1
|
Bhatt KS, Singh A, Marwaha GS, Ravendranathan N, Sandhu IS, Kim K, Singh E, Frisbee JC, Singh KK. Different Mechanisms in Doxorubicin-Induced Neurotoxicity: Impact of BRCA Mutations. Int J Mol Sci 2025; 26:4736. [PMID: 40429877 PMCID: PMC12111927 DOI: 10.3390/ijms26104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The genotoxic drug doxorubicin (Dox) remains one of the most powerful chemotherapeutic options available for a wide range of cancers including breast, ovarian, and other cancers. However, emerging evidence links Dox treatment with chemotherapy-induced cognitive impairment, a condition that is popularly referred to as Dox-induced neurotoxicity or "chemobrain", which limits the use of the drug. There are no specific treatments for Dox-induced neurotoxicity, only interventions to mitigate the neurotoxic effects of the drug. Accumulating evidence indicates that DNA damage, oxidative stress, dysregulation of autophagy and neurogenesis, inflammation, and apoptosis play central roles in Dox-induced neurotoxicity. Additionally, germline mutations in the tumour suppressor genes breast cancer susceptibility genes 1 and 2 (BRCA1 and BRCA2) increase the risk of breast, ovarian, and related cancers. BRCA1 and BRCA2 are distinct proteins that play crucial, unique roles in homologous recombination-mediated double-stranded break repair. Furthermore, BRCA1 and 2 mitigate oxidative stress in both neural cells and brain microvascular endothelial cells, which suggests that they have a critical role as regulators of pathways central to the development of Dox-induced neurotoxicity. Despite research on the effects of Dox on cognitive function, there is a gap in knowledge about the role of BRCA1 and BRCA2 in Dox-induced neurotoxicity. In this review, we discuss existing findings about the role of different mechanisms and the role of BRCA1 and BRCA2 in Dox-induced neurotoxicity, along with future perspectives.
Collapse
Affiliation(s)
- Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
| | - Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
| | - Gursharan S. Marwaha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
| | - Inderbir S. Sandhu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
| | - Kristen Kim
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
| | - Eesha Singh
- London Central Secondary School, London, ON N6B 2P8, Canada;
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (K.S.B.); (A.S.); (G.S.M.); (N.R.); (I.S.S.); (K.K.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Jiang H, Zhang J, Jia D, Liu L, Gao J, Zhang B, Dong Z, Sun X, Yang W, Ou T, Ding S, He L, Shi Y, Hu K, Sun A, Ge J. Histidine triad nucleotide-binding protein 2 attenuates doxorubicin-induced cardiotoxicity through restoring lysosomal function and promoting autophagy in mice. MedComm (Beijing) 2025; 6:e70075. [PMID: 39968501 PMCID: PMC11831189 DOI: 10.1002/mco2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapy drug widely used against various cancers but is limited by severe cardiotoxicity. Mitochondria-lysosome interactions are crucial for cellular homeostasis. This study investigates the role of histidine triad nucleotide-binding protein 2 (HINT2) in DOX-induced cardiotoxicity (DIC). We found that HINT2 expression was significantly upregulated in the hearts of DOX-treated mice. Cardiac-specific Hint2 knockout mice exhibited significantly worse cardiac dysfunction, impaired autophagic flux, and lysosomal dysfunction after DOX treatment. Mechanistically, HINT2 deficiency reduced oxidative phosphorylation complex I activity and disrupted the nicotinamide adenine dinucleotide NAD+/NADH ratio, impairing lysosomal function. Further, HINT2 deficiency suppressed sterol regulatory element binding protein 2 activity, downregulating transcription factor A mitochondrial, a critical regulator of complex I. Nicotinamide mononucleotide (NMN) supplementation restored lysosomal function in vitro, while cardiac-specific Hint2 overexpression using adeno-associated virus 9 or adenovirus alleviated DIC both in vivo and in vitro. These findings highlight HINT2 as a key cardioprotective factor that mitigates DIC by restoring the NAD+/NADH ratio, lysosomal function, and autophagy. Therapeutic strategies enhancing HINT2 expression or supplementing NMN may reduce cardiac damage and heart failure caused by DOX.
Collapse
|
3
|
Casso-Chapa B, González NAV, Le NT, Palaskas NL, Nead KT, Eutsey LP, Samanthapudi VSK, Osborn AM, Lee J, Mejia G, Hoang O, Lin SH, Deswal A, Herrmann J, Wang G, Kirkland JL, Krishnan S, Wehrens XH, Chini EN, Yusuf SW, Iliescu CA, Jain A, Burks JK, Seeley E, Lorenzi PL, Chau KM, Mendoza KCO, Grumbach IM, Brookes PS, Hanssen NM, de Winther MP, Yvan-Charvet L, Kotla S, Schadler K, Abe JI. Reevaluating Anti-Inflammatory Therapy: Targeting Senescence to Balance Anti-Cancer Efficacy and Vascular Disease. Arterioscler Thromb Vasc Biol 2025; 45:372-385. [PMID: 39817327 PMCID: PMC11864897 DOI: 10.1161/atvbaha.124.319870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression. Anti-inflammatory therapy, therefore, presents a unique dilemma for cancer survivors: while it may decrease cardiovascular risk, it might also promote cancer growth and metastasis by suppressing the immune response. Senescence presents a potentially targetable solution to this challenge; senescence increases the risk of both cancer therapy resistance and vascular disease. Exercise, notably, shows promise in delaying this premature senescence, potentially improving cancer outcomes and lowering vascular disease risk post-treatment. This review focuses on the long-term impact of cancer therapies on vascular health. We underscore the importance of modulating senescence to balance cancer treatment's effectiveness and its vascular impact, and we emphasize investigating the role of exercise-mediated suppression of senescence in improving cancer survivorship.
Collapse
Affiliation(s)
- Bernardo Casso-Chapa
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Norma Alicia Vazquez González
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kevin T. Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lydia P. Eutsey
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Cancer Center Support Grant & Extramural Research Development, UT MD Anderson Cancer Center, Houston, TX
| | | | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonghae Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gilbert Mejia
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Oanh Hoang
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - James L. Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xander H.T. Wehrens
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cezar A. Iliescu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jared K. Burks
- Department of Leukemia, Division of Center Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erin Seeley
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh M. Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Keila Carolina Ostos Mendoza
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | | | - Paul S. Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Nordin M.J. Hanssen
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, the Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Immunology and Infectious Diseases (AII), Inflammatory Diseases Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Podyacheva E, Snezhkova J, Onopchenko A, Dyachuk V, Toropova Y. The Role of MicroRNAs in the Pathogenesis of Doxorubicin-Induced Vascular Remodeling. Int J Mol Sci 2024; 25:13335. [PMID: 39769102 PMCID: PMC11728060 DOI: 10.3390/ijms252413335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity. miRNAs, such as miR-21, miR-22, miR-25, miR-126, miR-140-5p, miR-330-5p, miR-146, miR-143, miR-375, miR-125b, miR-451, miR-34a-5p, and miR-9, influence signaling pathways like TGF-β/Smad, AMPKa/SIRT, NF-κB, mTOR, VEGF, and PI3K/AKT/Nrf2, impacting vascular homeostasis, angiogenesis, and endothelial-to-mesenchymal transition. Despite existing studies, gaps remain in understanding the full spectrum of miRNAs involved and their downstream effects on vascular remodeling. This review synthesizes the current knowledge on miRNA dysregulation during DOX exposure, focusing on their dual roles in cardiovascular pathology and tumor progression. Strategies to reduce DOX cardiotoxicity include modulating miRNA expression to restore signaling balance, targeting pro-inflammatory and pro-fibrotic pathways, and leveraging miRNA inhibitors or mimics. This review aims to organize and integrate the existing knowledge on the role of miRNAs in vascular remodeling, particularly in the contexts of DOX treatment and the progression of various cardiovascular diseases, including their potential involvement in tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia or (E.P.); (J.S.); (A.O.); (V.D.)
| |
Collapse
|
5
|
Aung WM, Sahai SK. Approach to Patients with Cancer Going to Surgery. Med Clin North Am 2024; 108:1171-1183. [PMID: 39341620 DOI: 10.1016/j.mcna.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The preoperative care of patients with cancer plays a pivotal role in ensuring optimal outcomes and enhancing the overall quality of life for individuals undergoing surgical interventions. This review aims to provide a comprehensive overview of the key considerations, challenges, and strategies involved in the preoperative management of oncology patients. We delve into the multidisciplinary approach required to address the unique needs of this patient population, emphasizing the importance of collaboration among surgeons, oncologists, anesthesiologists, primary care physicians, hospitalists, and other health care professionals.
Collapse
Affiliation(s)
- Win M Aung
- Department of Medicine, University of Florida School of Medicine, UF Health, 653 West 8th Street, Jacksonville, FL 32209, USA.
| | - Sunil K Sahai
- Division of General Internal Medicine, Department of Medicine, The University of Texas Medical Branch, 4.174 John Sealy Annex, 301 University Boulevard, Galveston, TX 77550, USA
| |
Collapse
|
6
|
Singh A, Ravendranathan N, Frisbee JC, Singh KK. Complex Interplay between DNA Damage and Autophagy in Disease and Therapy. Biomolecules 2024; 14:922. [PMID: 39199310 PMCID: PMC11352539 DOI: 10.3390/biom14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer, a multifactorial disease characterized by uncontrolled cellular proliferation, remains a global health challenge with significant morbidity and mortality. Genomic and molecular aberrations, coupled with environmental factors, contribute to its heterogeneity and complexity. Chemotherapeutic agents like doxorubicin (Dox) have shown efficacy against various cancers but are hindered by dose-dependent cytotoxicity, particularly on vital organs like the heart and brain. Autophagy, a cellular process involved in self-degradation and recycling, emerges as a promising therapeutic target in cancer therapy and neurodegenerative diseases. Dysregulation of autophagy contributes to cancer progression and drug resistance, while its modulation holds the potential to enhance treatment outcomes and mitigate adverse effects. Additionally, emerging evidence suggests a potential link between autophagy, DNA damage, and caretaker breast cancer genes BRCA1/2, highlighting the interplay between DNA repair mechanisms and cellular homeostasis. This review explores the intricate relationship between cancer, Dox-induced cytotoxicity, autophagy modulation, and the potential implications of autophagy in DNA damage repair pathways, particularly in the context of BRCA1/2 mutations.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Koukorava C, Ahmed K, Almaghrabi S, Pointon A, Haddrick M, Cross MJ. Anticancer drugs and cardiotoxicity: the role of cardiomyocyte and non-cardiomyocyte cells. Front Cardiovasc Med 2024; 11:1372817. [PMID: 39081368 PMCID: PMC11287221 DOI: 10.3389/fcvm.2024.1372817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024] Open
Abstract
Cardiotoxicity can be defined as "chemically induced heart disease", which can occur with many different drug classes treating a range of diseases. It is the primary cause of drug attrition during pre-clinical development and withdrawal from the market. Drug induced cardiovascular toxicity can result from both functional effects with alteration of the contractile and electrical regulation in the heart and structural changes with morphological changes to cardiomyocytes and other cardiac cells. These adverse effects result in conditions such as arrhythmia or a more serious reduction in left ventricular ejection fraction (LVEF), which can lead to heart failure and death. Anticancer drugs can adversely affect cardiomyocyte function as well as cardiac fibroblasts and cardiac endothelial cells, interfering in autocrine and paracrine signalling between these cell types and ultimately altering cardiac cellular homeostasis. This review aims to highlight potential toxicity mechanisms involving cardiomyocytes and non-cardiomyocyte cells by first introducing the physiological roles of these cells within the myocardium and secondly, identifying the physiological pathways perturbed by anticancer drugs in these cells.
Collapse
Affiliation(s)
- Chrysa Koukorava
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shrouq Almaghrabi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
8
|
Yan T, Yu H, Li T, Dong Y. Mechanisms of Cardiovascular Toxicities Induced by Cancer Therapies and Promising Biomarkers for Their Prediction: A Scoping Review. Heart Lung Circ 2024; 33:605-638. [PMID: 38242833 DOI: 10.1016/j.hlc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/21/2024]
Abstract
AIM With the advancement of anti-cancer medicine, cardiovascular toxicities due to cancer therapies are common in oncology patients, resulting in increased mortality and economic burden. Cardiovascular toxicities caused by cancer therapies include different severities of cardiomyopathy, arrhythmia, myocardial ischaemia, hypertension, and thrombosis, which may lead to left ventricular dysfunction and heart failure. This scoping review aimed to summarise the mechanisms of cardiovascular toxicities following various anti-cancer treatments and potential predictive biomarkers for early detection. METHODS PubMed, Cochrane, Embase, Web of Science, Scopus, and CINAHL databases were searched for original studies written in English related to the mechanisms of cardiovascular toxicity induced by anti-cancer therapies, including chemotherapy, targeted therapy, immunotherapy, radiation therapy, and relevant biomarkers. The search and title/abstract screening were conducted independently by two reviewers, and the final analysed full texts achieved the consensus of the two reviewers. RESULTS A total of 240 studies were identified based on their titles and abstracts. In total, 107 full-text articles were included in the analysis. Cardiomyocyte and endothelial cell apoptosis caused by oxidative stress injury, activation of cell apoptosis, blocking of normal cardiovascular protection signalling pathways, overactivation of immune cells, and myocardial remodelling were the main mechanisms. Promising biomarkers for anti-cancer therapies related to cardiovascular toxicity included placental growth factor, microRNAs, galectin-3, and myeloperoxidase for the early detection of cardiovascular toxicity. CONCLUSION Understanding the mechanisms of cardiovascular toxicity following various anti-cancer treatments could provide implications for future personalised treatment methods to protect cardiovascular function. Furthermore, specific early sensitive and stable biomarkers of cardiovascular system damage need to be identified to predict reversible damage to the cardiovascular system and improve the effects of anti-cancer agents.
Collapse
Affiliation(s)
- Tingting Yan
- Nursing Department, Liaocheng Vocational and Technical College, Liaocheng City, Shandong Province, China
| | - Hailong Yu
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Tai Li
- Nursing Department, Liaocheng Vocational and Technical College, Liaocheng City, Shandong Province, China
| | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
He J, Hou L, Liu Q, Zhou R. Irisin links Claudin-5 preservation and Mfn2-mediated mitochondrial dynamics to resist doxorubicin-induced cardiac endothelial damage. Biochem Biophys Res Commun 2024; 696:149501. [PMID: 38232667 DOI: 10.1016/j.bbrc.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Irisin is protective in the cardiac microenvironment and can resist doxorubicin-induced cardiotoxicity. The purpose of this study was to investigate the connection between Irisin, endothelial cell integrity, and mitochondrial dynamics. Primary cardiac microvascular endothelial cells (CMECs) were used to explore the regulatory effects of Irisin on tight junction proteins, mitochondrial dynamics, β-catenin expression, and transcriptional activity. Results showed that Irisin can suppress doxorubicin-induced upregulation of MMP2 and MMP9, thereby reducing the degradation of tight junction proteins (ZO-1 and Claudin-5) and VE-cadherin. The preservation of Claudin-5 contributes to maintaining Mfn2 expression, which in turn supports mitochondrial fusion. Although Irisin restores doxorubicin-induced downregulation of β-catenin, it concurrently limits β-catenin transcriptional activity via Mfn2-mediated sulfenylation. Therefore, this study revealed a novel mechanism linking the protective effects of Irisin on the tight junction proteins and mitochondrial dynamics upon doxorubicin exposure.
Collapse
Affiliation(s)
- Jun He
- Department of Cardiology, Neijiang Second People's Hospital, Neijiang, 641000, China
| | - Lin Hou
- Department of Nursing, Neijiang Second People's Hospital, Neijiang, 641000, China
| | - Quanwei Liu
- Department of Cardiology, Neijiang Second People's Hospital, Neijiang, 641000, China
| | - Rui Zhou
- National Regional Children's Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital. Xi'an 710003, China.
| |
Collapse
|
10
|
Slavcheva SE, Angelov A. HER2-Targeted Therapy-From Pathophysiology to Clinical Manifestation: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:489. [PMID: 38132657 PMCID: PMC10743885 DOI: 10.3390/jcdd10120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Trastuzumab is the primary treatment for all stages of HER2-overexpressing breast cancer in patients. Though discovered over 20 years ago, trastuzumab-induced cardiotoxicity (TIC) remains a research topic in cardio-oncology. This review explores the pathophysiological basis of TIC and its clinical manifestations. Their understanding is paramount for early detection and cardioprotective treatment. Trastuzumab renders cardiomyocytes susceptible by inhibiting the cardioprotective NRG-1/HER2/HER4 signaling pathway. The drug acts on HER2-receptor-expressing cardiomyocytes, endothelium, and cardiac progenitor cells (see the Graphical Abstract). The activation of immune cells, fibroblasts, inflammation, and neurohormonal systems all contribute to the evolution of TIC. A substantial amount of research demonstrates that trastuzumab induces overt and subclinical left ventricular (LV) systolic failure. Data suggest the development of right ventricular damage, LV diastolic dysfunction, and heart failure with preserved ejection fraction. Further research is needed to define a chronological sequence of cardiac impairments to guide the proper timing of cardioprotection implementation.
Collapse
Affiliation(s)
- Svetoslava Elefterova Slavcheva
- First Department of Internal Diseases, EC Cardiology, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9000 Varna, Bulgaria;
- First Cardiology Clinic with Intensive Cardiology Activity, University Multiprofessional Hospital of Active Treatment “St. Marina”, 9000 Varna, Bulgaria
| | - Atanas Angelov
- First Department of Internal Diseases, EC Cardiology, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9000 Varna, Bulgaria;
- First Cardiology Clinic with Intensive Cardiology Activity, University Multiprofessional Hospital of Active Treatment “St. Marina”, 9000 Varna, Bulgaria
| |
Collapse
|
11
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
12
|
Podyacheva E, Danilchuk M, Toropova Y. Molecular mechanisms of endothelial remodeling under doxorubicin treatment. Biomed Pharmacother 2023; 162:114576. [PMID: 36989721 DOI: 10.1016/j.biopha.2023.114576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Doxorubicin (DOX) is an effective antineoplastic agent used to treat various types of cancers. However, its use is limited by the development of cardiotoxicity, which may result in heart failure. The exact mechanisms underlying DOX-induced cardiotoxicity are not fully understood, but recent studies have shown that endothelial-mesenchymal transition (EndMT) and endothelial damage play a crucial role in this process. EndMT is a biological process in which endothelial cells lose their characteristics and transform into mesenchymal cells, which have a fibroblast-like phenotype. This process has been shown to contribute to tissue fibrosis and remodeling in various diseases, including cancer and cardiovascular diseases. DOX-induced cardiotoxicity has been demonstrated to increase the expression of EndMT markers, suggesting that EndMT may play a critical role in the development of this condition. Furthermore, DOX-induced cardiotoxicity has been shown to cause endothelial damage, leading to the disruption of the endothelial barrier function and increased vascular permeability. This can result in the leakage of plasma proteins, leading to tissue edema and inflammation. Moreover, DOX can impair the production of nitric oxide, endothelin-1, neuregulin, thrombomodulin, thromboxane B2 etc. by endothelial cells, leading to vasoconstriction, thrombosis and further impairing cardiac function. In this regard, this review is devoted to the generalization and structuring of information about the known molecular mechanisms of endothelial remodeling under the action of DOX.
Collapse
|
13
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
14
|
Watabe T, Takahashi K, Pietras K, Yoshimatsu Y. Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system. Semin Cancer Biol 2023; 92:130-138. [PMID: 37068553 DOI: 10.1016/j.semcancer.2023.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-β (TGF-β), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Kristian Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, 223 81 Lund, Sweden.
| | - Yasuhiro Yoshimatsu
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
15
|
Mondru AK, Aljasir MA, Alrumayh A, Nithianandarajah GN, Ahmed K, Muller J, Goldring CEP, Wilm B, Cross MJ. VEGF Stimulates Activation of ERK5 in the Absence of C-Terminal Phosphorylation Preventing Nuclear Localization and Facilitating AKT Activation in Endothelial Cells. Cells 2023; 12:967. [PMID: 36980305 PMCID: PMC10047687 DOI: 10.3390/cells12060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival.
Collapse
Affiliation(s)
- Anil Kumar Mondru
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Mohammad A. Aljasir
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Ahmed Alrumayh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Gopika N. Nithianandarajah
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Jurgen Muller
- Cardiovascular Research Group, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Christopher E. P. Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
16
|
Feng J, Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs 2023; 23:231-246. [PMID: 36841924 DOI: 10.1007/s40256-023-00573-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
The use of chemotherapeutic agents is becoming more frequent as the proportion of new oncology patients increases worldwide, with prolonged survival after treatment. As one of the most popular chemotherapy drugs, doxorubicin plays a substantial role in the treatment of tumors. Unfortunately, the use of doxorubicin is associated with several adverse effects, particularly severe cardiotoxicity that can be life-threatening, which greatly limits its clinical use. For decades, scientists have tried to explore many cardioprotective agents and therapeutic approaches, but their efficacy remains controversial, and some drugs have even brought about significant adverse effects. The concrete molecular mechanism of doxorubicin-induced cardiotoxicity is still to be unraveled, yet endothelial damage is gradually being identified as an important mechanism triggering the development and progression of doxorubicin-induced cardiotoxicity. Endothelial-to-mesenchymal transition (EndMT), a fundamental process regulating morphogenesis in multicellular organisms, is recognized to be associated with endothelial damage repair and acts as an important factor in the progression of cardiovascular diseases, tumors, and rheumatic immune diseases. Mounting evidence suggests that endothelial-mesenchymal transition may play a non-negligible role in doxorubicin-induced cardiotoxicity. In this paper, we reviewed the molecular mechanisms and signaling pathways of EndMT and outlined the molecular mechanisms of doxorubicin-induced cardiotoxicity and the current therapeutic advances. Furthermore, we summarized the basic principles of doxorubicin-induced endothelial-mesenchymal transition that lead to endothelial dysfunction and cardiotoxicity, aiming to provide suggestions or new ideas for the prevention and treatment of doxorubicin-induced endothelial and cardiac injury.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
17
|
Chen CT, Huang TW, Chou YS, Cheng CF, Wu HB, Hsu CH, Hsiu H. Effects of anthracycline chemotherapy and Kuan-Sin-Yin on the spectral indices of arterial pulse waveforms in breast cancer patients. Clin Hemorheol Microcirc 2023; 84:345-358. [PMID: 37334580 DOI: 10.3233/ch-221602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The vascular structure and function are potentially useful biomarkers for tumor detection. Treatment with chemotherapeutic agents may impair vascular function and increase the risk of cardiovascular disease. This study aimed to use noninvasive pulse waveform measurements to identify differences in the frequency-domain indices of the pulse waveform in breast-cancer patients following anthracycline chemotherapy between with (Group KSY) and without (Group NKSY) receiving Kuan-Sin-Yin (KSY) treatment.Radial blood pressure waveform (BPW) signals were measured noninvasively for 3 minutes in 31 patients, and the FACT-G, BFI-T, and EORTC QLQ-C30 questionnaires were administered. The following pulse indices were calculated for 10 harmonics: the amplitude proportion and its coefficient of variation, and the phase angle and its standard deviation.The changes in spectral BPW indices were more prominent in Group NKSY than in Group KSY, especially for the decreases in BPW variability indices. Scores on the FACT-G, BFI-T, and EORTC QLQ-C30 questionnaires suggested that the quality of life following chemotherapy was better in Group KSY.The identified decreases in pulse variability indices could be related to the greater impairment of regulatory activities in Group NKSY. The present findings may be meaningful in developing techniques with advantages such as being noninvasive and time-saving to evaluate the blood supply and physiological conditions following chemotherapy or other treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Chao-Tsung Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Traditional Chinese Medicine, Taipei City Hospital RenAi Branch, Taipei, Taiwan
- General Education Center, University of Taipei, Taipei, Taiwan
| | - Tzu-Wei Huang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Sheng Chou
- Department of Medicine, Division of Hematology and Oncology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Chi-Feng Cheng
- Department of Medicine, Division of Hematology and Oncology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Hung-Bo Wu
- Department of Medicine, Division of Hematology and Oncology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Hsin Hsiu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Biomedical Engineering Research Center, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Cobb MS, Tao S, Shortt K, Girgis M, Hauptman J, Schriewer J, Chin Z, Dorfman E, Campbell K, Heruth DP, Shohet RV, Dawn B, Konorev EA. Smad3 promotes adverse cardiovascular remodeling and dysfunction in doxorubicin-treated hearts. Am J Physiol Heart Circ Physiol 2022; 323:H1091-H1107. [PMID: 36269647 PMCID: PMC9678413 DOI: 10.1152/ajpheart.00312.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 01/21/2023]
Abstract
Many anticancer therapies cause serious cardiovascular complications that degrade quality of life and cause early mortality in treated patients. Specifically, doxorubicin is known as an effective anticancer agent that causes cardiomyopathy in treated patients. There has been growing interest in defining the role of endothelial cells in cardiac damage by doxorubicin. We have shown in the present study that endothelial nuclei accumulate more intravenously administered doxorubicin than other cardiac cell types. Doxorubicin enhanced cardiac production of the transforming growth factor-β (TGF-β) ligands and nuclear translocation of phospho-Smad3 in both cultured and in vivo cardiac endothelial cells. To examine the role of the TGF-β/mothers against decapentaplegic homolog 3 (Smad3) pathway in cardiac damage by doxorubicin, we used both Smad3 shRNA stable endothelial cell lines and Smad3-knockout mice. We demonstrated using endothelial transcriptome analysis that upregulation of the TGF-β and inflammatory cytokine/cytokine receptor pathways, as well as suppression of cell cycle and angiogenesis by doxorubicin, were alleviated in Smad3-deficient endothelial cells. The results of transcriptomic analysis were validated using qPCR, immunoblotting, and ex vivo aortic ring sprouting assays. Similarly, increased cardiac expression of cytokines and chemokines observed in treated wild-type mice was diminished in treated Smad3-knockout animals. We also detected increased end-diastolic diameter and depressed systolic function in doxorubicin-treated wild-type but not Smad3-knockout mice. This work provides evidence for the critical role of the canonical TGF-β/Smad3 pathway in cardiac damage by doxorubicin.NEW & NOTEWORTHY Microvascular endothelial cells in the heart accumulate more intravenously administered doxorubicin than nonendothelial cardiac cell types. The treatment enhanced the TGF-β/Smad3 pathway and elicited endothelial cell senescence and inflammatory responses followed by adverse cardiac remodeling and dysfunction in wild-type but not Smad3-deficient animals. Our study suggests that the TGF-β/Smad3 pathway contributes to the development of doxorubicin cardiomyopathy and the potential value of novel approaches to ameliorate cardiotoxicity by targeting the Smad3 transcription factor.
Collapse
Affiliation(s)
- Melissa S Cobb
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Shixin Tao
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Katherine Shortt
- Ambry Genetics, Department of Advanced Analytics, Aliso Viejo, California
| | - Magdy Girgis
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Jeryl Hauptman
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Jill Schriewer
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Zaphrirah Chin
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Edward Dorfman
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Kyle Campbell
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Daniel P Heruth
- The Children's Mercy Research Institute, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Eugene A Konorev
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| |
Collapse
|
19
|
Lima EA, Wyde RA, Sorace AG, Yankeelov TE. Optimizing combination therapy in a murine model of HER2+ breast cancer. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 402:115484. [PMID: 37800167 PMCID: PMC10552906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Human epidermal growth factor receptor 2 positive (HER2+) breast cancer is frequently treated with drugs that target the HER2 receptor, such as trastuzumab, in combination with chemotherapy, such as doxorubicin. However, an open problem in treatment design is to determine the therapeutic regimen that optimally combines these two treatments to yield optimal tumor control. Working with data quantifying temporal changes in tumor volume due to different trastuzumab and doxorubicin treatment protocols in a murine model of human HER2+ breast cancer, we propose a complete framework for model development, calibration, selection, and treatment optimization to find the optimal treatment protocol. Through different assumptions for the drug-tumor interactions, we propose ten different models to characterize the dynamic relationship between tumor volume and drug availability, as well as the drug-drug interaction. Using a Bayesian framework, each of these models are calibrated to the dataset and the model with the highest Bayesian information criterion weight is selected to represent the biological system. The selected model captures the inhibition of trastuzumab due to pre-treatment with doxorubicin, as well as the increase in doxorubicin efficacy due to pre-treatment with trastuzumab. We then apply optimal control theory (OCT) to this model to identify two optimal treatment protocols. In the first optimized protocol, we fix the maximum dosage for doxorubicin and trastuzumab to be the same as the maximum dose delivered experimentally, while trying to minimize tumor burden. Within this constraint, optimal control theory indicates the optimal regimen is to first deliver two doses of trastuzumab on days 35 and 36, followed by two doses of doxorubicin on days 37 and 38. This protocol predicts an additional 45% reduction in tumor burden compared to that achieved with the experimentally delivered regimen. In the second optimized protocol we fix the tumor control to be the same as that obtained experimentally, and attempt to reduce the doxorubicin dose. Within this constraint, the optimal regimen is the same as the first optimized protocol but uses only 43% of the doxorubicin dose used experimentally. This protocol predicts tumor control equivalent to that achieved experimentally. These results strongly suggest the utility of mathematical modeling and optimal control theory for identifying therapeutic regimens maximizing efficacy and minimizing toxicity.
Collapse
Affiliation(s)
- Ernesto A.B.F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
- Texas Advanced Computing Center, The University of Texas at Austin, United States of America
| | - Reid A.F. Wyde
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, United States of America
- Department of Biomedical Engineering, The University of Alabama at Birmingham, United States of America
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, United States of America
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, United States of America
- Department of Diagnostic Medicine, The University of Texas at Austin, United States of America
- Department of Oncology, The University of Texas at Austin, United States of America
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, United States of America
| |
Collapse
|
20
|
Xie S, Yang Y, Luo Z, Li X, Liu J, Zhang B, Li W. Role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity: A systematic review. iScience 2022; 25:105283. [PMID: 36300001 PMCID: PMC9589207 DOI: 10.1016/j.isci.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiotoxicity induced by anticancer drugs interferes with the continuation of optimal treatment, inducing life-threatening risks or leading to long-term morbidity. The heart is a complex pluricellular organ comprised of cardiomyocytes and non-cardiomyocytes. Although the study of these cell populations has been often focusing on cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarized the role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity, including the mechanism of direct damage to resident non-cardiomyocytes, cardiomyocytes injury caused by paracrine modality, myocardial inflammation induced by transient cell populations and the protective agents that focused on non-cardiomyocytes.
Collapse
Affiliation(s)
- Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
21
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
22
|
Terwoord JD, Beyer AM, Gutterman DD. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol Ther 2022; 237:108116. [PMID: 35063569 PMCID: PMC9294076 DOI: 10.1016/j.pharmthera.2022.108116] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Recent strides in anti-cancer therapeutics have improved longevity and led to a growing population of cancer survivors, who are increasingly likely to die of other causes. Treatment-induced cardiotoxicity is a complication of several therapeutic agents with acute and long-term consequences for cancer patients. Vascular endothelial dysfunction is a precursor and hallmark of ischemic coronary disease and may play a role in anti-cancer therapy-induced cardiotoxicity. This review summarizes clinical evidence for endothelial dysfunction following anti-cancer therapy and extends the discussion to include the impact of therapeutic agents on conduit arteries and the microcirculation. We highlight the role of innate immune system activation and cross-talk between inflammation and oxidative stress as pathogenic mechanisms underlying anti-cancer therapy-induced vascular toxicity. Understanding the impact of anti-cancer agents on the vascular endothelium will inform therapeutic approaches to prevent or reverse treatment-induced cardiotoxicity and may serve as an important tool to predict, monitor, and prevent adverse cardiovascular outcomes in patients undergoing treatment.
Collapse
Affiliation(s)
- Janée D Terwoord
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
23
|
Moreno-García DM, Salas-Rojas M, Fernández-Martínez E, López-Cuellar MDR, Sosa-Gutierrez CG, Peláez-Acero A, Rivero-Perez N, Zaragoza-Bastida A, Ojeda-Ramírez D. Sea urchins: an update on their pharmacological properties. PeerJ 2022; 10:e13606. [PMID: 35811815 PMCID: PMC9261939 DOI: 10.7717/peerj.13606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
Sea urchins are a group of benthic invertebrates characterized by having rigid globose bodies, covered in spines, and have an innate immune system that has allowed them to survive in the environment and defend against many pathogens that affect them. They are consumed for their unique flavor, but also for possessing a rich source of bioactive compounds which make them a source for a wide array of medicinal properties. Thus, these may be used to discover and develop new drugs such as anti-bacterials, anti-carcinogenics and anti-virals. Precisely for those reasons, this revision is centered on the known biological activities in various sea urchin species. Recently, the potential pharmacological benefits of nine sea urchin species [Diadema antillarum (Philippi 1845), Echinometra mathaei (de Blainville), Evechinus chloroticus (Valenciennes), Mesocentrotus nudus (Agassiz, 1863), Paracentrotus lividus (Lamarck, 1816), Scaphechinus mirabilis (Agazzis, 1863), Stomopneustes variolaris (Lamarck, 1816), Tripneustes depressus (Agassiz, 1863), and Tripneustes ventricosus (Lamarck, 1816)] have been evaluated. Our work includes a comprehensive review of the anti-fungal, anti-parasitic, anti-inflammatory, hepatoprotective, anti-viral, anti-diabetic, anti-lipidemic, gastro-protective and anti-cardiotoxic effects. Furthermore, we revised the compounds responsible of these pharmacological effects. This work was intended for a broad readership in the fields of pharmacology, drugs and devices, marine biology and aquaculture, fisheries and fish science. Our results suggest that organic extracts, as well as pure compounds obtained from several parts of sea urchin bodies are effective in vitro and in vivo pharmacological models. As such, these properties manifest the potential use of sea urchins to develop emergent active ingredients.
Collapse
Affiliation(s)
- Dulce María Moreno-García
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Monica Salas-Rojas
- Unidad de Investigación Médica en Inmunología, Unidad Medica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Fernández-Martínez
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico
| | - Ma del Rocío López-Cuellar
- Área Académica de Ingeniería en Alimentos e Ingeniería Agroindustrial. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
| | - Carolina G. Sosa-Gutierrez
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Armando Peláez-Acero
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Deyanira Ojeda-Ramírez
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| |
Collapse
|
24
|
Zhou L, Han Y, Yang Q, Xin B, Chi M, Huo Y, Guo C, Sun X. Scutellarin attenuates doxorubicin-induced oxidative stress, DNA damage, mitochondrial dysfunction, apoptosis and autophagy in H9c2 cells, cardiac fibroblasts and HUVECs. Toxicol In Vitro 2022; 82:105366. [PMID: 35470029 DOI: 10.1016/j.tiv.2022.105366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Studies on doxorubicin (DOX)-induced cardiotoxicity have mainly focused on cardiomyocytes (CMs), but it is unclear whether there are differences in the toxicity degree of DOX to CMs, cardiac fibroblasts (CFs) and endothelial cells (ECs). We used H9c2 cells, rat primary isolated CFs and human umbilical vein endothelial cells (HUVECs) to systematically research the cytotoxicity of DOX. Scutellarin (SCU) is a natural polyphenolic flavonoid that exerts a cardioprotective effect. In the present study, we explored the protective effects of SCU on DOX-induced cytotoxicity in H9c2 cells, CFs and HUVECs. The results showed that DOX decreased cell viability and increased the apoptosis rate, whereas DOX had a greater killing effect on H9c2 cells compared to CFs and HUVECs. DOX significantly elevated oxidative stress, but the malondialdehyde (MDA) levels in H9c2 cells were higher after DOX treatment. In all three cell types, DOX induced DNA damage and mitochondrial dysfunction, it activated apoptosis by activation of Bax/ Bcl-2 and it induced autophagy by inhibiting the Akt/ mTOR pathway. Pretreatment with different concentrations of SCU reversed these phenomena in a dose-dependent manner. Collectively, these results revealed that there were slight differences in DOX-induced cytotoxicity among H9c2 cells, CFs and HUVECs. Furthermore, the cardioprotective effect of SCU may be attributed to attenuation of DOX-induced oxidative stress, DNA damage, mitochondrial dysfunction, apoptosis and autophagy.
Collapse
|
25
|
Graziani S, Scorrano L, Pontarin G. Transient Exposure of Endothelial Cells to Doxorubicin Leads to Long-Lasting Vascular Endothelial Growth Factor Receptor 2 Downregulation. Cells 2022; 11:cells11020210. [PMID: 35053325 PMCID: PMC8773916 DOI: 10.3390/cells11020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (Dox) is an effective antineoplastic drug with serious cardiotoxic side effects that persist after drug withdrawal and can lead to heart failure. Dysregulation of vascular endothelium has been linked to the development of Dox-induced cardiotoxicity, but it is unclear whether and how transient exposure to Dox leads to long-term downregulation of Endothelial Vascular Endothelial Growth Factor Receptor type2 (VEGFR2), essential for endothelial cells function. Using an in vitro model devised to study the long-lasting effects of brief endothelial cells exposure to Dox, we show that Dox leads to sustained protein synthesis inhibition and VEGFR2 downregulation. Transient Dox treatment led to the development of long-term senescence associated with a reduction in VEGFR2 levels that persisted days after drug withdrawal. By analyzing VEGFR2 turnover, we ruled out that its downregulation was depended on Dox-induced autophagy. Conversely, Dox induced p53 expression, reduced mTOR-dependent translation, and inhibited global protein synthesis. Our data contribute to a mechanistic basis to the permanent damage caused to endothelial cells by short-term Dox treatment.
Collapse
Affiliation(s)
- Silvia Graziani
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.G.); (L.S.)
| | - Luca Scorrano
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.G.); (L.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35127 Padova, Italy
| | - Giovanna Pontarin
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.G.); (L.S.)
- Correspondence:
| |
Collapse
|
26
|
Baguma-Nibasheka M, Feridooni T, Zhang F, Pasumarthi KB. Regulation of Transplanted Cell Homing by FGF1 and PDGFB after Doxorubicin Myocardial Injury. Cells 2021; 10:2998. [PMID: 34831221 PMCID: PMC8616453 DOI: 10.3390/cells10112998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
There is no effective treatment for the total recovery of myocardial injury caused by an anticancer drug, doxorubicin (Dox). In this study, using a Dox-induced cardiac injury model, we compared the cardioprotective effects of ventricular cells harvested from 11.5-day old embryonic mice (E11.5) with those from E14.5 embryos. Our results indicate that tail-vein-infused E11.5 ventricular cells are more efficient at homing into the injured adult myocardium, and are more angiogenic, than E14.5 ventricular cells. In addition, E11.5 cells were shown to mitigate the cardiomyopathic effects of Dox. In vitro, E11.5 ventricular cells were more migratory than E14.5 cells, and RT-qPCR analysis revealed that they express significantly higher levels of cytokine receptors Fgfr1, Fgfr2, Pdgfra, Pdgfrb and Kit. Remarkably, mRNA levels for Fgf1, Fgf2, Pdgfa and Pdgfb were also found to be elevated in the Dox-injured adult heart, as were the FGF1 and PDGFB protein levels. Addition of exogenous FGF1 or PDGFB was able to enhance E11.5 ventricular cell migration in vitro, and, whereas their neutralizing antibodies decreased cell migration. These results indicate that therapies raising the levels of FGF1 and PDGFB receptors in donor cells and or corresponding ligands in an injured heart could improve the efficacy of cell-based interventions for myocardial repair.
Collapse
Affiliation(s)
| | | | | | - Kishore B.S. Pasumarthi
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.B.-N.); (T.F.); (F.Z.)
| |
Collapse
|
27
|
Mclaughlin M, Florida-James G, Ross M. Breast cancer chemotherapy vascular toxicity: a review of mediating mechanisms and exercise as a potential therapeutic. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2021; 3:R106-R120. [PMID: 34870095 PMCID: PMC8630759 DOI: 10.1530/vb-21-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 06/02/2023]
Abstract
Breast cancer chemotherapy, although very potent against tumour tissue, results in significant cardiovascular toxicity. The focus of research in this area has been predominantly towards cardiotoxicity. There is limited evidence detailing the impact of such treatment on the vasculature despite its central importance within the cardiovascular system and resultant detrimental effects of damage and dysfunction. This review highlights the impact of chemotherapy for breast cancer on the vascular endothelium. We consider the most likely mechanisms of endothelial toxicity to be through direct damage and dysfunction of the endothelium. There are sharp consequences of these detrimental effects as they can lead to cardiovascular disease. However, there is potential for exercise to alleviate some of the vascular toxicity of chemotherapy, and the evidence for this is provided. The potential role of exercise in protecting against vascular toxicity is explained, highlighting the recent in-human and animal model exercise interventions. Lastly, the mediating mechanisms of exercise protection of endothelial health is discussed, focusing on the importance of exercise for endothelial health, function, repair, inflammation and hyperlipidaemia, angiogenesis, and vascular remodelling. These are all important counteracting measures against chemotherapy-induced toxicity and are discussed in detail.
Collapse
Affiliation(s)
- Marie Mclaughlin
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | | | - Mark Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
28
|
Bakr MH, Radwan E, Shaltout AS, Farrag AA, Mahmoud AR, Abd-Elhamid TH, Ali M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci Rep 2021; 11:18772. [PMID: 34548593 PMCID: PMC8455605 DOI: 10.1038/s41598-021-98206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Tramadol is an opioid extensively used to treat moderate to severe pain; however, prolonged therapy is associated with several tissues damage. Chronic use of tramadol was linked to increased hospitalizations due to cardiovascular complications. Limited literature has described the effects of tramadol on the cardiovascular system, so we sought to investigate these actions and elucidate the underlying mechanisms. Mice received tramadol hydrochloride (40 mg/kg body weight) orally for 4 successive weeks. Oxidative stress, inflammation, and cardiac toxicity were assessed. In addition, eNOS expression was evaluated. Our results demonstrated marked histopathological alteration in heart and aortic tissues after exposure to tramadol. Tramadol upregulated the expression of oxidative stress and inflammatory markers in mice heart and aorta, whereas downregulated eNOS expression. Tramadol caused cardiac damage shown by the increase in LDH, Troponin I, and CK-MB activities in serum samples. Overall, these results highlight the risks of tramadol on the cardiovascular system.
Collapse
Affiliation(s)
- Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Anatomy, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
29
|
Todorova VK, Wei JY, Makhoul I. Subclinical doxorubicin-induced cardiotoxicity update: role of neutrophils and endothelium. Am J Cancer Res 2021; 11:4070-4091. [PMID: 34659877 PMCID: PMC8493405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapy agent that often causes cardiotoxicity. Despite a number of extensive studies, the risk for DOX cardiotoxicity remains unpredictable. The majority of the studies on DOX-induced cardiotoxicity have been focused on the effects on cardiomyocytes that lead to contractile dysfunction. The roles of systemic inflammation, endothelial injury and neutrophil recruitment, all induced by the DOX, are increasingly recognized as the mechanisms that trigger the development and progression of DOX-induced cardiomyopathy. This review explores recent data regarding the possible mechanisms and biomarkers of early subclinical DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Issam Makhoul
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| |
Collapse
|
30
|
Guo F, Hall AR, Tape CJ, Ling S, Pointon A. Intra- and intercellular signaling pathways associated with drug-induced cardiac pathophysiology. Trends Pharmacol Sci 2021; 42:675-687. [PMID: 34092416 DOI: 10.1016/j.tips.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Cardiac physiology and homeostasis are maintained by the interaction of multiple cell types, via both intra- and intercellular signaling pathways. Perturbations in these signaling pathways induced by oncology therapies can reduce cardiac function, ultimately leading to heart failure. As cancer survival increases, related cardiovascular complications are becoming increasingly prevalent, thus identifying the perturbations and cell signaling drivers of cardiotoxicity is increasingly important. Here, we discuss the homotypic and heterotypic cellular interactions that form the basis of intra- and intercellular cardiac signaling pathways, and how oncological agents disrupt these pathways, leading to heart failure. We also highlight the emerging systems biology techniques that can be applied, enabling a deeper understanding of the intra- and intercellular signaling pathways across multiple cell types associated with cardiovascular toxicity.
Collapse
Affiliation(s)
- Fei Guo
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK; Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Andrew R Hall
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Christopher J Tape
- Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK.
| |
Collapse
|
31
|
Hsu PY, Mammadova A, Benkirane-Jessel N, Désaubry L, Nebigil CG. Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Front Cardiovasc Med 2021; 8:694711. [PMID: 34386529 PMCID: PMC8353082 DOI: 10.3389/fcvm.2021.694711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors (VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation therapy evoke vascular toxicity. These anticancer treatments not only affect tumor vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac ECs have a vital role in cardiovascular functions including hemostasis, inflammatory and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this review, we provide a comprehensive overview of the effects of chemotherapeutic agents on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin receptor-1 agonists to maintain endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Canan G. Nebigil
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, FMTS (Fédération de Médecine Translationnelle de l'Université de Strasbourg), Strasbourg, France
| |
Collapse
|
32
|
Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci 2021; 280:119760. [PMID: 34166713 DOI: 10.1016/j.lfs.2021.119760] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Cardiotoxicity is a major side effect of the chemotherapeutic drug doxorubicin (Dox), which is further exacerbated when it is combined with trastuzumab, a standard care approach for Human Epidermal growth factor Receptor-type 2 (HER2) positive cancer patients. However, the molecular mechanisms of the underlying cardiotoxicity of this combination are still mostly elusive. Increased oxidative stress, impaired energetic substrate uses and topoisomerase IIB inhibition are among the biological processes proposed to explain Dox-induced cardiomyocyte dysfunction. Since cardiomyocytes express HER2, trastuzumab can also damage these cells by interfering with neuroregulin-1 signaling and mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and focal adhesion kinase (FAK)-dependent pathways. Nevertheless, Dox and trastuzumab target other cardiac cell types, such as endothelial cells, fibroblasts, cardiac progenitor cells and leukocytes, which can contribute to the clinical cardiotoxicity observed. This review aims to summarize the current knowledge on the cardiac signaling pathways modulated by these two antineoplastic drugs highly used in the management of breast cancer, not only focusing on cardiomyocytes but also to broaden the knowledge of the potential impact on other cells found in the heart.
Collapse
Affiliation(s)
- Miguel Anjos
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Vera M Costa
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mário Santos
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal; UMIB, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
33
|
Cancer therapy-related cardiac dysfunction: is endothelial dysfunction at the heart of the matter? Clin Sci (Lond) 2021; 135:1487-1503. [PMID: 34136902 DOI: 10.1042/cs20210059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Significant improvements in cancer survival have brought to light unintended long-term adverse cardiovascular effects associated with cancer treatment. Although capable of manifesting a broad range of cardiovascular complications, cancer therapy-related cardiac dysfunction (CTRCD) remains particularly common among the mainstay anthracycline-based and human epidermal growth factor receptor-targeted therapies. Unfortunately, the early asymptomatic stages of CTRCD are difficult to detect by cardiac imaging alone, and the initiating mechanisms remain incompletely understood. More recently, circulating inflammatory markers, cardiac biomarkers, microRNAs, and extracellular vesicles (EVs) have been considered as early markers of cardiovascular injury. Concomitantly, the role of the endothelium in regulating cardiac function in the context of CTRCD is starting to be understood. In this review, we highlight the impact of breast cancer therapies on the cardiovascular system with a focus on the endothelium, and examine the status of circulating biomarkers, including inflammatory markers, cardiac biomarkers, microRNAs, and endothelial cell-derived EVs. Investigation of these emerging biomarkers may uncover mechanisms of injury, detect early stages of cardiovascular damage, and elucidate novel therapeutic approaches.
Collapse
|
34
|
Hoffman RK, Kim BJ, Shah PD, Carver J, Ky B, Ryeom S. Damage to cardiac vasculature may be associated with breast cancer treatment-induced cardiotoxicity. CARDIO-ONCOLOGY 2021; 7:15. [PMID: 33875012 PMCID: PMC8054404 DOI: 10.1186/s40959-021-00100-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer is the most common female cancer worldwide. Effective therapies including doxorubicin and trastuzumab have improved survival, but are associated with a substantial risk of cardiovascular disease. Mechanisms underlying cancer treatment-induced cardiotoxicity (CTC) are poorly understood and have largely focused on cardiomyocyte damage, although other cellular populations in the heart such as the cardiac endothelium, may play an important role in cardiac damage. We treated a breast tumor-bearing mouse model with doxorubicin and trastuzumab to investigate the role of the cardiac endothelium in the development of CTC. METHODS Immune compromised mice were inoculated in the 4th mammary fat pad with human breast cancer cells overexpressing HER2 (BT474). When tumors were palpable, mice were treated weekly with doxorubicin (5 mg/kg) and trastuzumab (4 mg/kg). The cardiac phenotype of mice was assessed by echocardiography and histological evaluation of the heart. Cardiac vascular damage was assayed by in vivo permeability assays and primary cultures of murine cardiac endothelial cells were used to assay doxorubicin toxicity in vitro. RESULTS The growth of BT474 breast tumors in Balb/c Nude mice was suppressed upon treatment with doxorubicin and trastuzumab. Mice treated for 4 months with doxorubicin and trastuzumab maintained body weights, but demonstrated an echocardiographic phenotype consistent with preserved left ventricular (LV) ejection fraction, decreased LV mass and increased filling pressures (E/e'). Histological staining with Masson's trichrome and Picrosirius red showed extensive fibrosis and increased collagen deposition in the ventricular myocardium surrounding blood vessels of treated mice compared to untreated mice. Evans blue permeability assays demonstrated increased cardiac vasculature permeability while primary cardiac endothelial cells exposed to doxorubicin in vitro showed increased cell death as compared to lung or liver endothelial cells. CONCLUSIONS An orthotopic mouse model of human breast cancer in Nude mice treated with doxorubicin and trastuzumab resulted in a cardiac vascular defect accompanied by preserved LV ejection fraction, decreased LV mass, suggesting mild diastolic dysfunction and cardiac remodeling consistent with subclinical cardiotoxicity. Our data suggest that cardiac endothelium is more sensitive to doxorubicin therapy as compared to other organ endothelium and cardiac endothelial damage may correlate with breast cancer treatment-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rebecca K Hoffman
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Laboratory of Innovative & Translational Nursing Research, School of Nursing at the University of Pennsylvania, Philadelphia, PA, USA
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Payal D Shah
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Cardio-Oncology Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Carver
- Cardio-Oncology Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Bonnie Ky
- Cardio-Oncology Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Cardio-Oncology Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Fa HG, Chang WG, Zhang XJ, Xiao DD, Wang JX. Noncoding RNAs in doxorubicin-induced cardiotoxicity and their potential as biomarkers and therapeutic targets. Acta Pharmacol Sin 2021; 42:499-507. [PMID: 32694762 PMCID: PMC8114921 DOI: 10.1038/s41401-020-0471-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Anthracyclines, such as doxorubicin (DOX), are well known for their high efficacy in treating multiple cancers, but their clinical usage is limited due to their potential to induce fatal cardiotoxicity. Such detrimental effects significantly impact the overall physical condition or even induce the morbidity and mortality of cancer survivors. Therefore, it is extremely important to understand the mechanisms of DOX-induced cardiotoxicity to develop methods for the early detection of cytotoxicity and therapeutic applications. Studies have shown that many molecular events are involved in DOX-induced cardiotoxicity. However, the precise mechanisms are still not completely understood. Recently, noncoding RNAs (ncRNAs) have been extensively studied in a diverse range of regulatory roles in cellular physiological and pathological processes. With respect to their roles in DOX-induced cardiotoxicity, microRNAs (miRNAs) are the most widely studied, and studies have focused on the regulatory roles of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), which have been shown to have significant functions in the cardiovascular system. Recent discoveries on the roles of ncRNAs in DOX-induced cardiotoxicity have prompted extensive interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic biomarkers. This review presents the frontier studies on the roles of ncRNAs in DOX-induced cardiotoxicity, addresses the possibility and prospects of using ncRNAs as diagnostic biomarkers or therapeutic targets, and discusses the possible reasons for related discrepancies and limitations of their use.
Collapse
|
36
|
Luu AZ, Luu VZ, Chowdhury B, Kosmopoulos A, Pan Y, Al-Omran M, Quan A, Teoh H, Hess DA, Verma S. Loss of endothelial cell-specific autophagy-related protein 7 exacerbates doxorubicin-induced cardiotoxicity. Biochem Biophys Rep 2021; 25:100926. [PMID: 33553688 PMCID: PMC7851775 DOI: 10.1016/j.bbrep.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (DOX) is an effective, broad-spectrum antineoplastic agent with serious cardiotoxic side effects, which may lead to the development of heart failure. Current strategies to diagnose, prevent, and treat DOX-induced cardiotoxicity (DIC) are inadequate. Recent evidence has linked the dysregulation and destruction of the vascular endothelium to the development of DIC. Autophagy is a conserved pro-survival mechanism that recycles and removes damaged sub-cellular components. Autophagy-related protein 7 (ATG7) catalyzes autophagosome formation, a critical step in autophagy. In this study, we used endothelial cell-specific Atg7 knockout (EC-Atg7−/−) mice to characterize the role of endothelial cell-specific autophagy in DIC. DOX-treated EC-Atg7−/− mice showed reduced survival and a greater decline in cardiac function compared to wild-type controls. Histological assessments revealed increased cardiac fibrosis in DOX-treated EC-Atg7−/− mice. Furthermore, DOX-treated EC-Atg7−/− mice had elevated serum levels of creatine kinase-myocardial band, a biomarker for cardiac damage. Thus, the lack of EC-specific autophagy exacerbated DIC. Future studies on the relationship between EC-specific autophagy and DIC could establish the importance of endothelium protection in preventing DIC. Recent data suggest that endothelial cells (ECs) may represent a novel target to reduce doxorubicin (DOX)-linked cardiotoxicity. We used EC-specific autophagy-related protein 7 knock-out (EC-Atg7−/−) mice to determine how ATG7 loss in ECs affects DIC. DOX-treated EC-Atg7−/− mice exhibited reduced survival and cardiac function. Cardiac fibrosis and serum creatine kinase-myocardial band levels were increased in DOX-treated EC-Atg7−/− mice. Loss of endothelial Atg7 exacerbated DIC phenotypes.
Collapse
Affiliation(s)
- Albert Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Andrew Kosmopoulos
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yi Pan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Tocchetti CG, Ameri P, de Boer RA, D’Alessandra Y, Russo M, Sorriento D, Ciccarelli M, Kiss B, Bertrand L, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Linke WA, Mayr M, van der Velden J, Zacchigna S, Ghigo A, Hirsch E, Lyon AR, Görbe A, Ferdinandy P, Madonna R, Heymans S, Thum T. Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2020; 116:1820-1834. [DOI: 10.1093/cvr/cvaa222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing population. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV disease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms between HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel additional research efforts in the field of Cardio-Oncology.
Collapse
Affiliation(s)
- Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
- Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, AB31, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Yuri D’Alessandra
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine Surgery and Odontology, University of Salerno, Salerno, Italy
| | - Bernadett Kiss
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
| | - Luc Bertrand
- IREC Institute, Pole of Cardiovascular Research, Université Catholique de Louvain, Brussels, Belgium
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Ines Falcao-Pires
- Unidade de Investigação e Desenvolvimento Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
- Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Witten, Germany
| | | | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Imperial College London, London, UK
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp Mol Med 2020; 52:781-792. [PMID: 32467609 PMCID: PMC7272420 DOI: 10.1038/s12276-020-0439-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) involves the phenotypic conversion of endothelial-to-mesenchymal cells, and was first discovered in association with embryonic heart development. EndMT can regulate various processes, such as tissue fibrosis and cancer. Recent findings have shown that EndMT is related to resistance to cancer therapy, such as chemotherapy, antiangiogenic therapy, and radiation therapy. Based on the known effects of EndMT on the cardiac toxicity of anticancer therapy and tissue damage of radiation therapy, we propose that EndMT can be targeted as a strategy for overcoming tumor resistance while reducing complications, such as tissue damage. In this review, we discuss EndMT and its roles in damaging cardiac and lung tissues, as well as EndMT-related effects on tumor vasculature and resistance in anticancer therapy. Modulating EndMT in radioresistant tumors and radiation-induced tissue fibrosis can especially increase the efficacy of radiation therapy. In addition, we review the role of hypoxia and reactive oxygen species as the main stimulating factors of tissue damage due to vascular damage and EndMT. We consider drugs that may be clinically useful for regulating EndMT in various diseases. Finally, we argue the importance of EndMT as a therapeutic target in anticancer therapy for reducing tissue damage. A process of cellular conversion known as endothelial-to-mesenchymal transition (EndMT) may offer a valuable target for treating cancer and other diseases. In EndMT, the cells lining blood vessels undergo a striking change in shape and physiology, acquiring features of cells called fibroblasts. Fibroblasts form the body’s connective tissue, but also produce scar tissue that impairs organ function. Researchers led by Yoon-Jin Lee of the Korea Institute of Radiological & Medical Sciences in Seoul, South Korea, have reviewed the impact of this transformation on human disease. EndMT is seen as a prelude to heart failure, in lung tissue affected by pulmonary fibrosis, and within tumors, where the process recruits cells that further stimulate cancer progression. The authors highlight the potential of using drugs that target EndMT to bolster the efficacy and safety of tumor therapy.
Collapse
|
39
|
Jahn SK, Hennicke T, Kassack MU, Drews L, Reichert AS, Fritz G. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118711. [PMID: 32224192 DOI: 10.1016/j.bbamcr.2020.118711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Cardiotoxicity is a highly relevant, because often life-threatening, adverse effect of doxorubicin (Doxo)-based anticancer therapy. Here, we investigated the Doxo-response of cardiovascular stem/progenitor cells employing a mouse embryonic stem cell (mESC)-based in vitro differentiation model. Endothelial progenitor cells revealed a pronounced Doxo sensitivity as compared to mESC, differentiated endothelial-like (EC) and cardiomyocyte-like cells (CM) and CM progenitors, which rests on the activation of senescence. Doxo treatment of EC progenitors altered protein expression of individual endothelial markers, actin cytoskeleton morphology, mRNA expression of genes related to mitochondrial functions, autophagy, apoptosis, and DNA repair as well as mitochondrial DNA content, respiration and ATP production in the surviving differentiated EC progeny. By contrast, LDL uptake, ATP-stimulated Ca2+ release, and cytokine-stimulated ICAM-1 expression remained unaffected by the anthracycline treatment. Thus, exposure of EC progenitors to Doxo elicits isolated and persistent dysfunctions in the surviving EC progeny. In conclusion, we suggest that Doxo-induced injury of EC progenitors adds to anthracycline-induced cardiotoxicity, making this cell-type a preferential target for pharmacoprotective and regenerative strategies.
Collapse
Affiliation(s)
- Sarah K Jahn
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
40
|
Ziegler V, Deußen M, Schumacher L, Roos WP, Fritz G. Anticancer drug and ionizing radiation-induced DNA damage differently influences transcription activity and DDR-related stress responses of an endothelial monolayer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118678. [PMID: 32061892 DOI: 10.1016/j.bbamcr.2020.118678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 01/05/2023]
Abstract
The endothelium contributes to the pathophysiology of adverse effects caused by conventional (genotoxic) anticancer therapeutics (cAT). The relevance of structurally different types of cAT-induced DNA lesions for eliciting selected endothelial stress responses is largely unknown. Here, we analyzed the cAT-induced formation of DNA double-strand breaks (DSB), transcription blockage and DNA damage response (DDR) in time kinetic analyses employing a monolayer of primary human endothelial cells (HUVEC). We observed that the degree of cAT-induced transcription blockage, the number of DSB and activation of DDR-related factors diverge. For instance, ionizing radiation caused the formation of numerous DSB and triggerd a substantial activation of ATM/Chk2 signaling, which however were not accompanied by a significant transcription inhibition. By contrast, the DNA cross-linking cAT cisplatin triggered a rapid and substantial blockage of transcription, which yet was not reflected by an appreciable number of DSB or increased levels of pATM/pChk2. In general, cAT-stimulated ATM-dependent phosphorylation of Kap1 (Ser824) and p53 (Ser15) reflected best cAT-induced transcription blockage. In conclusion, cAT-induced formation of DSB and profound activation of prototypical DDR factors is independent of the inhibition of RNA polymerase II-regulated transcription in an endothelial monolayer. We suggest that DSB formed directly or indirectly following cAT-treatment do not act as comprehensive triggers of superior signaling pathways shutting-down transcription while, at the same time, causing an appreciable stimulation of the DDR. Rather, it appears that distinct cAT-induced DNA lesions elicit diverging signaling pathways, which separately control transcription vs. DDR activity in the endothelium.
Collapse
Affiliation(s)
- Verena Ziegler
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Marco Deußen
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Lena Schumacher
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
41
|
He H, Wang L, Qiao Y, Zhou Q, Li H, Chen S, Yin D, Huang Q, He M. Doxorubicin Induces Endotheliotoxicity and Mitochondrial Dysfunction via ROS/eNOS/NO Pathway. Front Pharmacol 2020; 10:1531. [PMID: 31998130 PMCID: PMC6965327 DOI: 10.3389/fphar.2019.01531] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Doxorubicin (Dox) can induce endotheliotoxicity and damage the vascular endothelium (VE). The most principle mechanism might be excess reactive oxygen species (ROS) generation. Nevertheless, the characteristics of ROS generation, downstream mechanisms, and target organelles in Dox-induced endotheliotoxicity have yet to be elucidated. Methods and Results: In order to explore the related problems, the VE injury models were established in mice and human umbilical vein endothelial cells (HUVECs) by Dox-induced endotheliotoxicity. Results showed that the activities of lactate dehydrogenase (LDH) and creatine kinase of mice’s serum increased after injected Dox. The thoracic aortic strips’ endothelium-dependent dilation was significantly impaired, seen noticeable inflammatory changes, and brown TUNEL-positive staining in microscopy. After Dox-treated, HUVECs viability lowered, LDH and caspase-3 activities, and apoptotic cells increased. Both intracellular/mitochondrial ROS generation significantly increased, and intracellular ROS generation lagged behind mitochondria. HUVECs treated with Dox plus ciclosporin A (CsA) could basically terminate ROS burst, but plus edaravone (Eda) could only delay or inhibit, but could not completely cancel ROS burst. Meanwhile, the expression of endothelial nitric oxide synthase (eNOS) decreased, especially phosphorylation of eNOS significantly. Then nitric oxide content decreased, the mitochondrial function was impaired, mitochondrial membrane potential (MMP) impeded, mitochondrial swelled, mitochondrial permeability transition pore (mPTP) was opened, and cytochrome C was released from mitochondria into the cytosol. Conclusion: Dox produces excess ROS in the mitochondria, thereby weakens the MMP, opens mPTP, activates the ROS-induced ROS release mechanism, induces ROS burst, and leads to mitochondrial dysfunction, which in turn damages VE. Therefore, interrupting any step of the cycles, as mentioned above can end the related vicious cycle and prevent the occurrence and development of injury.
Collapse
Affiliation(s)
- Huan He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Liang Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Qiao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Huang
- Jiangxi Provincial Institute of Cardiovascular Diseases, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Ma X, Zhu P, Ding Y, Zhang H, Qiu Q, Dvornikov AV, Wang Z, Kim M, Wang Y, Lowerison M, Yu Y, Norton N, Herrmann J, Ekker SC, Hsiai TK, Lin X, Xu X. Retinoid X receptor alpha is a spatiotemporally predominant therapeutic target for anthracycline-induced cardiotoxicity. SCIENCE ADVANCES 2020; 6:eaay2939. [PMID: 32064346 PMCID: PMC6989136 DOI: 10.1126/sciadv.aay2939] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
To uncover the genetic basis of anthracycline-induced cardiotoxicity (AIC), we recently established a genetic suppressor screening strategy in zebrafish. Here, we report the molecular and cellular nature of GBT0419, a salutary modifier mutant that affects retinoid x receptor alpha a (rxraa). We showed that endothelial, but not myocardial or epicardial, RXRA activation confers AIC protection. We then identified isotretinoin and bexarotene, two FDA-approved RXRA agonists, which exert cardioprotective effects. The therapeutic effects of these drugs only occur when administered during early, but not late, phase of AIC or as pretreatment. Mechanistically, these spatially- and temporally-predominant benefits of RXRA activation can be ascribed to repair of damaged endothelial cell-barrier via regulating tight-junction protein Zonula occludens-1. Together, our study provides the first in vivo genetic evidence supporting RXRA as the therapeutic target for AIC, and uncovers a previously unrecognized spatiotemporally-predominant mechanism that shall inform future translational efforts.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qi Qiu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Institute of Clinical Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Alexey V. Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zheng Wang
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Maengjo Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yong Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Institute of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Tzung K. Hsiai
- School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Nakano MH, Udagawa C, Shimo A, Kojima Y, Yoshie R, Zaha H, Abe N, Motonari T, Unesoko M, Tamura K, Shimoi T, Yoshida M, Yoshida T, Sakamoto H, Kato K, Mushiroda T, Tsugawa K, Zembutsu H. A Genome-Wide Association Study Identifies Five Novel Genetic Markers for Trastuzumab-Induced Cardiotoxicity in Japanese Population. Biol Pharm Bull 2019; 42:2045-2053. [DOI: 10.1248/bpb.b19-00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mari Hara Nakano
- Project for Development of Liquid Biopsy Diagnosis, Japanese Foundation for Cancer Research, Research Institute
- Division of Breast and Endocrine Surgery, Department of Surgery, St.Marianna University School of Medicine
| | - Chihiro Udagawa
- Project for Development of Liquid Biopsy Diagnosis, Japanese Foundation for Cancer Research, Research Institute
- New Business Development Life Science Group, Toyo Kohan Co., Ltd
| | - Arata Shimo
- Division of Breast and Endocrine Surgery, Department of Surgery, St.Marianna University School of Medicine
| | - Yasuyuki Kojima
- Division of Breast and Endocrine Surgery, Department of Surgery, St.Marianna University School of Medicine
| | - Reiko Yoshie
- Division of Breast and Endocrine Surgery, Department of Surgery, St.Marianna University School of Medicine
| | | | - Norie Abe
- Department of Breast Surgery, Nakagami Hospital
| | | | | | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital
| | - Tatsunori Shimoi
- Department of Breast and Medical Oncology, National Cancer Center Hospital
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute
| | - Hiromi Sakamoto
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital
| | | | - Koichiro Tsugawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St.Marianna University School of Medicine
| | - Hitoshi Zembutsu
- Project for Development of Liquid Biopsy Diagnosis, Japanese Foundation for Cancer Research, Research Institute
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute
| |
Collapse
|
44
|
Tsai TH, Lin CJ, Hang CL, Chen WY. Calcitriol Attenuates Doxorubicin-Induced Cardiac Dysfunction and Inhibits Endothelial-to-Mesenchymal Transition in Mice. Cells 2019; 8:E865. [PMID: 31405028 PMCID: PMC6721693 DOI: 10.3390/cells8080865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Doxorubicin (Dox) is an effective anti-neoplasm drug, but its cardiac toxicity limits its clinical use. Endothelial-to-mesenchymal transition (EndMT) has been found to be involved in the process of heart failure. It is unclear whether EndMT contributes to Dox-induced cardiomyopathy (DoIC). Calcitriol, an active form Vitamin D3, blocks the growth of cancer cells by inhibiting the Smad pathway. To investigate the effect of calcitriol via inhibiting EndMT in DoIC, C57BL/6 mice and endothelial-specific labeled mice were intraperitoneally administered Dox twice weekly for 4 weeks (32 mg/kg cumulative dose) and were subsequently treated with or without calcitriol for 12 weeks. Echocardiography revealed diastolic dysfunction at 13 weeks following the first Dox treatment, accompanied by increased myocardial fibrosis and up-regulated pro-fibrotic proteins. Calcitriol attenuated Dox-induced myocardial fibrosis, down-regulated pro-fibrotic proteins and improved diastolic function. Endothelial fate tracing revealed that EndMT-derived cells contributed to Dox-induced cardiac fibrosis. In vitro, human umbilical vein endothelial cells and mouse cardiac fibroblasts were treated with Transforming growth factor (TGF)-β with or without calcitriol. Morphological, immunofluorescence staining, and Western blot analyses revealed that TGF-β-induced EndMT and fibroblast-to-myofibroblast transition (FMT) were attenuated by calcitriol by the inhibition of the Smad2 pathway. Collectively, calcitriol attenuated DoIC through the inhibition of the EndMT and FMT processes.
Collapse
Affiliation(s)
- Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Jei Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chi-Ling Hang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| |
Collapse
|
45
|
Hader SN, Zinkevich N, Norwood Toro LE, Kriegel AJ, Kong A, Freed JK, Gutterman DD, Beyer AM. Detrimental effects of chemotherapy on human coronary microvascular function. Am J Physiol Heart Circ Physiol 2019; 317:H705-H710. [PMID: 31397169 DOI: 10.1152/ajpheart.00370.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy (CT) is a necessary treatment to prevent the growth and survival of cancer cells. However, CT has a well-established adverse impact on the cardiovascular (CV) system, even years after cessation of treatment. The effects of CT drugs on tumor vasculature have been the focus of much research, but little evidence exists showing the effects on the host microcirculation. Microvascular (MV) dysfunction is an early indicator of numerous CV disease phenotypes, including heart failure. The goal of this study was to evaluate the direct effect of doxorubicin (Dox) on human coronary MV function. To study the effect of CT on the cardiac MV function, flow-mediated dilation (FMD), pharmacologically-induced endothelial dependent dilation to acetylcholine (ACh), and smooth muscle-dependent dilation to papaverine were investigated. Vessels were freshly isolated from atrial appendages of adult patients undergoing cardiopulmonary bypass surgery or from cardiac tissue of pediatric patients, collected at the time of surgery to repair congenital heart defects. Isolated vessels were incubated in endothelial culture medium containing vehicle or Dox (100 nm, 15-20 h) and used to measure dilator function by video microscopy. Ex vivo treatment of adult human coronary microvessels with Dox significantly impaired flow-mediated dilation (FMD). Conversely, in pediatric coronary microvessels, Dox-induced impairment of FMD was significantly reduced in comparison with adult subjects. In both adult and pediatric coronary microvessels, ACh-induced constriction was reversed into dilation in the presence of Dox. Smooth muscle-dependent dilation remained unchanged in all groups tested. In vessels from adult subjects, acute treatment with Dox in clinically relevant doses caused significant impairment of coronary arteriolar function, whereas vessels from pediatric subjects showed only marginal impairment to the same stressor. This interesting finding might explain the delayed onset of future adverse CV events in children compared with adults after anthracycline therapy.NEW & NOTEWORTHY We have characterized, for the first time, human microvascular responses to acute ex vivo exposure to doxorubicin in coronary vessels from patients without cancer. Our data show an augmented impairment of endothelial function in vessels from adult subjects compared with pediatric samples.
Collapse
Affiliation(s)
- Shelby N Hader
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natalya Zinkevich
- Department of Health and Medicine, Carroll University, Waukesha, Wisconsin
| | - Laura E Norwood Toro
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda Kong
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K Freed
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David D Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
46
|
Chen CT, Hsu CH, Liu JR, Wu HB, Chou YS, Hsiu H. Comparison of complexity and spectral indices of skin-surface laser-doppler signals in patients with breast cancer receiving chemotherapy and Kuan-Sin-Yin. Clin Hemorheol Microcirc 2019; 73:553-563. [PMID: 31156144 DOI: 10.3233/ch-190569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study tested the hypothesis that measuring and analyzing skin-surface blood flow dynamics can be used to noninvasively discriminate the different microcirculatory and physiological function states of breast-cancer patients with chemotherapy between receiving and not receiving Kuan-Sin-Yin (KSY) treatment. The 17 included patients were assigned randomly to 2 comparison groups: Group K (n = 10) received KSY treatment, while Group NK (n = 7) did not receive KSY treatment. Beat-to-beat, spectral, and approximate-entropy (ApEn) analyses were applied to the 20-minute laser-Doppler sequences. The self-reported quality of life and cancer-related symptoms of patients were also investigated. In posttests, Group NK had a significantly larger ApEn ratio than that in Group K, significantly smaller values of laser-Doppler-flowmetry variability indices, and a slightly higher relative energy contribution of the neural-related frequency band compared to those in the pretests. Almost all cancer-related symptoms showed improvements in Group K compared to in Group NK. The present findings indicated that the present analysis can be used to detect the significantly different responses in the laser-Doppler indices between taking and not taking KSY. The KSY effect was also noted to be accompanied with improvement of EORTC QLQ-C30 scores. These could lead to a rapid, inexpensive, and objective technique for enhancing clinical applications in quality-of-life monitoring of breast cancer therapy.
Collapse
Affiliation(s)
- Chao-Tsung Chen
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Traditional Chinese Medicine, Taipei City Hospital RenAi Branch, Taipei, Taiwan
- General Education Center, University of Taipei, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Jyh-Rou Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hung-Bo Wu
- Division of Hematology and Oncology, Department of Medicine, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Yi-Sheng Chou
- Division of Hematology and Oncology, Department of Medicine, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Hsin Hsiu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Biomedical Engineering Research Center, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
47
|
Luu AZ, Chowdhury B, Al-Omran M, Teoh H, Hess DA, Verma S. Role of Endothelium in Doxorubicin-Induced Cardiomyopathy. JACC Basic Transl Sci 2018; 3:861-870. [PMID: 30623145 PMCID: PMC6314956 DOI: 10.1016/j.jacbts.2018.06.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
The clinical use of doxorubicin in cancer is limited by cardiotoxic effects that can lead to heart failure. Whereas earlier work focused on the direct impact of doxorubicin on cardiomyocytes, recent studies have turned to the endothelium, because doxorubicin-damaged endothelial cells can trigger the development and progression of cardiomyopathy by decreasing the release and activity of key endothelial factors and inducing endothelial cell death. Thus, the endothelium represents a novel target for improving the detection, management, and prevention of doxorubicin-induced cardiomyopathy.
Collapse
Key Words
- AKT, protein kinase B
- Bcl-2, B-cell lymphoma-2
- DNA, deoxyribonucleic acid
- ERK1/2, extracellular signal-regulated kinase 1/2
- ET, endothelin
- LV, left ventricular
- MRP, multidrug resistance protein
- NADPH, nicotinamide adenine dinucleotide phosphate
- NO, nitric oxide
- NOS, nitric oxide synthase
- NRG-1, neuregulin-1
- PGI2, prostaglandin I2
- PI3K, phosphoinositide 3-kinase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- ZO, zona occludens
- cardiomyopathy
- doxorubicin
- endothelium
- heart failure
Collapse
Affiliation(s)
- Albert Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hwee Teoh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Antoniak S, Tatsumi K, Schmedes CM, Grover SP, Pawlinski R, Mackman N. Protease-activated receptor 1 activation enhances doxorubicin-induced cardiotoxicity. J Mol Cell Cardiol 2018; 122:80-87. [PMID: 30098988 DOI: 10.1016/j.yjmcc.2018.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The anti-cancer anthracycline drug Doxorubicin (Dox) causes cardiotoxicity. We investigated the role of protease-activated receptor 1 (PAR-1) in Dox-induced cardiotoxicity. METHODS AND RESULTS In vitro experiments revealed that PAR-1 enhanced Dox-induced mitochondrial dysfunction, reactive oxygen species and cell death of cardiac myocytes and cardiac fibroblasts. The contribution of PAR-1 to Dox-induced cardiotoxicity was investigated by subjecting PAR-1-/- mice and PAR-1+/+ mice to acute and chronic exposure to Dox. Heart function was measured by echocardiography. PAR-1-/- mice exhibited significant less cardiac injury and dysfunction compared to PAR-1+/+ mice after acute and chronic Dox administration. PAR-1-/- mice had reduced levels of nitrotyrosine, apoptosis and inflammation in their heart compared to PAR-1+/+ mice. Furthermore, inhibition of PAR-1 in wild-type mice with vorapaxar significantly reduced the acute Dox-induced cardiotoxicity. CONCLUSION Our results indicate that activation of PAR-1 contributes to Dox-induced cardiotoxicity. Inhibition of PAR-1 may be a new approach to reduce Dox-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Silvio Antoniak
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Kohei Tatsumi
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, United States; Department of Physiology and Regenerative Medicine, Kindai University, Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Clare M Schmedes
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Steven P Grover
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Rafal Pawlinski
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Nigel Mackman
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
49
|
Alias E, Parikh V, Hidalgo-Bastida A, Wilkinson M, Davidge KS, Gibson T, Sharp D, Shakur R, Azzawi M. Doxorubicin-induced cardiomyocyte toxicity - protective effects of endothelial cells in a tri-culture model system. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/jin2.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Eliesmaziah Alias
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| | - Vijay Parikh
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| | - Araida Hidalgo-Bastida
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| | | | | | - Tim Gibson
- Elisha Systems Ltd; Wakefield West Yorkshire WF3 4AA UK
| | - Duncan Sharp
- Elisha Systems Ltd; Wakefield West Yorkshire WF3 4AA UK
| | - Rameen Shakur
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus; University of Cambridge; Cambridge CB10 1SA UK
| | - May Azzawi
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| |
Collapse
|
50
|
Dickens D, Rädisch S, Chiduza GN, Giannoudis A, Cross MJ, Malik H, Schaeffeler E, Sison-Young RL, Wilkinson EL, Goldring CE, Schwab M, Pirmohamed M, Nies AT. Cellular Uptake of the Atypical Antipsychotic Clozapine Is a Carrier-Mediated Process. Mol Pharm 2018; 15:3557-3572. [PMID: 29944835 DOI: 10.1021/acs.molpharmaceut.8b00547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The weak base antipsychotic clozapine is the most effective medication for treating refractory schizophrenia. The brain-to-plasma concentration of unbound clozapine is greater than unity, indicating transporter-mediated uptake, which has been insufficiently studied. This is important, because it could have a significant impact on clozapine's efficacy, drug-drug interaction, and safety profile. A major limitation of clozapine's use is the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), which is a rare but severe hematological adverse drug reaction. We first studied the uptake of clozapine into human brain endothelial cells (hCMEC/D3). Clozapine uptake into cells was consistent with a carrier-mediated process, which was time-dependent and saturable ( Vmax = 3299 pmol/million cells/min, Km = 35.9 μM). The chemical inhibitors lamotrigine, quetiapine, olanzapine, prazosin, verapamil, indatraline, and chlorpromazine reduced the uptake of clozapine by up to 95%. This could in part explain the in vivo interactions observed in rodents or humans for these compounds. An extensive set of studies utilizing transporter-overexpressing cell lines and siRNA-mediated transporter knockdown in hCMEC/D3 cells showed that clozapine was not a substrate of OCT1 (SLC22A1), OCT3 (SLC22A3), OCTN1 (SLC22A4), OCTN2 (SLC22A5), ENT1 (SLC29A1), ENT2 (SLC29A2), and ENT4/PMAT (SLC29A4). In a recent genome-wide analysis, the hepatic uptake transporters SLCO1B1 (OATP1B1) and SLCO1B3 (OATP1B3) were identified as additional candidate transporters. We therefore also investigated clozapine transport into OATP1B-transfected cells and found that clozapine was neither a substrate nor an inhibitor of OATP1B1 and OATP1B3. In summary, we have identified a carrier-mediated process for clozapine uptake into brain, which may be partly responsible for clozapine's high unbound accumulation in the brain and its drug-drug interaction profile. Cellular clozapine uptake is independent from currently known drug transporters, and thus, molecular identification of the clozapine transporter will help to understand clozapine's efficacy and safety profile.
Collapse
Affiliation(s)
- David Dickens
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Steffen Rädisch
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - George N Chiduza
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Athina Giannoudis
- Department of Molecular and Clinical Cancer Medicine , University of Liverpool , Liverpool L69 3BX , U.K
| | - Michael J Cross
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Hassan Malik
- Liverpool Hepatobiliary Unit , University Hospital Aintree , Liverpool L9 7AL , U.K
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , 70376 Stuttgart , Germany.,University Tübingen , Tübingen , Germany
| | - Rowena L Sison-Young
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Emma L Wilkinson
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Christopher E Goldring
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , 70376 Stuttgart , Germany.,Department of Clinical Pharmacology , University Hospital Tübingen , 72076 Tubingen , Germany.,Department of Pharmacy and Biochemistry , University Tübingen , 72076 Tübingen , Germany
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , 70376 Stuttgart , Germany.,University Tübingen , Tübingen , Germany
| |
Collapse
|