
The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.
Collapse
Affiliation(s)
- Vibol Chhor
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Anesthesia and Intensive Care, Georges Pompidou European Hospital, Paris, France
| | - Raffaella Moretti
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Università degli Studi di Udine, Udine, Italy
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Stephanie Sigaut
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Sophie Lebon
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Leslie Schwendimann
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Marie-Virginie Oré
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Chiara Zuiani
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Valentina Milan
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Julien Josserand
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Regina Vontell
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Julien Pansiot
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Vincent Degos
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris, France
| | | | - Luigi Titomanlio
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Henrik Hagberg
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Department of Clinical Sciences, Sahlgrenska Academy/East Hospital, Gothenburg University, 416 85 Gothenburg, Sweden
| | - Pierre Gressens
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Bobbi Fleiss
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|
34
|
Hummitzsch L, Zitta K, Berndt R, Kott M, Schildhauer C, Parczany K, Steinfath M, Albrecht M. Doxycycline protects human intestinal cells from hypoxia/reoxygenation injury: Implications from an in-vitro hypoxia model. Exp Cell Res 2017; 353:109-114. [PMID: 28300560 DOI: 10.1016/j.yexcr.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a grave clinical emergency and associated with high morbidity and mortality rates. Based on the complex underlying mechanisms, a multimodal pharmacological approach seems necessary to prevent intestinal I/R injury. The antibiotic drug doxycycline, which exhibits a wide range of pleiotropic therapeutic properties, might be a promising candidate for also reducing I/R injury in the intestine. To investigate possible protective effects of doxycycline on intestinal I/R injury, human intestinal CaCo-2 cells were exposed to doxycycline at clinically relevant concentrations. In order to mimic I/R injury, CaCo-2 were thereafter subjected to hypoxia/reoxygenation by using our recently described two-enzyme in-vitro hypoxia model. Investigations of cell morphology, cell damage, apoptosis and hydrogen peroxide formation were performed 24h after the hypoxic insult. Hypoxia/reoxygenation injury resulted in morphological signs of cell damage, elevated LDH concentrations in the respective culture media (P<0.001) and increased protein expression of proapoptotic caspase-3 (P<0.05) in the intestinal cultures. These events were associated with increased levels hydrogen peroxide (P<0.001). Preincubation of CaCo-2 cells with different concentrations of doxycycline (5µM, 10µM, 50µM) reduced the hypoxia induced signs of cell damage and LDH release (P<0.001 for all concentrations). The reduction of cellular damage was associated with a reduced expression of caspase-3 (5µM, P<0.01; 10µM, P<0.01; 50µM, P<0.05), while hydrogen peroxide levels remained unchanged. In summary, doxycycline protects human intestinal cells from hypoxia/reoxygenation injury in-vitro. Further animal and clinical studies are required to prove the protective potential of doxycycline on intestinal I/R injury under in-vivo conditions.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Christin Schildhauer
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Kerstin Parczany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Markus Steinfath
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| |
Collapse
|
35
|
Haefeli J, Ferguson AR, Bingham D, Orr A, Won SJ, Lam TI, Shi J, Hawley S, Liu J, Swanson RA, Massa SM. A data-driven approach for evaluating multi-modal therapy in traumatic brain injury. Sci Rep 2017; 7:42474. [PMID: 28205533 PMCID: PMC5311970 DOI: 10.1038/srep42474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/11/2017] [Indexed: 01/22/2023] Open
Abstract
Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans.
Collapse
Affiliation(s)
- Jenny Haefeli
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, United States
| | - Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, United States
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Deborah Bingham
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Adrienne Orr
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Seok Joon Won
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Tina I. Lam
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Jian Shi
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Sarah Hawley
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jialing Liu
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, United States
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Raymond A. Swanson
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Stephen M. Massa
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, CA, United States
| |
Collapse
|
36
|
Yuan H, Zhang X, Zheng W, Zhou H, Zhang BY, Zhao D. Minocycline Attenuates Kidney Injury in a Rat Model of Streptozotocin-Induced Diabetic Nephropathy. Biol Pharm Bull 2017; 39:1231-7. [PMID: 27476934 DOI: 10.1248/bpb.b15-00594] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of minocycline on the development of diabetic nephropathy (DN) in streptozotocin (STZ) induced diabetic rats were evaluated in this study. The diabetes rats with DN were induced by STZ (55 mg/kg) injection. The experiment included 5 groups 1) normal, 2) normal plus minocycline for 16 weeks, 3) DN plus vehicle, 4) DN plus minocycline 16 weeks and 5) DN plus minocycline for 8 weeks. The pathological changes were analyzed by hematoxylin and eosin (H&E) staining and the apoptotic cells were stained by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. The mRNA expression of caspase-3, Bax and Bcl-2 in the kidney tissues was detected by quantitative RT-PCR. The biochemical parameters of blood and urine were determined by biochemical analyzer. Treatment with minocycline reduced the urine volume, 24-h urine protein, serum creatinine (Scr), blood urea nitrogen (BUN) but not blood alanine aminotransferase (ALT) in the DN rats. Furthermore, treatment with minocycline improved the pathological score of STZ-injured kidney and reduced the numbers of apoptotic cells in the kidney of DN rats. Moreover, minocycline mitigated the expression of caspase-3 and Bax mRNA, but increased Bcl-2 expression in the kidney of DN rats. These data indicated that minocycline improved the STZ-induced kidney damages, at least partially by protection form long-term hyperglycemia-induced kidney cell apoptosis.
Collapse
|
37
|
FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice. Sci Rep 2017; 7:40518. [PMID: 28084424 PMCID: PMC5234013 DOI: 10.1038/srep40518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022] Open
Abstract
Sandhoff disease (SD) is caused by the loss of β-hexosaminidase (Hex) enzymatic activity in lysosomes resulting from Hexb mutations. In SD patients, the Hex substrate GM2 ganglioside accumulates abnormally in neuronal cells, resulting in neuronal loss, microglial activation, and astrogliosis. Hexb−/− mice, which manifest a phenotype similar to SD, serve as animal models for examining the pathophysiology of SD. Hexb−/− mice reach ~8 weeks without obvious neurological defects; however, trembling begins at 12 weeks and is accompanied by startle reactions and increased limb tone. These symptoms gradually become severe by 16–18 weeks. Immune reactions caused by autoantibodies have been recently associated with the pathology of SD. The inhibition of immune activation may represent a novel therapeutic target for SD. Herein, SD mice (Hexb−/−) were crossed to mice lacking an activating immune receptor (FcRγ−/−) to elucidate the potential relationship between immune responses activated through SD autoantibodies and astrogliosis. Microglial activation and astrogliosis were observed in cortices of Hexb−/− mice during the asymptomatic phase, and were inhibited in Hexb−/−FcRγ−/− mice. Moreover, early astrogliosis and impaired motor coordination in Hexb−/− mice could be ameliorated by immunosuppressants, such as FTY720. Our findings demonstrate the importance of early treatment and the therapeutic effectiveness of immunosuppression in SD.
Collapse
|
38
|
Microglial production of TNF-alpha is a key element of sustained fear memory. Brain Behav Immun 2017; 59:313-321. [PMID: 27562421 DOI: 10.1016/j.bbi.2016.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
The proinflammatory cytokine productions in the brain are altered in a process of fear memory formation, indicating a possibility that altered microglial function may contribute to fear memory formation. We aimed to investigate whether and how microglial function contributes to fear memory formation. Expression levels of M1- and M2-type microglial marker molecules in microglia isolated from each conditioned mice group were assessed by real-time PCR and immunohistochemistry. Levels of tumor necrosis factor (TNF)-α, but not of other proinflammatory cytokines produced by M1-type microglia, increased in microglia from mice representing retention of fear memory, and returned to basal levels in microglia from mice representing extinction of fear memory. Administration of inhibitors of TNF-α production facilitated extinction of fear memory. On the other hand, expression levels of M2-type microglia-specific cell adhesion molecules, CD206 and CD209, were decreased in microglia from mice representing retention of fear memory, and returned to basal levels in microglia from mice representing extinction of fear memory. Our findings indicate that microglial TNF-α is a key element of sustained fear memory and suggest that TNF-α inhibitors can be candidate molecules for mitigating posttraumatic reactions caused by persistent fear memory.
Collapse
|
39
|
Hanlon LA, Raghupathi R, Huh JW. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat. Exp Neurol 2016; 290:1-14. [PMID: 28038986 DOI: 10.1016/j.expneurol.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/02/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain.
Collapse
Affiliation(s)
- L A Hanlon
- Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Raghupathi
- Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States; Coatesville Veteran's Administration Medical Center, Coatesville, PA, United States
| | - J W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
40
|
Strahan JA, Walker WH, Montgomery TR, Forger NG. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain. Dev Neurobiol 2016; 77:753-766. [PMID: 27706925 DOI: 10.1002/dneu.22457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022]
Abstract
Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017.
Collapse
Affiliation(s)
- J Alex Strahan
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - William H Walker
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - Taylor R Montgomery
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - Nancy G Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| |
Collapse
|
41
|
Li TF, Gong N, Wang YX. Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing. Front Pharmacol 2016; 7:367. [PMID: 27761113 PMCID: PMC5051147 DOI: 10.3389/fphar.2016.00367] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aconitines, including bulleyaconitine A, probably the most bioactive and abundant alkaloids in Aconitum plant, are a group of diester C19-diterpenoid alkaloids with one acetylester group attached to C8 of the diterpenoid skeleton and one benzoylester group to C14. Hydrolysis of both groups is involved in the processing of Aconitum, a traditional Chinese medicinal approach. We recently demonstrated that bulleyaconitine A produced anti-hypersensitivity, which was mediated by stimulation of spinal microglial dynorphin A expression. This study aimed to elucidate whether the acetylester and benzoylester groups are involved in aconitine-induced dynorphin A expression, anti-hypersensitivity, neurotoxicity in neuropathic rats. Intrathecal administration of aconitine and benzoylaconine (but not aconine) attenuated mechanical allodynia and heat hyperalgesia, with normalized ED50 values of 35 pmol and 3.6 nmol, respectively. Aconitine and benzoylaconine anti-allodynia was completely blocked by the microglial inhibitor, dynorphin A antiserum, and κ-opioid receptor antagonist. Aconitine and benzoylaconine, but not aconine, stimulated dynorphin A expression in cultured primary spinal microglia, with EC50 values of 32 nM and 3 μM, respectively. Intrathecal aconitine, benzoylaconine and aconine induced flaccid paralysis and death, with normalized TD50 values of 0.5 nmol, 0.2 μmol, and 1.6 μmol, respectively. The TD50/ED50 ratios of aconitine and benzolyaconine were 14:1 and 56:1. Our results suggest that both the C8-acetyl and C14-benzoyl groups are essential for aconitine to stimulate spinal microglial dynorphin A expression and subsequent anti-hypersensitivity, which can be separated from neurotoxicity, because both benzoylaconine and aconine differentially produced anti-hypersensitivity and neurotoxicity due to their different stimulatory ability on dynorphin A expression. Our results support the scientific rationale for Aconitum processing, but caution should be taken to avoid overprocessing and excess hydrolysis of benzolyaconine to aconine.
Collapse
Affiliation(s)
- Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| | - Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| |
Collapse
|
42
|
Huang Q, Mao XF, Wu HY, Li TF, Sun ML, Liu H, Wang YX. Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models. J Neuroinflammation 2016; 13:214. [PMID: 27577933 PMCID: PMC5006272 DOI: 10.1186/s12974-016-0696-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Background Aconiti brachypodi Radix (Xue-shang-yi-zhi-hao) has been prescribed to manage chronic pain, arthritis, and traumatic injuries. Bullatine A, a C20-diterpenoid alkaloid, is one of its principle effective compounds. This study aimed to investigate the anti-hypersensitivity of bullatine A in a variety of rat pain models and explore its mechanisms of action. Methods Rat neuropathic pain, inflammatory pain, diabetic neuropathic pain, and bone cancer pain models were used. Dynorphin A and pro-inflammatory cytokines were measured in the spinal cord and cultured primary microglia. Double immunofluorescence staining of dynorphin A and glial and neuronal cellular markers was also measured in the spinal cord. Results Subcutaneous and intrathecal injection of bullatine A dose-dependently attenuated spinal nerve ligation-, complete Freud’s adjuvant-, diabetes-, and bone cancer-induced mechanical allodynia and thermal hyperalgesia, with the efficacies of 45–70 % inhibition, and half-effective doses of 0.9–1.9 mg/kg for subcutaneous injection. However, bullatine A was not effective in blocking acute nociceptive response in the normal condition. Bullatine A specifically stimulated dynorphin A expression in microglia in the spinal cord in vivo and cultured primary microglia in vitro; the stimulatory effects were completely inhibited by the microglial inhibitor minocycline. In contrast, bullatine A did not have an inhibitory effect on peripheral nerve injury- or lipopolysaccharide-induced pro-inflammatory cytokine expression. The spinal anti-allodynic effects of bullatine A were entirely blocked by intrathecal injection of minocycline, the specific dynorphin A antiserum, and the selective k-opioid receptor antagonist. Conclusions We, for the first time, demonstrate that bullatine A specifically attenuates pain hypersensitivity, regardless of the pain models employed. The results also suggest that stimulation of spinal microglial dynorphin A expression mediates bullatine A anti-nociception in pain hypersensitivity conditions.
Collapse
Affiliation(s)
- Qian Huang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ming-Li Sun
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
43
|
Leem E, Jeong KH, Won SY, Shin WH, Kim SR. Prothrombin Kringle-2: A Potential Inflammatory Pathogen in the Parkinsonian Dopaminergic System. Exp Neurobiol 2016; 25:147-55. [PMID: 27574481 PMCID: PMC4999420 DOI: 10.5607/en.2016.25.4.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 01/04/2023] Open
Abstract
Although accumulating evidence suggests that microglia-mediated neuroinflammation may be crucial for the initiation and progression of Parkinson's disease (PD), and that the control of neuroinflammation may be a useful strategy for preventing the degeneration of nigrostriatal dopaminergic (DA) projections in the adult brain, it is still unclear what kinds of endogenous biomolecules initiate microglial activation, consequently resulting in neurodegeneration. Recently, we reported that the increase in the levels of prothrombin kringle-2 (pKr-2), which is a domain of prothrombin that is generated by active thrombin, can lead to disruption of the nigrostriatal DA projection. This disruption is mediated by neurotoxic inflammatory events via the induction of microglial Toll-like receptor 4 (TLR4) in vivo , thereby resulting in less neurotoxicity in TLR4-deficient mice. Moreover, inhibition of microglial activation following minocycline treatment, which has anti-inflammatory activity, protects DA neurons from pKr-2-induced neurotoxicity in the substantia nigra (SN) in vivo. We also found that the levels of pKr-2 and microglial TLR4 were significantly increased in the SN of PD patients compared to those of age-matched controls. These observations suggest that there may be a correlation between pKr-2 and microglial TLR4 in the initiation and progression of PD, and that inhibition of pKr-2-induced microglial activation may be protective against the degeneration of the nigrostriatal DA system in vivo. To describe the significance of pKr-2 overexpression, which may have a role in the pathogenesis of PD, we have reviewed the mechanisms of pKr-2-induced microglial activation, which results in neurodegeneration in the SN of the adult brain.
Collapse
Affiliation(s)
- Eunju Leem
- School of Life Sciences & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Kyoung Hoon Jeong
- School of Life Sciences & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Won-Ho Shin
- Predictive Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Sang Ryong Kim
- School of Life Sciences & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.; Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
44
|
Abstract
Several studies have shown that minocycline, a semisynthetic, second-generation tetracycline derivative, is neuroprotective in animal models of central nervous system trauma and several neurodegenerative diseases. Common to all these reports are the beneficial effects of minocycline in reducing neural inflammation and preventing cell death. Here, the authors review the proposed mechanisms of action of minocycline and suggest that minocycline may inhibit several aspects of the inflammatory response and prevent cell death through the inhibition of the p38 mitogen-activated protein kinase pathway, an important regulator of immune cell function and cell death.
Collapse
Affiliation(s)
- David P Stirling
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
45
|
Sordillo PP, Sordillo LA, Helson L. Bifunctional role of pro-inflammatory cytokines after traumatic brain injury. Brain Inj 2016; 30:1043-53. [DOI: 10.3109/02699052.2016.1163618] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Li TF, Fan H, Wang YX. Aconitum-Derived Bulleyaconitine A Exhibits Antihypersensitivity Through Direct Stimulating Dynorphin A Expression in Spinal Microglia. THE JOURNAL OF PAIN 2016; 17:530-48. [DOI: 10.1016/j.jpain.2015.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
|
47
|
Hou Y, Xie G, Liu X, Li G, Jia C, Xu J, Wang B. Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice. Psychopharmacology (Berl) 2016; 233:905-16. [PMID: 26645224 DOI: 10.1007/s00213-015-4169-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. OBJECTIVES This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. METHODS Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. RESULTS Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. CONCLUSIONS Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.
Collapse
Affiliation(s)
- Yue Hou
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China
| | - Guanbo Xie
- The 307th Hospital of Chinese People's Liberation Army, 100071, Beijing, China.,Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xia Liu
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China.,Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Guoxun Li
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China
| | - Congcong Jia
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China
| | - Jinghua Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China.
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China.
| |
Collapse
|
48
|
Xu L. Animal model of repetitive mild traumatic brain injury for human traumatic axonal injury and chronic traumatic encephalopathy. Neural Regen Res 2016; 10:1731-2. [PMID: 26807094 PMCID: PMC4705771 DOI: 10.4103/1673-5374.165319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leyan Xu
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Russmann V, Goc J, Boes K, Ongerth T, Salvamoser JD, Siegl C, Potschka H. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. Eur J Pharmacol 2016; 771:29-39. [DOI: 10.1016/j.ejphar.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
|
50
|
Drenger B, Fellig Y, Ben-David D, Mintz B, Idrees S, Or O, Kaplan L, Ginosar Y, Barzilay Y. Minocycline Effectively Protects the Rabbit's Spinal Cord From Aortic Occlusion-Related Ischemia. J Cardiothorac Vasc Anesth 2015; 30:282-90. [PMID: 26853309 DOI: 10.1053/j.jvca.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To identify the minocycline anti-inflammatory and antiapoptotic mechanisms through which it is believed to exert spinal cord protection during aortic occlusion in the rabbit model. DESIGN An animal model of aortic occlusion-related spinal cord ischemia. Randomized study with a control group and pre-ischemia and post-ischemia escalating doses of minocycline to high-dose minocycline in the presence of either hyperglycemia, a pro-apoptotic maneuver, or wortmannin, a specific phosphatidylinositol 3-kinase antagonist. SETTING Tertiary medical center and school of medicine laboratory. PARTICIPANTS Laboratory animals-rabbits. INTERVENTIONS Balloon obstruction of infrarenal aorta introduced via femoral artery incision. RESULTS Severe hindlimb paralysis (mean Tarlov score 0.36±0.81 out of 3) was observed in all the control group animals (9 of 11 with paraplegia and 2 of 11 with paraparesis) compared with 11 of 12 neurologically intact animals (mean Tarlov score 2.58±0.90 [p = 0.001 compared with control]) in the high-dose minocycline group. This protective effect was observed partially during a state of hyperglycemia and was completely abrogated by wortmannin. Minocycline administration resulted in higher neurologic scores (p = 0.003) and a shift to viable neurons and more apoptotic-stained nuclei resulting from reduced necrosis (p = 0.001). CONCLUSIONS In a rabbit model of infrarenal aortic occlusion, minocycline effectively reduced paraplegia by increasing the number of viable neurons in a dose-dependent manner. Its action was completely abrogated by inhibiting the phosphatidylinositol 3-kinase pathway and was inhibited partially by the pro-apoptotic hyperglycemia maneuver, indicating that the activation of cell salvage pathways and mitochondrial sites are possible targets of minocycline action in an ischemic spinal cord.
Collapse
Affiliation(s)
| | - Yakov Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Ben-David
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Mintz
- Department of Anesthesiology and Critical Care Medicine
| | - Suhel Idrees
- Department of Anesthesiology and Critical Care Medicine
| | - Omer Or
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Leon Kaplan
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Yair Barzilay
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|