1
|
Rajizadeh MA, Khaksari M, Bejeshk MA, Amirkhosravi L, Jafari E, Jamalpoor Z, Nezhadi A. The Role of Inhaled Estradiol and Myrtenol, Alone and in Combination, in Modulating Behavioral and Functional Outcomes Following Traumatic Experimental Brain Injury: Hemodynamic, Molecular, Histological and Behavioral Study. Neurocrit Care 2023; 39:478-498. [PMID: 37100976 DOI: 10.1007/s12028-023-01720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important and growing cause of disability worldwide, and its cognitive consequences may be particularly significant. This study assessed the neuroprotective impacts of estradiol (E2), myrtenol (Myr), and the combination of the two on the neurological outcome, hemodynamic parameters, learning and memory, brain-derived neurotrophic factor (BDNF) level, phosphoinositide 3-kinases (PI3K/AKT) signaling, and inflammatory and oxidative factors in the hippocampus after TBI. METHODS Eighty-four adult male Wistar rats were randomly divided into 12 groups with seven rats in each (six groups to measure intracranial pressure, cerebral perfusion pressure, brain water content, and veterinary coma scale, and six groups for behavioral and molecular studies): sham, TBI, TBI/vehicle, TBI/Myr, TBI/E2, and TBI/Myr + E2 (Myr 50 mg/kg and E2 33.3 μg/kg via inhalation for 30 min after TBI induction). Brain injury was induced by using Marmarou's method. Briefly, a 300-g weight was dropped down from a 2-m height through a free-falling tube onto the head of the anesthetized animals. RESULTS Veterinary coma scale, learning and memory, brain water content, intracranial pressure, and cerebral perfusion pressure were impaired following TBI, and inflammation and oxidative stress were raised in the hippocampus after TBI. The BDNF level and PI3K/AKT signaling were impaired due to TBI. Inhalation of Myr and E2 had protective effects against all negative consequences of TBI by decreasing brain edema and the hippocampal content of inflammatory and oxidant factors and also by improving BDNF and PI3K/AKT in the hippocampus. Based on these data, there were no differences between alone and combination administrations. CONCLUSIONS Our results propose that Myr and E2 have neuroprotective effects on cognition impairments due to TBI.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Khaksari
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Pathology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cramer SW, Haley SP, Popa LS, Carter RE, Scott E, Flaherty EB, Dominguez J, Aronson JD, Sabal L, Surinach D, Chen CC, Kodandaramaiah SB, Ebner TJ. Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiol Dis 2023; 176:105943. [PMID: 36476979 PMCID: PMC9972226 DOI: 10.1016/j.nbd.2022.105943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel P Haley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke Sabal
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Surinach
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Talty CE, Norris C, VandeVord P. Defining Experimental Variability in Actuator-Driven Closed Head Impact in Rats. Ann Biomed Eng 2022; 50:1187-1202. [PMID: 35994166 DOI: 10.1007/s10439-022-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) is a world-wide health challenge that lacks tools for diagnosis and treatment. There is a need for translational preclinical models to effectively design clinical tools, however, the diversity of models is a barrier to reproducible studies. Actuator-driven closed head impact (AD-CHI) models have translational advantages in replicating the pathophysiological and behavioral outcomes resulting from impact TBI. The main advantages of AD-CHI protocols include versatility of impact parameters such as impact angle, velocity, depth, and dwell time with the ability to interchange tip types, leading to consistent outcomes without the need for craniectomy. Sources of experimental variability within AD-CHI rat models are identified within this review with the aim of supporting further characterization to improve translational value. Primary areas of variability may be attributed to lack of standardization of head stabilization methods, reporting of tip properties, and performance of acute neurological assessments. AD-CHI models were also found to be more prevalently used among pediatric and repeated TBI paradigms. As this model continues to grow in use, establishing the relationships between impact parameters and associated injury outcomes will reduce experimental variability between research groups and encourage meaningful discussions as the community moves towards common data elements.
Collapse
Affiliation(s)
- Caiti-Erin Talty
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
- Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
4
|
TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 2022; 144:187-210. [PMID: 35713704 PMCID: PMC9945325 DOI: 10.1007/s00401-022-02449-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.
Collapse
|
5
|
Vonder Haar C, Wampler SK, Bhatia HS, Ozga JE, Toegel C, Lake AD, Iames CW, Cabral CE, Martens KM. Repeat Closed-Head Injury in Male Rats Impairs Attention but Causes Heterogeneous Outcomes in Multiple Measures of Impulsivity and Glial Pathology. Front Behav Neurosci 2022; 16:809249. [PMID: 35359588 PMCID: PMC8963781 DOI: 10.3389/fnbeh.2022.809249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023] Open
Abstract
Repetitive mild traumatic brain injury, or concussion, can lead to the development of long-term psychiatric impairments. However, modeling these deficits is challenging in animal models and necessitates sophisticated behavioral approaches. The current set of studies were designed to evaluate whether a rubberized versus metal impact tip would cause functional deficits, the number of injuries required to generate such deficits, and whether different psychiatric domains would be affected. Across two studies, male rats were trained in either the 5-choice serial reaction time task (5CSRT; Experiment 1) to assess attention and motor impulsivity or concurrently on the 5CSRT and the delay discounting task (Experiment 2) to also assess choice impulsivity. After behavior was stable, brain injuries were delivered with the Closed-head Injury Model of Engineered Rotational Acceleration (CHIMERA) either once per week or twice per week (Experiment 1) or just once per week (Experiment 2). Astrocyte and microglia pathology was also assayed in relevant regions of interest. CHIMERA injury caused attentional deficits across both experiments, but only increased motor impulsivity in Experiment 1. Surprisingly, choice impulsivity was actually reduced on the Delay Discounting Task after repeat injuries. However, subsequent analyses suggested potential visual issues which could alter interpretation of these and attentional data. Subtle changes in glial pathology immediately after the injury (Experiment 1) were attenuated after 4 weeks recovery (Experiment 2). Given the heterogenous findings between experiments, additional research is needed to determine the root causes of psychiatric disturbances which may arise as a results of repeated brain injuries.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Sarah K. Wampler
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Henna S. Bhatia
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Jenny E. Ozga
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Cory Toegel
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Anastasios D. Lake
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Christopher W. Iames
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Caitlyn E. Cabral
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Kris M. Martens
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Kris M. Martens,
| |
Collapse
|
6
|
McCarthy DM, Zhang L, Wilkes BJ, Vaillancourt DE, Biederman J, Bhide PG. Nicotine and the developing brain: Insights from preclinical models. Pharmacol Biochem Behav 2022; 214:173355. [PMID: 35176350 PMCID: PMC9063417 DOI: 10.1016/j.pbb.2022.173355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Use of tobacco products during pregnancy is associated with increased risk for neurodevelopmental disorders in the offspring. Preclinical models of developmental nicotine exposure have offered valuable insights into the neurobiology of nicotine's effects on the developing brain and demonstrated lasting effects of developmental nicotine exposure on brain structure, neurotransmitter signaling and behavior. These models have facilitated discovery of novel compounds as candidate treatments for attention deficit hyperactivity disorder, a neurodevelopmental disorder associated with prenatal nicotine exposure. Using these models the significance of heritability of behavioral phenotypes from the nicotine-exposed pregnant female or adult male to multiple generations of descendants has been demonstrated. Finally, research using the preclinical models has demonstrated synergistic interactions between developmental nicotine exposure and repetitive mild traumatic brain injury that contribute to "worse" outcomes from the injury in individuals with attention deficit hyperactivity disorder associated with developmental nicotine exposure.
Collapse
Affiliation(s)
- Deirdre M McCarthy
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Lin Zhang
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Bradley J Wilkes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - Joseph Biederman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America.
| |
Collapse
|
7
|
Zhang L, Levenson CW, Salazar VC, Biederman J, Zafonte R, Bhide PG. Repetitive Mild Traumatic Brain Injury in an Awake, Unanesthetized Mouse Model of Perinatal Nicotine Exposure Produces Transient Novelty-Seeking and Depression-Like Behaviors. J Neurotrauma 2022; 39:954-963. [PMID: 34913733 DOI: 10.1089/neu.2021.0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) can be a risk factor for repetitive mild traumatic brain injury (mTBI) or concussions such as those that can occur in contact sports. Individuals with ADHD also appear to have a higher risk of poor neurocognitive outcomes after repetitive mTBI. Findings from clinical studies examining the interactions between ADHD and repetitive mTBI vary, likely because of variabilities in experimental design and outcome measures. We used a mouse model of perinatal nicotine exposure (PNE), which displays behavioral, neuroanatomical, and neurotransmitter features consistent with ADHD and subjected the mice to repetitive mTBI. We used a closed head model of mTBI in awake, unanesthetized mice to mimic concussions in humans. The mTBI was repeated three times daily for seven days. The mice in the PNE-mTBI group took longer to regain consciousness after the mTBI and showed transient novelty-seeking and depression-like behaviors. Before the repetitive mTBI, the mice in the PNE group showed attention deficit, which persisted after the mTBI. The mice in the control (non-PNE) group showed a transient attention deficit after the repetitive mTBI but not any of the other behavioral changes seen in the PNE-mTBI group. These findings from an unanesthetized mouse model with a pre-existing condition show that ADHD and repetitive mTBI together contribute to transient novelty-seeking and depression-like behavior supporting the notion that untreated ADHD may be a risk factor for poor neurocognitive outcomes after concussions.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Cathy W Levenson
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Valentina Cea Salazar
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Pradeep G Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Zhang L, Levenson CW, Salazar VC, McCarthy DM, Biederman J, Zafonte R, Bhide PG. Repetitive Mild Traumatic Brain Injury in a Perinatal Nicotine Exposure Mouse Model of Attention Deficit Hyperactivity Disorder. Dev Neurosci 2021; 43:63-72. [PMID: 33849015 DOI: 10.1159/000515198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) increases the risk for concussion or mild traumatic brain injury (mTBI). At the same time, recommendations for the management of ADHD include participation in sports and other organized physical activities, including those that carry an increased risk of mTBI. Very little work has been done to determine the extent to which untreated ADHD adversely impacts behavioral outcomes of repeated mild concussions. Here, we used a perinatal nicotine exposure (PNE) mouse model of ADHD combined with a closed-head, repetitive mTBI model. The PNE mouse model carries significant construct, face, and predictive validity as a preclinical model of ADHD. Two-month-old PNE and control mice were subjected to closed-head repetitive mTBI or sham procedure once daily for 5 days. Object-based attention, novel object recognition memory, spatial working memory, and depression-like behavior were analyzed 1 day and 2 weeks following repeated mTBI. Consistent with our previous reports, mice in the PNE group showed significant deficits in object-based attention and working memory prior to mTBI. These deficits persisted following the repeated mTBI. Repeated mTBI produced a transient attention deficit in the control group but did not exacerbate the attention deficit that is characteristic of the PNE group. Although neither PNE nor repetitive mTBI alone influenced immobility in the tail suspension test, when PNE mice were subjected to mTBI, there was a transient increase in this measurement suggesting a synergistic effect of ADHD and mTBI on depression-like behavior. Thus, our data using the PNE mouse model suggest that ADHD may be a risk factor for transient depression following repeated mTBI and that repeated mTBI may be a risk factor for transient attention deficit.
Collapse
Affiliation(s)
- Lin Zhang
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Cathy W Levenson
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Valentina Cea Salazar
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Deirdre M McCarthy
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General hospital, Brigham and Women's Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Pradeep G Bhide
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
9
|
McDaid J, Briggs CA, Barrington NM, Peterson DA, Kozlowski DA, Stutzmann GE. Sustained Hippocampal Synaptic Pathophysiology Following Single and Repeated Closed-Head Concussive Impacts. Front Cell Neurosci 2021; 15:652721. [PMID: 33867941 PMCID: PMC8044326 DOI: 10.3389/fncel.2021.652721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury (TBI), and related diseases such as chronic traumatic encephalopathy (CTE) and Alzheimer's (AD), are of increasing concern in part due to enhanced awareness of their long-term neurological effects on memory and behavior. Repeated concussions, vs. single concussions, have been shown to result in worsened and sustained symptoms including impaired cognition and histopathology. To assess and compare the persistent effects of single or repeated concussive impacts on mediators of memory encoding such as synaptic transmission, plasticity, and cellular Ca2+ signaling, a closed-head controlled cortical impact (CCI) approach was used which closely replicates the mode of injury in clinical cases. Adult male rats received a sham procedure, a single impact, or three successive impacts at 48-hour intervals. After 30 days, hippocampal slices were prepared for electrophysiological recordings and 2-photon Ca2+ imaging, or fixed and immunostained for pathogenic phospho-tau species. In both concussion groups, hippocampal circuits showed hyper-excitable synaptic responsivity upon Schaffer collateral stimulation compared to sham animals, indicating sustained defects in hippocampal circuitry. This was not accompanied by sustained LTP deficits, but resting Ca2+ levels and voltage-gated Ca2+ signals were elevated in both concussion groups, while ryanodine receptor-evoked Ca2+ responses decreased with repeat concussions. Furthermore, pathogenic phospho-tau staining was progressively elevated in both concussion groups, with spreading beyond the hemisphere of injury, consistent with CTE. Thus, single and repeated concussions lead to a persistent upregulation of excitatory hippocampal synapses, possibly through changes in postsynaptic Ca2+ signaling/regulation, which may contribute to histopathology and detrimental long-term cognitive symptoms.
Collapse
Affiliation(s)
- John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Nikki M. Barrington
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Dorothy A. Kozlowski
- Department of Biological Sciences and Neuroscience Program, DePaul University, Chicago, IL, United States
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
10
|
Chakraborty N, Hammamieh R, Gautam A, Miller SA, Condlin ML, Jett M, Scrimgeour AG. TBI weight-drop model with variable impact heights differentially perturbs hippocampus-cerebellum specific transcriptomic profile. Exp Neurol 2020; 335:113516. [PMID: 33172833 DOI: 10.1016/j.expneurol.2020.113516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 01/14/2023]
Abstract
The degree of brain injury is the governing factor for the magnitude of the patient's psycho- and physiological deficits post-injury, and the associated long-term consequences. The present scaling method used to segregate the patients among mild, moderate and severe phases of traumatic brain injury (TBI) has major limitations; however, a more continuous stratification of TBI is still elusive. With the anticipation that differentiating molecular markers could be the backbone of a robust method to triage TBI, we used a modified closed-head injury (CHI) Marmarou model with two impact heights (IH). By definition, IH directly correlates with the impact force causing TBI. In our modified CHI model, the rat skull was fitted with a helmet to permit a diffuse axonal injury. With the frontal cortex as the focal point of injury, the adjacent brain regions (hippocampus, HC and cerebellum, CB) were susceptible to diffuse secondary shock injury. At 8 days post injury (po.i.), rats impacted by 120 cm IH (IH120) took a longer time to find an escape route in the Barnes maze as compared to those impacted by 100 cm IH (IH100). Using a time-resolved interrogation of the transcriptomic landscape of HC and CB tissues, we mined those genes that altered their regulations in correlation with the variable IHs. At 14 days po.i., when all rats demonstrated nearly normal visuomotor performance, the bio-functional analysis suggested an advanced healing mechanism in the HC of IH100 group. In contrast, the HC of IH120 group displayed a delayed healing with evidence of active cell death networks. Combining whole genome rat microarrays with behavioral analysis provided the insight of neuroprotective signals that could be the foundation of the next generation triage for TBI patients.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America; Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America; ORISE, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Michelle L Condlin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA 01760, United States of America
| | - Marti Jett
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Angus G Scrimgeour
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA 01760, United States of America
| |
Collapse
|
11
|
Ichkova A, Rodriguez-Grande B, Zub E, Saudi A, Fournier ML, Aussudre J, Sicard P, Obenaus A, Marchi N, Badaut J. Early cerebrovascular and long-term neurological modifications ensue following juvenile mild traumatic brain injury in male mice. Neurobiol Dis 2020; 141:104952. [PMID: 32442681 DOI: 10.1016/j.nbd.2020.104952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical evidence suggests that a mild traumatic brain injury occurring at a juvenile age (jmTBI) may be sufficient to elicit pathophysiological modifications. However, clinical reports are not adequately integrated with experimental studies examining brain changes occurring post-jmTBI. We monitored the cerebrovascular modifications and assessed the long-term behavioral and electrographic changes resulting from experimental jmTBI. In vivo photoacoustic imaging demonstrated a decrease of cerebrovascular oxygen saturation levels in the impacted area hours post-jmTBI. Three days post-jmTBI oxygenation returned to pre-jmTBI levels, stabilizing at 7 and 30 days after the injury. At the functional level, cortical arterioles displayed no NMDA vasodilation response, while vasoconstriction induced by thromboxane receptor agonist was enhanced at 1 day post-jmTBI. Arterioles showed abnormal NMDA vasodilation at 3 days post-jmTBI, returning to normality at 7 days post injury. Histology showed changes in vessel diameters from 1 to 30 days post-jmTBI. Neurological evaluation indicated signs of anxiety-like behavior up to 30 days post-jmTBI. EEG recordings performed at the cortical site of impact 30 days post-jmTBI did not indicate seizures activity, although it revealed a reduction of gamma waves as compared to age matched sham. Histology showed decrease of neuronal filament staining. In conclusion, experimental jmTBI triggers an early cerebrovascular hypo‑oxygenation in vivo and faulty vascular reactivity. The exact topographical coherence and the direct casualty between early cerebrovascular changes and the observed long-term neurological modifications remain to be investigated. A potential translational value for cerebro-vascular oxygen monitoring in jmTBI is discussed.
Collapse
Affiliation(s)
| | | | - Emma Zub
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - Amel Saudi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | | | | | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PhyMedExp, IPAM, Montpellier, France
| | - André Obenaus
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA; Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Nicola Marchi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France.
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
12
|
Sacramento CB, Sondhi D, Rosenberg JB, Chen A, Giordano S, Pey E, Lee V, Stiles KM, Havlicek DF, Leopold PL, Kaminsky SM, Crystal RG. Anti-Phospho-Tau Gene Therapy for Chronic Traumatic Encephalopathy. Hum Gene Ther 2019; 31:57-69. [PMID: 31608704 DOI: 10.1089/hum.2019.174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder caused by repetitive trauma to the central nervous system (CNS) suffered by soldiers, contact sport athletes, and civilians following accident-related trauma. CTE is a CNS tauopathy, with trauma-induced inflammation leading to accumulation of hyperphosphorylated forms of the microtubule-binding protein Tau (pTau), resulting in neurofibrillary tangles and progressive loss of neurons. At present, there are no therapies to treat CTE. We hypothesized that direct CNS administration of an adeno-associated virus (AAV) vector coding for an anti-pTau antibody would generate sufficient levels of anti-pTau in the CNS to suppress pTau accumulation thus interrupting the pathogenic process. Using a serotype AAVrh.10 gene transfer vector coding for a monoclonal antibody directed against pTau, we demonstrate the feasibility of this strategy in a murine CTE model in which pTau accumulation was elicited by repeated traumatic brain injury (TBI) using a closed cortical impact procedure over 5 days. Direct delivery of AAVrh.10 expression vectors coding for either of the two different anti-pTau antibodies to the hippocampus of these TBI mice significantly reduced pTau levels across the CNS. Using doses that can be safely scaled to humans, the data demonstrate that CNS administration of AAVrh.10anti-pTau is effective, providing a new strategy to interrupt the CTE consequences of TBI.
Collapse
Affiliation(s)
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephanie Giordano
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Eduard Pey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Vladlena Lee
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - David F Havlicek
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
13
|
Dinet V, Petry KG, Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front Neurosci 2019; 13:1178. [PMID: 31780883 PMCID: PMC6861304 DOI: 10.3389/fnins.2019.01178] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the principal cause of death and disability in children and young adults. Clinical and preclinical research efforts have been carried out to understand the acute, life-threatening pathophysiological events happening after TBI. In the past few years, however, it was recognized that TBI causes significant morbidity weeks, months, or years after the initial injury, thereby contributing substantially to the overall burden of TBI and the decrease of life expectancy in these patients. Long-lasting sequels of TBI include cognitive decline/dementia, sensory-motor dysfunction, and psychiatric disorders, and most important for patients is the need for socio-economic rehabilitation affecting their quality of life. Cerebrovascular alterations have been described during the first week after TBI for direct consequence development of neuroinflammatory process in relation to brain edema. Within the brain-immune interactions, the complement system, which is a family of blood and cell surface proteins, participates in the pathophysiology process. In fact, the complement system is part of the primary defense and clearance component of innate and adaptive immune response. In this review, the complement activation after TBI will be described in relation to the activation of the microglia and astrocytes as well as the blood-brain barrier dysfunction during the first week after the injury. Considering the neuroinflammatory activity as a causal element of neurological handicaps, some major parallel lines of complement activity in multiple sclerosis and Alzheimer pathologies with regard to cognitive impairment will be discussed for chronic TBI. A better understanding of the role of complement activation could facilitate the development of new therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Virginie Dinet
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Klaus G. Petry
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, Brain molecular Imaging Team, University of Bordeaux, Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
14
|
Clément T, Lee JB, Ichkova A, Rodriguez-Grande B, Fournier ML, Aussudre J, Ogier M, Haddad E, Canini F, Koehl M, Abrous DN, Obenaus A, Badaut J. Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses. Glia 2019; 68:528-542. [PMID: 31670865 DOI: 10.1002/glia.23736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Mild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction. However, such alterations have never been investigated in the context of juvenile mTBI (jmTBI). A closed-head injury model was used to study jmTBI on postnatal-day 17 mice. Astrogliosis was evaluated using glial fibrillary acidic protein (GFAP), vimentin, and nestin immunolabeling in somatosensory cortex (SSC), dentate gyrus (DG), amygdala (AMY), and infralimbic area (ILA) of prefrontal cortex in both hemispheres from 1 to 30 days postinjury (dpi). In vivo T2-weighted-imaging (T2WI) and diffusion tensor imaging (DTI) were performed at 7 and 30 dpi to examine tissue level structural alterations. Increased GFAP-labeling was observed up to 30 dpi in the ipsilateral SSC, the initial site of the impact. However, vimentin and nestin expression was not perturbed by jmTBI. The morphology of GFAP positive cells was significantly altered in the SSC, DG, AMY, and ILA up to 7 dpi that some correlated with magnetic resonance imaging changes. T2WI and DTI values were significantly altered at 30 dpi within these brain regions most prominently in regions distant from the impact site. Our data show that jmTBI triggers changes in astrocytic phenotype with a distinct spatiotemporal pattern. We speculate that the presence and time course of astrogliosis may contribute to pathophysiological processes and long-term structural alterations following jmTBI.
Collapse
Affiliation(s)
| | - Jeong B Lee
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | | | | | | | | | - Michael Ogier
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Frederic Canini
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Muriel Koehl
- Neurocentre Magendie INSERM U1215, Bordeaux, France
| | | | - Andre Obenaus
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France.,Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
15
|
Avcu P, Fortress AM, Fragale JE, Spiegler KM, Pang KCH. Anhedonia following mild traumatic brain injury in rats: A behavioral economic analysis of positive and negative reinforcement. Behav Brain Res 2019; 368:111913. [PMID: 30998994 DOI: 10.1016/j.bbr.2019.111913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders affect nearly 50% of individuals who have experienced a traumatic brain injury (TBI). Anhedonia is a major symptom of numerous psychiatric disorders and is a diagnostic criterion for depression. It has recently been appreciated that reinforcement may be separated into consummatory (hedonic), motivational and decisional components, all of which may be affected differently in disease. Although anhedonia is typically assessed using positive reinforcement, the importance of stress in psychopathology suggests the study of negative reinforcement (removal or avoidance of aversive events) may be equally important. The present study investigated positive and negative reinforcement following a rat model of mild TBI (mTBI) using lateral fluid percussion. Hedonic value and motivation for reinforcement was determined by behavioral economic analyses. Following mTBI, the hedonic value of avoiding foot shock was reduced. In contrast, the hedonic value of escaping foot shock or obtaining a sucrose pellet was not altered by mTBI. Moreover, motivation to avoid or escape foot shock or to acquire sucrose was not altered by mTBI. Our results suggest that individuals experiencing mTBI find avoidance of aversive events less reinforcing, and therefore are less apt to utilize proactive control of stress.
Collapse
Affiliation(s)
- Pelin Avcu
- NeuroBehavioral Research Lab, Department of Veteran Affairs Medical Center, New Jersey Health Care System, East Orange, New Jersey, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Ashley M Fortress
- NeuroBehavioral Research Lab, Department of Veteran Affairs Medical Center, New Jersey Health Care System, East Orange, New Jersey, USA
| | - Jennifer E Fragale
- NeuroBehavioral Research Lab, Department of Veteran Affairs Medical Center, New Jersey Health Care System, East Orange, New Jersey, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Kevin M Spiegler
- NeuroBehavioral Research Lab, Department of Veteran Affairs Medical Center, New Jersey Health Care System, East Orange, New Jersey, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Kevin C H Pang
- NeuroBehavioral Research Lab, Department of Veteran Affairs Medical Center, New Jersey Health Care System, East Orange, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School - Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.
| |
Collapse
|
16
|
Pham L, Shultz SR, Kim HA, Brady RD, Wortman RC, Genders SG, Hale MW, O'Shea RD, Djouma E, van den Buuse M, Church JE, Christie BR, Drummond GR, Sobey CG, McDonald SJ. Mild Closed-Head Injury in Conscious Rats Causes Transient Neurobehavioral and Glial Disturbances: A Novel Experimental Model of Concussion. J Neurotrauma 2019; 36:2260-2271. [DOI: 10.1089/neu.2018.6169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Louise Pham
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Sandy R. Shultz
- Department Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Rhys D. Brady
- Department Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Ryan C. Wortman
- Department Neuroscience, Monash University, Melbourne, Australia
| | - Shannyn G. Genders
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Matthew W. Hale
- Department of Psychology and Counseling, La Trobe University, Bundoora, Australia
| | - Ross D. O'Shea
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Elvan Djouma
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counseling, La Trobe University, Bundoora, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, Australia
- The College of Public Health, Medical, and Veterinary Sciences, James Cook University, Queensland, Australia
| | - Jarrod E. Church
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Grant R. Drummond
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Stuart J. McDonald
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
- Department Neuroscience, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Alves JL, Rato J, Silva V. Why Does Brain Trauma Research Fail? World Neurosurg 2019; 130:115-121. [PMID: 31284053 DOI: 10.1016/j.wneu.2019.06.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) represents a major health care problem and a significant social and economic issue worldwide. Considering the generalized failure in introducing effective drugs and clinical protocols, there is an urgent need for efficient treatment modalities, able to improve devastating posttraumatic morbidity and mortality. In this work, the status of brain trauma research is analyzed in all its aspects, including basic and translational science and clinical trials. Implicit and explicit challenges to different lines of research are discussed and clinical trial structures and outcomes are scrutinized, along with possible explanations for systematic therapeutic failures and their implications for future development of drug and clinical trials. Despite significant advances in basic and clinical research in recent years, no specific therapeutic protocols for TBI have been shown to be effective. New potential therapeutic targets have been identified, following a better understanding of pathophysiologic mechanisms underlying TBI, although with disappointing results. Several reasons can be pinpointed at different levels, from inaccurate animal models of disease to faulty preclinical and clinical trials, with poor design and subjective outcome measures. Distinct strategies can be delineated to overcome specific shortcomings of research studies. Identifying and contextualizing the failures that have dominated TBI research is mandatory. This review analyzes current approaches and discusses possible strategies for improving outcomes.
Collapse
Affiliation(s)
- José Luís Alves
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Joana Rato
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Vitor Silva
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Hiskens MI, Angoa-Pérez M, Schneiders AG, Vella RK, Fenning AS. Modeling sports-related mild traumatic brain injury in animals-A systematic review. J Neurosci Res 2019; 97:1194-1222. [PMID: 31135069 DOI: 10.1002/jnr.24472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Sports-related head trauma has emerged as an important public health issue, as mild traumatic brain injuries (mTBIs) may result in neurodegenerative disorders such as chronic traumatic encephalopathy (CTE). Research into mTBI and CTE pathophysiology are difficult to undertake in athletes, with observational trials and post-mortem analysis the current mainstays. Thus, animal models play an important role in the study of mTBI, however, traditional animal models have focused on acute, severe injuries rather than the more typical mTBI's seen in sport injuries. Recently, a number of animal models have been developed that are both appropriately scaled and biomechanically relevant to the forces sustained by athletes. This review aimed to examine the literature for variables included in these animal models, and the resulting neurotrauma as evidenced by pathology and behavioral deficits. A systematic search of the literature was performed in multiple electronic databases. The inclusion criteria required mimicry of athlete mTBI conditions: freedom of head movement, lack of surgical alteration of the skull, and application of direct contact force. Studies were analyzed for variables including apparatus design features (impact force, change in animal head velocity, and kinetic energy transfer to the head), demonstrated pathology (phosphorylated tau, TDP-43 aggregation, diffuse axonal injury, gliosis, cytokine inflammation response, and genetic integrity), and behavioral changes. These studies suggested that appropriate animal models can assist in understanding the pathological and functional outcomes of athlete mTBI, and could be used as a platform for future studies of diagnostic/prognostic markers and in the development of treatment interventions.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Branyan, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
20
|
Ko J, Hemphill M, Yang Z, Beard K, Sewell E, Shallcross J, Schweizer M, Sandsmark DK, Diaz-Arrastia R, Kim J, Meaney D, Issadore D. Multi-Dimensional Mapping of Brain-Derived Extracellular Vesicle MicroRNA Biomarker for Traumatic Brain Injury Diagnostics. J Neurotrauma 2019; 37:2424-2434. [PMID: 30950328 DOI: 10.1089/neu.2018.6220] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The diagnosis and prognosis of traumatic brain injury (TBI) is complicated by variability in the type and severity of injuries and the multiple endophenotypes that describe each patient's response and recovery to the injury. It has been challenging to capture the multiple dimensions that describe an injury and its recovery to provide clinically useful information. To address this challenge, we have performed an open-ended search for panels of microRNA (miRNA) biomarkers, packaged inside of brain-derived extracellular vesicles (EVs), that can be combined algorithmically to accurately classify various states of injury. We mapped GluR2+ EV miRNA across a variety of injury types, injury intensities, history of injuries, and time elapsed after injury, and sham controls in a pre-clinical murine model (n = 116), as well as in clinical samples (n = 36). We combined next-generation sequencing with a technology recently developed by our lab, Track Etched Magnetic Nanopore (TENPO) sorting, to enrich for GluR2+ EVs and profile their miRNA. By mapping and comparing brain-derived EV miRNA between various injuries, we have identified signaling pathways in the packaged miRNA that connect these biomarkers to underlying mechanisms of TBI. Many of these pathways are shared between the pre-clinical model and the clinical samples, and present distinct signatures across different injury models and times elapsed after injury. Using this map of EV miRNA, we applied machine learning to define a panel of biomarkers to successfully classify specific states of injury, paving the way for a prognostic blood test for TBI. We generated a panel of eight miRNAs (miR-150-5p, miR-669c-5p, miR-488-3p, miR-22-5p, miR-9-5p, miR-6236, miR-219a.2-3p, miR-351-3p) for injured mice versus sham mice and four miRNAs (miR-203b-5p, miR-203a-3p, miR-206, miR-185-5p) for TBI patients versus healthy controls.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Hemphill
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zijian Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kryshawna Beard
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jamie Shallcross
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa Schweizer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Thomasy HE, Opp MR. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019; 36:802-814. [PMID: 30136622 PMCID: PMC6387567 DOI: 10.1089/neu.2018.5810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide. Post-TBI sleep and wake disturbances are extremely common and difficult for patients to manage. Sleep and wake disturbances contribute to poor functional and emotional outcomes from TBI, yet effective therapies remain elusive. A more comprehensive understanding of mechanisms underlying post-TBI sleep and wake disturbance will facilitate development of effective pharmacotherapies. Previous research in human patients and animal models indicates that altered hypocretinergic function may be a major contributor to sleep-wake disturbance after TBI. In this study, we further elucidate the role of hypocretin by determining the impact of TBI on sleep-wake behavior of hypocretin knockout (HCRT KO) mice. Adult male C57BL/6J and HCRT KO mice were implanted with electroencephalography recording electrodes, and pre-injury baseline recordings were obtained. Mice were then subjected to either moderate TBI or sham surgery. Additional recordings were obtained and sleep-wake behavior determined at 3, 7, 15, and 30 days after TBI or sham procedures. At baseline, HCRT KO mice had a significantly different sleep-wake phenotype than control C57BL/6J mice. Post-TBI sleep-wake behavior was altered in a genotype-dependent manner: sleep of HCRT KO mice was not altered by TBI, whereas C57BL/6J mice had more non-rapid eye movement sleep, less wakefulness, and more short wake bouts and fewer long wake bouts. Numbers of hypocretin-positive cells were reduced in C57BL/6J mice by TBI. Collectively, these data indicate that the hypocretinergic system is involved in the alterations in sleep-wake behavior that develop after TBI in this model, and suggest potential therapeutic interventions.
Collapse
Affiliation(s)
- Hannah E. Thomasy
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Mark R. Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Effective Treatment of Traumatic Brain Injury in Rowett Nude Rats with Stromal Vascular Fraction Transplantation. Brain Sci 2018; 8:brainsci8060112. [PMID: 29912146 PMCID: PMC6025091 DOI: 10.3390/brainsci8060112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) affects 1.9 million Americans, including blast TBI that is the signature injury of the Iraq and Afghanistan wars. Our project investigated whether stromal vascular fraction (SVF) can assist in post-TBI recovery. We utilized strong acoustic waves (5.0 bar) to induce TBI in the cortex of adult Rowett Nude (RNU) rats. One hour post-TBI, harvested human SVF (500,000 cells suspended in 0.5 mL lactated Ringers) was incubated with Q-Tracker cell label and administered into tail veins of RNU rats. For comparison, we utilized rats that received SVF 72 h post-TBI, and a control group that received lactated Ringers solution. Rotarod and water maze assays were used to monitor motor coordination and spatial memories. Rats treated immediately after TBI showed no signs of motor skills and memory regression. SVF treatment 72 h post-TBI enabled the rats maintain their motor skills, while controls treated with lactated Ringers were 25% worse statistically in both assays. Histological analysis showed the presence of Q-dot labeled human cells near the infarct in both SVF treatment groups; however, labeled cells were twice as numerous in the one hour group. Our study suggests that immediate treatment with SVF would serve as potential therapeutic agents in TBI.
Collapse
|
23
|
Meconi A, Wortman RC, Wright DK, Neale KJ, Clarkson M, Shultz SR, Christie BR. Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats. PLoS One 2018; 13:e0197187. [PMID: 29738554 PMCID: PMC5940222 DOI: 10.1371/journal.pone.0197187] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Repeated concussion is becoming increasingly recognized as a serious public health concern around the world. Moreover, there is a greater awareness amongst health professionals of the potential for repeated pediatric concussions to detrimentally alter the structure and function of the developing brain. To better study this issue, we developed an awake closed head injury (ACHI) model that enabled repeated concussions to be performed reliably and reproducibly in juvenile rats. A neurological assessment protocol (NAP) score was generated immediately after each ACHI to help quantify the cumulative effects of repeated injury on level of consciousness, and basic motor and reflexive capacity. Here we show that we can produce a repeated ACHI (4 impacts in two days) in both male and female juvenile rats without significant mortality or pain. We show that both single and repeated injuries produce acute neurological deficits resembling clinical concussion symptoms that can be quantified using the NAP score. Behavioural analyses indicate repeated ACHI acutely impaired spatial memory in the Barnes maze, and an interesting sex effect was revealed as memory impairment correlated moderately with poorer NAP score performance in a subset of females. These cognitive impairments occurred in the absence of motor impairments on the Rotarod, or emotional changes in the open field and elevated plus mazes. Cresyl violet histology and structural magnetic resonance imaging (MRI) indicated that repeated ACHI did not produce significant structural damage. MRI also confirmed there was no volumetric loss in the cortex, hippocampus, or corpus callosum of animals at 1 or 7 days post-ACHI. Together these data indicate that the ACHI model can provide a reliable, high throughput means to study the effects of concussions in juvenile rats.
Collapse
Affiliation(s)
- Alicia Meconi
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Ryan C. Wortman
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - David K. Wright
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Katie J. Neale
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Melissa Clarkson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Sandy R. Shultz
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Brain Health and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
24
|
Rodriguez-Grande B, Obenaus A, Ichkova A, Aussudre J, Bessy T, Barse E, Hiba B, Catheline G, Barrière G, Badaut J. Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. Glia 2018; 66:1663-1677. [DOI: 10.1002/glia.23336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Beatriz Rodriguez-Grande
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Andre Obenaus
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda California
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences; UC Riverside; Riverside California
- Department of Pediatrics; University of California, Irvine; Irvine California
| | - Aleksandra Ichkova
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Justine Aussudre
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Thomas Bessy
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Elodie Barse
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Bassem Hiba
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Gwénaëlle Catheline
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Grégory Barrière
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Jerome Badaut
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
25
|
Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 2017; 9:393-416. [PMID: 29151229 DOI: 10.1007/s12975-017-0588-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Secondary brain damage following initial brain damage in traumatic brain injury (TBI) is a major cause of adverse outcomes. There are many gaps in TBI research and a lack of therapy to limit debilitating outcomes in TBI or enhance the neurogenesis, despite pre-clinical and clinical research performed in TBI. Females show harmful outcomes against brain damage including TBI less than males, independent of different TBI occurrence. A significant reduction in secondary brain damage and improvement in neurologic outcome post-TBI has been reported following the use of progesterone and estrogen in many experimental studies. Although useful features of sex steroids including progesterone have been identified in TBI clinical trials I and II, clinical trials III have been unsuccessful. This review article focuses on evidence of secondary injury mechanisms and neuroprotective effects of estrogen and progesterone in TBI. Understanding these mechanisms may enable researchers to achieve greater success in TBI clinical studies. It seems that the design of clinical studies should be revised due to translation loss of animal studies to clinical studies. The heterogeneous and complex nature of TBI, the endogenous levels of sex hormones at the time of taking these hormones, the therapeutic window of the drug, the dosage of the drug, the selection of appropriate targets in evaluation, the determination of responsive population, gender and age based on animal studies should be considered in the design of TBI human studies in future.
Collapse
|
26
|
Yu Y, Cao F, Ran Q, Wang F. Long non-coding RNA Gm4419 promotes trauma-induced astrocyte apoptosis by targeting tumor necrosis factor α. Biochem Biophys Res Commun 2017; 491:478-485. [DOI: 10.1016/j.bbrc.2017.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022]
|
27
|
Abou-El-Hassan H, Dia B, Choucair K, Eid SA, Najdi F, Baki L, Talih F, Eid AA, Kobeissy F. Traumatic brain injury, diabetic neuropathy and altered-psychiatric health: The fateful triangle. Med Hypotheses 2017; 108:69-80. [PMID: 29055405 DOI: 10.1016/j.mehy.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/25/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a detrimental medical condition particularly when accompanied by diabetes. There are several comorbidities going along with diabetes including, but not limited to, kidney failure, obesity, coronary artery disease, peripheral vascular disease, hypertension, stroke, neuropathies and amputations. Unlike diabetes type 1, diabetes type 2 is more common in adults who simultaneously suffer from other comorbid conditions making them susceptible to repetitive fall incidents and sustaining head trauma. The resulting brain insult exacerbates current psychiatric disorders such as depression and anxiety, which, in turn, increases the risk of sustaining further brain traumas. The relationship between diabetes, traumatic brain injury and psychiatric health constitutes a triad forming a non-reversible vicious cycle. At the proteomic and psychiatric levels, cellular, molecular and behavioral alterations have been reported with the induction of non-traumatic brain injury in diabetic models such as stroke. However, research into traumatic brain injury has not been systematically investigated. Thus, in cases of diabetic neuropathy complicated with traumatic brain injury, utilizing fine structural and analytical techniques allows the identification of key biological markers that can then be used as innovative diagnostics as well as novel therapeutic targets in an attempt to treat diabetes and its sequelae especially those arising from repetitive mild brain trauma.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Khalil Choucair
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Stephanie A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Najdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lama Baki
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farid Talih
- Department of Psychiatry, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
28
|
Validation of Acoustic Wave Induced Traumatic Brain Injury in Rats. Brain Sci 2017; 7:brainsci7060059. [PMID: 28574429 PMCID: PMC5483632 DOI: 10.3390/brainsci7060059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study looked to validate the acoustic wave technology of the Storz-D-Actor that inflicted a consistent closed-head, traumatic brain injury (TBI) in rats. We studied a range of single pulse pressures administered to the rats and observed the resulting decline in motor skills and memory. Histology was observed to measure and confirm the injury insult. METHODS Four different acoustic wave pressures were studied using a single pulse: 0, 3.4, 4.2 and 5.0 bar (n = 10 rats per treatment group). The pulse was administered to the left frontal cortex. Rotarod tests were used to monitor the rats' motor skills while the water maze test was used to monitor memory deficits. The rats were then sacrificed ten days post-treatment for histological analysis of TBI infarct size. RESULTS The behavioral tests showed that acoustic wave technology administered an effective insult causing significant decreases in motor abilities and memory. Histology showed dose-dependent damage to the cortex infarct areas only. CONCLUSIONS This study illustrates that the Storz D-Actor effectively induces a repeatable TBI infarct, avoiding the invasive procedure of a craniotomy often used in TBI research.
Collapse
|
29
|
Narayana PA. White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion 2017; 2:CNC35. [PMID: 30202576 PMCID: PMC6093760 DOI: 10.2217/cnc-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
This review focuses on white matter (WM) changes in mild traumatic brain injury (mTBI) as assessed by multimodal MRI. All the peer reviewed publications on WM changes in mTBI from January 2011 through September 2016 are included in this review. This review is organized as follows: introduction to mTBI, the basics of multimodal MRI techniques that are potentially useful for probing the WM integrity, summary and critical evaluation of the published literature on the application of multimodal MRI techniques to assess the changes of WM in mTBI, and correlation of MRI measures with behavioral deficits. The MRI-pathology correlation studies based on preclinical models of mTBI are also reviewed. Finally, the author's perspective of future research directions is described.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic & Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
30
|
Laskowitz DT, Wang H, Chen T, Lubkin DT, Cantillana V, Tu TM, Kernagis D, Zhou G, Macy G, Kolls BJ, Dawson HN. Neuroprotective pentapeptide CN-105 is associated with reduced sterile inflammation and improved functional outcomes in a traumatic brain injury murine model. Sci Rep 2017; 7:46461. [PMID: 28429734 PMCID: PMC5399447 DOI: 10.1038/srep46461] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
At present, there are no proven pharmacological treatments demonstrated to improve long term functional outcomes following traumatic brain injury(TBI). In the setting of non-penetrating TBI, sterile brain inflammatory responses are associated with the development of cerebral edema, intracranial hypertension, and secondary neuronal injury. There is increasing evidence that endogenous apolipoprotein E(apoE) modifies the neuroinflammatory response through its role in downregulating glial activation, however, the intact apoE holoprotein does not cross the blood-brain barrier due to its size. To address this limitation, we developed a small 5 amino acid apoE mimetic peptide(CN-105) that mimics the polar face of the apoE helical domain involved in receptor interactions. The goal of this study was to investigate the therapeutic potential of CN-105 in a murine model of closed head injury. Treatment with CN-105 was associated with a durable improvement in functional outcomes as assessed by Rotarod and Morris Water Maze and a reduction in positive Fluoro-Jade B stained injured neurons and microglial activation. Administration of CN-105 was also associated with reduction in mRNA expression of a subset of inflammatory and immune-related genes.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.,Aegis-CN LLC., Durham, NC, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony Chen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David T Lubkin
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Viviana Cantillana
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tian Ming Tu
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Dawn Kernagis
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Guanen Zhou
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gary Macy
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bradley J Kolls
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hana N Dawson
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
31
|
Sone JY, Kondziolka D, Huang JH, Samadani U. Helmet efficacy against concussion and traumatic brain injury: a review. J Neurosurg 2017; 126:768-781. [DOI: 10.3171/2016.2.jns151972] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helmets are one of the earliest and most enduring methods of personal protection in human civilization. Although primarily developed for combat purposes in ancient times, modern helmets have become highly diversified to sports, recreation, and transportation. History and the scientific literature exhibit that helmets continue to be the primary and most effective prevention method against traumatic brain injury (TBI), which presents high mortality and morbidity rates in the US. The neurosurgical and neurotrauma literature on helmets and TBI indicate that helmets provide effectual protection against moderate to severe head trauma resulting in severe disability or death. However, there is a dearth of scientific data on helmet efficacy against concussion in both civilian and military aspects. The objective of this literature review was to explore the historical evolution of helmets, consider the effectiveness of helmets in protecting against severe intracranial injuries, and examine recent evidence on helmet efficacy against concussion. It was also the goal of this report to emphasize the need for more research on helmet efficacy with improved experimental design and quantitative standardization of assessments for concussion and TBI, and to promote expanded involvement of neurosurgery in studying the quantitative diagnostics of concussion and TBI. Recent evidence summarized by this literature review suggests that helmeted patients do not have better relative clinical outcome and protection against concussion than unhelmeted patients.
Collapse
Affiliation(s)
- Je Yeong Sone
- 1Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Douglas Kondziolka
- 1Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Jason H. Huang
- 2Department of Neurosurgery, Baylor Scott & White Central Division, Temple, Texas; and
| | - Uzma Samadani
- 3Department of Neurosurgery, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Sinha SP, Avcu P, Spiegler KM, Komaravolu S, Kim K, Cominski T, Servatius RJ, Pang KCH. Startle suppression after mild traumatic brain injury is associated with an increase in pro-inflammatory cytokines, reactive gliosis and neuronal loss in the caudal pontine reticular nucleus. Brain Behav Immun 2017; 61:353-364. [PMID: 28089558 DOI: 10.1016/j.bbi.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/12/2016] [Accepted: 01/08/2017] [Indexed: 01/15/2023] Open
Abstract
Mild traumatic brain injury (mTBI) can produce somatic symptoms such as headache, dizziness, fatigue, sleep disturbances and sensorimotor dysfunction. Sensorimotor function can be measured by tests such as the acoustic startle reflex (ASR), an evolutionarily conserved defensive response to a brief yet sharp acoustic stimulus. mTBI produces a long-lasting suppression of ASR in rodents and humans; however, the mechanism of this suppression is unknown. The present study examined whether inflammatory processes in the brainstem (particularly the caudal pontine reticular nucleus, PnC) could account for the suppression of ASR after mTBI, because the PnC is an essential nucleus of the ASR circuit. Furthermore, while inflammation after mTBI is commonly observed in brain regions proximal to the site of impact (cortex and hippocampus), the effects of mTBI in brainstem structures remains largely understudied. The present study demonstrated a suppression of ASR one day after injury and lasting at least three weeks after an mTBI, replicating previous findings. Within the PnC, transient elevations of IL-1β and TNF-α mRNA were observed at one day after injury, while IL-1α mRNA exhibited a delayed increase at three weeks after injury. Reactive gliosis (via IBA-1-ir for microglia and GFAP-ir for astrocytes) were also observed in the PnC, at one day and seven days after injury, respectively. Finally, the number of giant neurons (the major functional cell population in the PnC) was decreased three weeks after injury. The results indicate that glial activation precedes neuronal loss in the PnC, and correlates with the behavioral suppression of the ASR. The results also raise implications for brainstem involvement in the development of post-traumatic symptoms.
Collapse
Affiliation(s)
- Swamini P Sinha
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Pelin Avcu
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Kevin M Spiegler
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | - Kevin Kim
- B.S./M.D. Program, The College of New Jersey, Ewing, NJ, USA
| | - Tara Cominski
- Neurobehavioral Research Lab, Department of Veteran Affairs Medical Center-New Jersey Health Care System, East Orange, NJ, USA
| | - Richard J Servatius
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School - Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Syracuse Veterans Affairs Medical Center, Syracuse, NY, USA
| | - Kevin C H Pang
- Neurobehavioral Research Lab, Department of Veteran Affairs Medical Center-New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School - Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
33
|
Moye LS, Pradhan AA. From blast to bench: A translational mini-review of posttraumatic headache. J Neurosci Res 2017; 95:1347-1354. [PMID: 28151589 DOI: 10.1002/jnr.24001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
Current events within the military and professional sports have resulted in an increased recognition of the long-term and debilitating consequences of traumatic brain injury. Mild traumatic brain injury accounts for the majority of head injuries, and posttraumatic headache is the most common adverse effect. It is estimated that between 30% to 90% of traumatic brain injuries result in posttraumatic headache, and for a significant number of people this headache disorder can continue for up to and over a year post injury. Often, the most severe and chronic posttraumatic headache has a migraine-like phenotype and is difficult to resolve. In this review we discuss the preclinical findings from animal models of posttraumatic headache. We also describe potential mechanisms by which traumatic brain injury leads to chronic posttraumatic headache, including neuroinflammatory mediators and migraine-associated neuropeptides. There are surprisingly few preclinical studies that have investigated overlapping mechanisms between posttraumatic headache and migraine, especially considering the prevalence and debilitating nature of posttraumatic headache. Given this context, posttraumatic headache is a field with many emerging opportunities for growth. The frequency of posttraumatic headache in the general and military population is rising, and further preclinical research is required to understand, ameliorate, and treat this disabling disorder. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago
| | | |
Collapse
|
34
|
Trojian TH, Wang DH, Leddy JJ. Nutritional Supplements for the Treatment and Prevention of Sports-Related Concussion—Evidence Still Lacking. Curr Sports Med Rep 2017; 16:247-255. [DOI: 10.1249/jsr.0000000000000387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Sahyouni R, Gutierrez P, Gold E, Robertson RT, Cummings BJ. Effects of concussion on the blood-brain barrier in humans and rodents. JOURNAL OF CONCUSSION 2017; 1. [PMID: 30828466 PMCID: PMC6391889 DOI: 10.1177/2059700216684518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury and the long-term consequences of repeated concussions constitute mounting concerns in the United States, with 5.3 million individuals living with a traumatic brain injury-related disability. Attempts to understand mechanisms and possible therapeutic approaches to alleviate the consequences of repeat mild concussions or traumatic brain injury on cerebral vasculature depend on several aspects of the trauma, including: (1) the physical characteristics of trauma or insult that result in damage; (2) the time “window” after trauma in which neuropathological features develop; (3) methods to detect possible breakdown of the blood–brain barrier; and (4) understanding different consequences of a single concussion as compared with multiple concussions. We review the literature to summarize the current understanding of blood–brain barrier and endothelial cell changes post-neurotrauma in concussions and mild traumatic brain injury. Attention is focused on concussion and traumatic brain injury in humans, with a goal of pointing out the gaps in our knowledge and how studies of rodent model systems of concussion may help in filling these gaps. Specifically, we focus on disruptions that concussion causes to the blood–brain barrier and its multifaceted consequences. Importantly, the magnitude of post-concussion blood–brain barrier dysfunction may influence the time course and extent of neuronal recovery; hence, we include in this review comparisons of more severe traumatic brain injury to concussion where appropriate. Finally, we address the important, and still unresolved, issue of how best to detect possible breakdown in the blood–brain barrier following neurotrauma by exploring intravascular tracer injection in animal models to examine leakage into the brain parenchyma.
Collapse
Affiliation(s)
- Ronald Sahyouni
- School of Medicine, University of California, Irvine, CA, USA
| | - Paula Gutierrez
- School of Medicine, University of California, Irvine, CA, USA
| | - Eric Gold
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Richard T Robertson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Brian J Cummings
- School of Medicine, University of California, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Division of Physical Medicine and Rehabilitation/Neurological Surgery, University of California, Irvine, CA, USA
| |
Collapse
|
36
|
Jamnia N, Urban JH, Stutzmann GE, Chiren SG, Reisenbigler E, Marr R, Peterson DA, Kozlowski DA. A Clinically Relevant Closed-Head Model of Single and Repeat Concussive Injury in the Adult Rat Using a Controlled Cortical Impact Device. J Neurotrauma 2016; 34:1351-1363. [PMID: 27762651 DOI: 10.1089/neu.2016.4517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repeat concussions (RC) can result in significant long-term neurological consequences and increased risk for neurodegenerative disease compared with single concussion (SC). Mechanisms underlying this difference are poorly understood and best elucidated using an animal model. To the best of our knowledge, there is no closed-head model in the adult rat using a commercially available device. We developed a novel and clinically relevant closed-head injury (CHI) model of both SC and RC in the adult rat using a controlled cortical impact (CCI) device. Adult rats received either a single or repeat CHI (three injuries, 48 h apart), and acute deficits in sensorimotor and locomotor function (foot fault; open field), memory (novel object), and anxiety (open field; corticosterone [CORT]) were measured. Assessment of cellular pathology was also conducted. Within the first week post-CHI, rats with SC or RC showed similar deficits in motor coordination, decreased locomotion, and higher resting CORT levels. Rats with an SC had memory deficits post-injury day (PID) 3 that recovered to sham levels by PID 7; however, rats with RC continued to show memory deficits. No obvious gross pathology was observed on the cortical surface or in coronal sections. Further examination showed thinning of the cortex and corpus callosum in RC animals compared with shams and increased axonal pathology in the corpus callosum of both SC and RC animals. Our data present a model of CHI that results in clinically relevant markers of concussion and an early differentiation between SC and RC.
Collapse
Affiliation(s)
- Naseem Jamnia
- 1 Department of Biological Sciences, DePaul University , Chicago, Illinois
| | - Janice H Urban
- 2 Department of Physiology & Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Sarah G Chiren
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Emily Reisenbigler
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Robert Marr
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Daniel A Peterson
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | | |
Collapse
|
37
|
Yang Z, Lin F, Weissman AS, Jaalouk E, Xue QS, Wang KKW. A Repetitive Concussive Head Injury Model in Mice. J Vis Exp 2016. [PMID: 27768069 DOI: 10.3791/54530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite the concussion/ mild traumatic brain injury (mTBI) being the most frequent occurrence of traumatic brain injury, there is still a lack of knowledge on the injury and its effects. To develop a better understanding of concussions, animals are often used because they provide a controlled, rigorous, and efficient model. Studies have adapted traditional animal models to perform mTBI to stimulate mild injury severity by changing the injury parameters. These models have been used because they can produce morphologically similar brain injuries to the clinical condition and provide a spectrum of injury severities. However, they are limited in their ability to present the identical features of injuries in patients. Using a traditional impact system, a repetitive concussive injury (rCHI) model can induce mild to moderate human-like concussion. The injury degree can be determined by measuring the period of loss of consciousness (LOC) with a sign of a transient termination of breathing. The rCHI model is beneficial to use for its accuracy and simplicity in determining mTBI effects and potential treatments.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida;
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| | - Amanda S Weissman
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| | - Emily Jaalouk
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| | | | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| |
Collapse
|
38
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
39
|
Herrera JJ, Bockhorst K, Kondraganti S, Stertz L, Quevedo J, Narayana PA. Acute White Matter Tract Damage after Frontal Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:291-299. [PMID: 27138134 DOI: 10.1089/neu.2016.4407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our understanding of mild traumatic brain injury (mTBI) is still in its infancy and to gain a greater understanding, relevant animal models should replicate many of the features seen in human mTBI. These include changes to diffusion tensor imaging (DTI) parameters, absence of anatomical lesions on conventional neuroimaging, and neurobehavioral deficits. The Maryland closed head TBI model causes anterior-posterior plus sagittal rotational acceleration of the brain, frequently observed with motor vehicle and sports-related TBI injuries. The injury reflects a concussive injury model without skull fracture. The goal of our study was to characterize the acute (72 h) pathophysiological changes occurring following a single mTBI using magnetic resonance imaging (MRI), behavioral assays, and histology. We assessed changes in fractional anisotropy (FA), mean (MD), longitudinal (LD), and radial (RD) diffusivities relative to pre-injury baseline measures. Significant differences were observed in both the longitudinal and radial diffusivities in the fimbria compared with baseline. A significant difference in radial diffusivity was also observed in the splenium of the corpus callosum compared with baseline. The exploratory activity of the mTBI animals was also assessed using computerized activity monitoring. A significant decrease was observed in ambulatory distance, average velocity, stereotypic counts, and vertical counts compared with baseline. Histological examination of the mTBI brain sections indicated a significant decrease in the expression of myelin basic protein in the fimbria, splenium, and internal capsule. Our findings demonstrate the vulnerability of the white matter tracts, specifically the fimbria and splenium, and the ability of DTI to identify changes to the integrity of the white matter tracts following mTBI.
Collapse
Affiliation(s)
- Juan J Herrera
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Kurt Bockhorst
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Shakuntala Kondraganti
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Laura Stertz
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - João Quevedo
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas.,3 Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Ponnada A Narayana
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| |
Collapse
|
40
|
Non-mammalian Animal Models Offer New Perspectives on the Treatment of TBI. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016. [DOI: 10.1007/s40141-016-0107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Tortella FC. Challenging the Paradigms of Experimental TBI Models: From Preclinical to Clinical Practice. Methods Mol Biol 2016; 1462:735-740. [PMID: 27604748 DOI: 10.1007/978-1-4939-3816-2_40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite prodigious advances in TBI neurobiology research and a broad arsenal of animal models mimicking different aspects of human brain injury, this field has repeatedly experienced collective failures to translate from animals to humans, particularly in the area of therapeutics. This lack of success stems from variability and inconsistent standardization across models and laboratories, as well as insufficient objective and quantifiable diagnostic measures (biomarkers, high-resolution imaging), understanding of the vast clinical heterogeneity, and clinically centered conception of the TBI animal models. Significant progress has been made by establishing well-defined standards for reporting animal studies with "preclinical common data elements" (CDE), and for the reliability and reproducibility in preclinical TBI therapeutic research with the Operation Brain Trauma Therapy (OBTT) consortium. However, to break the chain of failures and achieve a therapeutic breakthrough in TBI will probably require the use of higher species models, specific mechanism-based injury models by which to theranostically targeted treatment portfolios are tested, more creative concepts of therapy intervention including combination therapy and regeneration neurobiology strategies, and the adoption of dosing regimens based upon pharmacokinetic-pharmacodynamic (PK-PD) studies and guided by the injury severity and TBI recovery process.
Collapse
Affiliation(s)
- Frank C Tortella
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
42
|
Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol 2015; 275 Pt 3:367-380. [PMID: 26112314 DOI: 10.1016/j.expneurol.2015.05.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury rapidly induces inflammation. This inflammation is produced both by endogenous brain cells and circulating inflammatory cells that enter from the brain. Together they drive the inflammatory response through a wide variety of bioactive lipids, cytokines and chemokines. A large number of drugs with anti-inflammatory action have been tested in both preclinical studies and in clinical trials. These drugs either have known anti-inflammatory action or inhibit the inflammatory response through unknown mechanisms. The results of these preclinical studies and clinical trials are reviewed. Recommendations are suggested on how to improve preclinical testing of drugs to make them more relevant to evaluate for clinical trials.
Collapse
Affiliation(s)
- Peter J Bergold
- Robert F. Furchgott Center for Neural Science, Department of Physiology and Pharmacology, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States.
| |
Collapse
|
43
|
McCarthy MT, Kosofsky BE. Clinical features and biomarkers of concussion and mild traumatic brain injury in pediatric patients. Ann N Y Acad Sci 2015; 1345:89-98. [DOI: 10.1111/nyas.12736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthew T. McCarthy
- Department of Pediatrics; NewYork-Presbyterian/Weill Cornell Medical Center; New York New York
| | - Barry E. Kosofsky
- Department of Pediatrics; NewYork-Presbyterian/Weill Cornell Medical Center; New York New York
| |
Collapse
|