1
|
Duga V, Giossi R, Romito LM, Stanziano M, Levi V, Panteghini C, Zorzi G, Nardocci N. Long-Term Globus Pallidus Internus Deep Brain Stimulation in Pediatric Non-Degenerative Dystonia: A Cohort Study and a Meta-Analysis. Mov Disord 2024; 39:1131-1144. [PMID: 38646731 DOI: 10.1002/mds.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The evidence in the effectiveness of deep brain stimulation in children with medication-refractory non-degenerative monogenic dystonia is heterogeneous and long-term results are sparse. OBJECTIVES The objective is to describe long-term outcomes in a single-center cohort and compare our results with a meta-analysis cohort form literature. METHODS We performed a retrospective single-center cohort study including consecutive pediatric patients with non-degenerative genetic or idiopathic dystonia treated with globus pallidus internus deep brain stimulation at our center and a systematic review and individual-patient data meta-analysis with the same inclusion criteria. The primary outcome was the change from baseline in the Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFMDRS-M) score. RESULTS The clinical cohort included 25 patients with a mean study follow-up of 11.4 years. The meta-analysis cohort included 224 patients with a mean follow-up of 3 years. Overall, the BFMDRS-M mean improvements at 1 year and at last follow-up were 41% and 33% in the clinical cohort and 58.9% and 57.2% in the meta-analysis cohort, respectively. TOR1A-dystonia showed the greatest and most stable BFMDRS-M improvement in both cohorts at 1 year and at last follow-up (76.3% and 74.3% in the clinical cohort; 69.6% and 67.3% in the meta-analysis cohort), followed by SGCE-dystonia (63% and 63.9% in the meta-analysis cohort). THAP1-dystonia (70.1% and 29.8% in the clinical cohort; 52.3% and 42.0% in the meta-analysis cohort) and KMT2B-dystonia (33.3% and 41.3% in the clinical cohort; 38.0% and 26.7% in the meta-analysis cohort) showed a less pronounced or sustained response. CONCLUSION Globus pallidus deep brain stimulation long-term treatment seems effective with a possible gene-specific differential effect. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Valentina Duga
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Child and Adolescent Neuropsychiatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Riccardo Giossi
- Poison Control Center and Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luigi Michele Romito
- Movement Disorders Unit, Neurology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Department of Technology and Diagnosis, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Vincenzo Levi
- Functional Neurosurgery Unit, Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Celeste Panteghini
- Molecular Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanna Zorzi
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nardo Nardocci
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
2
|
Melo M, Furlanetti L, Hasegawa H, Mundil N, Ashkan K. Comparison of direct MRI guided versus atlas-based targeting for subthalamic nucleus and globus pallidus deep brain stimulation. Br J Neurosurg 2023; 37:1040-1045. [PMID: 33416411 DOI: 10.1080/02688697.2020.1850641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The subthalamic nucleus (STN) and globus pallidus internus (GPi) targets for deep brain stimulation (DBS) can be defined by atlas coordinates or direct visualisation of the target on MRI. The aim of this study was to evaluate geometric differences between atlas-based targeting and MRI-guided direct targeting. METHODS One-hundred-nine Parkinson's disease or dystonia patients records who underwent DBS surgery between 2005 and 2016 were prospectively reviewed. MRI-guided direct targeting coordinates was used to implant 205 STN and 64 GPi electrodes and compared with atlas-based coordinates. RESULTS The directly targeted coordinates (mean, SD, range) for STN were x: [9.9 ± 1.1 (7.1 - 13.2)], y: [-0.8 ± 1.1 (-4.2 - 2)] and z: [-4.7 ± 0.53 (-5.9 - -3.2)]. The mean value for the STN was 2.1 mm more medial (p < 0.0001), 1.2 mm more anterior (p < 0.0001) and 0.7 mm more ventral (p < 0.0001) than the atlas target. The targeted coordinates for GPi were x: [22.3 ± 2.0 (17.8 - 26.1)], y: [-0.2 ± 2.2 (-4.5 - 3.4)], z: [-4.3 ± 0.8 (-6.2 - -2.3)]. The mean value for the GPi was 2.2 mm (p < 0.001) more posterior and 0.3 mm (p < 0.01) more ventral than the atlas-based coordinates. CONCLUSION MRI-guided targeting may be more accurate than atlas-based targeting due to individual variations in anatomy.
Collapse
Affiliation(s)
- Mariane Melo
- Department of Neurosurgery, King's College Hospital, London, UK
| | | | | | - Nilesh Mundil
- Department of Neurosurgery, King's College Hospital, London, UK
| | | |
Collapse
|
3
|
Wang N, Jia Y, Zhou X, Wang X, Zhou H, Xiao N. Effects of Repetitive Transcranial Magnetic Stimulation on Pallidum GABAergic Neurons and Motor Function in Rat Models of Kernicterus. Brain Sci 2023; 13:1252. [PMID: 37759853 PMCID: PMC10526431 DOI: 10.3390/brainsci13091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Kernicterus is a serious complication of hyperbilirubinemia, caused by neuronal injury due to excessive unconjugated bilirubin (UCB) in specific brain areas. This injury induced by this accumulation in the globus pallidus can induce severe motor dysfunction. Repetitive transcranial magnetic stimulation (rTMS) has shown neuroprotective effects in various neurological diseases. This study aimed to investigate the effects of rTMS on pallidal nerve damage and motor dysfunction in a rat model of kernicterus. Rats were divided into a sham group (n = 16), a model group (bilirubin with sham rTMS; n = 16) and an rTMS group (bilirubin with rTMS; n = 16). High-frequency rTMS (10 Hz) was applied starting from 24 h postmodeling for 7 days. The rotarod test, western blotting and immunohistochemical staining were performed to measure motor function and protein expression levels. The rTMS mitigated the negative effects of UCB on the general health of kernicterus-model rats and improved their growth and development. Furthermore, the rTMS alleviated UCB-induced motor dysfunction and increased the expression of GABAergic neuronal marker GAD67 in the globus pallidus. Notably, it also inhibited apoptosis-related protein caspase-3 activation. In conclusion, rTMS could alleviate motor dysfunction by inhibiting apoptosis and increasing globus pallidus GAD67 in kernicterus rat models, indicating that it may be a promising treatment for kernicterus.
Collapse
Affiliation(s)
| | | | | | | | | | - Nong Xiao
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400010, China; (N.W.); (Y.J.); (X.Z.); (X.W.); (H.Z.)
| |
Collapse
|
4
|
Spindler P, Braun F, Truckenmüller P, Wasilewski D, Faust K, Schneider GH, Trampuz A, Conen A, Kühn AA, Vajkoczy P, Prinz V. Surgical Site Infections Associated With Implanted Pulse Generators for Deep Brain Stimulation: Meta-Analysis and Systematic Review. Neuromodulation 2023; 26:280-291. [PMID: 35970765 DOI: 10.1016/j.neurom.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to identify and systematically analyze relevant literature on surgical site infections (SSIs) associated with implantable pulse generator (IPG) procedures for deep brain stimulation (DBS). MATERIALS AND METHODS In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we conducted a systematic review and meta-analyses of 58 studies that reported SSI rates of 11,289 patients and 15,956 IPG procedures. A meta-analysis of proportions was performed to estimate the pooled proportion of SSIs across DBS procedures in general and to estimate the proportion of SSIs that occur at the IPG pocket. Moreover, a meta-analysis of odds ratio (OR) was conducted on those studies that reported their results of applying topical vancomycin powder during closure of the IPG wound. Results are presented as rates and OR with 95% CIs. RESULTS The pooled proportion of SSIs was 4.9% (95% CI, 4.1%-6.1%) among all DBS procedures. The dominant SSI localization was the IPG pocket in 61.2% (95% CI, 53.4%-68.5%). A trend toward a beneficial effect of vancomycin powder over standard wound closure was found with an OR of 0.46 (95% CI, 0.21-1.02). Most studies (79.1%) that reported their treatment strategy in case of SSI had a strict protocol of removal of the IPG, followed by antimicrobial treatment and reimplantation of the IPG once the SSI had been eradicated. CONCLUSIONS The IPG pocket was identified as the main site of SSI after DBS procedures. Most studies recommend complete IPG removal, antimicrobial treatment, and reimplantation of an IPG once the SSI has been eradicated. Future studies are needed to clarify the role of alternative approaches (eg, topical vancomycin powder) in the prevention of SSI associated with IPG.
Collapse
Affiliation(s)
- Philipp Spindler
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Braun
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Truckenmüller
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Conen
- Clinic for Infectious Diseases and Infection Prevention, Department of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Aarau, Switzerland
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder Section, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vincent Prinz
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Larsh T, Wu SW, Vadivelu S, Grant GA, O'Malley JA. Deep Brain Stimulation for Pediatric Dystonia. Semin Pediatr Neurol 2021; 38:100896. [PMID: 34183138 DOI: 10.1016/j.spen.2021.100896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.
Collapse
Affiliation(s)
- Travis Larsh
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gerald A Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A O'Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
6
|
Scaratti C, Zorzi G, Guastafierro E, Leonardi M, Covelli V, Toppo C, Nardocci N. Long term perceptions of illness and self after Deep Brain Stimulation in pediatric dystonia: A narrative research. Eur J Paediatr Neurol 2020; 26:61-67. [PMID: 32147411 DOI: 10.1016/j.ejpn.2020.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/30/2019] [Accepted: 02/18/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is increasingly used in pediatric patients affected by isolated dystonia, with excellent results. Despite well documented long-term effects on motor functioning, information on quality of life and social adaptation is almost lacking. OBJECTIVES The present study aims to explore the experience of illness and the relation with the device in adult patients suffering from dystonia who underwent DBS surgery in pediatric age. METHODS A narrative inquiry approach was used to collect patients' narratives of their experience with dystonia and DBS stimulator. A written interview was administered to 8 patients over 18 years old with generalized isolated dystonia who had undergone pallidal DBS implantation in childhood. A thematic analysis was realized to examine the narratives collected. RESULTS Five main themes emerged: "relationship with the disease", "experience related to DBS procedure", "relationship with one's own body", "fears", "thoughts about future". Despite a general satisfaction in relation to DBS intervention, some patients expressed difficulties, such as the acceptance of changes in one's own body, concerns and fears regarding the device and the future, also considering the critical phase of transition from childhood to adulthood. CONCLUSIONS These results suggest that further research is needed to understand the contribution of psychological, as much as medical, aspects to the overall outcome of the intervention. The present explorative study encourages a deeper investigations of psychological aspects of patients, in order to plan a tailored care path and to decide whether to suggest a psychological support, both before and after the intervention.
Collapse
Affiliation(s)
- Chiara Scaratti
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Zorzi
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Erika Guastafierro
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Matilde Leonardi
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Claudia Toppo
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nardo Nardocci
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
7
|
Storch EA, Cepeda SL, Lee E, Goodman SL, Robinson AD, De Nadai AS, Schneider SC, Sheth SA, Torgerson L, Lázaro-Muñoz G. Parental Attitudes Toward Deep Brain Stimulation in Adolescents with Treatment-Resistant Conditions. J Child Adolesc Psychopharmacol 2020; 30:97-103. [PMID: 31697591 PMCID: PMC7047254 DOI: 10.1089/cap.2019.0134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: To examine parent's perceptions of deep brain stimulation (DBS) and whether DBS is perceived to be a viable and safe treatment for their adolescent child presenting with a severe, treatment-resistant neurological or psychiatric condition. Method: Two hundred and seventy-nine parents completed an online survey using Amazon Mechanical Turk (MTurk). Participants were presented with five vignette scenarios involving adolescents with severe, treatment-resistant neurological or psychiatric conditions: Rett syndrome, autism spectrum disorder, epilepsy, obsessive-compulsive disorder, and Tourette syndrome. Parents were then asked to evaluate each scenario and rate overall acceptability of using DBS to improve their child's core symptoms. Data were collected over a period of 2 weeks in the month of October 2018. Results: We found that parents reported favorable impressions of DBS regardless of the target condition, especially when greater improvement could be assured and when their child had the capacity to assist in the treatment decision-making. Parents indicated some reluctance to use DBS when possible safety concerns were present. Familiarity with DBS was directly associated with attitudes. Conclusions: The findings highlight an overall parental willingness to consider DBS as a treatment option for key symptoms of neurological and psychiatric conditions in adolescents.
Collapse
Affiliation(s)
- Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
- Address correspondence to: Eric A. Storch, PhD, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Blvd, Suite 4–400, Houston, TX 77030
| | - Sandra L. Cepeda
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Eric Lee
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Sarah L.V. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | | | | | - Sophie C. Schneider
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas
| | - Gabriel Lázaro-Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Sanger TD. Deep brain stimulation for cerebral palsy: where are we now? Dev Med Child Neurol 2020; 62:28-33. [PMID: 31211420 DOI: 10.1111/dmcn.14295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 12/12/2022]
Abstract
Cerebral palsy (CP) is a complex disorder and children frequently have multiple impairments. Dystonia is a particularly frustrating impairment that interferes with rehabilitation and function and is difficult to treat. Of the available treatments, deep brain stimulation (DBS) has emerged as an option with the potential for large effect size in a subgroup of children. While brain stimulation has been used in CP for more than 40 years, modern devices and targeting methods are improving both the safety and efficacy of the procedure. Successful use of DBS depends on appropriate selection of patients, identification of effective neuroanatomical targets in each patient, careful neurosurgical procedure, and detailed follow-up evaluation and programming. The use of functional neurosurgery for neuromodulation in CP remains a technology in its infancy, but improving experience and knowledge are likely to make this one of the safest and most effective interventions for children with moderate-to-severe motor disorders. This review summarizes the current procedures for patient and target selection, and surgical implantation of DBS electrodes for CP. The history of DBS and future directions when used in secondary dystonia are also examined. WHAT THIS PAPER ADDS: Selection of candidates for deep brain stimulation (DBS) requires understanding of dystonia in cerebral palsy . DBS could become a first-line treatment option in some children.
Collapse
Affiliation(s)
- Terence D Sanger
- Department of Biomedical Engineering, Neurology, Biokinesiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Shapiro SM, Riordan SM. Review of bilirubin neurotoxicity II: preventing and treating acute bilirubin encephalopathy and kernicterus spectrum disorders. Pediatr Res 2020; 87:332-337. [PMID: 31581172 DOI: 10.1038/s41390-019-0603-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022]
Abstract
Previously in Part I of this two-part review, we discussed the current and recent advances in the understanding of the molecular biology and neuropathology of bilirubin neurotoxicity (BNTx). Here in Part II, we summarize current treatment options available to treat the severely jaundiced infants to prevent significant brain damage and improve clinical outcomes. In addition, we review potential novel therapies that are in various stages of research and development. We will emphasize treatments for both prevention and treatment of both acute bilirubin encephalopathy (ABE) and kernicterus spectrum disorders (KSDs), highlighting the treatment of the most disabling neurological sequelae of children with mild-to-severe KSDs whose "rare disease" status often means they are overlooked by the clinical research community at large. As with other secondary dystonias, treatment of the dystonic motor symptoms in kernicterus is the greatest clinical challenge.
Collapse
Affiliation(s)
- Steven M Shapiro
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA. .,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA.
| | - Sean M Riordan
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
10
|
Badhiwala JH, Karmur B, Elkaim LM, Alotaibi NM, Morgan BR, Lipsman N, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM. Clinical phenotypes associated with outcomes following deep brain stimulation for childhood dystonia. J Neurosurg Pediatr 2019; 24:442-450. [PMID: 31299640 DOI: 10.3171/2019.5.peds1973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/08/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although deep brain stimulation (DBS) is an accepted treatment for childhood dystonia, there is significant heterogeneity in treatment response and few data are available to identify ideal surgical candidates. METHODS Data were derived from a systematic review and individual patient data meta-analysis of DBS for dystonia in children that was previously published. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale for movement (BFMDRS-M) and for disability (BFMDRS-D). The authors used partial least squares, bootstrapping, and permutation statistics to extract patterns of contributions of specific preoperative characteristics to relationship with distinct outcomes, in all patients and in patients with primary and secondary dystonia separately. RESULTS Of 301 children undergoing DBS for dystonia, 167 had primary dystonia, 125 secondary dystonia, and 9 myoclonus dystonia. Three dissociable preoperative phenotypes (latent variables) were identified and associated with the following: 1) BFMDRS-M at last follow-up; 2) relative change in BFMDRS-M score; and 3) relative change in BFMDRS-D score. The phenotype of patients with secondary dystonia, with a high BFMDRS-M score and truncal involvement, undergoing DBS at a younger age, was associated with a worse postoperative BFMDRS-M score. Children with primary dystonia involving the trunk had greater improvement in BFMDRS-M and -D scores. Those with primary dystonia of shorter duration and proportion of life with disease, undergoing globus pallidus DBS, had greater improvements in BFMDRS-D scores at long-term follow-up. CONCLUSIONS In a comprehensive, data-driven, multivariate analysis of DBS for childhood dystonia, the authors identified novel and dissociable patient phenotypes associated with distinct outcomes. The findings of this report may inform surgical candidacy for DBS.
Collapse
Affiliation(s)
| | - Brij Karmur
- 2Faculty of Medicine, University of Toronto, Toronto, Ontario
| | - Lior M Elkaim
- 3Faculty of Medicine, Université de Montréal, Montréal, Québec
| | | | | | - Nir Lipsman
- 1Division of Neurosurgery, Department of Surgery, and
- 4Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Ontario
| | - Philippe De Vloo
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - Suneil K Kalia
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - Andres M Lozano
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - George M Ibrahim
- 1Division of Neurosurgery, Department of Surgery, and
- 6Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Elkaim LM, Alotaibi NM, Sigal A, Alotaibi HM, Lipsman N, Kalia SK, Fehlings DL, Lozano AM, Ibrahim GM. Deep brain stimulation for pediatric dystonia: a meta-analysis with individual participant data. Dev Med Child Neurol 2019; 61:49-56. [PMID: 30320439 DOI: 10.1111/dmcn.14063] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
AIM We performed a meta-analysis with individual participant data of deep brain stimulation (DBS) for dystonia in children and young people. METHOD Three databases (PubMed, Embase, and Web of Science) were queried from January 1999 to August 2017 with no language restrictions to identify case studies and cohort studies reporting on pediatric patients (age ≤21y) with dystonia. The primary outcomes were changes in Burke-Fahn-Marsden (BFM) or Barry-Albright Dystonia Scale scores. A mixed-effects regression was used to identify associations between clinical covariates and outcomes. RESULTS Of 2509 citations reviewed, 72 articles (321 children) were eligible. At last follow-up (median 12mo, 25th centile=9.0; 75th centile=32.2), 277 (86.3%) patients showed improvement in dystonia, while 66.1 percent showed clinically significant (>20%) BFM Dystonia Rating Scale-motor improvement. On multivariable hierarchical regression, older age at dystonia onset, inherited dystonia without nervous system pathology and idiopathic dystonia (vs inherited with nervous system pathology or acquired dystonia), and truncal involvement indicated a better outcome (p<0.05). INTERPRETATION The data suggest that DBS is effective and should be considered in selected children with inherited or idiopathic dystonia. WHAT THIS PAPER ADDS Deep brain stimulation is effective in selected children with inherited or idiopathic dystonia.
Collapse
Affiliation(s)
- Lior M Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Naif M Alotaibi
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Alissa Sigal
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Darcy L Fehlings
- Child Development Program, Holland Bloorview Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Surgery, Institute of Biomaterials and Biomedical Engineering, Institute of Medical Science, University of Toronto, Toronto, Canada
| | | |
Collapse
|
12
|
Candela S, Vanegas MI, Darling A, Ortigoza-Escobar JD, Alamar M, Muchart J, Climent A, Ferrer E, Rumià J, Pérez-Dueñas B. Frameless robot-assisted pallidal deep brain stimulation surgery in pediatric patients with movement disorders: precision and short-term clinical results. J Neurosurg Pediatr 2018; 22:416-425. [PMID: 30028274 DOI: 10.3171/2018.5.peds1814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to verify the safety and accuracy of the Neuromate stereotactic robot for use in deep brain stimulation (DBS) electrode implantation for the treatment of hyperkinetic movement disorders in childhood and describe the authors' initial clinical results. METHODS A prospective evaluation of pediatric patients with dystonia and other hyperkinetic movement disorders was carried out during the 1st year after the start-up of a pediatric DBS unit in Barcelona. Electrodes were implanted bilaterally in the globus pallidus internus (GPi) using the Neuromate robot without the stereotactic frame. The authors calculated the distances between the electrodes and their respective planned trajectories, merging the postoperative CT with the preoperative plan using VoXim software. Clinical outcome was monitored using validated scales for dystonia and myoclonus preoperatively and at 1 month and 6 months postoperatively and by means of a quality-of-life questionnaire for children, administered before surgery and at 6 months' follow-up. We also recorded complications derived from the implantation technique, "hardware," and stimulation. RESULTS Six patients aged 7 to 16 years and diagnosed with isolated dystonia ( DYT1 negative) (3 patients), choreo-dystonia related to PDE2A mutation (1 patient), or myoclonus-dystonia syndrome SGCE mutations (2 patients) were evaluated during a period of 6 to 19 months. The average accuracy in the placement of the electrodes was 1.24 mm at the target point. At the 6-month follow-up, patients showed an improvement in the motor (65%) and functional (48%) components of the Burke-Fahn-Marsden Dystonia Rating Scale. Patients with myoclonus and SGCE mutations also showed an improvement in action myoclonus (95%-100%) and in functional tests (50%-75%) according to the Unified Motor-Rating Scale. The Neuro-QOL score revealed inconsistent results, with improvement in motor function and social relationships but worsening in anxiety, cognitive function, and pain. The only surgical complication was medial displacement of the first electrode, which limited intensity of stimulation in the lower contacts, in one case. CONCLUSIONS The Neuromate stereotactic robot is an accurate and safe tool for the placement of GPi electrodes in children with hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Santiago Candela
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - María Isabel Vanegas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandra Darling
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Juan Darío Ortigoza-Escobar
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Mariana Alamar
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Muchart
- 3Diagnostic Imaging.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Alejandra Climent
- Departments of1Neurosurgery.,2Neuropediatrics, and.,4Intraoperative Neurophysiology Unit, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Enrique Ferrer
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Rumià
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Belén Pérez-Dueñas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Abstract
Although the application of noninvasive brain stimulation methods to children and adolescents has been frequently studied in depression, autism spectrum disorder, attention-deficit/hyperactivity disorder, and other neuropsychiatric disorders, invasive methods such as deep brain stimulation (DBS) and vagal nerve stimulation (VNS) have received less attention. DBS and VNS have demonstrated utility in young patients especially for dystonia and epilepsy. VNS has FDA clearance for intractable epilepsy in patients aged 4 years and older. Further measured work with invasive neuromodulation for children and adolescents with debilitating neuropsychiatric disorders could provide new treatment options and expand current knowledge base of neurocircuitry across development.
Collapse
|
14
|
Alterman RL, Stone S. Deep Brain Stimulation for Dystonia. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Johans SJ, Swong KN, Hofler RC, Anderson DE. A Stepwise Approach: Decreasing Infection in Deep Brain Stimulation for Childhood Dystonic Cerebral Palsy. J Child Neurol 2017; 32:871-875. [PMID: 28604158 DOI: 10.1177/0883073817713900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dystonia is a movement disorder characterized by involuntary muscle contractions, which cause twisting movements or abnormal postures. Deep brain stimulation has been used to improve the quality of life for secondary dystonia caused by cerebral palsy. Despite being a viable treatment option for childhood dystonic cerebral palsy, deep brain stimulation is associated with a high rate of infection in children. The authors present a small series of patients with dystonic cerebral palsy who underwent a stepwise approach for bilateral globus pallidus interna deep brain stimulation placement in order to decrease the rate of infection. Four children with dystonic cerebral palsy who underwent a total of 13 surgical procedures (electrode and battery placement) were identified via a retrospective review. There were zero postoperative infections. Using a multistaged surgical plan for pediatric patients with dystonic cerebral palsy undergoing deep brain stimulation may help to reduce the risk of infection.
Collapse
Affiliation(s)
- Stephen J Johans
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin N Swong
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Ryan C Hofler
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Douglas E Anderson
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
16
|
Deep brain stimulation for childhood dystonia: Is 'where' as important as in 'whom'? Eur J Paediatr Neurol 2017; 21:176-184. [PMID: 28220756 DOI: 10.1016/j.ejpn.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 01/07/2023]
Abstract
Deep brain stimulation (DBS) has become a mainstay of dystonia management in adulthood. Typically targeting electrode placement in the GPi, sustained improvement in dystonic symptoms are anticipated in adults with isolated genetic dystonias. Dystonia in childhood is more commonly a symptomatic condition, with dystonia frequently expressed on the background of a structurally abnormal brain. Outcomes following DBS in this setting are much more variable, the reasons for which have yet to be elucidated. Much of the focus on improving outcomes following DBS in dystonia management has been on the importance of patient selection, with, until recently, little discussion of the choice of target. In this review, we advance the argument that patient selection for DBS in childhood cannot be made separate from the choice of target nuclei. The anatomy of common DBS targets is considered, and factors influencing their choice for electrode insertion are discussed. We propose an "ABC" for DBS in childhood dystonia is proposed: Appropriate Child selected; Best nuclei chosen for electrode insertion; Correct position within that nucleus.
Collapse
|
17
|
Owen T, Adegboye D, Gimeno H, Selway R, Lin JP. Stable cognitive functioning with improved perceptual reasoning in children with dyskinetic cerebral palsy and other secondary dystonias after deep brain stimulation. Eur J Paediatr Neurol 2017; 21:193-201. [PMID: 27836441 DOI: 10.1016/j.ejpn.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/28/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dystonia is characterised by involuntary movements (twisting, writhing and jerking) and postures. Secondary dystonias are described as a heterogeneous group of disorders with both exogenous and endogenous causes. There is a growing body of literature on the effects of deep brain stimulation (DBS) surgery on the motor function in childhood secondary dystonias, however research on cognitive function after DBS is scarce. METHODS Cognitive function was measured in a cohort of 40 children with secondary dystonia following DBS surgery using a retrospective repeated measures design. Baseline pre-DBS neuropsychological measures were compared to scores obtained at least one year following DBS. Cognitive function was assessed using standardised measures of intellectual ability and memory. RESULTS There was no significant change in the assessed domains of cognitive function following DBS surgery. A significant improvement across the group was found on the Picture Completion subtest, measuring perceptual reasoning ability, following DBS. CONCLUSION Cognition remained stable in children with secondary dystonia following DBS surgery, with some improvements noted in a domain of perceptual reasoning. Further research with a larger sample is necessary to further explore this, in particular to further subdivide this group to account for its heterogeneity. This preliminary data has potentially positive implications for the impact of DBS on cognitive functioning within the childhood secondary dystonia population.
Collapse
Affiliation(s)
- Tamsin Owen
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Clinical Psychology, Royal Holloway, University of London, UK.
| | - Dolapo Adegboye
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, King's College London, UK
| | - Richard Selway
- Functional Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Cif L, Coubes P. Historical developments in children's deep brain stimulation. Eur J Paediatr Neurol 2017; 21:109-117. [PMID: 27693334 DOI: 10.1016/j.ejpn.2016.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Heterogeneous by the underlying pathobiology and clinical presentation, childhood onset dystonia is most frequently progressive, with related disability and limitations in functions of daily living. Consequently, there is an obvious need for efficient symptomatic therapies. METHODS AND RESULTS Following lesional surgery to basal ganglia (BG) and thalamus, deep brain stimulation (DBS) is a more conservative and adjustable intervention to and validated for internal segment of the globus pallidus (GPi), highly efficient in treating isolated "primary" dystonia and associated symptoms such as subcortical myoclonus. The role of DBS in acquired, neurometabolic and degenerative disorders with dystonia deserves further exploration to confirm as an efficient and lasting therapy. However, the pathobiological background with distribution of the sequellae over the central nervous system and related clinical features, will limit DBS efficacy in these conditions. Cumulative arguments propose DBS in severe life threatening dystonic conditions called status dystonicus as first line therapy, irrespective of the underlying cause. There are no currently available validated selection criteria for DBS in pediatric dystonia. Concurrent targets such as subthalamic nucleus (STN) and several motor nuclei of the thalamus are under exploration and only little information is available in children. DBS programming in paediatric population was adopted from experience in adults. The choice of neuromodulatory DBS parameters could influence not only the initial therapeutic outcome of dystonic symptoms but also its maintenance over time and potentially the occurrence of DBS related side effects. CONCLUSION DBS allows efficient symptomatic treatment of severe dystonia in children and advances pathophysiological knowledge about local and distributed abnormal neural activity over the motor cortical-subcortical networks in dystonia and other movement disorders.
Collapse
Affiliation(s)
- Laura Cif
- Unités de Neurochirurgie Fonctionnelle et Pédiatrique, Département de Neurochirurgie, Centre Hospitalier Universitaire Montpellier, France; Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA), France; Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Unité Mixte de la Recherche 5203, France; Université Montpellier, 34000, Montpellier, France; Laboratoire de Recherche en Neurosciences Cliniques (LRENC), France.
| | - Philippe Coubes
- Unités de Neurochirurgie Fonctionnelle et Pédiatrique, Département de Neurochirurgie, Centre Hospitalier Universitaire Montpellier, France; Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA), France; Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Unité Mixte de la Recherche 5203, France; Université Montpellier, 34000, Montpellier, France
| |
Collapse
|
19
|
Long-term results of deep brain stimulation in a cohort of eight children with isolated dystonia. J Neurol 2016; 263:2319-2326. [DOI: 10.1007/s00415-016-8253-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
20
|
Ben-Haim S, Flatow V, Cheung T, Cho C, Tagliati M, Alterman RL. Deep Brain Stimulation for Status Dystonicus: A Case Series and Review of the Literature. Stereotact Funct Neurosurg 2016; 94:207-215. [PMID: 27504896 DOI: 10.1159/000446191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 04/14/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Status dystonicus (SD) is a rare and potentially life-threatening complication of primary or secondary dystonia, characterized by acute worsening of dystonic movements. There is no consensus regarding optimal treatment, which may be medical and/or surgical. METHODS We present our experience with pallidal deep brain stimulation (DBS) in 5 DYT1-positive patients with SD and provide a review of the literature to examine optimal management. RESULTS Of the 5 patients treated with pallidal DBS, all experienced postoperative resolution of their dystonic crisis within a range of 1-21 days. Long-term follow-up resulted in 1 patient returning to preoperative baseline, 3 patients improving from baseline, and 1 patient making a complete recovery. Of the 28 SD patients (including our 5 patients) reported in the literature who were treated with DBS or ablative surgery, 26 experienced cessation of their dystonic crisis with a return to baseline function and, in most cases, clinical improvement. CONCLUSION DBS is an effective therapeutic modality for the treatment of SD. In addition to the long-term benefits of stimulation, early and aggressive treatment may improve the overall outcome.
Collapse
Affiliation(s)
- Sharona Ben-Haim
- Department of Neurosurgery, Mount Sinai Hospital, New York, N.Y., USA
| | | | | | | | | | | |
Collapse
|
21
|
TEKRIWAL A, BALTUCH G. Deep Brain Stimulation: Expanding Applications. Neurol Med Chir (Tokyo) 2015; 55:861-77. [PMID: 26466888 PMCID: PMC4686449 DOI: 10.2176/nmc.ra.2015-0172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
For over two decades, deep brain stimulation (DBS) has shown significant efficacy in treatment for refractory cases of dyskinesia, specifically in cases of Parkinson's disease and dystonia. DBS offers potential alleviation from symptoms through a well-tolerated procedure that allows personalized modulation of targeted neuroanatomical regions and related circuitries. For clinicians contending with how to provide patients with meaningful alleviation from often debilitating intractable disorders, DBSs titratability and reversibility make it an attractive treatment option for indications ranging from traumatic brain injury to progressive epileptic supra-synchrony. The expansion of our collective knowledge of pathologic brain circuitries, as well as advances in imaging capabilities, electrophysiology techniques, and material sciences have contributed to the expanding application of DBS. This review will examine the potential efficacy of DBS for neurologic and psychiatric disorders currently under clinical investigation and will summarize findings from recent animal models.
Collapse
Affiliation(s)
- Anand TEKRIWAL
- University of Pennsylvania, Department of Neurosurgery, Philadelphia, USA
- University of Colorado School of Medicine and Graduate School of Neuroscience, MSTP, Colorado, USA (current affiliation)
| | - Gordon BALTUCH
- University of Pennsylvania, Department of Neurosurgery, Philadelphia, USA
| |
Collapse
|
22
|
Abstract
OPINION STATEMENT Dystonia is a movement disorder caused by diverse etiologies. Its treatment in children is particularly challenging due to the complexity of the development of the nervous system from birth to young adulthood. The treatment options of childhood dystonia include several oral pharmaceutical agents, botulinum toxin injections, and deep brain stimulation (DBS) therapy. The choice of drug therapy relies on the suspected etiology of the dystonia and the adverse effect profile of the drugs. Dystonic syndromes with known etiologies may require specific interventions, but most dystonias are treated by trying serially a handful of medications starting with those with the best risk/benefit profile. In conjunction to drug therapy, botulinum toxin injections may be used to target a problematic group dystonic muscles. The maximal botulinum toxin dose is limited by the weight of the child, therefore limiting the number of the muscles amenable to such treatment. When drugs and botulinum toxin injections fail to control the child's disabling dystonia, DBS therapy may be offered as a last remedy. Delivering optimal DBS therapy to children with dystonia requires a multidisciplinary team of experienced pediatric neurosurgeons, neurologists, and nurses to select adequate candidates, perform this delicate stereotactic procedure, and optimize DBS delivery. Even in the best hands, the response of childhood dystonia to DBS therapy varies greatly. Future therapy of childhood dystonia will parallel the advancement of knowledge of the pathophysiology of dystonic syndromes and the development of clinical and research tools for their study.
Collapse
Affiliation(s)
- Samer D Tabbal
- Department of Neurology, American University of Beirut, Riad El-Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon,
| |
Collapse
|
23
|
Owen T, Gimeno H, Selway R, Lin JP. Cognitive function in children with primary dystonia before and after deep brain stimulation. Eur J Paediatr Neurol 2015; 19:48-55. [PMID: 25457508 DOI: 10.1016/j.ejpn.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 09/02/2014] [Accepted: 09/29/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dystonia is characterised by involuntary movements (twisting, writhing and jerking) and postures. The effects of deep brain stimulation (DBS) surgery on the motor aspect of primary dystonias have been well reported, however, there is a paucity of research investigating its impact on cognitive function, particularly in childhood dystonia. We performed a follow-up of cognitive function in children with primary dystonia following DBS pallidal surgery. METHODS Cognitive function was measured in a cohort of 13 children with primary or primary plus dystonia who had undergone DBS surgery using a retrospective case series design. Baseline pre-DBS neuropsychological measures were compared to scores obtained at least one year following DBS. Cognitive function was assessed using standardised measures of intellectual ability and memory. RESULTS All children demonstrated improvements with regard to dystonia reduction, as measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Overall, cognition remained stable following DBS in the majority of the cohort. Individual case analysis revealed improvements in some domains of cognitive function in eight members of the cohort and a deterioration of certain domains in four. CONCLUSION Cognition largely remained stable in children with primary/primary plus dystonia following DBS surgery, although further research with a larger sample is necessary to explore this statistically. Notwithstanding the limitations of a small size, this preliminary data has potentially positive implications for the impact of DBS on cognitive functioning within a paediatric population.
Collapse
Affiliation(s)
- Tamsin Owen
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Clinical Psychology, Royal Holloway, University of London, UK.
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, King's College London, UK
| | - Richard Selway
- Functional Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Frame-based stereotactic neurosurgery in children under the age of seven: Freiburg University's experience from 99 consecutive cases. Clin Neurol Neurosurg 2014; 130:42-7. [PMID: 25576884 DOI: 10.1016/j.clineuro.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/02/2014] [Accepted: 12/20/2014] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Stereotactic frame-based procedures proved to be precise, safe and are of widespread use among adult patients. Regarding pediatric patients few data is available, therefore the use of the stereotactic frame remains controversial in this population. This motivated us to report our experience in stereotactic procedures in the youngest patients and review the literature concerning this subject. METHODS All frame-based procedures performed in patients younger than seven years in the University of Freiburg during the last 10 years were retrospectively analyzed and discussed under the light of the current literature. RESULTS The studied population was composed of 72 patients under the age of seven (mean 3.4±2.1 years-old), in whom 99 stereotactic procedures were performed. Brain tumor was present in 60 patients, hydrocephalus in five, cystic lesions in three, intracranial abscess in three and epilepsy in one patient. Stereotactic surgery was performed in 36 cases for brachytherapy, in 29 for biopsy, in 20 cases for cyst puncture, in eight for stereotactically guided endoscopic ventriculostomy, in five for catheter placement and in one case for depth electrode insertion. The overall complication rate was 5%. There were three cases of pin penetration through the skull, one case of frame dislocation after extensive cyst drainage and two skull fractures. Neurologic deficit related to frame fixation was observed in none of the cases. In disagreement with other authors, no case of pin related infection, air embolism, hematoma or CSF leak was observed. CONCLUSION Frame-based stereotactic neurosurgery is a safe technique also in the youngest patients. Rather than the simple use of torque-limiting devices training and experience in the manual adjustment of the stereotactic frame in children have been proven to be crucial factors that contribute to reducing pin related complications.
Collapse
|
25
|
Keen JR, Przekop A, Olaya JE, Zouros A, Hsu FPK. Deep brain stimulation for the treatment of childhood dystonic cerebral palsy. J Neurosurg Pediatr 2014; 14:585-93. [PMID: 25325412 DOI: 10.3171/2014.8.peds141] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECT Deep brain stimulation (DBS) for dystonic cerebral palsy (CP) has rarely been reported, and its efficacy, though modest when compared with that for primary dystonia, remains unclear, especially in the pediatric population. The authors present a small series of children with dystonic CP who underwent bilateral pallidal DBS, to evaluate the treatment's efficacy and safety in the pediatric dystonic CP population. METHODS The authors conducted a retrospective review of patients (under the age of 18 years) with dystonic CP who had undergone DBS of the bilateral globus pallidus internus between 2010 and 2012. Two of the authors independently assessed outcomes using the Barry-Albright Dystonia Scale (BADS) and the Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFMDRS-M). RESULTS Five children were diagnosed with dystonic CP due to insults occurring before the age of 1 year. Mean age at surgery was 11 years (range 8-17 years), and the mean follow-up was 26.6 months (range 2-42 months). The mean target position was 20.6 mm lateral to the midcommissural point. The mean preoperative and postoperative BADS scores were 23.8 ± 4.9 (range 18.5-29.0) and 20.0 ± 5.5 (range 14.5-28.0), respectively, with a mean overall percent improvement of 16.0% (p = 0.14). The mean preoperative and postoperative BFMDRS-M scores were 73.3 ± 26.6 (range 38.5-102.0) and 52.4 ± 21.5 (range 34.0-80.0), respectively, with a mean overall percent improvement of 28.5% (p = 0.10). Those stimulated at least 23 months (4 patients) improved 18.3% (p = 0.14) on the BADS and 30.5% (p = 0.07) on the BFMDRS-M. The percentage improvement per body region yielded conflicting results between rating scales; however, BFMDRS-M scores for speech showed some of the greatest improvements. Two patients required hardware removal (1 complete system, 1 unilateral electrode) within 4 months after implantation because of infections that resolved with antibiotics. CONCLUSIONS All postoperative dystonia rating scale scores improved with pallidal stimulation, and the greatest improvements occurred in those stimulated the longest. The results were modest but comparable to findings in other similar series. Deep brain stimulation remains a viable treatment option for childhood dystonic CP, although young children may have an increased risk of infection. Of particular note, improvements in the BFMDRS-M subscores for speech were comparable to those for other muscle groups, a finding not previously reported.
Collapse
|
26
|
Starr PA, Markun LC, Larson PS, Volz MM, Martin AJ, Ostrem JL. Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. J Neurosurg Pediatr 2014; 14:400-8. [PMID: 25084088 DOI: 10.3171/2014.6.peds13605] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The placement of deep brain stimulation (DBS) leads in adults is traditionally performed using physiological confirmation of lead location in the awake patient. Most children are unable to tolerate awake surgery, which poses a challenge for intraoperative confirmation of lead location. The authors have developed an interventional MRI (iMRI)-guided procedure to allow for real-time anatomical imaging, with the goal of achieving very accurate lead placement in patients who are under general anesthesia. METHODS Six pediatric patients with primary dystonia were prospectively enrolled. Patients were candidates for surgery if they had marked disability and medical therapy had been ineffective. Five patients had the DYT1 mutation, and mean age at surgery was 11.0 ± 2.8 years. Patients underwent bilateral globus pallidus internus (GPi, n = 5) or sub-thalamic nucleus (STN, n = 1) DBS. The leads were implanted using a novel skull-mounted aiming device in conjunction with dedicated software (ClearPoint system), used within a 1.5-T diagnostic MRI unit in a radiology suite, without physiological testing. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used at baseline, 6 months, and 12 months postoperatively. Further measures included lead placement accuracy, quality of life, adverse events, and stimulation settings. RESULTS A single brain penetration was used for placement of all 12 leads. The mean difference (± SD) between the intended target location and the actual lead location, in the axial plane passing through the intended target, was 0.6 ± 0.5 mm, and the mean surgical time (leads only) was 190 ± 26 minutes. The mean percent improvement in the BFMDRS movement scores was 86.1% ± 12.5% at 6 months (n = 6, p = 0.028) and 87.6% ± 19.2% at 12 months (p = 0.028). The mean stimulation settings at 12 months were 3.0 V, 83 μsec, 135 Hz for GPi DBS, and 2.1 V, 60 μsec, 145 Hz for STN DBS). There were no serious adverse events. CONCLUSIONS Interventional MRI-guided DBS using the ClearPoint system was extremely accurate, provided real-time confirmation of DBS placement, and could be used in any diagnostic MRI suite. Clinical outcomes for pediatric dystonia are comparable with the best reported results using traditional frame-based stereotaxy. Clinical trial registration no.: NCT00792532 ( ClinicalTrials.gov ).
Collapse
|
27
|
Gimeno H, Tustin K, Lumsden D, Ashkan K, Selway R, Lin JP. Evaluation of functional goal outcomes using the Canadian Occupational Performance Measure (COPM) following Deep Brain Stimulation (DBS) in childhood dystonia. Eur J Paediatr Neurol 2014; 18:308-16. [PMID: 24461258 DOI: 10.1016/j.ejpn.2013.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/22/2013] [Accepted: 12/30/2013] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the functional goal-directed outcomes of Deep Brain Stimulation (DBS) in childhood dystonia according to aetiology and to explore relationship with a traditional impairment-based measure. METHOD This is a prospective case series study involving thirty children with dystonia with a 1-year follow-up post-DBS. The Canadian Occupational Performance Measure (COPM) and Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) were used as primary outcome measures. Results were analysed based on aetiology in 3 groups: 1. primary/primary plus dystonia; 2. secondary dystonia-cerebral palsy (CP); 3. secondary dystonia-non-CP group. Correlation between functional outcome using COPM and dystonia improvement as captured by BFMDRS was measured. RESULTS All groups demonstrated significant improvement in individualised goal attainment, measured with the COPM, at 1-year post-DBS. The secondary dystonia-CP group also achieved significant improvement at 6 months for performance and satisfaction scores. In the majority of secondary dystonias, the BFMDRS failed to demonstrate significant improvement. A linear correlation between change in BFMDRS and COPM scores was observed when the entire cohort was analysed. INTERPRETATION/CONCLUSIONS DBS improved functional performance, independently of the dystonic phenotype. Improvements in individualized COPM functional goal areas were seen in the absence of significant changes in BFMDRS scores, highlighting the relative insensitivity of impairment scales in this patient group.
Collapse
Affiliation(s)
- Hortensia Gimeno
- Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK.
| | - Kylee Tustin
- Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Daniel Lumsden
- Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Keyoumars Ashkan
- King's Health Partners Academic Health Sciences Centre, London, UK; Functional Neurosurgery Department, King's College Hospital, London, UK
| | - Richard Selway
- King's Health Partners Academic Health Sciences Centre, London, UK; Functional Neurosurgery Department, King's College Hospital, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| |
Collapse
|
28
|
Mink JW. Special concerns in defining, studying, and treating dystonia in children. Mov Disord 2014; 28:921-5. [PMID: 23893449 DOI: 10.1002/mds.25548] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 11/09/2022] Open
Abstract
Dystonia is movement disorder with many diverse underlying etiologies. Some of those etiologies manifest at specific stages of development or at specific ages. Others may present early in life and evolve as the individual develops. The appearance of symptoms during a time of nervous system development poses special challenges to the neurologist. Normal functions change appearance, dysfunction may manifest in an age-dependent manner, and age-dependent differences in beneficial and toxic effects of treatments all introduce complexities to the process of diagnosis, functional assessment, and therapeutics. Consideration of these developmental differences is essential in assuring a universal definition of dystonia, and for developing valid and reliable assessment tools that can be compared across the lifespan, and more effective therapeutics. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Jonathan W Mink
- Departments of Neurology, Neurobiology & Anatomy, Brain & Cognitive Sciences, and Pediatrics, Division of Child Neurology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
29
|
Albanese A, Sorbo FD, Comella C, Jinnah HA, Mink JW, Post B, Vidailhet M, Volkmann J, Warner TT, Leentjens AFG, Martinez-Martin P, Stebbins GT, Goetz CG, Schrag A. Dystonia rating scales: critique and recommendations. Mov Disord 2014; 28:874-83. [PMID: 23893443 DOI: 10.1002/mds.25579] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023] Open
Abstract
Many rating scales have been applied to the evaluation of dystonia, but only few have been assessed for clinimetric properties. The Movement Disorders Society commissioned this task force to critique existing dystonia rating scales and place them in the clinical and clinimetric context. A systematic literature review was conducted to identify rating scales that have either been validated or used in dystonia. Thirty-six potential scales were identified. Eight were excluded because they did not meet review criteria, leaving 28 scales that were critiqued and rated by the task force. Seven scales were found to meet criteria to be "recommended": the Blepharospasm Disability Index is recommended for rating blepharospasm; the Cervical Dystonia Impact Scale and the Toronto Western Spasmodic Torticollis Rating Scale for rating cervical dystonia; the Craniocervical Dystonia Questionnaire for blepharospasm and cervical dystonia; the Voice Handicap Index (VHI) and the Vocal Performance Questionnaire (VPQ) for laryngeal dystonia; and the Fahn-Marsden Dystonia Rating Scale for rating generalized dystonia. Two "recommended" scales (VHI and VPQ) are generic scales validated on few patients with laryngeal dystonia, whereas the others are disease-specific scales. Twelve scales met criteria for "suggested" and 7 scales met criteria for "listed." All the scales are individually reviewed in the online information. The task force recommends 5 specific dystonia scales and suggests to further validate 2 recommended generic voice-disorder scales in dystonia. Existing scales for oromandibular, arm, and task-specific dystonia should be refined and fully assessed. Scales should be developed for body regions for which no scales are available, such as lower limbs and trunk.
Collapse
Affiliation(s)
- Alberto Albanese
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Milano, Italy; Neurologia I, Istituto Neurologico Carlo Besta, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Panov F, Gologorsky Y, Connors G, Tagliati M, Miravite J, Alterman RL. Deep brain stimulation in DYT1 dystonia: a 10-year experience. Neurosurgery 2014; 73:86-93; discussion 93. [PMID: 23615098 DOI: 10.1227/01.neu.0000429841.84083.c8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Globus Pallidus Interna (GPi) deep brain stimulation (DBS) is an effective treatment for DYT1-associated dystonia, but long-term results are lacking. OBJECTIVE To evaluate the long-term effects of GPi DBS in patients with DYT1 dystonia. METHODS A retrospective chart review (cohort study) of 47 consecutive DYT1+ patients treated by a single surgical team over a 10-year period and followed for up to 96 months (mean, 46 months) was performed. Symptom severity was quantified with the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor (M) and disability (D) sub-scores. RESULTS As measured with the BFMDRS (M), symptom severity was reduced to less than 20% of baseline after 2 years of DBS therapy (P = .001). The disability scores were reduced to <30% of baseline (P = .001). Symptomatic improvement was durable throughout available follow-up. Sixty-one percent of patients had discontinued all dystonia-related medications at their last follow-up. Ninety-one percent had discontinued at least 1 class of medication. Infections requiring removal and later reimplantation of hardware occurred in 4 of 47 patients (8.5%). Hardware malfunction including lead fractures occurred in 4 of 47 cases (8.5%). Lead revision to address poor clinical response was performed in 2 of 92 implanted leads (2.2%). CONCLUSION GPi DBS is an effective therapy for DYT1-associated torsion dystonia. Statistically significant efficacy is maintained for up to 7 years. Neurologic complications are rare, but long-term hardware-related complications can be significant.
Collapse
Affiliation(s)
- Fedor Panov
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Selecting the appropriate treatment for dystonia begins with proper classification of disease based on age, distribution, and underlying etiology. The therapies available for dystonia include oral medications, botulinum toxin, and surgical procedures. Oral medications are generally reserved for generalized and segmental dystonia. Botulinum toxin revolutionized the treatment of focal dystonia when it was introduced for therapeutic purposes in the 1980s. Surgical procedures are available for medication-refractory dystonia, markedly affecting an individual's quality of life.
Collapse
Affiliation(s)
- Mary Ann Thenganatt
- Parkinson’s Disease Center & Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 6550 Fannin, Suite 1801, Houston, TX 77030 USA
| | - Joseph Jankovic
- Parkinson’s Disease Center & Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 6550 Fannin, Suite 1801, Houston, TX 77030 USA
| |
Collapse
|
32
|
Abstract
The authors report on 2 cases of pediatric generalized dystonia with a DYT1 mutation; the patients, an 11-year-old girl and a 9-year-old boy, underwent chronic, pallidal deep brain stimulation (DBS) of the globus pallidus internus (GPi). The dystonic postures in both cases showed dramatic improvements with pallidal DBS, but each patient's symptoms gradually recurred within a year, irrespective of exhaustive readjustments of the stimulation settings. After the recurrence of the dystonic symptoms, the DBS leads were replaced within the GPi in one patient (Case 1) and additional DBS leads were implanted into the bilateral subthalamic nuclei in the other patient (Case 2). Neither measure produced any further clinical benefit, and the patient in Case 2 died of status dystonicus 2 days after reoperation. These findings suggest that early pallidal DBS for pediatric dystonia is indeed effective, although there are some cases in which its therapeutic effect is lost. One possible reason may be the ability of the preadolescent brain to tolerate chronic electrical stimuli during the active maturation process.
Collapse
Affiliation(s)
- Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Kaizuka Hospital
| | | |
Collapse
|
33
|
Abstract
Primary myoclonus-dystonia is a childhood-onset autosomal-dominant movement disorder with myoclonic jerks and dystonia. The authors report 9 children (4 boys, 5 girls) with myoclonus-dystonia from 8 families seen over a 4-year period at Cleveland Clinic. The mean age of onset of symptoms was 2.8 years, but the diagnosis was made at a mean of 7.3 years. Myoclonus was the presenting symptom in 8 children. A known pathogenic mutation in the ε-sarcoglycan gene (SGCE) was identified in 4 of the 9 children, and 2 other children had novel mutations in the same gene. Good response to trihexyphenidyl and clonazepam was seen. Two patients underwent deep brain stimulation surgery of the bilateral globus pallidus pars interna. In 7 children, the diagnosis of myoclonus-dystonia was not considered by the referring child neurologists, which led to extensive investigations and a delay in the final diagnosis. In this report, the authors highlight the need for increased awareness of this entity among child neurologists.
Collapse
Affiliation(s)
- Debabrata Ghosh
- Supplementary material for this article is available on the Journal of Child Neurology website at http://jcn.sagepub.com/supplemental
| | | |
Collapse
|
34
|
Karas PJ, Mikell CB, Christian E, Liker MA, Sheth SA. Deep brain stimulation: a mechanistic and clinical update. Neurosurg Focus 2013; 35:E1. [DOI: 10.3171/2013.9.focus13383] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deep brain stimulation (DBS), the practice of placing electrodes deep into the brain to stimulate subcortical structures with electrical current, has been increasing as a neurosurgical procedure over the past 15 years. Originally a treatment for essential tremor, DBS is now used and under investigation across a wide spectrum of neurological and psychiatric disorders. In addition to applying electrical stimulation for clinical symptomatic relief, the electrodes implanted can also be used to record local electrical activity in the brain, making DBS a useful research tool. Human single-neuron recordings and local field potentials are now often recorded intraoperatively as electrodes are implanted. Thus, the increasing scope of DBS clinical applications is being matched by an increase in investigational use, leading to a rapidly evolving understanding of cortical and subcortical neurocircuitry. In this review, the authors discuss recent innovations in the clinical use of DBS, both in approved indications as well as in indications under investigation. Deep brain stimulation as an investigational tool is also reviewed, paying special attention to evolving models of basal ganglia and cortical function in health and disease. Finally, the authors look to the future across several indications, highlighting gaps in knowledge and possible future directions of DBS treatment.
Collapse
Affiliation(s)
- Patrick J. Karas
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| | - Charles B. Mikell
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| | - Eisha Christian
- 2Department of Neurosurgery, Keck Hospital of the University of Southern California, Los Angeles, California
| | - Mark A. Liker
- 2Department of Neurosurgery, Keck Hospital of the University of Southern California, Los Angeles, California
| | - Sameer A. Sheth
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
35
|
Olaya JE, Christian E, Ferman D, Luc Q, Krieger MD, Sanger TD, Liker MA. Deep brain stimulation in children and young adults with secondary dystonia: the Children's Hospital Los Angeles experience. Neurosurg Focus 2013; 35:E7. [DOI: 10.3171/2013.8.focus13300] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background
Dystonia is a movement disorder in which involuntary sustained or intermittent muscle contractions cause twisting and repetitive movements, abnormal postures, or both. It can be classified as primary or secondary. There is no cure for dystonia and the goal of treatment is to provide a better quality of life for the patient.
Surgical intervention is considered for patients in whom an adequate trial of medical treatment has failed. Deep brain stimulation (DBS), specifically of the globus pallidus interna (GPi), has been shown to be extremely effective in primary generalized dystonia. There is much less evidence for the use of DBS in patients with secondary dystonia. However, given the large number of patients with secondary dystonia, the significant burden on the patients and their families, and the potential for DBS to improve their functional status and comfort level, it is important to continue to investigate the use of DBS in the realm of secondary dystonia.
Object
The objective of this study is to review a series of cases involving patients with secondary dystonia who have been treated with pallidal DBS.
Methods
A retrospective review of 9 patients with secondary dystonia who received treatment with DBS between February 2011 and February 2013 was performed. Preoperative and postoperative videos were scored using the Barry-Albright Dystonia Scale (BADS) and Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) by a neurologist specializing in movement disorders. In addition, the patients' families completed a subjective questionnaire to assess the perceived benefit of DBS.
Results
The average age at DBS unit implantation was 15.1 years (range 6–20 years). The average time to follow-up for the BADS evaluation from battery implantation was 3.8 months (median 3 months). The average time to follow-up for the subjective benefit evaluation was 10.6 months (median 9.5 months). The mean BADS scores improved by 9% from 26.5 to 24 (p = 0.04), and the mean BFMDRS scores improved by 9.3% (p = 0.055). Of note, even in patients with minimal functional improvement, there seemed to be decreased contractures and spasms leading to improved comfort. There were no complications such as infections or hematoma in this case series. In the subjective benefit evaluation, 3 patients' families reported “good” benefit, 4 reported “minimal” benefit, and 1 reported no benefit.
Conclusions
These early results of GPi stimulation in a series of 9 patients suggest that DBS is useful in the treatment of secondary generalized dystonia in children and young adults. Objective improvements in BADS and BFMDRS scores are demonstrated in some patients with generalized secondary dystonia but not in others. Larger follow-up studies of DBS for secondary dystonia, focusing on patient age, history, etiology, and patterns of dystonia, are needed to learn which patients will respond best to DBS.
Collapse
Affiliation(s)
- Joffre E. Olaya
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| | - Eisha Christian
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| | - Diana Ferman
- 3Division of Child Neurology, Children's Hospital Los Angeles; and
- 4Division of Pediatric Neurology, and
| | - Quyen Luc
- 3Division of Child Neurology, Children's Hospital Los Angeles; and
- 4Division of Pediatric Neurology, and
| | - Mark D. Krieger
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| | - Terence D. Sanger
- 3Division of Child Neurology, Children's Hospital Los Angeles; and
- 4Division of Pediatric Neurology, and
- 5Department of Biomedical Engineering and BioKinesiology, The Keck School of Medicine at USC, University of Southern California, Los Angeles, California
| | - Mark A. Liker
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| |
Collapse
|
36
|
Abstract
The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.
Collapse
Affiliation(s)
- Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
37
|
Gimeno H, Lumsden D, Gordon A, Tustin K, Ashkan K, Selway R, Lin JP. Improvement in upper limb function in children with dystonia following deep brain stimulation. Eur J Paediatr Neurol 2013; 17:353-60. [PMID: 23332134 DOI: 10.1016/j.ejpn.2012.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Childhood dystonia can severely impact upper limb function. Deep brain stimulation (DBS) has been shown to be effective in reducing dystonic symptoms in childhood. Functional recovery following DBS is however not well understood. AIMS To explore changes in upper limb function following DBS in paediatric dystonia. METHODS Upper limb outcomes, using the Melbourne Assessment of Unilateral Upper Limb Function, are reported in 20 cases of childhood dystonia (unilateral n = 1, four limb n = 19) at 6 and 12 months following DBS. RESULTS Improvement in at least in one upper limb was seen in the majority of cases (n = 17, 85%) at 12 months following DBS. Deterioration of scores in both upper limbs was seen in 3 children with progressive disorders. Grouping the children aetiologically, a significant improvement in the dominant hand was obtained for the primary dystonia/dystonia-plus group at both six (p = 0.018) and twelve months (p = 0.012). In secondary dystonia due to a static disorder, improvement was also seen at 6 (p = 0.043) and 12 months (p = 0.046) in the non-dominant hand. No significant change was found in the group of children with progressive disorders. CONCLUSIONS DBS has the potential to alter upper limb function in children with primary and secondary dystonia. The dominant hand improved most in children with primary dystonias, with greater improvement in the non-dominant hand in secondary-static cases.
Collapse
Affiliation(s)
- Hortensia Gimeno
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lozano A, Lipsman N. Probing and Regulating Dysfunctional Circuits Using Deep Brain Stimulation. Neuron 2013; 77:406-24. [DOI: 10.1016/j.neuron.2013.01.020] [Citation(s) in RCA: 423] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 01/04/2023]
|
39
|
Vidailhet M, Jutras MF, Roze E, Grabli D. Deep brain stimulation for dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:167-187. [PMID: 24112893 DOI: 10.1016/b978-0-444-53497-2.00014-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The few reported controlled studies show that bilateral stimulation of the globus pallidus interna (GPi) is a safe and effective long-term treatment for hyperkinetic disorders. However, the recently published data on deep brain stimulation (DBS) applied to different targets or patients (especially those with secondary dystonia) are mainly uncontrolled case reports, precluding a clear determination of its efficacy, and providing little guidance as to the choice of a "good" target in a "good" patient. This chapter reviews the literature on DBS in primary dystonia, paying particular attention to the risk:benefit ratio in focal and segmental dystonias (cervical dystonia, cranial dystonia) and to the predictive factors for a good outcome. The chapter also highlights recent data on the marked benefits of the technique in myoclonus dystonia (in which pallidal, as opposed to thalamic, stimulation is more effective) and in tardive dystonia-dyskinesia. Although, the decision to treat appears relatively straightforward in patients with primary dystonia, myoclonus-dystonia, and tardive dystonia who have a normal findings on magnetic resonance imaging and normal cognitive function, there are still no reliable tools to help predict the timescale of postoperative benefit. This chapter provides a comprehensive analysis of the use of the treatment in various types of secondary dystonia, with little to moderate benefit in most cases, based on single cases or small series. Beyond the reduction in the severity of dystonia, the global motor and functional outcome is difficult to determine owing to the paucity of adequate evaluation tools. Because of the large interpatient variability, different targets may be effective depending on the symptoms in each individual.
Collapse
Affiliation(s)
- Marie Vidailhet
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Research Center of the Brain and Spinal Cord Institute, Université Paris 6/Inserm UMR S975, Paris, France; Pierre et Marie Curie Paris-6 University, Paris, France
| | | | | | | |
Collapse
|
40
|
Casellato C, Pedrocchi A, Zorzi G, Vernisse L, Ferrigno G, Nardocci N. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia. IEEE Trans Neural Syst Rehabil Eng 2012; 21:474-80. [PMID: 23060345 DOI: 10.1109/tnsre.2012.2222445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.
Collapse
Affiliation(s)
- Claudia Casellato
- Bioengineering Department, Politecnico di Milano, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Tierney TS, Lozano AM. Surgical treatment for secondary dystonia. Mov Disord 2012; 27:1598-605. [PMID: 23037556 DOI: 10.1002/mds.25204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
Surgical therapy for the secondary dystonias is generally perceived to be less effective than for primary disease. However, a number of case reports and small open series have recently appeared describing quite favorable outcomes following surgery for some nonprimary dystonias. We discuss surgical treatment options for this group of diverse conditions, including tardive dystonia, dystonic cerebral palsy, and certain heredodegenerative diseases in which deep brain stimulation and ablative lesions of the posteroventral pallidum have been shown to be effective. Other types of secondary dystonia respond less well to pallidal surgery, particularly when anatomical lesions of the basal ganglia are prominent on preoperative imaging. For these conditions, central baclofen delivery and botulinum toxin denervation may be considered. With optimal medical and surgical care, some patients with secondary dystonia have achieved reductions in disability and pain that approach those documented for primary dystonia.
Collapse
Affiliation(s)
- Travis S Tierney
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
42
|
DiFrancesco MF, Halpern CH, Hurtig HH, Baltuch GH, Heuer GG. Pediatric indications for deep brain stimulation. Childs Nerv Syst 2012; 28:1701-14. [PMID: 22828866 DOI: 10.1007/s00381-012-1861-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/10/2012] [Indexed: 12/16/2022]
Abstract
PURPOSE Based on the success of deep brain stimulation (DBS) in the treatment of adult disorders, it is reasonable to assume that the application of DBS in the pediatric population is an emerging area worthy of study. The purpose of this paper is to outline the current movement disorder indications for DBS in the pediatric population, and to describe areas of investigation, including possible medically refractory psychiatric indications. METHODS We performed a structured review of the English language literature from 1990 to 2011 related to studies of DBS in pediatrics using Medline and PubMed search results. RESULTS Twenty-four reports of DBS in the pediatric population were found. Based on published data on the use of DBS for pediatric indications, there is a spectrum of clinical evidence for the use of DBS to treat different disorders. Dystonia, a disease associated with a low rate of remission and significant disability, is routinely treated with DBS and is currently the most promising pediatric application of DBS. We caution the application of DBS to conditions associated with a high remission rate later in adulthood, like obsessive-compulsive disorder and Tourette's syndrome. Moreover, epilepsy and obesity are currently being investigated as indications for DBS in the adult population; however, both are associated with significant morbidity in pediatrics. CONCLUSION While currently dystonia is the most promising application of DBS in the pediatric population, multiple conditions currently being investigated in adults also afflict children and adolescents, and thus warrant further research.
Collapse
Affiliation(s)
- Matthew F DiFrancesco
- Center for Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104-4399, USA
| | | | | | | | | |
Collapse
|
43
|
Markun LC, Starr PA, Air EL, Marks WJ, Volz MM, Ostrem JL. Shorter Disease Duration Correlates With Improved Long-term Deep Brain Stimulation Outcomes in Young-Onset DYT1 Dystonia. Neurosurgery 2012; 71:325-30. [DOI: 10.1227/neu.0b013e318258e21b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Treatment with deep brain stimulation (DBS) of the globus pallidus internus in children with DYT1 primary torsion dystonia is highly effective; however, individual response to stimulation is variable, and a greater understanding of predictors of long-term outcome is needed.
OBJECTIVE:
To report the long-term outcomes of subjects with young-onset DYT1 primary torsion dystonia treated with bilateral globus pallidus DBS.
METHODS:
Fourteen subjects (7 male, 7 female) treated consecutively from 2000 to 2010 at our center were included in this retrospective study. The Burke-Fahn-Marsden Dystonia Rating Scale was performed at baseline and at 1, 2, and up to 6 years postoperatively.
RESULTS:
Pallidal DBS was well tolerated and highly effective, with mean Burke-Fahn-Marsden Dystonia Rating Scale movement scores improving from baseline by 61.5% (P < .001) at 1 year, 64.4% (P < .001) at 2 years, and 70.3% (P < .001) at the final follow-up visit (mean, 32 months; range, 7–77 months). Disability scores also improved significantly. Multiple linear regression analysis revealed a significant influence of duration of disease as a predictor of percent improvement in Burke-Fahn-Marsden Dystonia Rating Scale movement score at long-term follow-up (duration of disease, P < .05). Subjects with fixed orthopedic deformities (4) had less improvement in these regions. Location of the active DBS electrode used at final follow-up visit was not predictive of clinical outcome.
CONCLUSION:
Our findings highlight the sustained benefit from DBS and the importance of early referral for DBS in children with medically refractory DYT1 primary torsion dystonia, which can lead to improved long-term benefits.
Collapse
Affiliation(s)
- Leslie C. Markun
- Department of Neurology and University of California, San Francisco, California
| | - Philip A. Starr
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Ellen L. Air
- Department of Neurological Surgery, University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - William J. Marks
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Monica M. Volz
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Jill L. Ostrem
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
44
|
Ghosh PS, Machado AG, Deogaonkar M, Ghosh D. Deep brain stimulation in children with dystonia: experience from a tertiary care center. Pediatr Neurosurg 2012; 48:146-51. [PMID: 23296077 DOI: 10.1159/000345830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the efficacy and safety of deep brain stimulation (DBS) of the globus pallidus internus (GPi) in children with dystonia. METHODS Retrospective chart review of patients (≤21 years) with dystonia who underwent GPi DBS. Outcome measures were assessed by the Burke-Fahn-Marsden Dystonia Rating (BFMDR) movement and disability scales pre- and post-DBS. RESULTS Eight patients underwent DBS; mean age of onset was 7.5 ± 4.8 years (7 were male). Mean age at DBS was 14.1 ± 4.6 years. Etiology of dystonia was primary in 6 patients and secondary in 2. There was significant improvement of BFMDR movement as well as BFMDR disability scales in 6 patients with primary dystonia with modest improvement in those scales in 2 patients with secondary dystonia. Hardware-related problems were observed in 2 and infection was noted in 1. CONCLUSIONS GPi DBS is an effective and safe therapy in pediatric patients with primary as well as selected cases of secondary dystonia.
Collapse
Affiliation(s)
- Partha S Ghosh
- Pediatric Neurology Center, Children's Hospital, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
45
|
Air EL, Ostrem JL, Sanger TD, Starr PA. Deep brain stimulation in children: experience and technical pearls. J Neurosurg Pediatr 2011; 8:566-74. [PMID: 22132914 DOI: 10.3171/2011.8.peds11153] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Deep brain stimulation (DBS) is an established technique for the treatment of several movement disorders in adults. However, the technical approach, complications, and results of DBS in children have not been well documented. METHODS A database of DBS implantations performed at a single institution, prospectively established in 1998, was reviewed for patients who received DBS prior to the age of 18. Diagnoses, surgical technique, and complications were noted. Outcomes were assessed using standard rating scales of neurological function. RESULTS Of 815 patients undergoing DBS implantation over a 12-year period, 31 were children (mean age at surgery 13.2 years old, range 4-17 years old). Diagnoses included the following: DYT1 primary dystonia (autosomal dominant, Tor1AΔGAG mutation, 10 cases), non-DYT1 primary dystonia (3 cases), secondary dystonia (11 cases), neurodegeneration with brain iron accumulation (NBIA, 3 cases), levodopa-responsive parkinsonism (2 cases), Lesch-Nyhan disease (1 case), and glutaric aciduria Type 1 (1 case). Six children ages 15-17 years old underwent awake microelectrode-guided surgery. For 25 children operated under general anesthesia, the surgical technique evolved from microelectrode-guided surgery to image-guided surgeries using real-time intraoperative MR imaging or CT for lead location confirmation. Complications included 5 hardware infections, all in children younger than 10 years old. At 1 year after implantation, patients with DYT1 dystonia had a mean improvement in the Burke-Fahn-Marsden Dystonia Rating Scale movement subscore of 75%, while those with secondary dystonia had only small improvements. Outcomes in the 3 children with NBIA were disappointing. CONCLUSIONS Results of DBS in children with primary and secondary dystonias were similar to those in adults, with excellent results for DYT1 dystonia in children without fixed orthopedic deformity and much more modest results in secondary dystonia. In contrast to reported experience in adults with NBIA, these results in children with NBIA were poor. Infection risk was highest in the youngest patients.
Collapse
Affiliation(s)
- Ellen L Air
- Department of Neurosurgery, University of California, San Francisco, CA 94143-0221, USA
| | | | | | | |
Collapse
|
46
|
Ellis TL. Dystonia and the role of deep brain stimulation. ISRN SURGERY 2011; 2011:193718. [PMID: 22084748 PMCID: PMC3197009 DOI: 10.5402/2011/193718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 11/23/2022]
Abstract
Dystonia is a painful, disabling disease whose cause in many cases remains unknown. It has historically been treated with a variety methodologies including baclofen pumps, Botox injection, peripheral denervation, and stereotactic surgery. Deep brain stimulation (DBS) is emerging as a viable treatment option for selected patients with dystonia. Results of DBS for dystonia appear to be more consistently superior in patients with primary versus secondary forms of the disorder. Patients with secondary dystonia, due to a variety of causes, may still be candidates for DBS surgery, although the results may not be as consistently good. The procedure is relatively safe with a small likelihood of morbidity and mortality. A randomized trial is needed to determine who are the best patients and when it is best to proceed with surgery.
Collapse
Affiliation(s)
- Thomas L Ellis
- Wake Forest School of Medicine, Wake Forest University, Medical Center Boulevard, Winston Salem, NC 27157, USA
| |
Collapse
|
47
|
|