1
|
Strauss I, Gabay S, Roth J. Laser interstitial thermal therapy (LITT) for pediatric low-grade glioma-case presentations and lessons learned. Childs Nerv Syst 2024; 40:3119-3127. [PMID: 38703238 PMCID: PMC11511763 DOI: 10.1007/s00381-024-06419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The surgical treatment of brain tumors has developed over time, offering customized strategies for patients and their specific lesions. One of the most recent advances in pediatric neuro-oncological surgery is laser interstitial thermal therapy (LITT). However, its effectiveness and indications are still being evaluated. The aim of this work is to review the current literature on LITT for pediatric low-grade gliomas (pLGG) and evaluate our initial results in this context. METHODS We retrospectively reviewed our pediatric neurosurgery database for patients who received LITT treatment between November 2019 and December 2023. We collected data on the indications for LITT, technical issues during the procedure, and clinical and radiological follow-up. RESULTS Three patients underwent 5 LITT procedures for pLGG. The lesion was thalamo-peduncular in one patient, cingulate in one, and deep parietal in one patient. Two patients had a previous open resection done and were diagnosed with pLGG. One patient underwent a stereotaxic biopsy during the LITT procedure that was non-diagnostic. The same patient underwent a later open resection of the tumor in the cingulate gyrus. There were no surgical complications and all patients were discharged home on the first post-operative day. The follow-up period was between 20 and 40 months. Radiological follow-up showed a progressive reduction of the tumor in patients with LGG. CONCLUSION Laser interstitial thermal therapy is a minimally invasive treatment that shows promise in treating deep-seated pLGG in children. The treatment has demonstrated a reduction in tumor volume, and the positive results continue over time. LITT can be used as an alternative treatment for tumors located in areas that are difficult to access surgically or in cases where other standard treatment options have failed.
Collapse
Affiliation(s)
- Ido Strauss
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Segev Gabay
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jonathan Roth
- Pediatric Neurosurgery and Pediatric Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Pandey A, Chandla A, Mekonnen M, Hovis GEA, Teton ZE, Patel KS, Everson RG, Wadehra M, Yang I. Safety and Efficacy of Laser Interstitial Thermal Therapy as Upfront Therapy in Primary Glioblastoma and IDH-Mutant Astrocytoma: A Meta-Analysis. Cancers (Basel) 2024; 16:2131. [PMID: 38893250 PMCID: PMC11171930 DOI: 10.3390/cancers16112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Although primary studies have reported the safety and efficacy of LITT as a primary treatment in glioma, they are limited by sample sizes and institutional variation in stereotactic parameters such as temperature and laser power. The current literature has yet to provide pooled statistics on outcomes solely for primary brain tumors according to the 2021 WHO Classification of Tumors of the Central Nervous System (WHO CNS5). In the present study, we identify recent articles on primary CNS neoplasms treated with LITT without prior intervention, focusing on relationships with molecular profile, PFS, and OS. This meta-analysis includes the extraction of data from primary sources across four databases using the Covidence systematic review manager. The pooled data suggest LITT may be a safe primary management option with tumor ablation rates of 94.8% and 84.6% in IDH-wildtype glioblastoma multiforme (GBM) and IDH-mutant astrocytoma, respectively. For IDH-wildtype GBM, the pooled PFS and OS were 5.0 and 9.0 months, respectively. Similar to rates reported in the prior literature, the neurologic and non-neurologic complication rates for IDH-wildtype GBM were 10.3% and 4.8%, respectively. The neurologic and non-neurologic complication rates were somewhat higher in the IDH-mutant astrocytoma cohort at 33% and 8.3%, likely due to a smaller cohort size.
Collapse
Affiliation(s)
- Aryan Pandey
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Anubhav Chandla
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Mahlet Mekonnen
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Gabrielle E. A. Hovis
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Zoe E. Teton
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kunal S. Patel
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Richard G. Everson
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Rizzi M, Nichelatti M, Ferri L, Consales A, De Benedictis A, Cossu M. Seizure outcomes and safety profiles of surgical options for epilepsy associated to hypothalamic hamartomas. A systematic review and meta-analysis. Epilepsy Res 2023; 198:107261. [PMID: 38006630 DOI: 10.1016/j.eplepsyres.2023.107261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
PURPOSE Several surgical options are available for treating hypothalamic hamartoma-related epilepsy but their respective efficacy and safety profiles are poorly defined. METHODS A literature search identified English-language articles reporting series of patients (minimum 3 patients with a follow-up ≥12 months) operated on by either microsurgery, endoscopic surgery, radiosurgery, radiofrequency thermocoagulation or laser interstitial thermal therapy for hypothalamic hamartoma-related epilepsy. The unit of analysis was each selected study. Pooled rates of seizure freedom and of neurological and endocrinological complications were analyzed using meta-analysis to calculate both fixed and random effects. The results of meta-analyses were compared. RESULTS Thirty-nine studies were included. There were 568 and 514 participants for seizure outcome and complication analyses, respectively. The pairwise comparison showed that: i) the proportion of seizure-free cases was significantly lower for radiosurgery as compared to microsurgery, radiofrequency thermocoagulation and laser ablation, and significantly lower for endoscopic surgery as compared to radiofrequency thermocoagulation; ii) the proportion of permanent hypothalamic dysfunction was significantly higher for microsurgery as compared to all other techniques, and significantly lower for endoscopic surgery as compared to radiofrequency thermocoagulation and laser ablation; iii) the incidence of permanent neurological disorders was significantly higher for microsurgery as compared to endoscopic surgery, radiosurgery and radiofrequency thermocoagulation, and significantly lower for radiosurgery as compared to laser ablation. CONCLUSIONS Minimally invasive surgical techniques, including endoscopic surgery, radiofrequency thermocoagulation and laser ablation, represent an acceptable compromise between efficacy and safety in the treatment of hypothalamic hamartoma-related epilepsy. Microsurgery and radiosurgery should be considered in carefully selected cases.
Collapse
Affiliation(s)
- Michele Rizzi
- Functional Neurosurgery Unit and Epilepsy Surgery Program, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
| | - Michele Nichelatti
- Service of Biostatistics, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Massimo Cossu
- Neurosurgery Unit, Giannina Gaslini Pediatric Hospital IRCCS, Genoa, Italy
| |
Collapse
|
4
|
Lad Y, Jangam A, Carlton H, Abu-Ayyad M, Hadjipanayis C, Ivkov R, Zacharia BE, Attaluri A. Development of a Treatment Planning Framework for Laser Interstitial Thermal Therapy (LITT). Cancers (Basel) 2023; 15:4554. [PMID: 37760524 PMCID: PMC10526178 DOI: 10.3390/cancers15184554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Develop a treatment planning framework for neurosurgeons treating high-grade gliomas with LITT to minimize the learning curve and improve tumor thermal dose coverage. METHODS Deidentified patient images were segmented using the image segmentation software Materialize MIMICS©. Segmented images were imported into the commercial finite element analysis (FEA) software COMSOL Multiphysics© to perform bioheat transfer simulations. The laser probe was modeled as a cylindrical object with radius 0.7 mm and length 100 mm, with a constant beam diameter. A modeled laser probe was placed in the tumor in accordance with patient specific patient magnetic resonance temperature imaging (MRTi) data. The laser energy was modeled as a deposited beam heat source in the FEA software. Penne's bioheat equation was used to model heat transfer in brain tissue. The cerebrospinal fluid (CSF) was modeled as a solid with convectively enhanced conductivity to capture heat sink effects. In this study, thermal damage-dependent blood perfusion was assessed. Pulsed laser heating was modeled based on patient treatment logs. The stationary heat source and pullback heat source techniques were modeled to compare the calculated tissue damage. The developed bioheat transfer model was compared to MRTi data obtained from a laser log during LITT procedures. The application builder module in COMSOL Multiphysics© was utilized to create a Graphical User Interface (GUI) for the treatment planning framework. RESULTS Simulations predicted increased thermal damage (10-15%) in the tumor for the pullback heat source approach compared with the stationary heat source. The model-predicted temperature profiles followed trends similar to those of the MRTi data. Simulations predicted partial tissue ablation in tumors proximal to the CSF ventricle. CONCLUSION A mobile platform-based GUI for bioheat transfer simulation was developed to aid neurosurgeons in conveniently varying the simulation parameters according to a patient-specific treatment plan. The convective effects of the CSF should be modeled with heat sink effects for accurate LITT treatment planning.
Collapse
Affiliation(s)
- Yash Lad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Avesh Jangam
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Hayden Carlton
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ma’Moun Abu-Ayyad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Constantinos Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brad E. Zacharia
- Department of Neurosurgery, Pennsylvania State Health, Hershey, PA 17033, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| |
Collapse
|
5
|
Lombardi S, Tortora D, Picariello S, Sudhakar S, De Vita E, Mankad K, Varadkar S, Consales A, Nobili L, Cooper J, Tisdall MM, D'Arco F. Intraoperative MRI Assessment of the Tissue Damage during Laser Ablation of Hypothalamic Hamartoma. Diagnostics (Basel) 2023; 13:2331. [PMID: 37510075 PMCID: PMC10378573 DOI: 10.3390/diagnostics13142331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Laser ablation for treatment of hypothalamic hamartoma (HH) is a minimally invasive and effective technique used to destroy hamartomatous tissue and disconnect it from the functioning brain. Currently, the gold standard to evaluate the amount of tissue being "burned" is the use of heat maps during the ablation procedure. However, these maps have low spatial resolution and can be misleading in terms of extension of the tissue damage. The aim of this study is to use different MRI sequences immediately after each laser ablation and correlate the extension of signal changes with the volume of malacic changes in a long-term follow-up scan. During the laser ablation procedure, we imaged the hypothalamic region with high-resolution axial diffusion-weighted images (DWI) and T2-weighted images (T2WI) after each ablation. At the end of the procedure, we also added a post-contrast T1-weighted image (T1WI) of the same region. We then correlated the product of the maximum diameters on axial showing signal changes (acute oedema on T2WI, DWI restriction rim, DWI hypointense core and post-contrast T1WI rim) with the product of the maximum diameters on axial T2WI of the malacic changes in the follow-up scan, both as a fraction of the total area of the hamartoma. The area of the hypointense core on DWI acquired immediately after the laser ablation statistically correlated better with the final area of encephalomalacia, while the T2WI, hyperintense oedema, DWI rim and T1WI rim of enhancement tended to overestimate the encephalomalacic damage. In conclusion, the use of intraoperative sequences (in particular DWI) during laser ablation can give surgeons valuable information in real time about the effective heating damage on the hamartomatous tissue, with better spatial resolution in comparison to the thermal maps.
Collapse
Affiliation(s)
- Sophie Lombardi
- Radiodiagnostic Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Stefania Picariello
- Neuro-Oncology Unit, Department of Paediatric Oncology, Santobono-Pausilipon Children's Hospital, 80123 Naples, Italy
| | - Sniya Sudhakar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Enrico De Vita
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Sophia Varadkar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Alessandro Consales
- Department of Surgical Sciences, Division of Neurosurgery, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Jessica Cooper
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Martin M Tisdall
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Felice D'Arco
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
6
|
Jensdottir M, Sandvik U, Jakola AS, Fagerlund M, Kits A, Guðmundsdóttir K, Tabari S, Majing T, Fletcher-Sandersjöö A, Chen CC, Bartek J. Learning Curve Analysis and Adverse Events After Implementation of Neurosurgical Laser Ablation Treatment: A Population-Based Single-Institution Consecutive Series. Neurosurg Clin N Am 2023; 34:259-267. [PMID: 36906332 DOI: 10.1016/j.nec.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
OBJECTIVE AND METHODS We conducted a retrospective review of the first 30 patients treated with stereotactic laser ablation (SLA) at our institution since the introduction of the technique in September 2019. We aimed to analyze our initial results and potential learning curve by investigating precision and lesion coverage and assessing the frequency and nature of adverse events according to the Landriel-Ibanez classification for neurosurgical complications. RESULTS Indications were de novo gliomas (23%), recurrent gliomas (57%), and epileptogenic foci (20%). There was a trend toward improvement of lesion coverage and target deviation, and a statistically significant improvement in entry point deviation, over time. Four patients (13.3%) experienced a new neurological deficit, where three patients had transient and one patient had permanent deficits, respectively. Our results show a learning curve on precision measures over the first 30 cases. Based on our results the technique can safely be implemented at centers with experience in stereotaxy.
Collapse
Affiliation(s)
- Margret Jensdottir
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden.
| | - Ulrika Sandvik
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden; Department of Neurosurgery, Sahlgrenska University Hospital, Blå stråket 7, plan 3, Sahlgrenska Universitetssjukhuset, 41345 Gothenburg, Sweden
| | - Michael Fagerlund
- Department of Neuroradiology, Karolinska University Hospital, ME Neuroradiologi, 171 76 Stockholm, Sweden
| | - Annika Kits
- Department of Neuroradiology, Karolinska University Hospital, ME Neuroradiologi, 171 76 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet
| | - Klara Guðmundsdóttir
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Sara Tabari
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Tomas Majing
- Funktionsenhet Neuro Operation, Perioperativ Medicin och Intensivvård (PMI), Karolinska Universitetssjukhuset Solna, 171 76 Stockholm Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Clark C Chen
- Department Chair, Neurosurgery, University of Minnesota Medical School, D429 Mayo Memorial Building, 420 Delaware St. S. E., MMC96, Minneapolis, MN 55455, USA
| | - Jiri Bartek
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden; Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Tan H, Stedelin B, Bakr SM, Nerison C, Raslan AM. Neurosurgical Ablation for Pain: A Technology Review. World Neurosurg 2023; 170:114-122. [PMID: 36400357 DOI: 10.1016/j.wneu.2022.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Neurosurgical ablative procedures for pain have dramatically transformed over the years. Compared to their precursors, present day techniques are less invasive and more precise as a result of advances in both device engineering and imaging technology. From a clinical perspective, understanding the strengths and drawbacks of modern techniques is necessary to optimize patient outcomes. In this review, we provide an overview of the major contemporary neuroablative modalities/technologies used for treating pain. We will compare and contrast these modalities from one another with respect to their intraoperative monitoring needs, invasiveness, range of access, and lesion generation. Finally, we will provide a brief commentary on the future of neuroablation given the advent of neuromodulation options for pain control.
Collapse
Affiliation(s)
- Hao Tan
- Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Caleb Nerison
- Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed M Raslan
- Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
8
|
Laser interstitial thermal therapy using the Leksell Stereotactic System and a diagnostic MRI suite: how I do it. Acta Neurochir (Wien) 2023; 165:549-554. [PMID: 36585476 PMCID: PMC9922222 DOI: 10.1007/s00701-022-05461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a stereotactic neurosurgical procedure used to treat neoplastic and epileptogenic lesions in the brain. A variety of advanced technological instruments such as frameless navigation systems, robotics, and intraoperative MRI are often described in this context, although the surgical procedure can also be performed using a standard stereotactic setup and a diagnostic MRI suite. METHODS We report on our experience and a surgical technique using a Leksell stereotactic frame and a diagnostic MRI suite to perform LITT. CONCLUSION LITT can be safely performed using the Leksell frame and a diagnostic MRI suite, making the technique available even to neuro-oncology centers without advanced technological setup.
Collapse
|
9
|
Del Bene M, Carone G, Porto E, Barbotti A, Messina G, Tringali G, Rossi D, Lanteri P, Togni R, Demichelis G, Aquino D, Doniselli FM, DiMeco F, Casali C. Neurophysiology-Guided Laser Interstitial Thermal Therapy: A Synergistic Approach For Motor Function Preservation. Technical Note. World Neurosurg 2022; 168:165-172. [DOI: 10.1016/j.wneu.2022.09.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
10
|
Magnetic resonance imaging analysis predicts nanoparticle concentration delivered to the brain parenchyma. Commun Biol 2022; 5:964. [PMID: 36109574 PMCID: PMC9477799 DOI: 10.1038/s42003-022-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Ultrasound in combination with the introduction of microbubbles into the vasculature effectively opens the blood brain barrier (BBB) to allow the passage of therapeutic agents. Increased permeability of the BBB is typically demonstrated with small-molecule agents (e.g., 1-nm gadolinium salts). Permeability to small-molecule agents, however, cannot reliably predict the transfer of remarkably larger molecules (e.g., monoclonal antibodies) required by numerous therapies. To overcome this issue, we developed a magnetic resonance imaging analysis based on the ΔR2* physical parameter that can be measured intraoperatively for efficient real-time treatment management. We demonstrate successful correlations between ΔR2* values and parenchymal concentrations of 3 differently sized (18 nm–44 nm) populations of liposomes in a rat model. Reaching an appropriate ΔR2* value during treatment can reflect the effective delivery of large therapeutic agents. This prediction power enables the achievement of desirable parenchymal drug concentrations, which is paramount to obtaining effective therapeutic outcomes. ΔR2* values from MRI analysis correlate with concentrations of liposomes in the size range of 18–44 nm in a rat model.
Collapse
|
11
|
Lerner EC, Edwards RM, Wilkinson DS, Fecci PE. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv Drug Deliv Rev 2022; 185:114311. [PMID: 35489652 PMCID: PMC10589123 DOI: 10.1016/j.addr.2022.114311] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Collapse
Affiliation(s)
- Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Ryan M Edwards
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
12
|
Pfannenstiel A, Iannuccilli J, Cornelis FH, Dupuy DE, Beard WL, Prakash P. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. Int J Hyperthermia 2022; 39:664-674. [DOI: 10.1080/02656736.2021.1991012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Austin Pfannenstiel
- Precision Microwave Inc, Manhattan, KS, USA
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Jason Iannuccilli
- Department of Diagnostic Imaging, Division of Interventional Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Francois H. Cornelis
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Damian E. Dupuy
- Diagnostic Imaging, Brown University, Radiology, Cape Cod Hospital, MA, USA
| | - Warren L. Beard
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Liang AS, Munier SM, Danish SF. Controlling Signal Artifact With Software Threshold Imaging for Magnetic Resonance-Guided Laser Interstitial Thermal Therapy. Oper Neurosurg (Hagerstown) 2022; 22:75-79. [PMID: 35007257 DOI: 10.1227/ons.0000000000000045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) uses intraoperative temperature mapping and thermal damage estimates to guide ablations of intracranial targets. In select cases, signal artifact presents at the target site and impairs intraprocedural decision-making by obscuring the visualization of both temperature imaging and the thermal damage estimate calculation. To date, the etiology and impact of signal artifact are unknown. However, user-selected MRgLITT software settings may play a role in generating artifact. OBJECTIVE To assess the effect of the thresholding feature in MRgLITT software on signal artifact generation during intracranial ablations. METHODS Ablations were performed with the Visualase MRI-guided Laser Ablation System (Medtronic). For each LITT procedure, raw thermal data were extracted at a reference threshold of 40 and reprocessed at 5 additional threshold values ranging from 35 to 60. Artifact growth rates relative to threshold values were derived using simple linear regressions and then assessed within the context of laser power and duration using Pearson correlations. RESULTS A total of 33 patients were included, with 28 artifact-containing and 5 artifact-free cases. For artifact-containing cases, a 13% increase in artifact area occurred for every 1-point increase in threshold (R2 > 0.99). Artifact growth rates were not correlated with laser power (r = 0.15, P = .44) or duration (r = 0.0049, P = .98). One of the 5 artifact-free cases developed artifact at a threshold of 60. CONCLUSION Artifact generation is likely multifactorial involving tissue properties and software settings. Operators can minimize software-introduced artifact by reducing threshold values.
Collapse
Affiliation(s)
- Allison S Liang
- Department of Neurological Surgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | |
Collapse
|
14
|
Magnetic Resonance-guided Laser Interstitial Thermal Therapy (MRgLITT) for Brainstem Pathologies. World Neurosurg 2022; 161:e80-e89. [PMID: 35033695 DOI: 10.1016/j.wneu.2022.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Magnetic Resonance-guided Laser interstitial thermal therapy (MRgLITT) is a minimally invasive and effective treatment option that can potentially treat deep-seated pathologies in cases where there are no safe open surgical corridors. In this report, we present our experience using MRgLITT for brainstem pathologies. METHODS A retrospective chart analysis was conducted of all patients who underwent MRgLITT for pathologies within or closely surrounding the brainstem between 2011 and 2020. The patients underwent stereotactic laser placement in the operating suite and were transported to the MRI suite for laser ablation with real-time monitoring. Demographics, operative parameters and complications were recorded. RESULTS A total of twelve patients underwent MRgLITT for brainstem pathologies. The average age of the patients was 47.6 years old, ranging from 4 to 75. Pathologies included both primary and metastatic intracranial tumors. The average pre-ablation volume of the targets was 2.4cm3 ±SEM=0.50. The average time of ablation was 324.3± 60.7 seconds and average post-ablation volume was 2.92±0.53 cm3. There was one perioperative mortality directly related to the procedure and seven cases of post-operative deficits. Two patients had recurrence after MRgLITT and opted to undergo additional alternative treatments. CONCLUSION The brainstem represents formidable territory even for minimally invasive procedures. The overall morbidity and mortality remains high, and the probability of achieving a meaningful outcome needs to be carefully assessed.
Collapse
|
15
|
Noh T, Juvekar P, Huang R, Lee G, Ogasawara CT, Golby AJ. Biopsy Artifact in Laser Interstitial Thermal Therapy: A Technical Note. Front Oncol 2021; 11:746416. [PMID: 34868945 PMCID: PMC8637457 DOI: 10.3389/fonc.2021.746416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose The safety and effectiveness of laser interstitial thermal therapy (LITT) relies critically on the ability to continuously monitor the ablation based on real-time temperature mapping using magnetic resonance thermometry (MRT). This technique uses gradient recalled echo (GRE) sequences that are especially sensitive to susceptibility effects from air and blood. LITT for brain tumors is often preceded by a biopsy and is anecdotally associated with artifact during ablation. Thus, we reviewed our experience and describe the qualitative signal dropout that can interfere with ablation. Methods We retrospectively reviewed all LITT cases performed in our intraoperative MRI suite for tumors between 2017 and 2020. We identified a total of 17 LITT cases. Cases were reviewed for age, sex, pathology, presence of artifact, operative technique, and presence of blood/air on post-operative scans. Results We identified six cases that were preceded by biopsy, all six had artifact present during ablation, and all six were noted to have air/blood on their post-operative MRI or CT scans. In two of those cases, the artifactual signal dropout qualitatively interfered with thermal damage thresholds at the borders of the tumor. There was no artifact in the 11 non-biopsy cases and no obvious blood or air was noted on the post-ablation scans. Conclusion Additional consideration should be given to pre-LITT biopsies. The presence of air/blood caused an artifactual signal dropout effect in cases with biopsy that was severe enough to interfere with ablation in a significant number of those cases. Additional studies are needed to identify modifying strategies.
Collapse
Affiliation(s)
- Thomas Noh
- Division of Neurosurgery, John A Burns School of Medicine, Honolulu, HI, United States
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raymond Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Gunnar Lee
- Division of Neurosurgery, John A Burns School of Medicine, Honolulu, HI, United States
| | - Christian T Ogasawara
- Division of Neurosurgery, John A Burns School of Medicine, Honolulu, HI, United States
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Srinivasan ES, Grabowski MM, Nahed BV, Barnett GH, Fecci PE. Laser interstitial thermal therapy for brain metastases. Neurooncol Adv 2021; 3:v16-v25. [PMID: 34859229 PMCID: PMC8633752 DOI: 10.1093/noajnl/vdab128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive treatment for intracranial lesions entailing thermal ablation via a stereotactically placed laser probe. In metastatic disease, it has shown the most promise in the treatment of radiographically progressive lesions after initial stereotactic radiosurgery, whether due to recurrent metastatic disease or radiation necrosis. LITT has been demonstrated to provide clinical benefit in both cases, as discussed in the review below. With its minimal surgical footprint and short recovery period, LITT is further advantaged for patients who are otherwise high-risk surgical candidates or with lesions in difficult to access locations. Exploration of the current data on its use in metastatic disease will allow for a better understanding of the indications, benefits, and future directions of LITT for these patients.
Collapse
Affiliation(s)
| | - Matthew M Grabowski
- Department of Neurosurgery, Cleveland Clinic & Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gene H Barnett
- Department of Neurosurgery, Cleveland Clinic & Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
17
|
A stereotactic frame-based drill guide-aided setting for laser interstitial thermal therapy. Acta Neurochir (Wien) 2021; 163:3447-3453. [PMID: 33983468 PMCID: PMC8599316 DOI: 10.1007/s00701-021-04869-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/26/2021] [Indexed: 12/02/2022]
Abstract
Background Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRIgLITT) was demonstrated to be a viable neurosurgical tool. Apart from its variety of indications, different operative and technical nuances exist. In the present report, for the first time, the use and ability of a traditional Riechert-Mundinger (RM) stereotactic system combined with a novel drill guide kit for MRIgLITT are described. Methods A stereotactic frame-based setting was developed by combining an RM system with a drill guide kit and centering bone anchor screwing aid for application together with an MRIgLITT neuro-accessory kit and cooled laser applicator system. The apparatus was used for stereotactic biopsy and consecutive MRIgLITT with an intraoperative high-field MRI scanner in a brain tumor case. Results The feasibility of an RM stereotactic apparatus and a drill guide kit for MRIgLITT was successfully assessed. Both stereotactic biopsy and subsequent MRIgLITT in a neurooncological patient could easily and safely be performed. No technical problems or complications were observed. Conclusion The combination of a traditional RM stereotactic system, a new drill guide tool, and intraoperative high-field MRI provides neurosurgeons with the opportunity to reliably confirm the diagnosis by frame-based biopsy and allows for stable and accurate real-time MRIgLITT.
Collapse
|
18
|
Robot assisted laser-interstitial thermal therapy with iSYS1 and Visualase: how I do it. Acta Neurochir (Wien) 2021; 163:3465-3471. [PMID: 34148147 DOI: 10.1007/s00701-021-04883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Laser-interstitial thermal therapy (LITT) is an ablative treatment based on a surgically implanted laser-emitting catheter to induce a focal ablation of the pathological tissue. The main indications in neurosurgery are primary brain tumors, metastases, radiation necrosis, and pediatric brain tumors. Several approaches have been proposed to implant the laser-emitting catheter, both in frameless and frame-based conditions. METHODS We report our approach for Robot assisted laser-interstitial thermal therapy of brain lesions with iSYS1 and Visualase (Medtronic). CONCLUSIONS iSYS1 represents a significant adjunct to LITT procedures and may be safely implemented in routine laser-catheter positioning.
Collapse
|
19
|
Tripathi R, Deogaonkar M. Fundamentals of Neuromodulation and Pathophysiology of Neural Networks in Health and Disease. Neurol India 2021; 68:S163-S169. [PMID: 33318346 DOI: 10.4103/0028-3886.302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neuromodulation involves altering neuronal circuitry and subsequent physiological changes with the aim to ameliorate neurological symptoms. Over the years several techniques have been used to obtain neuromodulatory effects for treatment of conditions including Parkinson disease, essential tremor, dystonia or seizures. We provide brief description of the various therapeutics that have been used and mechanisms involved in pathophysiology of these disorders as well as the therapeutic mechanisms of the treatment modalities.
Collapse
Affiliation(s)
- Richa Tripathi
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, 33 Medical Center Drive, Morgantown, WV, USA
| | - Milind Deogaonkar
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 33 Medical Center Drive, Morgantown, WV, USA
| |
Collapse
|
20
|
Avecillas-Chasin JM, Atik A, Mohammadi AM, Barnett GH. Laser thermal therapy in the management of high-grade gliomas. Int J Hyperthermia 2021; 37:44-52. [PMID: 32672121 DOI: 10.1080/02656736.2020.1767807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive therapy that have been used for brain tumors, epilepsy, chronic pain, and other spine pathologies. This therapy is performed under imaging and stereotactic guidance to precisely direct the probe and ablate the area of interest using real-time magnetic resonance (MR) thermography. LITT has gained popularity as a treatment for glioma because of its minimally invasive nature, small skin incision, repeatability, shorter hospital stay, and the possibility of receiving adjuvant therapy shortly after surgery instead of several weeks as required after open surgical resection. Several reports have demonstrated the usefulness of LITT in the treatment of newly-diagnosed and recurrent gliomas. In this review, we will summarize the recent evidence of this therapy in the field of glioma surgery and the future perspectives of the use of LITT combined with other treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet Atik
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alireza M Mohammadi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Liang AS, Munier SM, Danish SF. Mathematical Modeling of Thermal Damage Estimate Volumes in MR-guided Laser Interstitial Thermal Therapy. J Neuroimaging 2021; 31:334-340. [PMID: 33471941 DOI: 10.1111/jon.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive procedure that produces real-time thermal damage estimates (TDEs) of ablation. Currently, MRgLITT software provides limited quantitative parameters for intraoperative monitoring, but orthogonal TDE-MRI slices can be utilized to mathematically estimate ablation volume. The objective of this study was to model TDE volumes and validate using post-24 hours MRI ablative volumes. METHODS Ablations were performed with the Visualase Laser Ablation System (Medtronic). Using ellipsoidal parameters determined for dual-TDEs from orthogonal MRI planes, TDE volumes were calculated by two definite integral methods (A and B) implemented in Matlab (MathWorks). Post-24 hours MRI ablative volumes were measured in OsiriX (Pixmeo) by two-blinded raters and compared to TDE volumes via paired t-test and Pearson's correlations. RESULTS Twenty-two ablations for 20 patients with various intracranial pathologies were included. Average TDE volume calculated with method A was 3.44 ± 1.96 cm3 and with method B was 4.83 ± 1.53 cm3 . Method A TDE volumes were significantly different than post-24 hours volumes (P < .001). Method B TDE volumes were not significantly different than post-24 hours volumes (P = .39) and strongly correlated with each other (r = .85, R2 = .72, P < .0001). A total of eight of 22 (36%) method A versus 17 of 22 (77%) method B TDE volumes were within 25% of the post-24 hours ablative volume. CONCLUSION We present a viable mathematical method integrating dual-plane TDEs to calculate volumes. Future algorithmic iterations will incorporate additional calculated variables that improve ablative volume estimations.
Collapse
Affiliation(s)
- Allison S Liang
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sean M Munier
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Shabbar F Danish
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
22
|
Franzini A, Moosa S, Prada F, Elias WJ. Ultrasound Ablation in Neurosurgery: Current Clinical Applications and Future Perspectives. Neurosurgery 2020; 87:1-10. [PMID: 31745558 DOI: 10.1093/neuros/nyz407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/21/2019] [Indexed: 11/14/2022] Open
Abstract
The concept of focusing high-intensity ultrasound beams for the purpose of cerebral ablation has interested neurosurgeons for more than 70 yr. However, the need for a craniectomy or a cranial acoustic window hindered the clinical diffusion of this technique. Recent technological advances, including the development of phased-array transducers and magnetic resonance imaging technology, have rekindled the interest in ultrasound for ablative brain surgery and have led to the development of the transcranial magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation procedure. In the last decade, this method has become increasingly popular, and its clinical applications are broadening. Despite the demonstrated efficacy of MRgFUS, transcranial thermal ablation using ultrasound is limited in that it can target exclusively the central region of the brain where the multiple acoustic beams are most optimally focused. On the contrary, lesioning of the cortex, the superficial subcortical areas, and regions close to the skull base is not possible with the limited treatment envelope of current phased-array transducers. Therefore, new ultrasound ablative techniques, which are not based on thermal mechanisms, have been developed and tested in experimental settings. This review describes the mechanisms by which these novel, nonthermal ablative techniques are based and also presents the current clinical applications of MRgFUS thermal ablation.
Collapse
Affiliation(s)
- Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Francesco Prada
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Focused Ultrasound Foundation, Charlottesville, Virginia
| | - W Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
23
|
Blackwell J, Kraśny MJ, O'Brien A, Ashkan K, Galligan J, Destrade M, Colgan N. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices. J Magn Reson Imaging 2020; 55:389-403. [PMID: 33217099 DOI: 10.1002/jmri.27446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become a popular modality in guiding minimally invasive thermal therapies, due to its advanced, nonionizing, imaging capabilities and its ability to record changes in temperature. A variety of MR thermometry techniques have been developed over the years, and proton resonance frequency (PRF) shift thermometry is the current clinical gold standard to treat a variety of cancers. It is used extensively to guide hyperthermic thermal ablation techniques such as high-intensity focused ultrasound (HIFU) and laser-induced thermal therapy (LITT). Essential attributes of PRF shift thermometry include excellent linearity with temperature, good sensitivity, and independence from tissue type. This noninvasive temperature mapping method gives accurate quantitative measures of the temperature evolution inside biological tissues. In this review, the current status and new developments in the fields of MR-guided HIFU and LITT are presented with an emphasis on breast, prostate, bone, uterine, and brain treatments. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- James Blackwell
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Marcin J Kraśny
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Aoife O'Brien
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, UK.,Harley Street Clinic, London Neurosurgery Partnership, London, UK
| | - Josette Galligan
- Department of Medical Physics and Bioengineering, St. James' Hospital, Dublin, Ireland
| | - Michel Destrade
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Niall Colgan
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
24
|
Karmur BS, Philteos J, Abbasian A, Zacharia BE, Lipsman N, Levin V, Grossman S, Mansouri A. Blood-Brain Barrier Disruption in Neuro-Oncology: Strategies, Failures, and Challenges to Overcome. Front Oncol 2020; 10:563840. [PMID: 33072591 PMCID: PMC7531249 DOI: 10.3389/fonc.2020.563840] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
The blood-brain barrier (BBB) presents a formidable challenge in the development of effective therapeutics in neuro-oncology. This has fueled several decades of efforts to develop strategies for disrupting the BBB, but progress has not been satisfactory. As such, numerous drug- and device-based methods are currently being investigated in humans. Through a focused assessment of completed, active, and pending clinical trials, our first aim in this review is to outline the scientific foundation, successes, and limitations of the BBBD strategies developed to date. Among 35 registered trials relevant to BBBD in neuro-oncology in the ClinicalTrials.gov database, mannitol was the most common drug-based method, followed by RMP-7 and regadenoson. MR-guided focused ultrasound was the most common device-based method, followed by MR-guided laser ablation, ultrasound, and transcranial magnetic stimulation. While most early-phase studies focusing on safety and tolerability have met stated objectives, advanced-phase studies focusing on survival differences and objective tumor response have been limited by heterogeneous populations and tumors, along with a lack of control arms. Based on shared challenges among all methods, our second objective is to discuss strategies for confirmation of BBBD, choice of systemic agent and drug design, alignment of BBBD method with real-world clinical workflow, and consideration of inadvertent toxicity associated with disrupting an evolutionarily-refined barrier. Finally, we conclude with a strategic proposal to approach future studies assessing BBBD.
Collapse
Affiliation(s)
- Brij S Karmur
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Aram Abbasian
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brad E Zacharia
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| | - Nir Lipsman
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Victor Levin
- Department of Neurosurgery, Medical School, University of California, San Francisco, San Francisco, CA, United States
| | - Stuart Grossman
- Department of Oncology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alireza Mansouri
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| |
Collapse
|
25
|
Liang AS, Munier SM, Patel NV, Danish SF. Characterization of ablation dimensions in magnetic resonance-guided laser interstitial thermal therapy via a semi-automated algorithm. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2020. [DOI: 10.1016/j.inat.2020.100782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Srinivasan ES, Sankey EW, Grabowski MM, Chongsathidkiet P, Fecci PE. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia 2020; 37:27-34. [PMID: 32672126 PMCID: PMC11229985 DOI: 10.1080/02656736.2020.1746413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/23/2022] Open
Abstract
The rise of immunotherapy (IT) in oncological treatment has greatly improved outcomes in a number of disease states. However, its use in tumors of the central nervous system (CNS) remains limited for multiple reasons related to the unique immunologic tumor microenvironment. As such, it is valuable to consider the intersection of IT with additional treatment methods that may improve access to the CNS and effectiveness of existing IT modalities. One such combination is the pairing of IT with localized hyperthermia (HT) generated through technologies such as laser interstitial thermal therapy (LITT). The wide-ranging immunomodulatory effects of localized and whole-body HT have been investigated for some time. Hyperthermia has demonstrated immunostimulatory effects at the level of tumor cells, immune cells, and the broader environment governing potential immune surveillance. A thorough understanding of these effects as well as the current and upcoming investigations of such in combination with IT is important in considering the future directions of neuro-oncology.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Raj JGJ, Bozec D, Hadjipanayis CG. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia 2020; 37:3-19. [PMID: 32672123 PMCID: PMC7756245 DOI: 10.1080/02656736.2020.1772512] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice. Laser interstitial thermal therapy (LITT) is currently the most widely utilized thermal ablation approach in clinical practice mainly for the treatment of recurrent or deep-seated tumors in the brain. Magnetic hyperthermia therapy (MHT), which relies on the use of magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs), is a new quite promising HT treatment approach for brain tumors. Initial MHT clinical studies in combination with fractionated radiation therapy (RT) in patients have been completed in Europe with encouraging results. Another combination treatment with HT that warrants further investigation is immunotherapy. HT approaches for brain tumors will continue to a play an important role in neuro-oncology.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel R. Rivera
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline D. Rizea
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Gerald Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dominique Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Constantinos G. Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
28
|
Arocho-Quinones EV, Lew SM, Handler MH, Tovar-Spinoza Z, Smyth M, Bollo R, Donahue D, Perry MS, Levy ML, Gonda D, Mangano FT, Storm PB, Price AV, Couture DE, Oluigbo C, Duhaime AC, Barnett GH, Muh CR, Sather MD, Fallah A, Wang AC, Bhatia S, Patel K, Tarima S, Graber S, Huckins S, Hafez DM, Rumalla K, Bailey L, Shandley S, Roach A, Alexander E, Jenkins W, Tsering D, Price G, Meola A, Evanoff W, Thompson EM, Brandmeir N. Magnetic resonance-guided stereotactic laser ablation therapy for the treatment of pediatric brain tumors: a multiinstitutional retrospective study. J Neurosurg Pediatr 2020; 26:13-21. [PMID: 32217793 PMCID: PMC7885863 DOI: 10.3171/2020.1.peds19496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/22/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to assess the safety and efficacy of MR-guided stereotactic laser ablation (SLA) therapy in the treatment of pediatric brain tumors. METHODS Data from 17 North American centers were retrospectively reviewed. Clinical, technical, and radiographic data for pediatric patients treated with SLA for a diagnosis of brain tumor from 2008 to 2016 were collected and analyzed. RESULTS A total of 86 patients (mean age 12.2 ± 4.5 years) with 76 low-grade (I or II) and 10 high-grade (III or IV) tumors were included. Tumor location included lobar (38.4%), deep (45.3%), and cerebellar (16.3%) compartments. The mean follow-up time was 24 months (median 18 months, range 3-72 months). At the last follow-up, the volume of SLA-treated tumors had decreased in 80.6% of patients with follow-up data. Patients with high-grade tumors were more likely to have an unchanged or larger tumor size after SLA treatment than those with low-grade tumors (OR 7.49, p = 0.0364). Subsequent surgery and adjuvant treatment were not required after SLA treatment in 90.4% and 86.7% of patients, respectively. Patients with high-grade tumors were more likely to receive subsequent surgery (OR 2.25, p = 0.4957) and adjuvant treatment (OR 3.77, p = 0.1711) after SLA therapy, without reaching significance. A total of 29 acute complications in 23 patients were reported and included malpositioned catheters (n = 3), intracranial hemorrhages (n = 2), transient neurological deficits (n = 11), permanent neurological deficits (n = 5), symptomatic perilesional edema (n = 2), hydrocephalus (n = 4), and death (n = 2). On long-term follow-up, 3 patients were reported to have worsened neuropsychological test results. Pre-SLA tumor volume, tumor location, number of laser trajectories, and number of lesions created did not result in a significantly increased risk of complications; however, the odds of complications increased by 14% (OR 1.14, p = 0.0159) with every 1-cm3 increase in the volume of the lesion created. CONCLUSIONS SLA is an effective, minimally invasive treatment option for pediatric brain tumors, although it is not without risks. Limiting the volume of the generated thermal lesion may help decrease the incidence of complications.
Collapse
Affiliation(s)
| | - Sean M. Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Michael H. Handler
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Zulma Tovar-Spinoza
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Matthew Smyth
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Robert Bollo
- Department of Neurosurgery, Primary Children’s Hospital, Salt Lake City, Utah
| | - David Donahue
- Department of Neurosurgery, Cook Children’s Hospital, Fort Worth, Texas
| | - M. Scott Perry
- Department of Neurology, Cook Children’s Hospital, Fort Worth, Texas
| | - Michael L. Levy
- Department of Neurosurgery, Rady Children’s Hospital-San Diego, California
| | - David Gonda
- Department of Neurosurgery, Rady Children’s Hospital-San Diego, California
| | | | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
| | - Angela V. Price
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Chima Oluigbo
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | - Ann-Christine Duhaime
- Department of Neurosurgery, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Gene H. Barnett
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Carrie R. Muh
- Department of Neurosurgery, Duke Children’s Hospital, Durham, North Carolina
| | - Michael D. Sather
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
| | - Aria Fallah
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Anthony C. Wang
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Sanjiv Bhatia
- Department of Neurosurgery, Nicklaus Children’s Hospital, Miami, Florida
| | - Kadam Patel
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah Graber
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Sean Huckins
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel M. Hafez
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Kavelin Rumalla
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Laurie Bailey
- Department of Neurosurgery, Cook Children’s Hospital, Fort Worth, Texas
| | - Sabrina Shandley
- Department of Neurosurgery, Cook Children’s Hospital, Fort Worth, Texas
| | - Ashton Roach
- Department of Neurosurgery, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Erin Alexander
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
| | - Wendy Jenkins
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Deki Tsering
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | - George Price
- Department of Neurosurgery, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Antonio Meola
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Wendi Evanoff
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Eric M. Thompson
- Department of Neurosurgery, Duke Children’s Hospital, Durham, North Carolina
| | | |
Collapse
|
29
|
Franzini A, Moosa S, Servello D, Small I, DiMeco F, Xu Z, Elias WJ, Franzini A, Prada F. Ablative brain surgery: an overview. Int J Hyperthermia 2020; 36:64-80. [PMID: 31537157 DOI: 10.1080/02656736.2019.1616833] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Ablative therapies have been used for the treatment of neurological disorders for many years. They have been used both for creating therapeutic lesions within dysfunctional brain circuits and to destroy intracranial tumors and space-occupying masses. Despite the introduction of new effective drugs and neuromodulative techniques, which became more popular and subsequently caused brain ablation techniques to fall out favor, recent technological advances have led to the resurgence of lesioning with an improved safety profile. Currently, the four main ablative techniques that are used for ablative brain surgery are radiofrequency thermoablation, stereotactic radiosurgery, laser interstitial thermal therapy and magnetic resonance-guided focused ultrasound thermal ablation. Object: To review the physical principles underlying brain ablative therapies and to describe their use for neurological disorders. Methods: The literature regarding the neurosurgical applications of brain ablative therapies has been reviewed. Results: Ablative treatments have been used for several neurological disorders, including movement disorders, psychiatric disorders, chronic pain, drug-resistant epilepsy and brain tumors. Conclusions: There are several ongoing efforts to use novel ablative therapies directed towards the brain. The recent development of techniques that allow for precise targeting, accurate delivery of thermal doses and real-time visualization of induced tissue damage during the procedure have resulted in novel techniques for cerebral ablation such as magnetic resonance-guided focused ultrasound or laser interstitial thermal therapy. However, older techniques such as radiofrequency thermal ablation or stereotactic radiosurgery still have a pivotal role in the management of a variety of neurological disorders.
Collapse
Affiliation(s)
- Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - Domenico Servello
- Department of Neurosurgery, Galeazzi Research and Clinical Hospital , Milan , Italy
| | - Isabella Small
- Focused Ultrasound Foundation , Charlottesville , VA , USA
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy.,Department of Pathophysiology and Transplantation, University of Milan , Milan , Italy.,Department of Neurological Surgery, Johns Hopkins Medical School , Baltimore , MD , USA
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - William Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - Angelo Franzini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Francesco Prada
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy.,Focused Ultrasound Foundation , Charlottesville , VA , USA
| |
Collapse
|
30
|
Abstract
Radiation necrosis (RN) is a challenging potential complication of cranial radiation therapy. Believed to result from a complex interplay of vascular, glial, and immunologic factors, the exact mechanism of RN remains unclear. Patients who develop RN typically have a history of treatment with stereotactic radiation surgery or some other form of radiation-based therapy. The time frame for its development is variable, but it most often occurs one to three years following radiation therapy. Reported treatment doses capable of inducing radiation necrosis are variable, with higher doses per fraction more likely to induce RN. Furthermore, RN remains a challenging diagnosis for clinicians to make, as its presentation is often nonspecific and imaging studies might not clearly differentiate RN from tumor recurrence or pseudoprogression. RN is initially managed with corticosteroids, followed by bevacizumab, surgical resection, or laser interstitial thermal therapy if symptoms persist. In this review, we examine the literature regarding pathophysiology, incidence, imaging characteristics, and management strategies for radiation necrosis.
Collapse
|
31
|
Huang Y, Leung SA, Parker JJ, Ho AL, Wintermark M, Patel SH, Pauly KB, Kakusa BW, Beres SJ, Henderson JM, Grant GA, Halpern CH. Anatomic and Thermometric Analysis of Cranial Nerve Palsy after Laser Amygdalohippocampotomy for Mesial Temporal Lobe Epilepsy. Oper Neurosurg (Hagerstown) 2019; 18:684-691. [DOI: 10.1093/ons/opz279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Laser interstitial thermal therapy (LITT) is a minimally invasive therapy for treating medication-resistant mesial temporal lobe epilepsy. Cranial nerve (CN) palsy has been reported as a procedural complication, but the mechanism of this complication is not understood.
OBJECTIVE
To identify the cause of postoperative CN palsy after LITT.
METHODS
Four medial temporal lobe epilepsy patients with CN palsy after LITT were identified for comparison with 22 consecutive patients with no palsy. We evaluated individual variation in the distance between CN III and the uncus, and CN IV and the parahippocampal gyrus using preoperative T1- and T2-weighted magnetic resonance (MR) images. Intraoperative MR thermometry was used to estimate temperature changes.
RESULTS
CN III (n = 2) and CN IV palsies (n = 2) were reported. On preoperative imaging, the majority of identified CN III (54%) and CN IV (43%) were located within 1 to 2 mm of the uncus and parahippocampal gyrus tissue border, respectively. Affected CN III and CN IV were more likely to be found < 1 mm of the tissue border (PCNIII = .03, PCNIV < .01; chi-squared test). Retrospective assessment of thermal profile during ablation showed higher temperature rise along the mesial temporal lobe tissue border in affected CNs than unaffected CNs after controlling for distance (12.9°C vs 5.8°C; P = .03; 2-sample t-test).
CONCLUSION
CN palsy after LITT likely results from direct heating of the respective CN running at extreme proximity to the mesial temporal lobe. Low-temperature thresholds set at the border of the mesial temporal lobe in patients whose CNs are at close proximity may reduce this risk.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California
| | - Steven A Leung
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California
| | - Jonathon J Parker
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California
| | - Allen L Ho
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California
| | - Max Wintermark
- Department of Radiology, School of Medicine, Stanford University, Stanford, California
| | - Sohil H Patel
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kim Butts Pauly
- Department of Radiology, School of Medicine, Stanford University, Stanford, California
| | - Bina W Kakusa
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California
| | - Shannon J Beres
- Department of Neurology, School of Medicine, Stanford University, Stanford, California
| | - Jaimie M Henderson
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California
| | - Gerald A Grant
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California
| | - Casey H Halpern
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
32
|
Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma. Cancer Rep (Hoboken) 2019; 2:e1216. [PMID: 32721125 DOI: 10.1002/cnr2.1216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive primary brain tumor, historically resistant to treatment, and with overall fatal outcome. RECENT FINDINGS Recently, several molecular subgroups and rare genetic alterations have been described in GB. In this review article, we will describe the current clinical management of patients with GB in the United States, discuss selected next-generation molecular-targeted therapies in GB, and present ongoing clinical trials for patients with GB. This review is intended for clinical and preclinical researchers who conduct work on GB and would like to understand more about the current standard of treatment of GB patients, historical perspectives, current challenges, and ongoing and upcoming clinical trials. CONCLUSIONS GB is an extremely complex disease, and despite recent progress and advanced therapeutic strategies, the overall patient's prognosis remains dismal. Innovative strategies and integrative ways of approach to disease are urgently needed.
Collapse
Affiliation(s)
- Stephen Lowe
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Krishna P Bhat
- Deparment of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Olar
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina.,Departments of Pathology and Laboratory Medicine, Medical University of South Carolina & Hollings Cancer Center, Charleston, South Carolina
| |
Collapse
|
33
|
|
34
|
Predictive modeling of brain tumor laser ablation dynamics. J Neurooncol 2019; 144:193-203. [PMID: 31240526 DOI: 10.1007/s11060-019-03220-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Laser interstitial thermal therapy (LITT) is a novel MR thermometry-guided thermoablative tool revolutionizing the clinical management of brain tumors. A limitation of LITT is our inability to estimate a priori how tissues will respond to thermal energy, which hinders treatment planning and delivery. The aim of this study was to determine whether brain tumor LITT ablation dynamics may be predicted by features of the preoperative MRI and the relevance of these data, if any, to the recurrence of metastases after LITT. METHODS Intraoperative thermal damage estimate (TDE) map pixels representative of irreversible damage were retrospectively quantified relative to ablation onset for 101 LITT procedures. Raw TDE pixel counts and TDE pixel counts modelled with first order dynamics were related to eleven independent variables derived from the preoperative MRI, demographics, laser settings, and tumor pathology. Stepwise regression analysis generated predictive models of LITT dynamics, and leave-one-out cross validation evaluated the accuracy of these models at predicting TDE pixel counts solely from the independent variables. Using a deformable atlas, TDE maps were co-registered to the immediate post-ablation MRI, allowing comparison of predicted and actual ablation sizes. RESULTS Brain tumor TDE pixel counts modelled with first order dynamics, but not raw pixel counts, are correlated with the independent variables. Independent variables showing strong relations to the TDE pixel measures include T1 gadolinium and T2 signal, perfusion, and laser power. Associations with tissue histopathology are minimal. Leave-one-out analysis demonstrates that predictive models using these independent variables account for 77% of the variance observed in TDE pixel counts. Analysis of metastases treated revealed a trend towards the over-estimation of LITT effects by TDE maps during rapid ablations, which was associated with tumor recurrence. CONCLUSIONS Features of the preoperative MRI are predictive of LITT ablation dynamics and could eventually be used to improve the clinical efficacy with which LITT is delivered to brain tumors.
Collapse
|
35
|
Laser interstitial thermal therapy (LITT): Seizure outcomes for refractory mesial temporal lobe epilepsy. Epilepsy Behav 2018; 89:37-41. [PMID: 30384097 DOI: 10.1016/j.yebeh.2018.09.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a minimally invasive alternative with less cognitive risks compared with traditional surgery for focal drug-resistant epilepsy. OBJECTIVE We describe seizure outcomes and complications after LITT in our cohort with intractable mesial temporal lobe epilepsy (MTLE). MATERIAL AND METHODS We prospectively tracked Stanford's MTLE cases treated with LITT from October 2014 to October 2017. Primary endpoints were seizure outcomes by (1) Engel classification and (2) reduction in baseline seizure frequency. Secondary outcomes were postablation complications. RESULTS A total of 30 patients underwent selective amygdalohippocampotomy via LITT. Mesial temporal sclerosis (MTS) was present in 23/30 (77%) patients. Median follow-up was 18 ± 12 months (range: 6-44 months). Almost all 28/29 (97%) patients had >50% reduction, and 22/29 (76%) patients had >90% reduction in seizure frequency. Engel Class I outcome was achieved in 18/29 (62%) patients; with complete seizure freedom in 9/29 (31%) patients (Engel Class IA). Three (10%) patients have had only focal aware seizures (Engel Class 1B). Seizures only occurred with medication withdrawal in 6/29 (21%) patients (Engel Class ID). Class II was achieved by 6/29 (21%) and Class III by 5/29 (17%) patients. Complications included perioperative seizures in 10/29 (34%) and nonseizure complaints in 6/29 (21%) patients. Three (10%) patients had neurological deficits including one permanent superior quadrantanopsia, one transient trochlear, and one transient oculomotor nerve palsy. CONCLUSIONS Overall, Engel Class I outcome was achieved in 62% of patients with MTLE, and 97% of patients achieved >50% seizure frequency reduction. Complications were largely temporary, though there was one persistent visual field deficit. Laser ablation is well-tolerated and offers marked seizure reduction for the majority of patients.
Collapse
|
36
|
Kuo CH, Feroze AH, Poliachik SL, Hauptman JS, Novotny EJ, Ojemann JG. Laser Ablation Therapy for Pediatric Patients with Intracranial Lesions in Eloquent Areas. World Neurosurg 2018; 121:e191-e199. [PMID: 30261370 DOI: 10.1016/j.wneu.2018.09.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is an alternative, less-invasive, and, in some circumstances, effective treatment for patients with intracranial pathology including epilepsy and some tumors. For intracranial lesions in eloquent areas, resection by conventional craniotomy proves often to be a challenge, including in the care of pediatric patients. Herein, we reviewed our experience with magnetic resonance imaging (MRI)-guided LITT as treatment for pediatric patients with intracranial lesions in eloquent areas and evaluate neurologic function and clinical outcomes. METHODS We retrospectively reviewed consecutive patients with intracranial lesions in eloquent speech and motor areas who underwent MRI-guided LITT. Clinical evaluation, including neurologic function and neuropsychological testing, was conducted according to clinical considerations. MRI pre- and postoperative imaging was reviewed to compare the change of lesion size. RESULTS Five pediatric patients received MRI-guided LITT of intracranial lesions in eloquent cortex. One patient experienced complications secondary to MRI-guided LITT, but neither was discharged with a neurologic deficit. CONCLUSIONS For intracranial lesions in the eloquent cortex, conventional craniotomy with surgical resection is a challenge for neurosurgeons, especially pediatric patients. MRI-guided LITT provides a less-invasive and potentially effective option for treatment in the management of pediatric epilepsy and tumors.
Collapse
Affiliation(s)
- Chao-Hung Kuo
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Abdullah H Feroze
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Sandra L Poliachik
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA; Department of Neurology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jason S Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Division of Neurosurgery, Seattle Children's Hospital, Seattle, Washington, USA
| | - Edward J Novotny
- Department of Neurology, University of Washington, Seattle, Washington, USA; Department of Neurology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Division of Neurosurgery, Seattle Children's Hospital, Seattle, Washington, USA
| |
Collapse
|
37
|
Laser-Induced Thermal Therapy in Neuro-Oncology: A Review. World Neurosurg 2018; 112:166-177. [PMID: 29410102 DOI: 10.1016/j.wneu.2018.01.123] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Laser therapy has become an appealing treatment modality in neurosurgery. In this review, we report on the history, physics, surgical steps, indications and uses, and complications that have been reported to date. METHODS An extensive literature search was performed for laser interstitial thermal therapy (LITT) and laser therapy in the context of glial tumors, metastatic lesions, pediatric brain tumors, and radiation necrosis. Reported complications in each series also were reviewed. RESULTS In the past decade, multiple studies have demonstrated the use, outcomes, and complications associated with LITT in neurosurgery. These same studies have consistently reported an overall benefit of LITT in cases in which traditional surgical approaches may be limited by the patient's clinical status, tumor location, or overall prognosis. However, there have been complications reported from local effects of thermal damage, technical error, and edema development. Increased experience has reduced complications and brought more promising results. CONCLUSIONS With the advent of real-time monitoring and damage estimation, LITT has gained ground in the management of intracranial tumors. Larger scale trials must be performed to develop standard protocols to define specific indications for use. Further large clinical studies for LITT in non-oncologic cases are also of interest.
Collapse
|
38
|
Patel NV, Frenchu K, Danish SF. Does the Thermal Damage Estimate Correlate With the Magnetic Resonance Imaging Predicted Ablation Size After Laser Interstitial Thermal Therapy? Oper Neurosurg (Hagerstown) 2017; 15:179-183. [DOI: 10.1093/ons/opx191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/04/2017] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND
Magnetic resonance guided laser induced thermal therapy (LITT) is a minimally invasive method to treat a wide range of intracranial pathologies. The Arrhenius model is used to generate a thermal damage estimate (TDE) predicting ablation extent.
OBJECTIVE
Evaluation and correlation of the TDE to magnetic resonance imaging (MRI)-estimated ablation extent in human cases.
METHODS
The Medtronic Visualase system (Medtronic Inc, Dublin, Ireland) was utilized. Postablation axial T1-contrast enhanced images were acquired and intraoperative TDE image was obtained from the Visualase console. OsiriX DICOM Viewer (Pixmeo Inc, Bernex, Switzerland) was utilized to calculate cross-sectional area on MRI. ImageJ (National Institutes of Health, Bethesda, Maryland) was utilized for TDE area. Two blinded raters performed all measures. Statistical testing included Pearson correlation and the Student's t-test.
RESULTS
Twenty-two cases including tumor and epilepsy were evaluated. Average MRI predicted tumor ablation area was 4.72 ± 2.22 cm2 and average predicted epilepsy ablation area was 4.12 ± 1.89 cm2. Average tumor TDE was 4.02 ± 1.95 cm2 and average epilepsy TDE was 4.36 ± 2.21 cm2. Rater 1’s ablation areas and TDEs correlated with r = 0.89 (P < .0001) and no significant difference (P > .5). Rater 2’s ablation areas and TDEs correlated with r = 0.91 (P < .0001) and no significant difference (P > .7). Rater 1 vs Rater 2 showed a strong correlation for TDE (r = 0.98, P < .000001) and ablation area (r = 0.96, P < .0001) and no significant difference (P > .5).
CONCLUSION
The TDE is an accurate and reliable measure of ablated area in LITT in human cases as assessed on postoperative MRI. Future studies should be larger and assess reliability of the TDE when multiple lasers and planes are used.
Collapse
Affiliation(s)
- Nitesh V Patel
- Division of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, New Brunswick, New Jersey
- Department of Neurosurgery, New Jersey Medical School, Rutgers, Newark, New Jersey
- Section of Neurosurgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Kiersten Frenchu
- Division of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, New Brunswick, New Jersey
| | - Shabbar F Danish
- Division of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, New Brunswick, New Jersey
- Section of Neurosurgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
39
|
Buttrick SS, Shah AH, Basil GW, Komotar RJ. The Future of Cranial Neurosurgery-Adapting New Approaches. Neurosurgery 2017; 64:144-150. [PMID: 28899040 DOI: 10.1093/neuros/nyx214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Simon S Buttrick
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Gregory W Basil
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| |
Collapse
|
40
|
Parisi AJ, Sundararajan SH, Garg R, Hargreaves EL, Patel NV, Danish SF. Assessment of Optimal Imaging Protocol Sequences After Laser-Induced Thermal Therapy for Intracranial Tumors. Neurosurgery 2017; 83:471-479. [DOI: 10.1093/neuros/nyx439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 07/15/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anthony J Parisi
- Department of Neurosurgery, Rutgers, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Sri Hari Sundararajan
- Department of Radiology, Rutgers, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Rahul Garg
- Department of Radiology, Rutgers, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Eric L Hargreaves
- Department of Neurosurgery, Rutgers, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Nitesh V Patel
- Department of Neurosurgery, Rutgers, New Jersey Medical School, Newark, New Jersey
- Section of Neurosurgery, Rutgers, Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Shabbar F Danish
- Section of Neurosurgery, Rutgers, Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
41
|
Diaz R, Ivan ME, Hanft S, Vanni S, Manzano G, Jagid J, Komotar RJ. Laser Interstitial Thermal Therapy. Neurosurgery 2016; 79 Suppl 1:S3-S7. [DOI: 10.1227/neu.0000000000001435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Roberto Diaz
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Michael E. Ivan
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Simon Hanft
- Division of Neurosurgery, Department of Surgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Steve Vanni
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Glen Manzano
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Jonathan Jagid
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Ricardo J. Komotar
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|